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Abstract

We consider the popular and classical method of alternating projections for finding a
point in the intersection of two closed sets. By situating the algorithm in a metric space,
equipped only with well-behaved geodesics and angles (in the sense of Alexandrov), we are
able to highlight the two key geometric ingredients in a standard intuitive analysis of local
linear convergence. The first is a transversality-like condition on the intersection; the second
is a convexity-like condition on one set: “uniform approximation by geodesics”.
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1 Introduction

An important problem with a large range of applications in many branches of mathematics and
other sciences consists in finding a point in the intersection of two given closed sets A and B
in R

n. Under the assumption that the sets are additionally convex, a straightforward algorithm
widely used since the work of von Neumann [38] is the alternating projection method which
defines a sequence (xn) by iteratively projecting the current point (that belongs to one of the
sets) onto the other set. Alternating projections can be slow to converge, but in the presence of
appropriate conditions regarding the way the two sets intersect, it is still possible to obtain linear
convergence meaning that the distance from xn to the limit point is bounded above by k · an,
where k and a are positive constants with a < 1. A classical assumption going back to Gubin,
Polyak, and Raik [19] says that one set should intersect the interior of the other one. Other less
restrictive intersection conditions can be found in the survey by Bauschke and Borwein [6].

When dealing with sets that are not necessarily convex, the metric projection might be multi-
valued, and although one can adapt the definition of the method to choose one of the nearest
points, in general one cannot expect to obtain global convergence to a solution of the problem.
However, it was noticed in practice that locally, that is, if the initial point is close enough to
the intersection of the two sets, the alternating projection method works well. This observation
and the variety of important applications in absence of convexity triggered in recent years a
closer analysis of this classical method which led to a series of local linear convergence results
assuming appropriate conditions at an intersection point z of the two sets and considering the
starting point x0 sufficiently close to z.
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Lewis, Luke, and Malick [25] focused on two local geometric features needed to prove linear
convergence of alternating projections in an elementary way. Namely, they showed that if A
and B intersect transversally at z ∈ A ∩ B and one of the sets is super-regular at z, then
the alternating projection method converges linearly to an intersection point (provided x0 is
chosen sufficiently close to z). Transversality is a standard geometric condition and requires
that NA(z) ∩ (−NB(z)) = {0}, where NA(z) and NB(z) are the normal cones to A and B,
respectively, at z. For convex A and B, transversality actually means that the sets cannot
be separated by a hyperplane. Super-regularity generalizes a fundamental property of a closed
convex set which characterizes the projection of a given point onto the set via the property
that the point, its projection, and any point of the set form a right or obtuse angle. In this
sense, super-regularity means in broad lines that the set is not too far from being convex. More
precisely, A is called super-regular at z if given any ε > 0, for any y /∈ A and x′ ∈ A sufficiently
close to z and any x ∈ PA(y) with x 6= x′, we have that the angle between the vectors y − x
and x′ − x is at least π/2 − ε (here PA denotes the metric projection onto the set A). For a
closed set, convexity clearly implies super-regularity. In the nonconvex case, there are also other
well-known properties that are highly relevant in practice and imply super-regularity such as
prox-regularity. The convergence result from [25] was later improved by Drusvyatskiy, Ioffe, and
Lewis [14] by removing the hypothesis that one of the sets has to be super-regular. In fact,
they even weakened the transversality condition by replacing it with another geometric property
called intrinsic transversality, which, as opposed to transversality, is a property specific to the
sets and is not related to the Euclidean space where they lie.

A notion related to intrinsic transversality was introduced by Noll and Rondepierre [29]
and called 0-separability. This notion combined with Hölder regularity is weaker than intrinsic
transversality and still yields local linear convergence of alternating projections. The set A
intersects the set B separably at z ∈ A ∩ B if there exists α > 0 such that, for any x ∈ A \ B
sufficiently close to z and any y ∈ PB(x)\A and x′ ∈ PA(y), the angle between the vectors x−y
and x′ − y is at least α. Actually, as noted by Drusvyatskiy and Lewis [15], for the intuitive
geometric reasoning from [25] to work, it is enough to assume super-regularity of one of the sets
and, instead of transversality, its separable intersection with the other one.

The projection onto a set is in fact a purely metric concept, and so it is natural to consider the
described problem in nonlinear settings with a rich enough geometry. Even in the convex case
in Hilbert spaces, both the orthogonality of the metric projection and the geometric structure
which allows one to establish a relation between angles and sides of triangles seem essential to
this approach to convergence of alternating projections. Since the structural characteristics of
the distance function in Alexandrov spaces with an upper curvature bound are sufficient for the
aforementioned properties to hold, we consider this context and briefly discuss in Section 2 some
of its basic properties, along with other notions used in what follows.

As a first step in this direction we introduce in Section 3 the notion of uniform approximation
by geodesics at a point for subsets of a geodesic space, a property that is satisfied, in Alexandrov
spaces with an upper curvature bound, by locally compact sets with finite extrinsic curvature
at that point (see Definition 3.1 and Proposition 3.4). We relate uniform approximation by
geodesics with other concepts that indicate how close a set is to being convex such as the notions
of 2-convexity, an important case of almost convexity introduced by Lytchak [26], positive reach
in the sense of Federer [17], or prox-regularity originating from Poliquin and Rockafellar [32].
Moreover, we show that transforming a convex set via a sufficiently smooth function defined
between two Euclidean spaces results in a set that is uniformly approximable by geodesics.
Furthermore, we justify why the notion of uniform approximation by geodesics differs from
the convexity-like notions mentioned before. Other natural classes of sets that are uniformly
approximable by geodesics include epigraphs of approximately convex functions or sets defined
by C1 inequality constraints satisfying the Mangasarian–Fromovitz condition.

In Section 4 we study the two main ingredients, super-regularity and separable intersection,
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used to prove the local linear convergence of alternating projections. In Theorem 4.5, we prove
that in Alexandrov spaces with an upper curvature bound, uniform approximation by geodesics
implies super-regularity. Using the analysis carried out in Section 3, this allows us to conclude
that in suitable settings (in particular, in smooth Riemannian manifolds) compact sets that
are 2-convex as well as images of convex sets under sufficiently smooth functions between two
Euclidean spaces are super-regular. Even though our main focus is the study of nonconvex
sets, for the separable intersection property we also consider the convex case. To this end we
introduce a nonlinear counterpart of transversality of two sets at a point and show that it implies
separable intersection at that point. Besides, we prove that transversality holds when assuming
that one set intersects the interior of the other set, thus generalizing the condition from [19] to the
framework of Alexandrov spaces. Finally, we extend the local linear convergence of alternating
projections to the setting of Alexandrov spaces of curvature bounded above. The study of the
alternating projection method for convex sets in Alexandrov spaces was initiated by Bačák,
Searston, and Sims [4] who showed that in the presence of nonpositive curvature the algorithm
works well (see also [11] for the case of an arbitrary upper curvature bound). Regarding the
nonconvex case in the context of Alexandrov spaces, as far as we know, Theorem 4.18 is the first
convergence result in this line.

2 Preliminaries

This section introduces some notation and briefly explains certain properties of geodesic metric
spaces that we make use of in what follows. These concepts and related ones are treated at
length, e.g., in the monographs [2, 8, 9].

2.1 Geodesic spaces

Let (X, d) be a metric space. We denote the open (resp., closed) ball centered at x ∈ X with
radius r > 0 by B(x, r) (resp., B(x, r)). For C ⊆ X, the metric projection PC onto C is the
mapping PC : X → 2C defined by

PC(z) = {y ∈ C : d(z, y) = dist(z, C)}, z ∈ X,

where dist(z, C) = infy∈C d(z, y).
Let x, y ∈ X. A curve from x to y is a continuous mapping f : [a, b] ⊆ R → X such that

f(a) = x and f(b) = y. A partition of [a, b] is a finite and ordered set ∆ = (t0, t1, . . . , tn) of
points in [a, b] such that a = t0 ≤ t1 ≤ . . . ≤ tn = b. The length of a curve f : [a, b] → X is
sup∆

∑n−1
i=0 d(f(ti), f(ti+1)), where the supremum is taken over all partitions ∆ of [a, b]. If the

length of f is finite, then f is called rectifiable. If the length of the restriction f |[t1,t2] equals
t2 − t1 for all t1, t2 ∈ [a, b] with t1 ≤ t2, then f is parameterized by arc length (or unit-speed).
Note that every rectifiable curve can be reparameterized by arc length.

Given a metric space (X, d), define dX : X × X → [0,∞] by assigning to a pair of points
x, y ∈ X the infimum of the lengths of rectifiable curves from x to y (if there are no such curves,
then dX(x, y) = ∞). If every two points in X can be joined by a rectifiable curve, dX is a metric
called the length metric associated to d. If d = dX , then (X, d) is called a length space. Note
that (X, dX ) is a length space. The induced length metric dA on A ⊆ X is the length metric
associated to the restriction of d to A×A.

If X is a proper metric space and x, y ∈ X such that there exists a rectifiable curve in X
joining x and y, then there exists a curve whose length is equal to the infimum of the lengths of
curves joining x and y (see, e.g., [31, Proposition 1.4.12]).

Let x, y ∈ X. A geodesic from x to y is a mapping γ : [0, l] ⊆ R → X such that γ(0) = x,
γ(l) = y, and

d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l].
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In this case we also say that γ joins x and y. The image of a geodesic joining x and y is called
a geodesic segment joining x and y. Note that d(x, y) = l, which is also equal to the length of γ.

We say that (X, d) is a (uniquely) geodesic space if every two points in X are joined by a
(unique) geodesic segment. Every geodesic space is a length space. Conversely, by the Hopf–
Rinow theorem, every length space that is complete and locally compact is geodesic.

Let (X, d) be a metric space, and consider the direct product X×R equipped with the metric

d2((x1, y1), (x2, y2)) =
√

d(x1, x2)2 + |y1 − y2|2,

where x1, x2 ∈ X and y1, y2 ∈ R. If X is a geodesic space, then so is X × R. Moreover, if
γ : [0, r] → X and α : [0, s] → R are geodesics, where l =

√
r2 + s2 > 0, then σ : [0, l] → X × R

defined by σ(t) = (γ(rt/l), α(st/l)) for all t ∈ [0, l] is a geodesic.
If (X, d) is a uniquely geodesic space, z ∈ X, and c > 0, we say that X has the c-geodesic

extension property at z if for any distinct x, y ∈ B(z, c) with d(x, y) < c, the geodesic from x to
y can be extended beyond y to a geodesic of length c.

In the following, if nothing else is mentioned, we always assume that (X, d) is a geodesic
space. A point z ∈ X belongs to a geodesic segment joining x and y if and only if there exists
t ∈ [0, 1] such that d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y). If there is a unique geodesic
segment joining x and y, we denote it by [x, y]. A subset A of X is convex if for every x, y ∈ A, all
geodesic segments that join x and y are contained in A and weakly convex if for every x, y ∈ A,
at least one geodesic segment that joins x and y is contained in A.

Given λ ∈ R, a function f : I → R defined on an interval I ⊆ R is called λ-convex if
f(t) + λt2 is convex on I. More generally, we say that a function f : X → R is λ-convex if for
every geodesic γ : [0, l] → X, (f ◦ γ)(t) + λt2 is convex on [0, l]. This amounts to the inequality

f(γ((1− α)t1 + αt2)) ≤ (1− α)f(γ(t1)) + αf(γ(t2)) + λα(1 − α)d(γ(t1), γ(t2))
2

for all t1, t2 ∈ [0, l] and all α ∈ [0, 1].
A geodesic triangle ∆(x1, x2, x3) in X consists of three points x1, x2, x3 ∈ X (its vertices)

and three geodesic segments (its sides) joining each two points. A triangle ∆(x1, x2, x3) in
R
2 is a comparison triangle for a geodesic triangle ∆(x1, x2, x3) if d(xi, xj) = dR2(xi, xj) for

i, j ∈ {1, 2, 3}.
Let γ : [0, l] → X and γ′ : [0, l′] → X be two nonconstant geodesics with γ(0) = γ′(0). For

t ∈ (0, l] and t′ ∈ (0, l′], consider a comparison triangle ∆(γ(0), γ(t), γ′(t′)) in R
2, and denote its

interior angle at γ(0) by ∠γ(0) (γ(t), γ
′(t′)). The Alexandrov angle ∠(γ, γ′) between the geodesics

γ and γ′ is defined as

∠(γ, γ′) = lim sup
t,t′→0

∠γ(0)

(

γ(t), γ′(t′)
)

∈ [0, π].

For x, y, z three points in a geodesic space X with x 6= y and x 6= z, if there is a unique
geodesic from x to y, as well as from x to z, then we denote the corresponding Alexandrov
angle by ∠x(y, z). In general, the sum of adjacent angles is at least π. In other words, suppose
that γ : [0, l] → X is a nonconstant geodesic, and let t0 ∈ (0, l). Define γ1 : [0, t0] → X by
γ1(t) = γ(t0 − t) and γ2 : [0, l − t0] → X by γ2(t) = γ(t0 + t). If γ3 is a nonconstant geodesic
satisfying γ3(0) = γ(t0), then ∠(γ1, γ3) + ∠(γ3, γ2) ≥ π.

2.2 Alexandrov spaces

For κ ∈ R, let M2
κ denote the complete, simply connected, 2-dimensional Riemannian manifold

of constant sectional curvature κ. In particular, M2
0 = R

2. Recall that, for κ > 0, M2
κ is obtained

from the spherical space S
2 by scaling the spherical distance with 1/

√
κ, while for κ < 0, M2

κ

is obtained from the hyperbolic space H
2 by scaling the hyperbolic distance with 1/

√
−κ. We

denote the diameter of M2
κ by Dκ. In other words, Dκ = ∞ if κ ≤ 0, while Dκ = π/

√
κ if κ > 0.
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The cosine law in M2
κ states that in a geodesic triangle with vertices x, y, z and vertex angle

α at x (which is equal to the Alexandrov angle determined by the side joining x and y and the
one joining x and z; see [8, Chapter I, Proposition 2.9]) we have for κ > 0,

cos(
√
κd(y, z)) = cos(

√
κd(x, y)) cos(

√
κd(x, z)) + sin(

√
κd(x, y)) sin(

√
κd(x, z)) cos α.

The subsequent result is a consequence of the cosine law and will be used in the proof of
Theorem 4.5. Although it is straightforward, we include the proof for completeness.

Lemma 2.1. Let κ > 0, x, y, z ∈ M2
κ with d(y, x) < Dκ/2, d(z, x) < Dκ and ∠x(y, z) < π/2.

Then for all t > 0 there exists u ∈ [x, z] with d(x, u) < t and d(y, u) < d(y, x).

Proof. Let w = P[x,z](y). Then α = ∠w(y, x) ≥ π/2. Note that w 6= x since ∠x(y, z) < π/2. Let
u ∈ [x,w] with u 6= x. Applying the cosine law we get

cos(
√
κd(y, x)) = cos(

√
κd(y,w)) cos(

√
κ d(x,w)) + sin(

√
κ d(y,w)) sin(

√
κd(x,w)) cos α

and

cos(
√
κd(y, u)) = cos(

√
κ d(y,w)) cos(

√
κd(u,w)) + sin(

√
κ d(y,w)) sin(

√
κ d(u,w)) cos α.

Since cosα ≤ 0 and d(u,w) < d(x,w), it follows that d(y, u) < d(y, x).

Let (X, d) be a geodesic space. As in R
2, one can define comparison triangles in M2

κ . A
triangle ∆(x1, x2, x3) in M2

κ is a comparison triangle for a geodesic triangle ∆(x1, x2, x3) in X
if d(xi, xj) = dM2

κ
(xi, xj) for i, j ∈ {1, 2, 3}. For κ fixed, comparison triangles in M2

κ of geodesic
triangles having perimeter less than 2Dκ always exist and are unique up to isometry.

A geodesic triangle ∆ = ∆(x1, x2, x3) is said to satisfy the CAT(κ) inequality if for every
comparison triangle ∆ = ∆(x1, x2, x3) in M2

κ of ∆ and every x, y ∈ ∆ we have

d(x, y) ≤ dM2
κ
(x, y),

where x, y ∈ ∆ are the comparison points of x and y; i.e., if x belongs to the side joining xi and
xj, then x belongs to the side joining xi and xj and satisfies d(xi, x) = dM2

κ
(xi, x).

We include in what follows some definitions and properties concerning metric spaces that
have globally upper or lower curvature bounds in the sense of Alexandrov.

Let X be a metric space where every two points at distance less than Dκ can be joined by
a geodesic. We say that X is a CAT(κ) space (or that it has curvature bounded above by κ
in the sense of Alexandrov) if every geodesic triangle having perimeter less than 2Dκ satisfies
the CAT(κ) inequality. Another equivalent condition for X to be a CAT(κ) space is that the
Alexandrov angle between the sides of any geodesic triangle in X (of perimeter smaller than
2Dκ) is less than or equal to the angle between the corresponding sides of its comparison triangle
in M2

κ . A CAT(κ) space is also a CAT(κ′) space for every κ′ ≥ κ. Other characterizations of
CAT(κ) spaces are given, e.g., in [8, Chapter II, Proposition 1.7 and Theorem 1.12].

We briefly mention next some facts on CAT(κ) spaces needed further on. Let X be a CAT(κ)
space. Observe first that points in X at distance less than Dκ are joined by a unique geodesic
segment and balls of radius smaller than Dκ/2 are convex.

Assuming that the diameter of X is sufficiently small for κ > 0, there exists λ < 1 such
that, for all x ∈ X, the function d(·, x)2 is (−λ)-convex. In other words, CAT(κ) spaces are
2-uniformly convex (see [24, 30]). Moreover, there also exists λ′ > 0 such that, for all geodesic
segments [x, y] in X, the function dist(·, [x, y]) is λ′-convex (see, e.g., [2, Lemma 8.6.6]). Note
that, by reducing the diameter of the space, the convexity constants λ and λ′ can be made
arbitrarily close to 1 and arbitrarily close to 0, respectively.
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If x, y, z ∈ X with max{d(x, y), d(x, z)} < Dκ, then the function (x, y, z) 7→ ∠x(y, z) is upper
semicontinuous, and if x is fixed, then the function (y, z) 7→ ∠x(y, z) is continuous (see, e.g., [8,
Chapter II, Proposition 3.3]). Note also that one can take comparison triangles in M2

κ instead of
R
2 in the definition of Alexandrov angles. Thus, if ∠x(y, z) < α for some α > 0, then, using the

definition of Alexandrov angles, there exist y′ ∈ [x, y] and z′ ∈ [x, z] such that in a comparison
triangle ∆(x, y′, z′) ⊆ M2

κ of the geodesic triangle ∆(x, y′, z′), the angle at x is smaller than α.
Suppose now that X is additionally complete, and let C ⊆ X be nonempty, closed, and

convex. Take x ∈ X with dist(x,C) < Dκ/2. Then PC(x) is a singleton. Moreover, if x /∈ C,
y ∈ C with y 6= PC(x), then ∠PC(x)(x, y) ≥ π/2. Furthermore, we will also use the fact that,
for all y ∈ C with d(PC(x), y) ≤ Dκ/2, we have d(PC(x), y) ≤ d(x, y) (see, e.g., [16, Proposition
3.5]). A systematic study of properties of Chebyshev sets (i.e., sets where the metric projection
is a singleton for all points in the space) in Alexandrov spaces is carried out in [3].

CBB(κ) spaces (or spaces that have curvature bounded below by κ in the sense of Alexandrov)
are defined in a similar way to CAT(κ) spaces using in this case the reverse of the CAT(κ)
inequality. As for CAT(κ) spaces, one can give other equivalent conditions involving, e.g.,
angles. Note also that in CBB(κ) spaces, the sum of adjacent angles is precisely equal to π. A
CBB(κ) space is also a CBB(κ′) space for all κ′ ≤ κ.

Given κ′ ≤ κ, following the literature (see, e.g., [7, Chapter II.9]), we will refer to a geodesic
space that is both a CAT(κ) space and a CBB(κ′) space as an ℜκ′,κ domain. The behavior
of distance functions in spaces with local two-sided curvature bounds has been very recently
discussed in [21].

Curvature bounds in the sense of Alexandrov can also be considered locally by imposing the
comparison condition only for triangles that are small enough. More precisely, we say that a
metric space has locally curvature bounded above (resp., below) by κ if every point in it has a
neighborhood that, with the induced metric, is a CAT(κ) space (resp., a CBB(κ) space).

If z is a point in a smooth Riemannian manifold, then there exists a neighborhood of z that
is an ℜκ′,κ domain for some suitable κ, κ′ ∈ R (see, e.g., [8, Chapter II.1, Appendix] and [10]).
Furthermore, bearing in mind that the injectivity radius in a complete Riemannian manifold is
a continuous function [23, Part I, Proposition 2.1.10], there exists a ball centered at z that is an
ℜκ′,κ domain with the c-geodesic extension property at z for an appropriate c > 0.

The structure of CAT(κ) spaces satisfying a local geodesic extension property has been
analyzed in [27].
Notation. N denotes the set of natural numbers including 0.

3 Curvature and convexity

As pointed out by Gromov in [18], the full geometric meaning of the curvature tensor is obscure,
which motivates the search for a suitable notion of curvature for a subspace of a metric space. In
the case of a curve, a first approach was made by Menger who mimicked the notion of classical
curvature for plane curves. However, this definition is limited because it was modeled after the
Euclidean plane. Our approach here is the one suggested by Finsler in his Ph.D. thesis and
studied by Haantjes [20] using the comparison between the length of an arc and the distance
between its endpoints. A nice introduction of different concepts of metric curvature for curves
is given in [36].

Definition 3.1. Let (X, d) be a metric space, A ⊆ X, and z ∈ A. We say that A has finite
extrinsic curvature at z if there exist σ ≥ 0 and r > 0 such that

dA(p, q)− d(p, q) ≤ σ d(p, q)3 (1)

for all p, q ∈ B(z, r) ∩A.
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The above definition is a local version of the notion of almost convexity (more precisely,
2-convexity) introduced by Lytchak [26] in the following way: given σ ≥ 0 and ρ > 0, a subset
A of X is called (σ, 2, ρ)-convex (or 2-convex when there is no need to emphasize the constants
σ and ρ) if (1) holds for all p, q ∈ A with d(p, q) ≤ ρ. It is immediate that a (σ, 2, ρ)-convex
set has finite extrinsic curvature at all its points. Actually, in [1], the terminology subspaces of
extrinsic curvature bounded above is used for 2-convex sets. It is also immediate that if A is
weakly convex, then it is (0, 2, ρ)-convex for all ρ > 0 (in other words, A is of extrinsic curvature
0).

Remark 3.2. If X is a CAT(κ) space and A ⊆ X is locally compact (in the subspace topology)
and has finite extrinsic curvature at z ∈ A, then for all sufficiently small R > 0, B(z,R) ∩ A is
2-convex.

Indeed, let σ ≥ 0 and r > 0 be such that (1) holds for all p, q ∈ B(z, r) ∩ A. We can
assume that r is small enough so that, on B(z, r), the squared distance function to a point is
(−1/2)-convex and any two points in B(z, r) ∩ A are joined by a geodesic in (A, dA) (for this
one uses the local compactness of A and the finite extrinsic curvature at z). Take

α = min

{

r,
1

32
√
σ + 1

}

and R =
α

3(σ + 1)
.

Let p, q ∈ B(z,R) ∩A, and denote s = dA(p, q). By (1),

s ≤ d(p, q) + σd(p, q)3 < 2R(σ + 1).

Let f : [0, s] → A be a geodesic in (A, dA) with f(0) = p and f(s) = q. If t ∈ [0, s], then

d(z, f(t)) ≤ d(z, p) + d(p, f(t)) < R+ dA(p, f(t)) = R+ t ≤ R+ s < R+ 2R(σ + 1) < α,

so f(t) ∈ B(z, α) ∩A.
The function g : B(z, α) → R defined by g(x) = 1

2d(x, z)
2 is α-Lipschitz as

|g(x)− g(y)| = 1

2
· (d(x, z) + d(y, z)) · |d(x, z) − d(y, z)| ≤ αd(x, y)

for all x, y ∈ B(z, α).
Let t1, t2 ∈ [0, s], and denote m = 1

2f(t1) +
1
2f(t2) and m′ = f( t1+t2

2 ). We have

d(f(t1),m
′) ≤ dA(f(t1),m

′) =
1

2
dA(f(t1), f(t2)) ≤

1

2
d(f(t1), f(t2))

(

1 + σd(f(t1), f(t2))
2
)

.

Likewise, d(f(t2),m
′) ≤ 1

2d(f(t1), f(t2))(1+σd(f(t1), f(t2))
2). Assuming α is sufficiently small,

we get d(m,m′) ≤ 2
√
σd(f(t1), f(t2))

2.
Since g is (−1/4)-convex, we have

g(m′) ≤ g(m) + αd(m,m′)

≤ 1

2
(g ◦ f)(t1) +

1

2
(g ◦ f)(t2)−

1

16
d(f(t1), f(t2))

2 + 2α
√
σd(f(t1), f(t2))

2.

As α ≤ 1/(32
√
σ + 1), it follows that g ◦ f is convex. This shows that Im f ⊆ B(z,R) ∩A,

which implies that B(z,R) ∩A is (σ, 2, 2R)-convex.
Note that intersections of A with sufficiently small closed balls are 2-convex as well.

We introduce next the notion of uniform approximation by geodesics which will be one of
our main tools to analyze super-regularity in the setting of geodesic spaces.
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Definition 3.3. Let (X, d) be a metric space and A ⊆ X. We say that the set A is uniformly
approximable by geodesics (UAG) at z ∈ A if for all ε > 0 there exists R > 0 such that for every
x, x′ ∈ B(z,R) ∩ A with x 6= x′ there exist f : [0, l] → A, with f(0) = x and f(l) = x′, and a
geodesic γ : [0, l] → X starting at x with the property that

d(γ(t), f(t))

t
< ε for all t ∈ (0, l]. (2)

Every weakly convex subset of a geodesic space is UAG at all its points. However, convexity
is not essential for UAG to hold. We prove next that if a set has finite extrinsic curvature at a
given point, then it is UAG at that point.

Proposition 3.4. Let X be a CAT(κ) space and A ⊆ X be locally compact (in the subspace
topology). If A has finite extrinsic curvature at z ∈ A, then A is UAG at z.

Proof. This result improves a previous one from an earlier version of the paper. This improved
statement and its proof are based on ideas communicated to us by Alexander Lytchak.

Let ε ∈ (0, 1). From the proof of Remark 3.2 we know that we can take R > 0 small enough
so that each two points in B(z,R) ∩ A can be joined by a geodesic in (A, dA) with its image
contained in B(z,R)∩A and B(z,R)∩A is (σ, 2, 2R)-convex for some σ ≥ 0. Moreover, we can
assume that

R ≤ min

{

1

σ + 1
,

ε

64(
√
σ + 1)

}

and that in B(z,R), the distance function to geodesic segments is 1-convex.
Let x, x′ ∈ B(z,R) ∩ A with x 6= x′. Denote l = d(x, x′) and s = dA(x, x′). Consider

γ : [0, l] → X the geodesic from x to x′ and a constant-speed geodesic f : [0, l] → B(z,R) ∩ A
in (A, dA) from x to x′ satisfying

dA(f(t1), f(t2)) =
s

l
|t1 − t2|

for all t1, t2 ∈ [0, l].
The function g : B(z,R) → R defined by g(y) = dist(y, [x, x′]) is 1-Lipschitz and 1-convex.

Denote h = g ◦ f . As in the proof of Remark 3.2, one obtains that h is 2(8
√
σ + 1)-convex.

Claim. For all t ∈ [0, l], h(t) ≤ 4R(8
√
σ + 1)t.

Proof of Claim. Note that h(0) = h(l) = 0. Denote C = 2(8
√
σ + 1). One can easily verify by

induction that

h

(

l

2n

)

≤ lC

(

1− 1

2n

)

l

2n
(3)

for all n ∈ N.
Let t ∈ (0, l]. Then t = (1− α) l

2n+1 + α l
2n for some n ∈ N and α ∈ (0, 1]. As h is C-convex,

h(t) ≤ (1− α)h

(

l

2n+1

)

+ αh

(

l

2n

)

+ Cα(1− α)

(

l

2n+1

)2

≤ lC

(

t− (1− α)
l

22n+2
− α

l

22n
+ α(1 − α)

l

22n+2

)

by (3)

≤ lCt ≤ 2RCt.
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Let t ∈ (0, l], and denote p(t) = P[x,x′](f(t)). Then d(f(t), p(t)) = h(t).
Suppose γ(t) ∈ [x, p(t)]. Then

d(p(t), γ(t)) = d(x, p(t)) − t ≤ d(x, f(t)) + d(f(t), p(t)) − t ≤ dA(x, f(t)) + d(f(t), p(t)) − t

=
(s

l
− 1

)

t+ d(f(t), p(t)) ≤ σl2t+ d(f(t), p(t)) ≤ 4σR2t+ h(t).

Suppose now γ(t) ∈ [p(t), x′]. Then

d(p(t), γ(t)) = t− d(x, p(t)) ≤ t− d(x, f(t)) + d(f(t), p(t)).

Since
t ≤ dA(x, f(t)) ≤ d(x, f(t))

(

1 + σd(x, f(t))2
)

≤ d(x, f(t))
(

1 + 4σR2
)

,

it follows that

d(p(t), γ(t)) ≤
(

1− 1

1 + 4σR2

)

t+ d(f(t), p(t)) ≤ 4σR2t+ h(t).

Thus, in both cases,

d(f(t), γ(t)) ≤ d(f(t), p(t)) + d(p(t), γ(t)) ≤ 4σR2t+ 2h(t)

≤ 4R(σR+ 2(8
√
σ + 1))t < 64R(

√
σ + 1)t ≤ εt.

Remark 3.5. Note that the upper bound on the curvature in Proposition 3.4 is only needed
locally around z, so, in particular, smooth Riemannian manifolds provide a suitable setting for
the space X. By [26, Theorem 1.2], if A is a compact subset of a smooth Riemannian manifold
and there exist a number C > 0 and a neighborhood of z where every two points at distance s
can be joined in A by an arc length parameterized C1,1 curve (i.e., C1 with a locally Lipschitz
derivative) of length smaller than Cs, whose C1,1 norm is bounded by C, then A has finite
extrinsic curvature at all its points and hence is UAG at all its points.

An interesting question in optimization and control theory is when the image of a ball under
a smooth function is a convex set (see, e.g., [34]). In what follows we address a question in this
line from the point of view of uniform approximation by geodesics and study the image of a
convex set under a sufficiently smooth function.

Proposition 3.6. Let C ⊆ R
n be convex and u ∈ C. Suppose that F : Rn → R

m is differentiable
on a neighborhood of u, DF is continuous at u, and DF (u) is injective. Furthermore, assume
that F is a homeomorphism between C and F (C). Then F (C) is UAG at F (u).

Proof. Denote z = F (u), F = (F1, . . . , Fm), and let U be a neighborhood of u where F is
differentiable. As DF (u) is injective, there exists K > 0 such that ‖DF (u)(v)‖ ≥ K for all unit
vectors v ∈ R

n. Let ε > 0, and take r > 0 such that, for all y ∈ B(u, r) ⊆ U ,

‖DF (y)(v)‖ ≥ K

2
for all unit vectors v ∈ R

n

and

‖∇Fi(y)−∇Fi(u)‖ <
Kε

4m
for all i ∈ {1, . . . ,m}.

Let R > 0 such that B(z,R) ∩ F (C) ⊆ F (B(u, r) ∩ C). Fix x, x′ ∈ B(z,R) ∩ F (C) with
x 6= x′. Then x = F (y), x′ = F (y′) for some y, y′ ∈ B(u, r) ∩ C. Take

v =
y′ − y

‖y′ − y‖ , w = DF (y)(v), and l = ‖y′ − y‖ · ‖w‖.
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Define f : [0, l] → F (C) and a geodesic γ : [0, l] → R
m by

f(t) = F

(

y + t
v

‖w‖

)

and γ(t) = F (y) + t
w

‖w‖ .

Fix t ∈ (0, l]. Then there exist c1, . . . , cm ∈ B(u, r) such that

F

(

y + t
v

‖w‖

)

− F (y) =
t

‖w‖ (〈∇F1(c1), v〉, . . . , 〈∇Fm(cm), v〉) .

Consequently,

‖f(t)− γ(t)‖
t

=
1

‖w‖ ‖(〈∇F1(c1)−∇F1(y), v〉, . . . , 〈∇Fm(cm)−∇Fm(y), v〉)‖

≤ 1

‖w‖

m
∑

i=1

(‖∇Fi(ci)−∇Fi(u)‖ + ‖∇Fi(u)−∇Fi(y))‖)

<
2

K
m

(

Kε

4m
+

Kε

4m

)

= ε.

Corollary 3.7. Let C ⊆ R
n be convex and u ∈ C. Suppose that F : Rn → R

m is differentiable
on a neighborhood of u, DF is continuous at u, and DF (u) is injective. Then for any sufficiently
small r > 0, F (B(u, r) ∩ C) is UAG at F (u).

Proof. Denote F = (F1, . . . , Fm), and let U be a neighborhood of u where F is differentiable.
As DF (u) is injective, there exists K > 0 such that ‖DF (u)(v)‖ ≥ K‖v‖ for all v ∈ R

n. From
the continuity of DF at u, there exists r > 0 such that, for all y ∈ B(u, r) ⊆ U ,

‖∇Fi(y)−∇Fi(u)‖ ≤ K

2m
for all i ∈ {1, . . . ,m}.

Let y, y′ ∈ B(u, r). Then there exist c1, . . . , cm ∈ B(u, r) such that

F (y′)− F (y) = (〈∇F1(c1), y
′ − y〉, . . . , 〈∇Fm(cm), y′ − y〉).

Consequently,

‖F (y′)− F (y)−DF (u)(y′ − y)‖ ≤
m
∑

i=1

‖∇Fi(ci)−∇Fi(u)‖ · ‖y′ − y‖ ≤ K

2
‖y′ − y‖,

from where

‖F (y′)− F (y)‖ ≥ ‖DF (u)(y′ − y)‖ − K

2
‖y′ − y‖ ≥ K

2
‖y′ − y‖. (4)

Let r′ ≤ r. By (4), F is injective on B(u, r′). Moreover, F−1 : F (B(u, r′)∩C) → B(u, r′)∩C
is continuous since, using (4), for all x, x′ ∈ F (B(u, r′) ∩ C),

‖F−1(x)− F−1(x′)‖ ≤ 2

K
‖x− x′‖.

Apply Proposition 3.6 for the convex set B(u, r′) ∩ C.

We provide next an example of a set that is UAG at a point but does not have finite extrinsic
curvature there.
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Example 3.8. By Proposition 3.6 applied for the function F : R → R
2, F (x) = (x, |x|3/2), the

set A = ImF is UAG at (0, 0).
For ε > 0, the points pε = (−ε, ε3/2), qε = (ε, ε3/2) ∈ ImF satisfy

lim
ε→0

dA(pε, qε)− d(pε, qε)

d(pε, qε)3
= ∞;

hence A does not have finite extrinsic curvature at (0, 0).

Recently, much attention has been given to the epigraph of a certain class of functions that
are close to being convex in the sense defined below.

Let X be a geodesic space and f : X → (−∞,∞]. The (effective) domain of f is the set
dom f = {x ∈ X | f(x) < ∞}, and the epigraph of f is defined by

epi f = {(x, λ) ∈ dom f × R | λ ≥ f(x)}.

Following [28], we say that f is approximately convex at z ∈ X if for all ε > 0 there exists
r > 0 such that for all x, x′ ∈ B(z, r), any geodesic γ : [0, l] → X from x to x′, and all t ∈ [0, 1]
we have

f(γ(lt)) ≤ (1− t)f(x) + tf(x′) + εt(1− t)d(x, x′).

Furthermore, we say that f is approximately convex if it is approximately convex at every z ∈ X.
Note that if balls in X are convex and for all λ > 0, the restriction of f to a ball centered at

z if λ-convex, then f is approximately convex at z.

Proposition 3.9. Let X be a geodesic space, f : X → (−∞,∞] be a function that is approxi-
mately convex at z ∈ X, and α ∈ R such that α ≥ f(z). Then epi f is UAG at (z, α).

Proof. Let ε > 0. Then we find r > 0 given by approximate convexity at z. Take (x, λ), (x′, λ′) ∈
B((z, α), r)∩epi f with (x, λ) 6= (x′, λ′). Note that x, x′ ∈ B(z, r). Let l1 = d(x, x′), l2 = |λ−λ′|,
c1 : [0, l1] → X be a geodesic from x to x′, and define c2 : [0, l2] → R, c2(s) = (1−s/l2)λ+(s/l2)λ

′.
Take l =

√

l21 + l22, and define g : [0, l] → epi f by

g(t) =

(

c1(tl1/l), c2(tl2/l) + ε
t

l

(

1− t

l

)

d(x, x′)

)

.

The function g is indeed well-defined since for all t ∈ [0, l],

f(c1(tl1/l)) ≤
(

1− t

l

)

f(x) +
t

l
f(x′) + ε

t

l

(

1− t

l

)

d(x, x′)

≤
(

1− t

l

)

λ+
t

l
λ′ + ε

t

l

(

1− t

l

)

d(x, x′) = c2(tl2/l) + ε
t

l

(

1− t

l

)

d(x, x′).

Let now the geodesic γ : [0, l] → X × R be given by γ(t) = (c1(tl1/l), c2(tl2/l)). Then for all
t ∈ (0, l],

d2(g(t), γ(t))

t
= ε

(

1− t

l

)

d(x, x′)

l
< ε.

In the analysis of nonconvex nondifferentiable problems, the class of lower-C1 functions
plays an important role; see [37]. A locally Lipschitz function f : U → R, where U is an open
subset of R

n, is called lower-C1 if for every x0 ∈ U there exist a neighborhood V of x0, a
compact set S, and a jointly continuous function g : V ×S → R such that for all x ∈ V we have
f(x) = maxx∈S g(x, s) and the derivative of g with respect to x (exists and) is jointly continuous.
In [13, Corollary 3] it is established that a locally Lipschitz function is approximately convex if
and only if it is lower-C1. This fact and Proposition 3.9 directly yield the following result.
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Corollary 3.10. Let U ⊆ R
n be open, f : U → R be a lower-C1 function, z ∈ U , and α ∈ R

such that α ≥ f(z). Then epi f is UAG at (z, α).

Remark 3.11. A natural example of a lower-C1 function is the sum of a convex function and
a C1 function.

The simplest, most classical, and most important type of amenable sets (see [35]) are simply
defined by C1 inequality constraints satisfying the Mangasarian–Fromovitz condition. In the
following proposition we prove that these sets are UAG.

Proposition 3.12. Let G ⊆ R
n and z ∈ G. Suppose that there exists a neighborhood U of z

and the C1 functions g1, . . . , gm : U → R with the property that

U ∩G = {x ∈ U | gj(x) ≤ 0 for all j ∈ {1, . . . ,m}}.

Moreover, assume that there exists d ∈ R
n such that Dgj(z)(d) < 0 for all j ∈ {1, . . . ,m}. Then

G is UAG at z.

Proof. Note first that we may assume that Dgj(z)(d) ≤ −2 for all j ∈ {1, . . . ,m} (otherwise
scale the vector d appropriately). Let ε ∈ (0, 1) and ε′ = ε/‖d‖. Since the functions gj , where
j ∈ {1, . . . ,m}, are C1, they are approximately convex at z, so there exists r > 0 such that
B(z, 2r) ⊆ U and, for any x, y ∈ B(z, r),

gj((1− s)x+ sy) ≤ (1− s)gj(x) + sgj(y) + ε′s(1− s)‖x− y‖

for all s ∈ [0, 1] and all j ∈ {1, . . . ,m}. Moreover, again by C1-smoothness, we can also suppose
that r is sufficiently small so that

gj((1− s)x+ sy + ε′s(1− s)‖x− y‖d)− gj((1− s)x+ sy) ≤ Dgj(z)(ε
′s(1− s)‖x− y‖d)

+ ε′s(1− s)‖x− y‖

for all s ∈ [0, 1] and all j ∈ {1, . . . ,m}. (Note that (1−s)x+sy+ε′s(1−s)‖x−y‖d ∈ B(z, 2r).)
Adding the above inequalities and taking into account that for x, y ∈ B(z, r) ∩ G we have

gj(x) ≤ 0 and gj(y) ≤ 0, we get

gj((1− s)x+ sy + ε′s(1− s)‖x− y‖d) ≤ 0

for all s ∈ [0, 1] and all j ∈ {1, . . . ,m}.
Let x, y ∈ B(z, r) ∩G with x 6= y, l = ‖x− y‖, and define f : [0, l] → G by

f(t) =

(

1− t

l

)

x+
t

l
y + ε′

t

l

(

1− t

l

)

‖x− y‖d.

Then, considering the geodesic γ : [0, l] → R
n, γ(t) = (1− t/l)x+ (t/l)y, we have

‖f(t)− γ(t)‖
t

= ε′‖d‖
(

1− t

l

)

< ε

for all t ∈ (0, l].

In [17], the definition of sets of positive reach was introduced in relation with the measure
of global curvature properties without assuming differentiability. The main used tool is the
behavior of the metric projection onto the set. A closed subset A of a metric space X is said
to have positive reach if there exists δ > 0 such that PA(x) is a singleton for every x ∈ X with
dist(x,A) < δ. In [26, Theorem 1.3], it is shown that if A is a compact subset of a smooth
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Riemannian manifold (at least C3 with a C2 Riemannian tensor), then A is 2-convex if and
only if A has positive reach. Another concept related to positive reach is the one of proximal
smoothness studied in [12].

The fact that the metric projection is a singleton also gives a characterization of prox-
regularity in R

n. This notion was introduced for a better understanding of how local properties
of dist(·, A) correspond to those of PA. Although the definition of prox-regularity is based on
the normal cone, we will employ its description via the metric projection. Namely, a closed
subset A of Rn is prox-regular at z ∈ A if there exists r > 0 such that PA(x) is a singleton for
all x ∈ B(z, r) (see [33]). Sets that are prox-regular at all their points are also called sets with
unique footpoints or EFP-sets (see [22, 5]).

Remark 3.13. Let A ⊆ R
n be compact. If A is prox-regular at every z ∈ A, then A has finite

extrinsic curvature at every z ∈ A.
Indeed, let r : A → [0,∞] be the function that assigns to z ∈ A the supremum r(z) of all

numbers r > 0 such that, for all points in B(z, r), PA is a singleton. Since A is prox-regular at
every z ∈ A, we have that r(z) > 0 for all z ∈ A. By [17, Remark 4.2], r is continuous on A, so
it attains its minimum in A. Said differently, A has positive reach. Using [26, Theorem 1.3], A
is 2-convex, and the conclusion follows.

In order to state a local version of the fact pointed out in the previous remark we first prove
the following property.

Lemma 3.14. Let A ⊆ R
n be closed. Then A is prox-regular at z ∈ A if and only if there exists

r > 0 such that A ∩B(z, r) has positive reach.

Proof. It is clear from the definition that if z ∈ A and there exists r > 0 such that A ∩B(z, r)
has positive reach, then A is prox-regular at z.

Suppose now that A is prox-regular at z ∈ A. Then there exists R > 0 such that PA(x) is a
singleton for all x ∈ B(z,R). Take r = R/4. Let y ∈ R

n with δ = dist(y,A ∩B(z, r)) < r. We
show by contradiction that PA∩B(z,r)(y) is a singleton.

Suppose there exist two distinct points p, q ∈ PA∩B(z,r)(y). Denote m = 1
2p+

1
2q. Then

‖m− z‖2 = 1

2
‖p − z‖2 + 1

2
‖q − z‖2 − 1

4
‖p − q‖2 ≤ r2 − 1

4
‖p − q‖2. (5)

Since ‖y −m‖ < δ, m /∈ A. Let u = PA(m). We show that u ∈ B(z, r). Extend the segment
[u,m] beyond m to the point x such that ‖u− x‖ = 2r. In other words, x = u+ 2r

‖m−u‖(m− u).

Then ‖x − z‖ ≤ ‖x − m‖ + ‖m − z‖ < 2r + r = 3r, so PA(x) is a singleton. In addition,
PA(x) = u. To see this, denote

τ = sup{t ≥ 0 : PA(u+ t(m− u)) = u}.

Then τ > 0 as, for t = 1, PA(m) = u. If τ = ∞, the whole ray starting at u in the direction
m−u projects onto u. If τ < ∞, applying [17, Theorem 4.8.(6)], we get u+τ(m−u) /∈ B(z, 4r).
Hence,

4r ≤ ‖u+ τ(m− u)− z‖ ≤ τ‖m− u‖+ ‖u− z‖ ≤ τ‖m− u‖+ ‖u−m‖+ ‖m− z‖
< τ‖m− u‖+ ‖m− p‖+ r ≤ τ‖m− u‖+ 2r,

from where τ > 2r/‖m− u‖. This shows that PA(x) = u.
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One of the angles ∠m(p, x) or ∠m(q, x) is at most π/2, and we can suppose that this is the
case for ∠m(p, x). We have

‖x− u‖2 ≤ ‖x− p‖2 ≤ ‖x−m‖2 + ‖p−m‖2 = (‖x− u‖ − ‖m− u‖)2 + 1

4
‖p − q‖2

= ‖x− u‖2 − 2‖x− u‖‖m− u‖+ ‖m− u‖2 + 1

4
‖p− q‖2

≤ ‖x− u‖2 − 2‖x− u‖‖m− u‖+ ‖m− p‖2 + 1

4
‖p − q‖2

= ‖x− u‖2 − 4r‖m− u‖+ 1

2
‖p− q‖2,

and we get

‖m− u‖ ≤ 1

8r
‖p − q‖2.

Thus, using (5),

‖u− z‖ ≤ ‖u−m‖+ ‖m− z‖ ≤ 1

8r
‖p − q‖2 +

√

r2 − 1

4
‖p− q‖2 < r.

This means that u ∈ B(z, r). Now,

‖y−u‖ ≤ ‖y−m‖+‖m−u‖ ≤
√

δ2 − 1

4
‖p− q‖2+ 1

8r
‖p−q‖2 <

√

δ2 − 1

4
‖p − q‖2+ 1

8δ
‖p−q‖2 < δ,

a contradiction. We conclude that PA∩B(z,r) is a singleton and, finally, that A ∩ B(z, r) has
positive reach.

Combining Lemma 3.14, [26, Theorem 1.3], and Remark 3.2, we get the following equiva-
lences.

Proposition 3.15. Let A ⊆ R
n be closed and z ∈ A. Then the following are equivalent:

(i) A is prox-regular at z;

(ii) there exists r > 0 such that A ∩B(z, r) has positive reach;

(iii) there exists r > 0 such that A ∩B(z, r) is 2-convex;

(iv) A has finite extrinsic curvature at z.

Another immediate consequence of Propositions 3.15 and 3.4 is the next result.

Corollary 3.16. Let A ⊆ R
n be closed. If A is prox-regular at z ∈ A, then A is UAG at z.

4 Alternating projections

In this section we first introduce in a geodesic setting the two main geometric ingredients which
we use in the study of the local linear convergence of alternating projections and focus on
situations in which two intersecting closed sets satisfy these assumptions. Then we prove the
convergence result.
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4.1 Super-regularity and separable intersection

Definition 4.1. Let (X, d) be a geodesic space and A ⊆ X. We say that A is super-regular at
z ∈ A if given any ε > 0 there exists r > 0 such that any two points in B(z, r) are joined by a
unique geodesic segment and for all y ∈ B(z, r/2) \ A, x ∈ PA(y), and all x′ ∈ A ∩B(z, r) with
x′ 6= x, ∠x(y, x

′) ≥ π/2− ε.

Remark 4.2. In the above definition, d(y, x) ≤ d(y, z) < r/2, which implies that d(z, x) ≤
d(z, y) + d(y, x) < r; hence x, y, x′ ∈ B(z, r).

We provide below an example of a subset of R
2 which shows that super-regularity is not

persistent nearby. At this point we only justify why the set is not super-regular on balls centered
at the origin. Its super-regularity at the origin will be discussed later on (see Example 4.6).

Example 4.3. Define the function g : [0, 1/2] → R in the following way: if t ∈ (1/2n+1, 1/2n],
where n ∈ N with n ≥ 1, let

g(t) =



















1

2n

(

t− 1

2n+1

)

if t ∈
(

1

2n+1
,

3

2n+2

]

,

1

2n

(

1

2n
− t

)

if t ∈
(

3

2n+2
,
1

2n

]

.

In addition, take g(0) = 0.
Let A = {(t, g(t)) | 0 ≤ t ≤ 1/2}. Then there is no R > 0 such that A is super-regular at all

points in B((0, 0), R) ∩A.
To see this, observe first that for every R > 0 there exists a sufficiently large n so that

z =

(

3

2n+2
,

1

22n+2

)

∈ B((0, 0), R) ∩A.

We show that A is not super-regular at z. Let ε = arctan(1/2n+1) and r > 0. Take

t ∈
(

1

2n+1
,

3

2n+2

)

and t′ =
3

2n+1
− t

such that, denoting x = (t, g(t)) and x′ = (t′, g(t′)), ‖z − x‖ = ‖z − x′‖ < r/4. Let y ∈ R
2 \ A

be in the interior of the triangle with vertices z, (0, 1/2n+1), (0, 1/2n) such that x ∈ PA(y) and
d(y, x) < r/4. Then d(y, z) < r/2 and

∠x(y, x
′) =

π

2
− ∠x(z, x

′) =
π

2
− arctan(1/2n) <

π

2
− ε.

Remark 4.4. As amenability, prox-regularity, and the existence of a finite extrinsic curvature
are persistent nearby and imply super-regularity (according to [25, Proposition 4.8], Corollary
3.16, Proposition 3.4, and Theorem 4.5), Example 4.3 also shows that A does not satisfy these
properties at (0, 0).

In what follows we prove that uniform approximation by geodesics implies super-regularity
in the context of Alexandrov spaces with an upper curvature bound.

Theorem 4.5. Let κ > 0, X be a CAT(κ) space, and A ⊆ X. If A is UAG at z ∈ A, then A
is super-regular at z.

Proof. Fix ε ∈ (0, 1). For

ε′ =
1− cos(ε/2)

2
∈ (0, 1/2), (6)
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we find R > 0 given by uniform approximation by geodesics. Take r = min {R,Dκ/8}. Then
each two points in B(z, r) are joined by a unique geodesic segment. Let y ∈ B(z, r/2) \ A and
x ∈ PA(y). By Remark 4.2, x ∈ B(z, r). Let x′ ∈ B(z, r) ∩ A with x′ 6= x. Then there exist
f : [0, l] → A with f(0) = x and f(l) = x′ and a geodesic γ : [0, l] → X starting at x such that

d(γ(t), f(t))

t
< ε′ for all t ∈ (0, l].

Denote v = γ(l). Then

l = d(v, x) ≤ d(v, x′) + d(x′, x) < ε′l + 2r < l/2 +Dκ/4,

so l < Dκ/2.

Claim 1. η = ∠x (v, x
′) < ε/2.

Proof of Claim 1. Suppose that η ≥ ε/2. By the cosine law in M2
κ we have

cos(
√
κd(v, x′)) ≤ cos(

√
κd(v, x)) cos(

√
κ d(x′, x)) + sin(

√
κd(v, x)) sin(

√
κ d(x′, x)) cos η.

Denoting D = d(x′, x), we get

cos(
√
κ ε′l) ≤ cos(

√
κ l) cos(

√
κD) + sin(

√
κ l) sin(

√
κD) cos(ε/2)

= cos(ε/2) cos(
√
κ (l −D)) + (1− cos(ε/2)) cos(

√
κ l) cos(

√
κD)

≤ cos(ε/2) + (1− cos(ε/2)) cos(
√
κ l).

Note that 1 − a2/2 ≤ cos a ≤ 1 − a2/2 + a4/24 for all a ≥ 0. Applying the first inequality for
a =

√
κ ε′l and the second one for a =

√
κ l, we obtain

1− κ(ε′)2l2

2
≤ cos(

√
κ ε′l) ≤ cos(ε/2) + (1− cos(ε/2))

(

1− κl2

2
+

κ2l4

24

)

≤ 1− (1− cos(ε/2))
κl2

2

(

1− κl2

12

)

,

from where
ε′ > (ε′)2 ≥ (1− cos(ε/2))(1 − kl2/12) > (1− cos(ε/2))/2,

which contradicts (6).

Claim 2. ∠x (y, x
′) ≥ π/2− ε.

Proof of Claim 2. Suppose that ∠x (y, x
′) < π/2− ε. Denote ξ = ∠x (y, v). By Claim 1,

ξ ≤ ∠x

(

y, x′
)

+ ∠x

(

v, x′
)

<
π

2
− ε+

ε

2
=

π − ε

2
.

Then we find two points y′ ∈ [x, y] with y′ 6= x and v′ ∈ [x, v] with v′ 6= x such that in

a comparison triangle ∆(x, y′, v′) ⊆ M2
κ of the geodesic triangle ∆(x, y′, v′), we have ξ

′
=

∠x (y
′, v′) < (π − ε)/2. Thus, by Lemma 2.1, in the triangle ∆(x, y′, v′) there exists u ∈ [x, v′]

such that dM2
κ
(y′, u) < dM2

κ
(y′, x) and 0 < dM2

κ
(x, u) < α, where

α =
1

6
√
κ
cos

π − ε

2
sin(

√
κdM2

κ
(y′, x)). (7)
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Take now u ∈ [x, v′] such that d(x, u) = dM2
κ
(x, u); i.e., u is the comparison point of u. It

follows that d(y′, u) ≤ dM2
κ
(y′, u) < dM2

κ
(y′, x) = d(y′, x). Denote t = d(x, u) ≤ l. Then

t < α < d(y′, x)/6, u = γ(t), and d(u, f(t)) < ε′t. Moreover,

cos(
√
κd(y′, u)) ≥ cos(

√
κ dM2

κ
(y′, u))

= cos(
√
κ t) cos(

√
κ dM2

κ
(y′, x)) + sin(

√
κ t) sin(

√
κ dM2

κ
(y′, x)) cos ξ

′

≥ cos(
√
κ t) cos(

√
κ d(y′, x)) + sin(

√
κ t) sin(

√
κd(y′, x)) cos

π − ε

2
.

(8)

At the same time, since x ∈ PA(y
′), we have

d(y′, x) ≤ d(y′, f(t)) ≤ d(y′, u) + d(u, f(t)) < d(y′, u) + ε′t,

so

cos(
√
κ d(y′, x)) ≥ cos(

√
κ(d(y′, u) + ε′t))

= cos(
√
κd(y′, u)) cos(

√
κ ε′t)− sin(

√
κ d(y′, u)) sin(

√
κ ε′t)

≥ cos(
√
κd(y′, u)) cos(

√
κ ε′t)− sin(

√
κ d(y′, x)) sin(

√
κ ε′t).

Consequently,

cos(
√
κ d(y′, x))

≥
(

cos(
√
κ t) cos(

√
κ d(y′, x)) + sin(

√
κ t) sin(

√
κ d(y′, x)) cos

π − ε

2

)

cos(
√
κ ε′t)

− sin(
√
κ d(y′, x)) sin(

√
κ ε′t) by (8)

= cos(
√
κ(d(y′, x)− t)) cos(

√
κ ε′t)− sin(

√
κd(y′, x)) sin(

√
κ ε′t)

−
(

1− cos
π − ε

2

)

sin(
√
κ t) sin(

√
κd(y′, x)) cos(

√
κ ε′t)

≥ cos(
√
κ(d(y′, x)− t))

(

1− κ(ε′t)2

2

)

− sin(
√
κd(y′, x))

√
κ ε′t

−
(

1− cos
π − ε

2

)√
κ t sin(

√
κ d(y′, x)),

from where

sin(
√
κ d(y′, x))

√
κ t

(

ε′ + 1− cos
π − ε

2

)

≥ cos(
√
κ(d(y′, x)− t))− cos(

√
κ d(y′, x))− κ(ε′t)2

2

≥ 2 sin

√
κ t

2
sin

(√
κ

(

d(y′, x)− t

2

))

− κ t2.

Note that, as ε ∈ (0, 1),

ε′ =
1− cos(ε/2)

2
<

1

2
cos

π − ε

2
.

Denote a =
√
κ t/2 <

√
κα/2 < 1/12 and b =

√
κ d(y′, x). We have sin a ≥ a− a3/6 ≥ a− 2a2

and

sin(b− a) = sin b cos a− cos b sin a = sin b− sin b(1− cos a)− cos b sin a

≥ sin b− (1− cos a+ sin a) ≥ sin b− (a2/2 + a) ≥ sin b− 2a > 0.

Hence,

sin(
√
κd(y′, x))

√
κ t

(

1− 1

2
cos

π − ε

2

)

>
(√

κ t− κ t2
) (

sin(
√
κd(y′, x))−

√
κ t

)

− κ t2

>
√
κ t sin(

√
κd(y′, x))− 3κ t2.

After dividing by 3κ t, rearranging, and using (7), we get t > α, a contradiction.

17



This proves that A is super-regular at z.

Example 4.6. The set A defined in Example 4.3 is UAG at (0, 0); hence it is also super-regular
there.

To show this, let ε > 0, and take n ∈ N sufficiently large so that ε > 1/2n. Let x, x′ ∈
B((0, 0), 1/2n) ∩A. Suppose x = (s, g(s)) and x′ = (s′, g(s′)), where s, s′ ∈ [0, 1/2n].

If s < s′, define f : [0, s′−s] → A by f(t) = (s+t, g(s+t)) and the geodesic γ : [0, s′−s] → R
2

starting at x by γ(t) = (s+ t, g(s)). Then f(0) = x, f(s′ − s) = x′, and an exercise shows that
‖γ(t)− f(t)‖ ≤ t/2n < εt for all t ∈ (0, s′ − s].

Similarly, if s′ < s, define f : [0, s − s′] → A, f(t) = (s − t, g(s − t)), and the geodesic
γ : [0, s − s′] → R

2, γ(t) = (s− t, g(s)).

Remark 4.7. Examples 4.3 and 4.6 allow us to conclude that uniform approximation by
geodesics is not persistent nearby (otherwise A would be super-regular on a ball centered at
(0, 0), which is not the case).

We define and study next the separable intersection property for two sets.

Definition 4.8. Let (X, d) be a geodesic space and A,B ⊆ X. We say that A intersects B
separably at z ∈ A ∩ B if there exist α, r > 0 such that any two points in B(z, r) are joined
by a unique geodesic segment and for all x ∈ (A ∩ B(z, r)) \ B, y ∈ PB(x) \ A satisfying
max{d(y, x), d(y, z)} < r/2 and all x′ ∈ PA(y), ∠y(x, x

′) ≥ α.

Remark 4.9. Observe that in the above definition, x, y, x′ ∈ B(z, r) because d(y, x′) ≤ d(y, x) <
r/2, so d(z, x′) ≤ d(z, y) + d(y, x′) < r.

Although we are primarily interested in the nonconvex case, to get a clearer picture about the
separable intersection property in a nonlinear setting, we will also consider the scenario where
both sets are convex. We show first that, under additional appropriate regularity conditions
imposed on the geodesic space, the separable intersection property holds if both sets are convex
and one of them contains an open ball that intersects the other set. To this end we consider
the following notion which, for two sets that are prox-regular at a point, can be regarded as an
analogue at that point of the notion of transversality from Euclidean spaces, where it implies
separable intersection.

Definition 4.10. Let X be a geodesic space and A,B ⊆ X. We say that A and B are transversal
at z ∈ A ∩ B if there is no nonconstant geodesic γ : [0, l] → X such that z = γ(l/2) and
z ∈ PA(γ(0)) ∩ PB(γ(l)) (and hence z ∈ PA(γ(t)) ∩ PB(γ(l − t)) for all t ∈ [0, l/2]).

In the setting of CAT(κ) spaces, transversality at a given point z still implies separable
intersection at z assuming local compactness and an extension property for geodesics joining
points that are close to z.

Proposition 4.11. Let κ > 0, X be a complete and locally compact CAT(κ) space, and A,B
be closed convex subsets of X that are transversal at z ∈ A ∩ B. Suppose also that X has the
c-geodesic extension property at z, where c ∈ (0,Dκ/4). Then A intersects B separably (and, by
symmetry, B intersects A separably) at z.

Proof. Observe first that two points in B(z, 2c) are joined by a unique geodesic segment. We
argue by contradiction. Suppose that A does not intersect B separably at z. Then for every n ≥ 2
there exist xn ∈ (A∩B(z, 2c/n))\B, yn ∈ PB(xn)\A satisfying max{d(xn, yn), d(z, yn)} < c/n,
and x′n ∈ PA(yn) such that αn = ∠yn(xn, x

′
n) < 1/n.

Both sequences (xn) and (yn) converge to z. Moreover, xn, yn, x
′
n ∈ B(z, c) for all n ≥ 2, and

we can consider the geodesics γnA, γ
n
B : [0, c] → X satisfying γnA(0) = x′n, γnA(t1) = yn for some

t1 ∈ (0, c) and γnB(0) = yn, γnB(t2) = xn for some t2 ∈ (0, c). Notice that the geodesic segments

18



determined by γnA and γnB are contained in B(z, 2c). Denoting un = γnA(c) and vn = γnB(c), we
have ∠yn(un, vn) > π − 1/n and d(yn, un) = c − d(x′n, yn) → c as d(x′n, yn) ≤ d(xn, yn) < c/n.
Now the CAT(κ) condition yields d(un, vn) → 2c.

By local compactness, we may assume that (un) and (vn) are convergent to some u and v,
respectively (otherwise consider convergent subsequences). Because d(z, u) = c, d(z, v) = c and
d(u, v) = 2c, if γ : [0, 2c] → X is the unique geodesic from u to v, then z = γ(c).

We show next that z = PA(u). Let w ∈ A, w 6= z. If d(z, w) > 2c, then d(u,w) ≥ d(z, w) −
d(u, z) > c = d(u, z). Suppose next that d(z, w) ≤ 2c. As x′n = PA(yn), ∠x′

n
(un, w) ≥ π/2,

and so, by the upper semi-continuity of the Alexandrov angle, ∠z(u,w) ≥ π/2. This shows that
d(u,w) > d(u, z). Similarly, z = PB(v), which means that A and B are not transversal at z,
and the proof is now complete.

The next two rather technical lemmas are intermediate steps in proving the transversality
of convex sets for which the aforementioned intersection condition holds.

Lemma 4.12. Let κ > 0, X be a complete CAT(κ) space, and A,B be closed convex subsets
of X. If there is a point z ∈ A ∩ B such that A and B are not transversal at z, then there
exists a nonconstant geodesic γ : [0, l] → X such that γ(l/2) = z, Pγ([0,l/2])(u) = z for all u ∈
A ∩ B(z,Dκ/2) and Pγ([l/2,l])(v) = z for all v ∈ B ∩B(z,Dκ/2). Consequently, Pγ([0,l])(w) = z
for all w ∈ (A ∩B) ∩B(z,Dκ/2).

Proof. The failure of transversality of A and B at z yields the existence of a nonconstant geodesic
γ : [0, l] → X, where l < Dκ/2, such that γ(l/2) = z and {z} = PA(γ(t)) ∩ PB(γ(1 − t)) for
all t ∈ [0, l/2]. Let u ∈ A ∩ B(z,Dκ/2) and t ∈ [0, l/2]. Then ∠z(u, γ(t)) ≥ π/2 because
z = PA(γ(t)) which shows that d(u, γ(t)) ≥ d(u, z), and hence z = Pγ([0,l/2])(u). A similar
argument yields Pγ([l/2,l])(v) = z for all v ∈ B ∩B(z,Dκ/2).

Lemma 4.13. Let κ′ ≤ κ, X be a complete ℜκ′,κ domain and z ∈ X. Suppose that X has
the c-geodesic extension property at z, where c ∈ (0,Dκ/4). If γ : [0, l] → X is a nonconstant
geodesic with γ(l/2) = z, then for any w ∈ B(z, c) with Pγ([0,l])(w) = z there is no δ > 0 such
that Pγ([0,l/2])(u) = z for all u ∈ B(w, δ).

Proof. Suppose, on the contrary, that there exist such a point w and a positive number δ. Notice
first that any two points in B(z, 2c) are joined by a unique geodesic segment. In addition, w 6= z.

As X is a CAT(κ) space and Pγ([0,l])(w) = z, we have ∠z(γ(0), w) ≥ π/2 and ∠z(γ(l), w) ≥
π/2. Recall that in any CBB(κ′) space, the sum of adjacent angles is π, so ∠z(γ(0), w) =
∠z(γ(l), w) = π/2.

Extend the geodesic from w to z beyond z to a geodesic of length c, and let z′ be its new
endpoint. Then z′ /∈ γ([0, l]) (to see this, note, e.g., that otherwise one of the angles ∠z(γ(0), w)
or ∠z(γ(l), w) would measure π).

Choose a sequence (zn) ⊆ γ([0, l/2]) such that zn → z and 0 < d(z, zn) < c for all n ∈ N.
Denote αn = ∠z′(z, zn). By the CAT(κ) condition, αn → 0.

Extend the geodesic from z′ to zn beyond zn to a geodesic of length c, and denote the new
endpoint by un. Because αn → 0, the CBB(κ′) condition yields d(w, un) → 0, so d(w, un0

) < δ
for some n0 ∈ N. This means that Pγ([0,l/2])(un0

) = z; hence d(un0
, z) < d(un0

, zn0
).

Using again the fact that the sum of adjacent angles is π, we get ∠z(zn0
, z′) = π/2; thus, by

the CAT(κ) condition, d(z′, zn0
) ≥ d(z′, z).

Consequently,

d(z′, un0
) = d(z′, zn0

) + d(zn0
, un0

) > d(z′, z) + d(z, un0
),

a contradiction.
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Theorem 4.14. Let κ′ ≤ κ, X be a complete ℜκ′,κ domain, and A,B be closed convex subsets
of X. Suppose that X has the c-geodesic extension property at z ∈ A ∩B, where c ∈ (0,Dκ/4).
If there exists w ∈ int(A) ∩B with d(w, z) < c, then A and B are transversal at z.

Proof. Let δ ∈ (0,Dκ/4) so that B(w, δ) ⊆ A. Note that B(w, δ) ⊆ B(z,Dκ/2). The result
follows by applying Lemmas 4.12 and 4.13.

As an immediate consequence of the above result and Proposition 4.11, in the presence of
local compactness, we can obtain the separable intersection property.

Theorem 4.15. Under the assumptions of Theorem 4.14, if X is additionally locally compact,
then A intersects B separably and B intersects A separably at z.

Remark 4.16. Actually we only need the CAT(κ) and CBB(κ′) conditions to hold for suffi-
ciently small triangles that are close to the point where we aim to show that the sets intersect
separably.

We finish the study of the separable intersection property with a result for two possibly
nonconvex sets. Namely, we show that if two super-regular subsets of an Alexandrov space with
an upper curvature bound intersect at a nonzero angle (in the sense assumed below), then they
intersect separably.

Theorem 4.17. Let κ > 0, X be a CAT(κ) space, and A,B be two subsets of X that are super-
regular at z ∈ A∩B. If there exist σ,R > 0 such that ∠z(p, q) ≥ σ for all p ∈ (B(z,R)∩A) \B
and all q ∈ (B(z,R)∩B) \A, then A intersects B separably (and, by symmetry, B intersects A
separably) at z.

Proof. We can suppose that R < Dκ/2 is small enough so that the sum of the angles of a triangle
in B(z,R) is at most π + σ/4.

Using the super-regularity of A and B at z we find 0 < r < R such that if x ∈ (B(z, r)∩A)\B,
y ∈ PB(x) \A with max{d(x, y), d(y, z)} < r/2 and x′ ∈ PA(y), then ∠y(x, z) ≥ π/2− σ/4 and
if x′ /∈ B, ∠x′(y, z) ≥ π/2 − σ/4.

Observe that if x′ ∈ B, then, by super-regularity of B and the fact that σ ≤ π,

∠y(x, x
′) ≥ π

2
− σ

4
≥ σ

4
.

Thus, we suppose next that x′ /∈ B. Then

∠y(x
′, z) ≤ π +

σ

4
− ∠x′(z, y) − ∠z(y, x

′) ≤ π +
σ

4
− π

2
+

σ

4
− σ =

π

2
− σ

2
.

Hence,

∠y(x, x
′) ≥ ∠y(x, z)− ∠y(x

′, z) ≥ π

2
− σ

4
− π

2
+

σ

2
=

σ

4
.

4.2 Local linear convergence of alternating projections

Let (X, d) be a metric space and A,B ⊆ X two nonempty sets. An alternating projection
sequence (xn) ⊆ X starting at x0 ∈ A satisfies the conditions

x2n+1 ∈ PB(x2n) and x2n+2 ∈ PA(x2n+1)

for all n ∈ N.
We recall that a sequence (xn) converges linearly to a point x if there exists a positive

constant k and a rate a ∈ (0, 1) such that d(xn, x) ≤ k · an for all n ∈ N.

20



Theorem 4.18. Let κ > 0, X be a complete CAT(κ) space, and A,B be closed subsets of X.
Suppose that, at z ∈ A∩B, A is super-regular (or in particular UAG) and intersects B separably.
Then any alternating projection sequence (xn) starting at x0 ∈ A sufficiently close to z converges
linearly to a point in A ∩B.

Proof. Let α ∈ (0, π/2) and r ∈ (0,Dκ/2) be given by the separable intersection property. Take
ε ∈ (0, 1) sufficiently small such that

c′ =
cosα+ sin ε

1− sin ε
< 1.

We can assume that r is small enough so that, on the one hand, it satisfies the super-regularity
condition for ε and, on the other hand,

c =
c′

cos2(r
√
κ/2)

< 1.

Consider the starting point x0 ∈ A ∩B(z, (1− c)r/4), and denote D = d(z, x0).

Claim. If for some n ∈ N, d(z, x2n+1) < r/2 and d(x2n, x2n+1) < r/2, then

d(x2n+1, x2n+2) ≤ cd(x2n, x2n+1).

Proof of Claim. Denote for simplicity x = x2n, y = x2n+1, and x′ = x2n+2. Note first that if
x = y, then x′ = y, and in this case the desired inequality is obvious. Thus we can assume that
x /∈ B and y /∈ A. Moreover, since d(z, y) < r/2 and d(x, y) < r/2, it follows that d(z, x) < r.

Take ∆(x, y, x′), a comparison triangle in M2
κ , for the geodesic triangle ∆(x, y, x′). Because

B intersects A separably at z, ∠y(x, x
′) ≥ α. This shows, in particular, that x 6= x′. In addition,

∠y(x, x
′) ≥ α and so, applying the cosine law in M2

κ we obtain

cos(
√
κ d(x, x′)) ≤ cos(

√
κd(x′, y)) cos(

√
κ d(x, y)) + sin(

√
κ d(x′, y)) sin(

√
κ d(x, y)) cosα.

At the same time, by super-regularity of A at z, ∠x′(x, y) ≥ π/2− ε, hence ∠x′(x, y) ≥ π/2− ε.
Again by the cosine law in M2

κ we have

cos(
√
κd(x, y)) ≤ cos(

√
κd(y, x′)) cos(

√
κ d(x, x′)) + sin(

√
κ d(y, x′)) sin(

√
κd(x, x′)) sin ε.

Consequently,

cos(
√
κd(x, y)) ≤ cos2(

√
κd(y, x′)) cos(

√
κd(x, y))

+ cos(
√
κ d(y, x′)) sin(

√
κd(x′, y)) sin(

√
κd(x, y)) cos α

+ sin(
√
κ d(y, x′)) sin(

√
κd(x, x′)) sin ε.

This yields

sin(
√
κd(y, x′)) cos(

√
κ d(x, y))

≤ cos(
√
κ d(y, x′)) sin(

√
κd(x, y)) cos α+ sin(

√
κ d(x, x′)) sin ε

≤ cos(
√
κ d(y, x′)) sin(

√
κd(x, y)) cos α+ sin(

√
κ(d(x, y) + d(y, x′))) sin ε.

Here we also used the fact that d(x, x′) ≤ d(x, y) + d(y, x′) ≤ 2d(x, y) < r < Dκ/2. Thus,

(1− sin ε) sin(
√
κ d(y, x′)) cos(

√
κ d(x, y)) ≤ (cosα+ sin ε) cos(

√
κ d(y, x′))) sin(

√
κd(x, y)),

from where
tan(

√
κ d(x′, y)) ≤ c′ tan(

√
κd(x, y)). (9)

Let a ∈ (0, π/2), and define the function f : [0, a] → R, f(t) = cos2 a tan t − t. One can
easily see that f(t) ≤ 0 for all t ∈ [0, a]. Taking a = r

√
κ/2 and t =

√
κ d(x, y) ≤ r

√
κ/2,

we get c′ tan(
√
κ d(x, y)) ≤ c

√
κ d(x, y). This together with (9) and the fact that

√
κ d(x′, y) ≤

tan(
√
κ d(x′, y)) proves the claim.
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We show next by induction that

d(z, x2n+1) ≤ 2D
1 − cn+1

1− c
, d(x2n, x2n+1) ≤ Dcn, and d(x2n+1, x2n+2) ≤ Dcn+1.

For n = 0, the verification is straightforward:

d(x0, x1) ≤ d(x0, z) = D, d(z, x1) ≤ d(z, x0) + d(x0, x1) ≤ 2D,

and, since D < r/4, applying the Claim,

d(x1, x2) ≤ cd(x0, x1) ≤ Dc.

Suppose now that the inequalities hold for n = k. We prove that they also hold for n = k + 1.
To see this, note that

d(x2k+2, x2k+3) ≤ d(x2k+2, x2k+1) ≤ Dck+1 <
r

2

and

d(z, x2k+3) ≤ d(z, x2k+1) + d(x2k+1, x2k+2) + d(x2k+2, x2k+3)

≤ 2D
1 − ck+1

1− c
+Dck+1 +Dck+1 = 2D

1 − ck+2

1− c
<

r

2
.

We can now apply the Claim to get d(x2k+3, x2k+4) ≤ cd(x2k+2, x2k+3) ≤ Dck+2, which finishes
the induction proof.

The sequence (xn) is Cauchy because

∑

i≥2m+1

d(xi, xi+1) ≤ 2D
∑

i≥m+1

ci = 2D
cm+1

1− c

and
∑

i≥2m

d(xi, xi+1) ≤ Dcm + 2D
cm+1

1− c
= Dcm

1 + c

1− c

for all m ∈ N, so

d(xn, xn+k) ≤ D(
√
c)n

1 + c

1− c

for all n, k ∈ N. This means that (xn) converges to some z′ ∈ A ∩ B and the convergence is
linear with rate

√
c since

d(xn, z
′) ≤ D(

√
c)n

1 + c

1− c

for all n ∈ N. Note also that by an appropriate choice of ε and r, the rate can be made arbitrarily
close to

√
cosα.

We hope that the theoretical ideas developed here help illuminate the fundamentals of alter-
nating projection methods. Their practical application is a topic of ongoing research; here, we
confine ourselves to one very simple nonconvex example as a concrete illustration of our main
ideas.

The setting that we consider is the n-dimensional spherical space S
n. Recall that the n-

dimensional sphere is the set

S
n = {x ∈ R

n+1 | 〈x, x〉 = 1},

where 〈·, ·〉 is the Euclidean scalar product. Endowed with the distance d : Sn × S
n → R that

assigns to each (x, y) ∈ S
n × S

n the unique number dSn(x, y) ∈ [0, π] such that cos dSn(x, y) =
〈x, y〉, Sn is a geodesic space. In other words, dSn(x, y) is the length of the smallest arc of a
great circle in S

n which joins x and y.
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Example 4.19. Take a unit vector a and the set A = {x ∈ S
n | 〈x, a〉 = 1/2}. This set is

nonconvex but super-regular at all its points.
To see this, let z ∈ A and ε ∈ (0, 1). Take r = arccos(cos2(ε))/2, and let y ∈ B(z, r/2) \ A,

x = PA(y), and x′ ∈ A∩B(z, r) with x′ 6= x. Then dSn(a, x) = dSn(a, x
′) = π/3. Note also that

y ∈ [a, x]. Denoting D = dSn(x, x
′), we have

D ≤ dSn(x, z) + dSn(z, x
′) ≤ 2r = arccos(cos2(ε)).

Applying the spherical cosine law in the spherical triangle with vertices a, x, x′, we get

1

2
= cos dSn(a, x

′) = cos dSn(a, x) cosD + sin dSn(a, x) sinD cos∠x(y, x
′)

=
1

2
cosD +

√
3

2
sinD cos∠x(a, x

′),

so

cos∠x(a, x
′) =

1√
3
· 1− cosD

sinD
<

√
1− cosD < sin ε = cos(π/2 − ε).

This shows that ∠x(y, x
′) = ∠x(a, x

′) > π/2− ε.
Take another unit vector b such that 〈a, b〉 ∈ (−

√
3/2, 0)∪ (0,

√
3/2), and let B be the subset

of Sn orthogonal to b. The sets A and B will intersect, and we fix z ∈ A ∩ B. Note that B is
super-regular at z since it is weakly convex. Moreover, A and B intersect separably there (by
Theorem 4.17), and an easy exercise shows that the alternating projection sequence for the sets
A and B starting at a point x ∈ A consists of the following update:

while x /∈ B do

x′ =
x− 〈b, x〉b

‖x− 〈b, x〉b‖ ;

x′′ =

√
3

2
· x′ − 〈a, x′〉a
‖x′ − 〈a, x′〉a‖ +

1

2
a;

x = x′′;

end

By Theorem 4.18, starting near z, the alternating projection sequence converges linearly to
a point in A ∩B.
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