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Abstract

This paper presents a local modification of the Levenberg-Marquardt algorithm (LM).

First, the mathematical basics of the classic LM method are shown. The classic LM al-

gorithm is very efficient for learning small neural networks. For bigger neural networks,

whose computational complexity grows significantly, it makes this method practically in-

efficient. In order to overcome this limitation, local modification of the LM is introduced

in this paper. The main goal of this paper is to develop a more complexity efficient mod-

ification of the LM method by using a local computation. The introduced modification

has been tested on the following benchmarks: the function approximation and classifi-

cation problems. The obtained results have been compared to the classic LM method

performance. The paper shows that the local modification of the LM method significantly

improves the algorithm’s performance for bigger networks. Several possible proposals

for future works are suggested.

Keywords: feed-forward neural network, neural network learning algorithm, optimiza-

tion problem, Levenberg-Marquardt algorithm, QR decomposition, Givens rotation.

1 Introduction

Nowadays, artificial intelligence exists not only

in the world of science but also in industry. One of

the most interesting areas of AI are neural networks.

Each year researchers across the world produce an

incredible number of scientific papers whose main

theme originates from AI, especially from neural

networks as in [1, 2, 3, 4, 5, 6, 7, 8, 9]. Industry

strongly benefits from that by applying more and

more advanced AI solutions in their products. The

biggest industrial beneficiaries of the neural net-

works are medicine and health care [10, 11, 12,

13, 14, 15], banking and finances [16, 17, 18],

but also safety [19, 20, 21, 22, 23] and entertain-

ment [24, 25, 26].

All applications of neural networks share the

same common feature – a network needs to be

trained in order to solve a specific problem.

There are many training algorithms which are de-

rived directly from the original backpropagation

method [27] such as [28, 29, 30]. There are also

more complex algorithms which involve Newton’s
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method, such as the Levenberg-Marquardt (LM) al-

gorithm, which was initially proposed in [31].

The LM algorithm is a supervised training

method that can be applied to any feedforward neu-

ral network, which from now on will be also re-

ferred as ”FF”. A neural network is built from lay-

ers. Each layer is built from a finite number of

neurons. The last layer of the network has a spe-

cial function acting as a network’s output, hence it

is called the output layer. In most practical appli-

cations there are networks with more than a sin-

gle layer. All layers preceding the network’s out-

put are called hidden layers. Feedforward neural

networks can have various topologies. The most

common is the multilayer perceptron also called an

MLP. In such networks each layer is connected only

to the previous one. An exemplary MLP network is

shown in Figure 1. The next common FF topology

is the fully connected multilayer perceptron, sim-

ply referred to as an FCMLP. This type of network

is similar to the classic MLP with additional layer

connections. As shown in Figure 2 each layer of

the FCMLP network maintains connections to all

preceding layers. Due to that, an FCMLP network

with the same neuron count will contain many more

weights than a standard MLP of the same size. Ad-

ditional interesting variations are fully connected

cascade networks (FCCs). A network of such type

is similar to the FCMLP network whose layers con-

tain only a single neuron. Each layer is connected

to all preceding layers and network inputs as shown

in Figure 3. Originally, the FCC network was used

by P. Werbos in his research on the backpropagation

method [27]. It is worth noting that the special case

of the FCC network is the FCMLP network, while

the MLP network is a special case of the FCMLP

network.

Figure 1. MLP network with 5 neurons and two

hidden layers.

Figure 2. FCMLP network with 5 neurons and two

hidden layers (excessive connections are marked

with the dotted line).

Figure 3. FCC network with 4 neurons.

While the LM algorithm is a very popular and

robust method of finding the function minimum in

most applications, it is still burdened with several

disadvantages. Some of them are serious enough to

the extent that makes the LM algorithm completely

impractical. Through the years many researchers

have been making attempts at devising the LM al-

gorithm optimization techniques.

The LM algorithm is a second-order method

which combines the advantages of the Gauss-

Newton and the gradient descend methods. As most

of the neural networks training algorithms, the clas-

sic LM can also become stuck in the local min-

imum. In classical first-order methods this prob-

lem can be solved by applying the momentum fac-

tor. Such modification helps to overshoot the lo-

cal minima and find the right direction towards the

optimal solution. The momentum factor can be se-

lected arbitrarily and remain fixed through the train-

ing or be dynamically adjusted based on the conver-

gence process. Such approach has been presented

in [32], where the main idea was to combine the

advantages of the LM and CG methods in order to
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increase the robustness of the training. The authors

made an effort to develop two variants of the mo-

mentum Levenberg-Marquardt algorithm with both,

fixed and adaptable momentum size. While the pre-

sented algorithms were proven to be more efficient

in the scope of the training time than the classic LM,

they both were still burdened with the biggest of

the LM disadvantages – a great computational com-

plexity due to the size of a single Jacobian matrix.

While approaching complex experiments, the

classical methods of neural networks training can

report a very poor convergence rate in the flat spot

of the error function. Typically, the flat spot prob-

lem causes a significant training slowdown due to

low gradient values of the hidden neurons. In the

first-order methods such problem can be addressed

by fine tuning of the training parameters. This is not

the case in the more complex second-order meth-

ods. The LM algorithm’s base complexity is very

high, so application of additional training parame-

ters should be avoided. An interesting approach to

this problem has been presented in [33]. In order

to overcome a stalemate in the convergence process

caused by the flat-spot problem, the authors pro-

posed the weights compression modification to the

Levenberg-Marquardt algorithm. This technique is

used to push the neurons’ gradients out of the lin-

ear area of the activation function in order to boost

the training. The authors have reported a significant

improvement in terms of the success ratio achieved

by their idea over the classic LM variant. Moreover,

the authors proved that their idea does not increase

computational complexity significantly enough for

various topologies of the feed forward networks.

The authors of [34] focused their effort on a

slightly different aspect of the LM algorithm opti-

mizations. In most implementations sensitivity co-

efficients of the Jacobian matrix are calculated by

using the numerical differentiation methods. This

results in obtaining approximated values of the gra-

dient derivatives. The authors noticed that when

tackling complex problems in which transient states

and severe non-linearities occur, it is the classic ap-

proach to the Jacobian computation that might bring

significant instabilities to the training process. Be-

ing the core of the LM algorithm, the Jacobian ma-

trix needs to be computed as precisely as possi-

ble. In order to achieve that, the authors proposed a

complex variable differentiation method to be uti-

lized during the LM training. The authors have

proved this technique is able to increase the stabil-

ity of the LM training process, but it is not able to

decrease the computational complexity.

Some researchers also noticed that the Jacobian

matrix size might be the root cause of the computa-

tional complexity problem in the classic Levenberg-

Marquardt algorithm. In [35] the authors propose a

dedicated optimization for the LM algorithm while

registering the nonrigid images. They made an at-

tempt to reuse a once constructed Jacobian matrix in

two iterations of the algorithm instead of one. The

main idea behind it was to perform an additional

step after the classic LM calculations in order to es-

tablish the optimal correction vector. Additionally,

in order to increase the performance a linear search

was used. The authors reported their method to be

more efficient than the classic LM variant due to

calculating the Jacobian matrix only once per two

algorithm iterations.

As shown in the discussion above, many ap-

proaches have been made in order to optimize the

classic Levenberg-Marquardt algorithm, but none

of them touches directly the core of the problem,

i.e., the size of the Jacobian matrix. This structure

is consecutively constructed throughout the whole

epoch. As shown in Section 3, it can grow sig-

nificantly for bigger networks especially during the

training that utilizes very long training sets. In such

cases a practical implementation of the classic LM

algorithm makes it of no use due to a great compu-

tational complexity and memory usage.

In this paper the novel method for optimizing

the LM algorithm is presented. It is achieved by

splitting the single Jacobian matrix and transferring

it locally to all neurons respectively. Such approach

significantly reduces computational complexity of

the classic variant and opens the possibility for par-

allel computations. During the research the fol-

lowing original and novel contributions have been

made:

1. The mathematical derivation of the local modifi-

cation to the classic Levenberg-Marquardt algo-

rithm has been presented.

2. The consecutive steps of the local LM algorithm

have been precisely described.

3. The QR decomposition along with the Givens
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rotations have been used to solve equations with

an inverse matrix in both LM algorithms.

4. The performance of the local LM variant

has been compared with that of the classic

Levenberg-Marquardt algorithm.

5. The original benchmark procedure has been de-

veloped in order to achieve the most valuable

and reliable results.

6. Both, local and classic variants of the LM have

been tested on various topologies of feedforward

networks utilizing multiple benchmarks.

7. The proposed modification solves the computa-

tional complexity problem caused by a huge sin-

gle Jacobian matrix of the classic LM variant.

The paper has been divided into several sec-

tions. Section 2 is devoted to a detailed descrip-

tion of the classic Levenberg-Marquardt algorithm.

Both, the mathematical and the practical implemen-

tation approaches are presented. Section 3 con-

tains the core of this paper, i.e. the discussion of

the local modification of the LM algorithm. The

crucial differences to the classic variant are high-

lighted. As the foreword in Section 4, the utilized

original benchmarking procedure and all important

nomenclature are explained. Then, the selected re-

sults are presented and described. Section 5 con-

cludes the considerations on the local Levenberg-

Marquardt and presents the possible directions for

future research.

2 The classic Levenberg-Marquardt

algorithm

The Levenberg-Marquardt algorithm (LM) is a

second-order training method for feedforward neu-

ral networks. Based on the shape of the error func-

tion, the LM algorithm can adjust the speed of train-

ing. It is possible by using the advantages of both

the steepest descent and the quasi-Newton methods.

In the LM training the objective function is given by

the following equation

E (w(n)) =

= 1
2

Q

∑
t=1

NL

∑
r=1

ε
2(L)
r (t) = 1

2

Q

∑
t=1

NL

∑
r=1

(

y
(L)
r (t)−d

(L)
r (t)

)2

,

(1)

where Q is the number of samples and ε
(L)
r is a non-

linear neuron error which is defined as

ε
(L)
r (t) = ε

(Lr)
r (t) = y

(L)
r (t)−d

(L)
r (t) (2)

and d
(L)
r (t) is the r− th expected vector of the t− th

teaching sample. The weight update is calculated as

follows

∆(w(n)) =−

[

∇2E(w(n))
]

−1

∇E(w(n)) , (3)

where ∇E(w(n)) is the gradient vector

∇E(w(n)) = JT (w(n))ε(w(n)) , (4)

and ∇2E(w(n)) is the Hessian matrix

∇2E(w(n)) = JT (w(n))J(w(n))+S(w(n)) , (5)

and J(w(n)) is the Jacobian matrix
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(6)

The neurons of the hidden layers calculate non-

linear errors ε
(lr)
i according to the following formula

ε
(lr)
i (t)

∧
=

Nl+1

∑
m=1

δ
(l+1,r)
i (t)w

(l+1)
mi , (7)

δ
(lr)
i (t) = ε

(lr)
i (t) f ′

(

s
(lr)
i (t)

)

. (8)

Based on that all elements of the Jacobian matrix

can be calculated for each weight of the network

∂ε
(L)
r (t)

w
(l)
i j

= δ
(lr)
i (t)x

(l)
j (t) . (9)

All weights of the network are stored in a single

vector, which is typical of the Levenberg-Marquardt

algorithm. The S(w(n)) factor introduced in equa-

tion (5) is defined as

S(w(n)) =
Q

∑
t=1

NL

∑
r=1

ε
(L)
r (t)∇2ε

(L)
r (t) . (10)
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Conveniently, in the Gauss-Newton method it can

be assumed that S(w(n)) ≈ 0, which leads to the

simplifying of equation (3) as follows

∆(w(n)) =

=−

[

JT (w(n))J(w(n))
]

−1
JT (w(n))ε(w(n)) .

(11)

The Levenberg-Marquardt algorithm performs a

weights update only once at the end of each epoch.

At this moment, all elements of the Jacobian ma-

trix are already calculated by using equations (6),

(7), (8) and (9). For optimization of further cal-

culations in the LM algorithm, it is assumed that

S(w(n)) = µI. Based on that, equation (3) is trans-

formed accordingly

∆(w(n)) =

=−

[

JT (w(n))J(w(n))+µI
]

−1
·

·JT (w(n))ε(w(n)) .

(12)

At this stage, the algorithm attempts to find the

proper weight update vector for the network by

solving equation (12). This can be achieved by

the QR decomposition, but before that, the equation

needs to be transformed further. Let

A(n) =−

[

JT (w(n))J(w(n))+µI
]

, (13)

h(n) = JT (w(n))ε(w(n)) . (14)

Then equation (12) takes the following form

∆(w(n)) = A(n)−1
h(n) , (15)

which is an entry point to the QR decomposition.

This process is an iterative method of transforming

any non-singular matrix to the product of the up-

per triangle R and the orthogonal Q matrices. The

transformation happens by way of using the follow-

ing equations

QT (n)A(n)∆(w(n)) = QT (n)h(n) , (16)

R(n)∆(w(n)) = QT (n)h(n) . (17)

Since R is an upper triangle matrix, solving equa-

tion (17) is not too complex any more and results

in obtaining the weight update vector ∆(w(n)). In

this paper the QR decomposition is accomplished

by the Givens rotations as shown in [36]. The pre-

sented Levenberg-Marquardt algorithm can be sum-

marized in the following steps:

1. Present the next sample and calculate the net-

work’s output.

2. Perform the backpropagation and update the re-

spective rows of the Jacobian using (9).

3. Continue to step 1 until all samples of the teach-

ing sequence have been presented. Then, calcu-

late the error criterion and proceed to 4.

4. Solve equation (12) to obtain the weight update

vector ∆(w(n)).

5. Update all weights of the network with respect

to the obtained ∆(w(n)) vector and calculate the

error criterion again.

6. Compare the new error with the previous one. If

the new error is smaller, the update is assumed

to have been successful. Divide µ by β and pro-

ceed to the next epoch in step 1. If the new error

is greater, the update is assumed to have failed.

Multiply µ by β and calculate a new update in

step 4.

7. The training concludes once the target error

criterion value is met or the training limit is

reached.

3 The local modification

In practical applications the biggest concern of

the LM algorithm is the size of the Jacobian matrix

given by equation (6). This structure is created con-

secutively throughout the epoch for all weights of

the network. Based on the fact that the Jacobian

matrix is the entry point to the LM algorithm, it

is not so easy to optimize further computations for

the weight update as shown in equations (9 – 17).

This Section brings the idea and explanation how

to approach the aforementioned obstacles in the lo-

cal variant of the Levenberg-Marquardt algorithm,

from now on also referred to as the LLM.

Let no stand for the number of network outputs,

np for the total number of samples, nw for the to-

tal number of weights of all neurons, and nn for the

total number of neurons in the network. The main

idea behind the proposed modification is to split a

single Jacobian matrix into smaller matrices, unique

for each neuron. In this case, instead of having a

single Jacobian J(w(n)) of size [no ·np]× [nw], its
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structure is split into nn Jacobians J
(l)
i

(

w
(l)
i (n)

)

of

size [np]× [Nl−1 +1]. The Jacobian matrix of i-th

neuron in l-th layer is given by the following equa-

tion

J
(l)
i
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w
(l)
i (n)

)

=

=
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(18)

where each element is computed as follows

∂ε
(l)
i (t)

w
(l)
i j

= δ
(l)
i (t)x

(l)
j (t) . (19)

It is worth noticing that a single neuron has only one

output. This automatically eliminates the no fac-

tor from the equation. Since the entry point of the

calculations is moved down from the network level

to the respective neurons, many operations become

independent of each other. To express that in the

formal language, equations (9 – 17) need to be im-

proved in order to respect the layer (l) and neuron

(i) indices. The vector of weight deltas becomes

local for any given neuron which is given by the

following formula

∆
(l)
i

(

w
(l)
i (n)

)

=

−

[

J
(l)T
i

(

w
(l)
i (n)

)

J
(l)
i

(

w
(l)
i (n)

)

+µ
(l)
i I

]

−1

·

·J
(l)T
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w
(l)
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)

ε
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i
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w
(l)
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)

.

(20)

Next, it is translated into the matrix forms in order

to formulate the QR decomposition entry point as

follows

A
(l)
i (n) =−

[

J
(l)T
i

(

w
(l)
i (n)

)

J
(l)
i

(

w
(l)
i (n)

)

+µ
(l)
i I

]

(21)

h
(l)
i (n) = J

(l)T
i

(

w
(l)
i (n)

)

ε
(l)
i

(

w
(l)
i (n)

)

. (22)

At this stage the local weight update vector of a re-

spective neuron is calculated according to the fol-

lowing equation

∆
(l)
i

(

w
(l)
i (n)

)

= A
(l)
i (n)−1

h
(l)
i (n) . (23)

The QR decomposition is performed locally by

each neuron as shown in the following formulas

Q
(l)T
i (n)A

(l)
i (n)∆

(l)
i

(

w
(l)
i (n)

)

= Q
(l)T
i (n)h

(l)
i (n) ,

(24)

R
(l)
i (n)∆

(l)
i

(

w
(l)
i (n)

)

= Q
(l)T
i (n)h

(l)
i (n) . (25)

The Levenberg-Marquardt algorithm with the local

modification can be summarized by the following

procedure:

1. Present the next sample to the network and cal-

culate the network’s output.

2. Perform the backpropagation and update the re-

spective rows of all Jacobians using (19).

3. Continue to step 1 until all samples of the teach-

ing sequence have been presented. Then, cal-

culate the error criterion and proceed further to

4. Additionally, calculate the error criterion for

each neuron using equation (2).

4. Solve equations (20) to achieve the weight up-

date vectors ∆
(l)
i

(

w
(l)
i (n)

)

for all neurons.

5. Update the weights of the neurons in the net-

work with respect to the obtained ∆
(l)
i

(

w
(l)
i (n)

)

vectors and calculate the error criterion again.

Additionally, calculate the error criterion for

each neuron using equation (2).

6. Compare the new neuron’s error ε
(l)
i (n̂) with the

previous one. If the new error is smaller, the up-

date for a respective neuron is assumed to have

been successful. Divide µ
(l)
i by β. If the new er-

ror is greater, the update for a respective neuron

is assumed to have failed. Multiply µ
(l)
i by β.

7. Verify the overall error of the network. If the

weights corrections of particular neurons have

resulted in a reduced error, proceed to the next

epoch in 1. If the error is not reduced, continue

to 4.

8. The training concludes once the target error cri-

terion value is met, the training limit is reached

or all neurons of the network have approached

µ
(l)
i max value.
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4 Results

In order to examine the local variant of the

Levenberg-Marquard algorithm (LLM) the bench-

marking procedure has been established. Its de-

tailed description can be found in subsection 4.1.

The main idea which stands behind the presented

benchmarks is to compare the LLM with the clas-

sic LM implementation. The selected benchmarks

cover various areas of typical problems that are

solved by the neural networks. In the first place,

the approximations of non-linear functions are pre-

sented. The prepared teaching sequences simulate

a single (logistic curve) and two variable (Hang,

Sinc) functions. The second group of tests are the

classifications, where a 4-2-4 ”tight” encoder prob-

lem and a parity detection circuit simulation are pre-

sented.

During the benchmarking also a wide range of

network topologies have been used. This includes

the classic feedforward, fully connected and cas-

cade networks. In order to improve the readability

of the presented results, a consistent naming of the

networks is used. The multilayered perceptron con-

taining L layers with nl (l ∈ [1, . . . ,L]) neurons in

each are referred to as an ”MLP-[nl]L”. The same

network with excessive connections between all its

layers (not only to the previous one) is addition-

ally prefixed with an ”FC”, which stands for ”Fully

Connected”. The fully connected cascade network

with n neurons is referred to as an FCC-n.

4.1 Benchmark methodology

The practical implementations of neural net-

works and training algorithms contain a great num-

ber of parameters which are used to modulate the

training process. Some of them are adjusted before

the run and then act as runtime constants (training

goal, error criterion, epoch limit, etc.). There are

also parameters whose values are set before the run

and then, they are modified by the training algo-

rithms. In the LM and LLM such variables are µ

and µi, respectively initiated by β value. Based on

the initial set of all those parameters, the training

might be successful or might fail. In order to pre-

pare stable and reproducible results, the consistent

methodology has been applied for each performed

benchmark.

Across all the tests, several common constants

have been used. They are presented in Table 1. In

order to gather valuable statistical data, each test

has been retried 100 times. The result of each

test can be either a success or failure. The suc-

cess is when the network’s error criterion reaches

the predefined error threshold (set individually for

each benchmark). The test is marked as failed if

the epoch limit is reached before converging the

given criterion. During each run, the samples of the

training sets are presented randomly. In all cases,

the weights are selected randomly from the range

[−0.5,0.5].

Table 1. Common experiment setup

Epoch limit 1000

Experiment retry count 100

Sequence type Random

Init weights range [−0.5,0.5]

Each benchmark also assumed a range of run-

time variables (β), which produced a vast amount of

data. To support the process of gathering only the

most valuable one, the selection criterion ξ given by

the equation (26) has been used.

ξalgorithm =
SuccessRatio

EpochAverage
. (26)

The tables and charts presented in the following

subsections have been gathered with respect to the

greatest selection criterion value. Also, a common

naming and definitions for the columns in the ta-

bles have been used. The β factor stands for the

size of the ”step” in the LM and LLM algorithms.

The success ratio ”SR” expressed in percentage [%]
gives the number of successful trials. The average

epoch count ”Ep.” shows the number of epochs that

were required on average to reach the predefined er-

ror goal. The average time duration ”T” expressed

in milliseconds [ms] gives the average duration of

a single successful trial. The description of each

benchmark is summarized in the table, which com-

pares the LLM against the classic LM algorithm.

In order to highlight the crucial factor of the LLM

optimization, the Jacobian matrix sizes are shown

in the column named ”Jacobian”. This information

has a slightly different interpretation in the LM and

LLM rows. For the classic LM variant, the column

”Jacobian” shows the size of the single Jacobian

matrix that is created during computations, while
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for the LLM, it shows the biggest Jacobian matrix

in the network.

4.2 Approximation

The approximation benchmarks are meant to

simulate the relation f between the identities of sets

X and Y , which in the formal language is formu-

lated as f : X → Y. In classic mathematics such

relation is given by a function f , which can be di-

rectly implemented as a computer routine. In some

complex cases it might be very hard to formulate an

explicit relation between identities. Assuming set

X contains the inputs of the system and Y contains

the known outputs, it is easy to create a teaching

sequence for a neural network which is capable of

mapping the identities of X to the identities of Y .

In the following Sections, the LM and LLM algo-

rithms are used to simulate the response of several

non-linear functions.

4.2.1 The single argument logistic function

The logistic function used in this benchmark per-

forms the following mapping

f (x) = 4x(1− x) x ∈ [0,1]. (27)

The training set utilizes 11 samples which map ar-

guments in the range of x ∈ [0,1]. The most im-

portant common parameters for the logistic func-

tion benchmark are shown in Table 2.

Table 2. Initial setup for the logistic function

training

Target error 0.001

Criterion Epoch average

Activation in Hyperbolic tangent

hidden layers

Training sequence size 11

The mapping performed by the logistic func-

tion is not very complex. Moreover, the training

set is not too big. Due to that, small neural net-

works (with fewer than 8 neurons) were used. Dur-

ing the training various FCCs and a single FCMLP

networks have been used. The results are shown in

Table 3.

Table 3. Results of the logistic function training by

the LLM algorithm

Network α SR Ep. T

FCC-2 8 75 10.37 0.32

FCC-3 10 97 9.47 0.28

FCC-4 9 100 8.61 0.4

FCC-5 9.5 99 8.02 0.47

FCC-6 10 98 7.7 0.34

FCC-7 1 0 94 7.53 0.4

FCMLP-5-1 9.5 100 8.14 0.27

The logistic function benchmark shows an over-

all high success ratio with more than 94% in most

cases. It proves that even a two neuron FCC net-

work is able to handle the logistic curve approxima-

tion with a 75% success rate at the cost of some ad-

ditional epochs comparing to the bigger networks.

Also, the relation between the number of neurons

and the convergence time can be seen. Increasing

the number of neurons in FCC networks seems to

reduce the average epoch count with a slightly in-

creased training time. In Tables 4 and 5 the com-

parison results of the LLM and LM trainings for

FCC-7 and FCMLP-5-1 networks are shown.

Table 4. Summary of the logistic function using

the FCC-7 network

Alg. β SR Ep. T Jacobian

LM 2 93 15.25 1.85 11×35

LLM 10 94 7.53 0.4 11×8

For the biggest of the tested cascade networks in

the logistic function approximation benchmark, the

LM and LLM algorithms achieved a similar suc-

cess ratio. The LLM turns out to be twice as fast

than the classic LM algorithm in the scope of the

average epoch convergence.

Table 5. Summary of the logistic function using

the FCMLP-5-1 network

Alg. β SR Ep. T Jacobian

LM 2 100 14.94 0.88 11×17

LLM 19.5 100 8.14 0.27 11×7

A similar observation regarding the perfor-

mance of both algorithms can be made in the

fully connected multilayered perceptron bench-

mark. Both algorithms achieved a 100% success ra-
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tio where the LLM converged generally faster than

the LM. Figures 4 and 5 show an exemplary conver-

gence process that is closest to the average one of

the LLM and LM during benchmarks on the FCC-7

and FCMLP-5-1 networks.

Figure 4. Exemplary training process of the

logistic function using the FCC-7 network

Figure 5. Exemplary training process of the

logistic function using the FCMLP-5-1 network

4.2.2 The single argument composite function

In this benchmark the following single argument

function is trained

f (x) = sinx · logx x ∈ [0.1,4] . (28)

The training set contains 40 samples starting from

0.1 up to 4. The target error for this benchmark is

set to 0.001 as an epoch average. The most impor-

tant parameters of the training setup are presented

in Table 6.

Table 6. Initial setup for the composite function

training

Target error 0.001

Criterion Epoch average

Activation in Hyperbolic tangent

hidden layers

Training sequence size 40

While the complexity of the tested composite

function is similar to the logistic function used in

the previous benchmark, its training set is several

times bigger. The LLM algorithm has been used to

train various networks which contain up to 7 neu-

rons. The results and obtained statistics are shown

in Table 7.

Table 7. Results of the composite function training

by the LLM algorithm

Network β SR Ep. T

FCC-3 10 85 7.38 0.38

FCC-4 9.5 92 6.89 0.48

FCC-5 9.5 93 6.43 0.5

FCC-6 8.5 88 6.24 0.73

FCC-7 6.5 88 6.55 0.89

MLP-5-1 9.5 100 7.08 0.44

The composite function training concluded with

an overall high success ratio for the FCC networks

and a perfect 100% SR for the MLP network. In

this scenario, an FCC with 3 neurons was able to

conclude 85% of the training runs with the success.

In terms of the average epoch count required in or-

der to establish the given criterion, the value oscil-

lates around 7. The most successful average train-

ing time does not exceed 0.44 ms. The comparison

of the LLM and LM performance for FCC-5 and

MLP-5-1 networks is shown in Tables 8 and 9, re-

spectively.

Table 8. Summary of the composite function

training utilizing the FCC-5 network

Alg. β SR Ep. T Jacobian

LM 2 95 13.77 1.75 40×20

LLM 9.5 93 6.43 0.5 40×6

The best success ratio with the value of 93% for

the cascade networks was established by the FCC-

5 network. In comparison to the classic LM, it is

only 2% lower while utilizing the same network and

training criteria. In terms of convergence epoch av-

erage, the LLM algorithm requires half the num-

ber that the classic LM does. Also in the scope of

the average training time, the LLM algorithm is 3.5

times faster than its classic counterpart.
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Table 9. Summary of the composite function

training utilizing the MLP-5-1 network

Alg. β SR Ep. T Jacobian

LM 1.5 76 22.12 2.28 40×16

LLM 9.5 100 7.08 0.44 40×6

A significant improvement in terms of all anal-

ysed parameters is shown in the training that uti-

lizes the MLP-5-1 network. Every run concluded

with the success while the average training time was

not longer than 0.44 ms. Figures 6 and 7 show the

closest to the average convergence process for the

FCC-5 and MLP-5-1 networks.

Figure 6. Exemplary convergence process for the

composite function training using the FCC-5

network.

Figure 7. Exemplary convergence process for the

composite function training using the MLP-5-1

network

4.2.3 The two-argument Hang function

The Hang routine is a two-argument non-linear

function which performs the following mapping

f (x1,x2) =

(

1+ x−2
1 +

√

x−3
2

)2

x1,x2 ∈ [1,5].

(29)

In this benchmark the training set contains 50 sam-

ples that cover arguments in the range of x1,x2 ∈

[1,5]. The most important common parameters for

the Hang benchmark are presented in Table 10.

Table 10. Initial setup for the Hang training

Target error 0.009

Criterion Epoch average

Activation in Hyperbolic tangent

hidden layers

Training sequence size 50

The Hang function performs quite complex

non-linear mapping of two arguments. In order to

handle this case correctly, the networks need to be

extended. The smallest network contains 8, while

the biggest one 18 neurons. During benchmarking

several FCC and FCMLP networks have been used.

The training results are shown in Table 11.

Table 11. Results of the Hang training by the LLM

algorithm.

Network β SR Ep. T

FCC-8 9.5 15 8.93 2.08

FCC-10 3.5 41 13.2 4.4

FCC-12 5 47 10.81 5.44

FCC-14 6 49 9.35 6.02

FCC-16 5.5 40 9.12 6.97

FCC-18 9.5 27 7 7.77

MLP-15-1 4 56 11.09 2.9

FCMLP-15-1 3.5 59 11.31 2.45

The Hang benchmark turns out to be much more

demanding than the single argument functions. The

highest success ratio for the LLM algorithm has

been achieved by the MLP networks with SR >

56%. However, in those scenarios the average train-

ing time does not exceed 3 ms. The highest SR

value for the FCC networks has been achieved for

the FCC-14 network with a 49% success rate. In Ta-

bles 12 and 13 the comparison results of the LLM

and LM trainings for the FCC-14 and FCMLP-15-1

networks are shown.

For the FCC-14 network, the LLM algorithm

was able to converge almost 9 times faster than the

classic LM at the cost of the success ratio. Also,

the LLM requires several fewer epochs on average

in order to meet the training requirements.
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Table 12. Summary of the Hang function using the

FCC-14 network

Alg. β SR Ep. T Jacobian

LM 2.5 86 13.71 52.94 50×133

LLM 6 49 9.35 6.02 50×16

Table 13. Summary of the Hang function using the

FCMLP-15-1 network

Alg. β SR Ep. T Jacobian

LM 3 92 12.99 8.96 50×63

LLM 3.5 59 11.31 2.45 50×18

An average training of the FCMLP network

turns out to be significantly faster than for a fully

connected cascade. Also in this case, the LLM algo-

rithm manifests a better average convergence time

than the classic LM. The exemplary graphs which

are the closest to the average convergence processes

of the LLM and LM during the benchmarks on the

FCC-14 and FCMLP-15-1 networks are shown in

Figures 8 and 9.

Figure 8. Exemplary training process of the Hang

function using the FCC-14 network

Figure 9. Exemplary training process of the Hang

function using the FCMLP-15-1 network

4.2.4 The two-argument Sinc function

The Sinc function is a composition of two sine func-

tions. In the Sinc benchmark this function accepts

two arguments and performs the following mapping

y = f (x1,x2) =



















1 x1 = x2 = 0
sinx2

x2
x1 = 0∧ x2 ̸= 0

sinx1

x1
x2 = 0∧ x1 ̸= 0

sinx1

x1

sinx2

x2
in other cases.

(30)

The applied Sinc training set contains 121 samples

which correspond to the arguments in the range of

x1,x2 ∈ [−10,10]. The critical constant parameters

for the Sinc benchmark are shown in Table 14.

Table 14. Initial setup for the Sinc training

Target error 0.005

Criterion Epoch average

Activation in Hyperbolic tangent

hidden layers

Training sequence size 121

Similar to Hang, the Sinc function also per-

forms a rather complex mapping of its arguments.

In this benchmark the same set of networks was

used as in the Hang scenarios, but the training set is

more than twice as long. The benchmark results for

the LLM algorithm for various networks are shown

in Table 15.

Table 15. The Sinc training result by the LLM

algorithm

Network β SR Ep. T

FCC-14 6 25 5.68 9.68

FCC-16 10 47 5.34 10.52

FCC-18 10 75 5.37 14.21

MLP-25-1 7.5 38 6.5 6.29

FCMLP-25-1 7.5 44 6.66 6.43

MLP-15-15-1 9 59 5.73 22.79

FCMLP-15-15-1 4 73 6.19 32.78

The non-linear two-argument Sinc function

proves to be a more reliable benchmark for the LLM

algorithm than the Hang approximation. In terms

of the success ratio, the best performance has been

achieved by the 18-neuron cascade network. A fully

connected multilayer perceptron turns out to be im-
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mune to the LLM training. In Tables 16 and 17, the

comparison results of the LLM and LM trainings

for the FCC-18 and FCMLP-15-15-1 networks are

shown.

Table 16. Summary of the Sinc function using the

FCC-18 network

Alg. β SR Ep. T Jacobian

LM 1.5 97 14.39 248.23 121×207

LLM 10 75 5.37 14.21 121×20

The LLM algorithm again outperforms the clas-

sic LM in the terms of time performance. Again, the

success ratio of the LLM is lower than the LM, but

the difference is not as significant as manifested by

the Hang benchmark.

Table 17. Summary of the Sinc function using the

FCMLP-15-15-1 network

Alg. β SR Ep. T Jacobian

LM 2 97 18.35 1704.65 121×348

LLM 4 73 6.19 32.78 121×33

Figure 10. Exemplary training process of the Sinc

function using the FCC-18 network

Figure 11. Exemplary training process of the Sinc

function using the FCMLP-15-15-1 network

The training of the selected multilayer percep-

tron network only once resulted in a success. In Fig-

ures 10 and 11 the exemplary, closest to the average

convergence process of the LLM and LM for the

FCC-18 and FCMLP-15-15-1 networks are shown.

4.3 Classification

The goal of the classification benchmark is to

find classifier h that is able to apply the class y ∈
Y to the identity x ∈ X for the given set of data

{(x1,y) , . . . ,(xn,y)}. In the formal language such

relation can be depicted as h : X → Y. Using train-

ing algorithms and a proper training set, it is possi-

ble to train a neural network to categorize the data

based on their similarities and common patterns, so

called features. In the next subsections the encoder

and parity detection benchmarks are presented.

4.3.1 The ”tight” encoder

The encoder problems are special cases of the clas-

sification benchmarks. In such tasks the network

needs to find a way to replicate the inputs in the

outputs while having too few neurons in the hidden

layer to handle this task easily. Usually encoders are

simulated by the MLP-M-N networks with N inputs

and a training set with N samples. In each sam-

ple only one bit corresponds to the high state while

the rest of inputs are of the low state. While stan-

dard encoders loosely define their sizes as M < N,

the ”tight” encoders strictly define their structure

as M = log2 N. In order to test the LLM and LM

performance, an attempt to simulate the ”tight” en-

coder by the MLP-2-4 network has been made. The

training set utilizes 4 samples. The crucial parame-

ters of the benchmark are shown in Table 18.

Table 18. Initial setup for the encoder training

Target error 0.1

Criterion Epoch average

Activation in Sigmoid

hidden layers

Training sequence size 4

In Table 19 the comparison of the results for the

LLM and LM trainings are shown. Both tested al-

gorithms manifest a high success ratio. The clas-

sic LM training resulted in 98% SR while the local

modification ended with 97%. The average conver-

gence time is slightly better for the LLM algorithm.
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In Figure 12, the exemplary graphs which are the

closest to the average convergence process for the

LLM and LM trainings are shown.

Table 19. Summary of the encoder using the

MLP-2-4 network.

Alg. β SR Ep. T Jacobian

LM 9.5 98 3.64 0.32 4×22

LLM 9 97 6.07 0.24 4×5

Figure 12. Exemplary training process of the

encoder using the MLP-2-4 network

4.3.2 The parity detection

The parity detection is a well known feature of dedi-

cated circuits in the electronics domain. Its primary

purpose is to detect any data flow or transmission

errors. The basic 2-bit parity detection can be per-

formed by a single XNOR gate. In the parity detec-

tion benchmark, this feature is extended to an n-bit

problem. To cover all possible scenarios, the train-

ing set needs to contain n2 samples.

In order to test the performance of the LLM

against that of the LM, an attempt to train the MLP-

10-1 network in order to simulate a 4-bit parity de-

tection circuit has been made. In this case, the train-

ing set consists of 16 samples that cover all possible

variants of high and low states of the inputs. The

network at the output should give a high state if the

number of high inputs was even or low state other-

wise. The most important parameters of the parity

benchmark are shown in Table 20.

The parity detection benchmark results for both

algorithms are shown in Table 21. Similar to the

encoder problem, the success ratio of both algo-

rithms is high. Again, the local modification of

the Levenberg-Marquardt algorithm turns out to be

much faster than its classic counterpart. In Fig-

ure 13 the exemplary and closest to the average con-

vergence process for the LLM and LM trainings are

shown.

Table 20. Initial setup for the parity detection

training

Target error 0.1

Criterion Epoch max

Activation in hidden layers Sigmoid

Training sequence size 16

Table 21. Summary of the parity detection using

the MLP-10-1 network

Alg. β SR Ep. T Jacobian

LM 1.5 98 19.35 12.81 16×61

LLM 10 100 3.8 0.62 16×11

Figure 13. Exemplary training process of the

parity detection using the MLP-10-1 network

4.3.3 The points classification

The points classification problem used in this

benchmark is designed to classify network inputs

into two groups. The training set contains 100

points in the two-dimensional space and the infor-

mation whether this point belongs to a circle. Based

on that information a neural network should find

out whether a given point is inside a circle or not.

The epoch average error has been used as the train-

ing criterion with the accepted error threshold set

to 0.02. In Table 22 relevant setup parameters have

been shown.

In the points classification benchmark several

FCC and FCMLP networks have been used. The

resulting statistics of the LLM training are shown
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in Table 23. Per presented data the points classifi-

cation training done by the LLM algorithm proves

to be very stable. In most cases the benchmarks

have reported a 100% success rate with an average

epoch count between 9.8 and 11.2. Regardless of

the network topology, the best 100% success rate

has been achieved by the networks with at least 12

neurons. In terms of an average epoch count, the

fastest convergence has been achieved by the FCC-

18 and FCMLP-7-7-1 networks. Also, the relation

between the neuron count and the average training

time can be seen. The bigger the network is, the

longer the training takes while the average epoch

count decreases.

Table 22. Initial setup for the points classification

training

Target error 0.02

Criterion Epoch average

Activation in hidden layers Sigmoid

Training sequence size 100

Table 23. Results of the points classification

training by the LLM algorithm

Alg. β SR Ep. T

FCC-8 9.5 97 10.87 6.1

FCC-10 10 99 10.29 9.6

FCC-12 9.5 100 10.21 13.17

FCC-14 10 100 9.89 14.01

FCC-16 10 100 9.8 15.08

FCC-18 10 100 9.62 15.6

FCMLP-3-3-1 9.5 96 11.2 2.85

FCMLP-5-5-1 10 99 10.3 4.82

FCMLP-7-7-1 10 100 10.04 8.22

The biggest of the tested networks in the LLM

training have been compared to the same scenarios

trained by the classic LM algorithm. The results are

shown in Tables 24 and 25.

Table 24. Summary of the points classification

training utilizing the FCC-18 network

Alg. β SR Ep. T Jacobian

LM 1.5 91 65.74 751.77 100×207

LLM 10 100 9.62 15.6 100×20

Table 25. Summary of the points classification

training utilizing the FCMLP-7-7-1 network

Alg. β SR Ep. T Jacobian

LM 1.5 89 66.97 237.07 100×108

LLM 10 100 10.04 8.22 100×17

In both cases the training by the LLM algorithm

has shown a better performance across all consid-

ered areas. The classic LM has not been able to

establish a 100% success ratio while the LLM mod-

ification has. The average epoch count has required

to establish the convergence on the same level was

more than 6 times smaller for the LLM than for the

classic LM. This directly translates into a far shorter

average training time. The exemplary convergence

processes for the FCC-18 and FCMLP-7-7-1 net-

works are shown in Figures 14 and 15.

Figure 14. Exemplary convergence process for the

points classification training using the FCC-18

network

Figure 15. Exemplary convergence process for the

points classification training using the

FCMLP-7-7-1 network

5 Conclusion

The local Levenberg-Marquardt algorithm has

been developed in order to mitigate the greatest dis-

advantages of its precursor. The proposed optimiza-
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tion eliminates a huge computational overhead that

occurs while utilizing the classic LM algorithm for

big networks and training sets. This is possible by

assembling the Jacobian matrices locally for each

neuron. These operations are completely indepen-

dent of each other, hence can be performed in par-

allel. Due to growing capabilities of multiprocess-

ing devices, parallelization of training algorithms

should be a natural direction of their evolution as

initially proposed in [37, 38, 39, 40, 41, 42, 43].

As the next step of our research in the scope of the

LLM algorithm, a parallel implementation will be

attempted.

The presented experiment contains a total of

7 various benchmarks that cover 4 approximation

and 3 classification cases. Single variable function

benchmarks are characterized by rather small net-

works and a small number of samples. The overall

success ratio in this scope is high establishing more

than 94% and 85% for the logistic and the compos-

ite functions benchmarks, respectively. The LLM

training time is shorter and the required epoch count

is much smaller than for the classic LM variant.

However, the two variable function approxima-

tion benchmarks were more challenging. These

scenarios utilize more complex networks and longer

training sets. In both, the Hang and Sinc problems,

a significant time improvement can be seen. It is

worth noticing that also the average epoch count

is reduced in trainings held by the LLM algorithm.

This is caused by reducing the Jacobian matrix size

several times in the LLM comparing to the classic

LM algorithm.

The attempted classification benchmarks con-

tain the encoder simulation, parity detection and

points in the circle classification problems. While

the first two of them utilize dedicated network

topologies, the points classification benchmark in-

volves a wide range of tested networks. In all classi-

fication scenarios the LLM algorithm has achieved

a very high success ratio, which in most cases

equals 100%. The classification benchmarks also

confirm a significant average training time reduc-

tion due to far smaller Jacobian matrices.

The greatest benefit of using the LLM algo-

rithm is visible in benchmarks that utilize big net-

works accompanied by long training sets. The

training time is significantly reduced due to a

smaller Jacobian matrix size in the LLM algorithm.

Based on the obtained results, the presented LLM

variant reveals new optimization perspectives for

the well known classic Levenberg-Marquardt algo-

rithm. The top highlights discussed in this paper in

the scope of the LLM algorithm can be summarized

as follows:

1. The implementation effort for the LLM is

not significantly bigger than for the classic

Levenberg-Marquardt algorithm.

2. The obtained results show that the proposed so-

lution performs relatively better than the classic

LM algorithm in terms of the training time.

3. Obtaining a much shorter training time for the

LLM algorithm results from a significant reduc-

tion of the Jacobian matrix size.

4. The overall success ratio of attempted runs is

satisfactory.

5. The LLM algorithm is prone to the parallel im-

plementation, which requires only basic syn-

chronisation techniques.

In our future work we plan to extend our algorithm

to deal with temporal dynamics and to implement

our algorithm to solve several industrial problems,

see e.g. [44, 45, 46].
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