The Annals of Mathematical Statistics
1972, Vol. 43, No. 1, 251-259

LOCAL LIMIT THEOREMS AND RECURRENCE CONDITIONS
FOR SUMS OF INDEPENDENT INTEGER-VALUED
RANDOM VARIABLES

By J. MINEKA
Herbert H. Lehman College

Conditions are given which imply that the partial sums of a se-
quence of independent integer-valued variables which satisfy the clas-
sical Lindeberg conditions for the central limit theorem also obey a
strong version of the local limit theorem. Application is made to the
problem of establishing the interval recurrence of the partial sums.

1. Introduction. A sequence {X,};_, of independent integer-valued random
variables with finite variances, where EX, =e,, E(X,—e,)*=b,%, >.7_e,=E,,
Qi bl =Band 3, X, =S, is said to satisfy a local limit theorem if

(1) lim, B,P(S, = x} — (2m) Fexp{— (x — 4,)/2B,} =0,

uniformly for all integer x. Such theorems have proven by Gnedenko [1] in
the case that the random variables are identically distributed, and by Rozanov
[4] in the non-identically distributed case. We will say that a strong local
limit theorem holds if, for any fixed m, {X,,,,}r, satisfies a local limit theorem,
i.e., when (1) holds with S, replaced by S, — S,,, etc.

In Section 2 a generalization of Rozanov’s theorem is proven, together with
two simple corollaries. A further corollary, useful in applications, gives con-
ditions from which it follows that

(2) lim,_,, % limsup,_, |B,P{x < S, < x + d}

— d(2z)texp{— x}/2B,}}| = 0,

uniformly in integer x. We will refer to this as an interval limit theorem.

In Section 3 these limit theorems are applied, together with a result of Orey
[3] to obtain sufficient conditions for the recurrence of the random walk
generated by a sequence {X,}. We will say that the random walk is d-recur-
rent for a given integer d if

3) P{x < S, < x + d, for infinitely many n} =1,
for all integer x. This is equivalent to

3) Pix<S,,—S.<x+d,forsomen >0}=1,
for all integer k and x.
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252 J. MINEKA

In the sequel we employ the notation
Px) s PXy =), @)= T ePx),  T,(0) = Tiaeu0) -
2. Local limit theorems. Throughout this paper we assume
“) B, —> o0
otherwise entirely different methods are appropriate to discussion of the

limiting behavior of the distribution of S,. We also assume, without loss of

generality, that e, = 0, all k.
Rozanov has pointed out that if (4) is satisfied, a necessary condition for

{X,} to satisfy (1) is that
(5) I [max,, ., P{X, = x(mod h)}] =0, _ forallh>=2.

Let {X,} be the symmetrization of the sequence {X,}, i.e., let {¥,} be a se-
quence of independent random variables, independent of {X,}, ¥, having the
same distribution as X,. Set X, = X, — Y, and P{X/ = x} = P/(x).

LemMma 1. If {X,} satisfies (5), then {X,'} satisfies (S5).

PRrooF.

P{X, = x(mod h)} < Y *=) P{X, = y(mod h)}P{X, = y — x(mod h)}
< max,, ., P{X, = y(mod h)} .
THEOREM 1. If {X,} is such that
(A) I [max,g,., P{X, = x(mod A)}] =0, forallh = 2,

1
— k=1 Dizisen, X Pu(X) = 1, foranye >0,

nooo 373
B’Ib

there exists a sequence {M,}, G > 0 and L > 0 such that

i
T 2k=1 Lieisa, X Pi(X) = 2G

(B) lim

(€) inf,

and, setting

(D) an ZZ=IP{O<XI¢’§L}’ BnMn/Qn_’o’
then {X,} satisfies a strong local limit theorem.

ReMARK. Condition (B) is the classical Lindeberg condition for the central
limit theorem. Despite a superficial connection (B) and (C) are independent
conditions; because of the restriction (D) places on {Af,}, neither implies the

other. They are both implied by Rozanov’s condition (B), if {M,} is replaced
by a constant M.

Proor. By the Fourier inversion formula
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2zB,P(S, = x} — (2r)? exp{_ x? }

2B}
= §it1s4 (wn<1%> — e—(t2/2>>e““x/3n dt
£t .
(6) - SItI>A eXp {— _i_ _ Bx } dt —+- -Bn SA/B”<ItI§B/Mn W”(t)e—m dt

+ B, Spiy<ivisc ¥uO)e¥dt + B, §oyy <. ¥, (t)e o= dt
=L+ L+1,+1+1,.

Since (B) is the classical Lindeberg condition, ¥,(¢/B,) — e~%? uniformly
on compact sets, hence /, — 0 for any fixed 4. By choosing 4 sufficiently
large, I, can be made arbitrarily small, uniformly in’ x.

LetA,={k/k<nand Gb,*< ¥, s1sa1, X Pi(x)}. Clearly Diked, 2 e, X Pr(%) =
GB,’. In the remainder of the proof, whenever k appears, we assume k ¢ 4,,.

Leth,, = P{|X,| < M.}, 01.(¥) = Diizisu, €PU(X), e, = 2iizisar, ¥P,(x), and
bin = 2iaisu, X' Pi(x). We have, manipulating the Taylor expansion for eits,

() PO = B — O{h, i — (€10)'} + <(2)
where |e(7)] < § |¢#° M,b;,. Note also that b,> < M,?/G. Since increasing the
members of the sequence {M,} by a constant factor, such as 4/G, does not

affect conditions (C) and (D), we may assume b,*/(GM,?) < 1/16, so that
h, =1—b?M>?> % Tt then follows that

kn =
1

M, Diizi>a, xzpk(x)}2

®) (@) = (D iow, ¥Pe() < {

b,? b?
S k b2 kn .
= <GM”2> e <6

If now |t] < 6/(16M,),

%) lown(D)" < hiu{l — £(1— % — 1)b,}
so that
(10) lo) = 1 — by, + 1y, {1 — £G4} < exp{— £°Gb,?/8} .

Therefore, if B < 6/16,
8

o OXP(— AGY8)

1 I| < B, (/¥ exp{— £G*B,/8) dt <
3 /Bn p

which can be made arbitrarily small by choosing 4 sufficiently large.
Since cosu < 1 — /3 when |u| < 7/2, if |t| < L /L, then

(12) e =1 = PO < X' < L} + PO < X' < LK1 — £[3).
Therefore, by (D), if C = 3 =/L,
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II" é ZB"" Sg/”n exp{_ Qnt2/6} dt < Bn/Qni S;Qn’.'/ﬂ!u e-—uzle du
Ban} 0.
M2

< SBM. oy [

Let {t;} be the set of points of the interval [C, =] which are of the form
27h[j where h and j are relatively prime and 2 < j < L. Indexing the ¢, in
increasing order with ¢, = =, define

A =[G, 3t + 1)]
A, = [3(ti + 2)» 3(8 + t:40)] I<i< m)
Ap = [3(tns + 1) 5 7] -
Fixing a value of i, ¢, = 27h/j,, and u = t — ¢,, let
B, V() dt = § .50, B.Y (1) du + § o1, <tuisein, B Y (1) du
+ SE/Mn<|ul,u+¢ieA,~ ann(t) du
— II + Ill + Illl .

To bound I’ we use the fact that |¢,(f)] < exp{3(je.(¢)]* — 1)}. We have
(13) Zia (e — 1) = X 57 P/(x) (cosxt — 1) = R, ()
where the j on the summation sign indicates the summation is taken over
those values of x for which x % 0(j). For such values of x, when ¢t = 2zh/j,
cos xt < cos 2x/j. Since by condition (A) and Lemma 1, }7_, 319 P,/(x) — oo
as n — oo, R, (2nh/j) - — oo as n — oo. Since R, (f) = R, ,,(?) and the func-
tions are continuous, for any M there is a symmetric interval of length 24
around 2zh/j, d = (M), such that for n sufficiently large, and ¢ in the interval,
— M = R,(t). Therefore, for any fixed D, if n is sufficiently large, and if
6 > D|B,, then |I'| < B, §,,15p5, €' du < De™".

Set E = n/2L. Then if [u| < E/M,, and |j| < 2M,,, we have |uj| < =/L. Sup-
posing (2rhy/j,)j=2rk,+ 2xh, [}, s0 & >2xh,[j, > 2x /L, we have cos(u+-2xh/j,)j <
COS uj.

Therefore,

2iiisan, Pk’(j)[cos <u 4

27hy)\ . . .
") = 1] £ Dissow, P(Neosw — 1]
0
u .
= > Znsar, P -

Now
Zlilswn P/ = Zlilsmn 2w Pk(l)Pk(l + ])./2
(14) = X, Pull) D3 %an, Pl + )
S Zwisw, Pll) Z 1y, P)(E — 1)
= 2h,,b;, — 2¢, = b, — §bi,, Dby (8).
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It follows that for |u| < E/M,, since ke 4,
leu(n)] < exp3le() — 1} = —wGb,’[8
so that

3
[1"| < B, § o5, <iuisgin, €Xp — (#}/16G)B,} du < §5,61 e dv < iDg e~ D166

which can be made arbitrarily small by a suitable choice of D.
Itt=1t,+ucl, then ju| < x/2L. Ifalso |j| < L, cos jt = cos j(u-+2rhy/j,)=
cos (uj + 2zh,[j;) < cosu, so that for such ¢,
(15) o<1 —P0< X, <L} +P0< X,/ <L}cosu
<1—-P0< X,/ < L}u3),

and hence,

6BM _Q,E
17 S B, Sapw,zm €XP — [Q.00)6) du = 25 exp{ 5%2 }_>o.

n

Since I, = Y1, B, §,, W, (t)e*** dt, |I,| can be made arbitrarily small by
choosing r sufficiently large.
We note the following corollaries of Theorem 1:

CoroLLARY 1. If{X,} satisfy (A), (B),

) liminf, , 1/B, 312 1 2 4 1<ent ¥*Pu(x) > 2G  forall ¢ >0,
and

(D,) 3L such that

infl/n Y »_ min, ., P{X, #x and |X|]<L}>0

then the sequence satisfies a strong local limit theorem.

Proor. Clearly

[min, ., P{X, # x, and |X,| <L} < P0< X,/ <2L}

so that (D,) implies inf Q,/n > 0. By (C,), for any ¢ > 0, n sufficiently large,
en' > (2G)iB,. Hence if we set M, = ent, then B, M, /Q, = ¢O(1), and by
suitable choice of ¢, we can make the contributions of I, and the integrals 1"
arbitrarily small.

CoRrOLLARY 2. If{X,} satisfy (A), (B), and
(C,) there exists an M and G < 0 such that
inf 1/B,* 351 X jaj<n ¥*Pi(x) = 2G

then the sequence satisfies a strong local limit theorem.
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Proor. Ifke A,, then b, < M|G*, and for sufficiently large L, P{0< X,’ < L}
is bounded away from 0. The first corollary can then be applied.

If the hypothesis (A), which is necessary for a strong local limit theorem,
does not hold, then a weaker result can be obtained which we refer to as an
interval limit theorem.

THEOREM 2. If {X,} satisfy (B), (C), and (D), then
(16) lim, ., 1/dlimsup, . |B,P{x < S, < x + d}
— d(2r)"texp{— x*/2B,*}| = 0
uniformly in x, as n and d — oo.

PrOOF. Let Y be a random varidble with characteristic function ¥(f) =
1 — |¢|/C for |t| < C and W(t) = 0, for || = C. Choose C as in Theorem 1.
Given ¢, we can find 9, such that P{|Y| > 6} < e. Then,

Px<S, <x+d}S[PlY|<0)]'"Plx —0<S,+Y<x+d+9d).
By the proof of Theorem 1,

BP(x—0<=S,+Y<x+d+ 0} — (d+ 20)(2n)texp{— x*/2B,} — 0
uniformly in x. Therefore, if we call the expression inside the absolute value
sign in (16) T,(d)

l/dlimsup T,(d) < (1 — ¢)™(1 + 26/d) — 1
a similar lower bound can be found for lim inf 7',(d).
Since ¢ is arbitrary, this proves the corollary.

3. Recurrent random walks. In this section we apply the interval limit theo-
rem of the previous section to obtain sufficient conditions for the recurrence,
or more precisely, the “d-recurrence” of the random walk generated by a
sequence of independent random variables {X,}. We employ some results of
Orey [3] concerning the equicontinuous solutions {,(x)} of the sequence of
equations

(17) h(x) = § hpo(x + p) dFy () k=01,2,...
where Fi(y) = P{X, < y}. Clearly if we set L,(x) = P{x < S,,, — S, < x+ d,
for infinitely many n}, then

(18) hi(x) = §27 Ly(t) dt

is such a solution to (17).

In Orey’s terminology, for a given sequence {X,} define a likely sequence
of integers {/;} to be a sequence such that inf; P{X,, = I} > 0, where {k;} is a
subsequence of the natural numbers. Let T' = {x| for some likely sequence
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L} X P{X,, — I, = x} = oo}, and T'* = subgroup of the integers generated
by I'.

THEOREM (Orey). If I'* = {nd};_,, then all equicontinuous solutions of (17)
have period d, i.e., h,(x) = h(x + d), all x.

From this we easily obtain the following

LemMa 2. [If T'* = {nd}, then P{x < S,., < x + d, infinitely many n} is
either identically zero or identically 1 for all integer x, i.e., the random walk
generated by {X,} is either transient or d-recurrent.

PRrRoOF. Suppose that for some integer x, and some k, L,(x) = 26 > 0. For
integer-valued x, L,(x) = hy(x) = h(x++ d). If z is an integer such that
d>z>0,since Ly(x — z) + L(x — z + d) = L,(x), we must have L(x) =9,
for all integer x, and hence for all k£ > 1.

Choose now N, such that

Plx < S, < x+d, forno n<N}<I1—9/2.
Choose N, = Ny(Sy,) such that
P{x—SN1<S,,M,1—S,\,1<x—i-d—S,‘,1 forno n< N} <1—34/2.
Continuing in this manner, we find
Plx < S, < x+d forsome n<N}—>1, as N—o oo.

Since this is also true when S, is replaced by S,,, — S,, (3') is verified and
the random walk is d-recurrent.

THEOREM 3. If{X,} is a sequence of independent random variables such that
(A) I'* = {nd},
and such that the conditions of the interval limit theorem are satisfied uniformly in
m for the sequences {X, )i, i.e., setting B2 — B? +m — B2, it is true that
(B') foranye > 0,

I/B:m ZZ:::-H lelSeBnm szk(x) — 1 4

uniformly in m,
(C') there exist {M,,} and G < 0 such that
lim inf

n—oo

1/B:,, >inim. o5, X Pu(*) = 2G, uniformly in m,

(D) there exists L such that if {M,,} is as in (C'), and Q,, = Y pim a1 PO <
X, < L}, then B, M,,/0Q,.. — 0, uniformly in m, and

(E") liminf,__inf, , _ B,./B, =2H>0,
then (X,} generates a d-recurrent random walk.
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ReEmARKs. A random walk will certainly be d-recurrent in for some sub-
sequence {n,},

Px< S, L <X+ d, for infinitely many k} = 1.

Therefore, the conclusion of the theorem follows if we replace {X,} in the
hypotheses by {Y,} where ¥, = X, _, + --- + X, .

Note that in the case that d = 1, (A’) is a somewhat stronger condition than
(A), since if no likely sequences exist, then I'* is empty.

For (E’) to be satisfied, it is sufficient that b, be bounded above, since
B, — oo and, as above, we can find a sub-sequence {n,} such that b, _, +---

+ b}, ., is bounded away from zero.

Proor. Set P, (x,y) = P{x < S,., — S, < y}. Bytheinterval limit theorem,
for bounded x and y if c is sufficiently large, there are constants /, and /,
such that

(19) 0<11<BnkPnk(x’x+c)<lz<ooy

and

(20) lim sup, _... |Puo(X, X + ¢) — P(, ¥ + ©)| <.
P (x,x + ¢)

We will show that for any x and £,

(21) Px<S,,—S,<x+c, forsome n=1}=>%

and hence, since the random walk cannot be transient, by Lemma 2 it must
be d-recurrent. Without loss of generality we assume x = k = 0.

Let f,(y) = P{S,, =y, S, <0or S, > c for all k < m}. Then by a renewal
argument

Pi(0, ¢) = 2520 Zimer Ja(D)Prmml(— 3> € — 1) -
Summing this expression for 1 < k£ < n, and dividing by the left-hand side,
we have
1= 2558 Zna S DR Prn(— 25 € — p){ 2051 Pro(0, )}
By (19) and hypothesis (E’), the expression in brackets is uniformly bounded,
since P,,(—y,c — )P0, )} < L/LH for k sufficiently large. By (20),
for any fixed k and y the expression in brackets is bounded above by 1 + 1.
Therefore by the dominated convergence theorem,
3= 205 Zaafa(y)

which is equivalent to (21), proving the theorem.
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