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Abstract

We consider the local linear GMM estimation of functional coefficient models with a mix of discrete

and continuous data and in the presence of endogenous regressors. We establish the asymptotic

normality of the estimator and derive the optimal instrumental variable that minimizes the asymptotic

variance-covariance matrix among the class of all local linear GMM estimators. Data-dependent

bandwidth sequences are also allowed for. We propose a nonparametric test for the constancy of the

functional coefficients, study its asymptotic properties under the null hypothesis as well as a sequence

of local alternatives and global alternatives, and propose a bootstrap version for it. Simulations are

conducted to evaluate both the estimator and test. Applications to the 1985 Australian Longitudinal

Survey data indicate a clear rejection of the null hypothesis of the constant rate of return to education,

and that the returns to education obtained in earlier studies tend to be overestimated for all the work

experience.

JEL Classifications: C12, C13, C14

Key Words: Discrete variables; Endogeneity; Heterogeneity; Functional coefficient; Local linear

GMM estimation; Optimal instrumental variable; Schooling.

1 Introduction

In the classical econometrics literature, an econometric model is often studied in a linear parametric

regression form with its coefficients (derivatives or marginal changes) assumed to be constant over time

or across cross section units. In practice this may not be true, e.g., it may be hard to believe that

the marginal propensity to save or to consume would be the same for a younger as for an older group of

individuals in a given cross section data set, or that the elasticity of wages with respect to schooling or the

rate of return to schooling would be the same for individuals with less experience compared to those with

more experience. In the case of nonlinear parametric regression models, the coefficients have been taken

as constant but derivatives do vary depending on the specification of models, e.g., the translog production
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function has constant coefficients, and the elasticities (derivatives) based on this function vary linearly

with inputs. Realizing the fact that some or all of the coefficients in a regression may be varying, the

traditional econometrics literature has tried to consider various forms of parametric specifications of the

varying coefficients. See, e.g., the papers of Hildreth and Houck (1968), Swamy (1970), Singh and Ullah

(1974), and Granger and Teräsvirta (1999), and the books by Swamy (1971), Raj and Ullah (1981), and

Granger and Teräsvirta (1993). However, it is now well known that the constant or parametric varying

coefficient models may often be misspecified, and therefore this may lead to inconsistent estimation and

testing procedures and hence misleading empirical analysis and policy evaluations.

In view of the above issues, in recent years, the nonparametric varying/functional coefficient models

have been considered by various authors, including Cleveland, Grosse, and Shyu (1992), Chen and Tsay

(1993), Hastie and Tibshirani (1993), Fan and Zhang (1999), and Cai, Fan, and Yao (2000), among

others. The coefficients in these models are modeled as unknown functions of the observed variables

which can be estimated nonparametrically. An additional advantage of the functional coefficient model

is that it also considers the unknown functional form of the interacting variables which in empirical

parametric models is often misspecified to be linear. Most of the above works on functional coefficient

models are focused on models with exogenous regressors. Recently Das (2005), Cai, Das, Xiong, and

Wu (2006, CDXW hereafter), Lewbel (2007), Cai and Li (2008), Tran and Tsionas (2010), and Su

(2012), among others, have considered the semiparametric models with endogenous variables and they

suggest a nonparametric/semiparametric generalized method of moments (GMM) instrumental variable

(IV) approach to estimate them. In particular, CDXW (2006), Cai and Li (2008), and Tran and Tsionas

(2010) focus on functional coefficient models with endogenous regressors.

CDXW (2006) propose a two-stage local linear estimation procedure to estimate the functional coef-

ficient models, which unfortunately requires one to first estimate a high-dimension nonparametric model

and then to estimate the functional coefficients using the first-stage nonparametric estimates as gener-

ated regressors. In contrast, Cai and Li (2008) suggest a one-step local linear GMM estimator which

corresponds to our local linear GMM estimator with an identity weight matrix. Tran and Tsionas (2010)

provide a local constant two-step GMM estimator with a specified weighting matrix that can be chosen

to minimize the asymptotic variances in the class of GMM estimators. However, the local constant es-

timation procedure, as is now well known, is less desirable than the local linear estimation procedure,

especially at the boundaries. In addition, all of these papers consider varying coefficients with continuous

variables only. On the other hand, Su, Chen, and Ullah (2009, SCU hereafter) consider both continuous

and categorical variables in functional coefficients and show that the consideration for the categorical

variables is extremely important for empirical analysis, and it improves on the specifications of the tradi-

tional linear parametric dummy-variable models. But they do not consider the endogeneity issue which

prevails in economics.

In addition, in the estimation context, the advantage of using the traditional constant coefficient

models rests on their validity. Nevertheless, to the best of our knowledge, there is no nonparametric

hypothesis testing procedure available for this when endogeneity is present, although there are some tests

(e.g., Fan, Zhang, and Zhang (2001) and Hong and Lee (2009)) in the absence of endogeneity. In view of

the above deficiencies in the existing literature we first focus on further improvement in the estimation

area, and then provide a consistent test for the constancy of functional coefficients. If we fail to reject the

null of constancy, then we can continue to rely on the traditional constant coefficient models. Otherwise

we may have to consider the functional coefficients with unknown form.

In this paper, we develop local linear GMM estimation of functional coefficient IV models with a
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general weight matrix. A varying coefficient model is considered in which some or all the regressors

are endogenous and their coefficients are varying with respect to exogenous continuous and categorical

variables. For given IVs an optimal local linear GMM estimator is proposed where the weight matrix

is obtained by minimizing the asymptotic variance-covariance matrix (AVC) of the GMM estimator.

We also consider the choice of optimal IVs to minimize the AVC among the class of all local linear

GMM estimators and establish the asymptotic normality of the local linear GMM estimator for a data-

dependent bandwidth sequence. Then we develop a new test statistic for testing the hypothesis that a

subvector of the functional coefficients is constant. It is argued that the test based on the Lagrangian

multiplier (LM) principle needs restricted estimation and may suffer from the curse of dimensionality,

and similarly the test using the likelihood ratio (LR) method also requires both unrestricted and involved

restricted estimation. For these reasons a simpler Wald type of test is proposed which is based on the

unrestricted estimation. The consistency, asymptotic null distribution, and asymptotic local power of

the proposed test are established. It is well known that nonparametric tests based on the critical values

of their asymptotic normal distributions may perform poorly in finite samples. In view of this, we also

provide a bootstrap procedure to approximate the asymptotic null distribution of our test statistic and

justify its asymptotic validity. To assess the finite sample properties of the proposed local linear GMM

estimator and the new test statistic, we conduct a small set of simulations. The results show that our

local linear GMM estimator performs well in comparison with some existing estimators in the literature

and our test has correct size and good power properties in finite samples.

Another important objective of this paper is to employ our proposed nonparametric GMM estimator

to study the empirical relationship between earnings and schooling using the 1985 Australian Longi-

tudinal Survey. Labor economists have long studied two major problems arising when estimating the

wage equation: endogeneity of education and heterogeneity of returns to education, see Card (2001) for

detailed stimulating discussions. Our nonparametric estimator is able to deal with both problems in a

flexible way. Specifically, in contrast to other existing estimators, our estimator allows the returns to

education to depend on both continuous (experience) and discrete (marital status, union membership,

etc.) characteristics of individuals while controlling for endogeneity of education. Further, we use our

proposed new nonparametric test to check for constancy of functional coefficients in the wage equation.

Our findings are unambiguous: the returns to education do depend on both experience and the categorical

variables we use, in a non-linear manner. Additionally, we find that the returns to education tend to be

overestimated for all of the observed work experience when the categorical explanatory variables are not

accounted for in functional coefficients as in CDXW (2006) and Cai and Xiong (2010). These results are

also important since our proposed tests show the absence of the constancy of the return to education,

which is often assumed in most of the parametric empirical studies in labor economics.

The paper is structured as follows. In Section 2 we introduce our functional coefficient IV model

and propose a local linear GMM procedure to estimate the functional coefficients and their first order

derivatives. The asymptotic properties of these estimators are studied in Section 3. We propose a

specification test for our model in Section 4. We conduct a small set of Monte Carlo studies to check the

relative performance of the proposed estimator and test in Section 5. Section 6 provides empirical data

analysis. Final remarks are contained in Section 7. All technical details are relegated to the Appendix.

For natural numbers a and b, we use Ia to denote an a× a identity matrix, and 0a×b an a× b matrix

of zeros. Let ⊗ and � denote the Kronecker and Hadamard products, respectively. If c and d are vectors

of the same dimension, c/d denotes the vector of elementwise divisions. For a matrix M, M′ means the

transpose of M, and ‖M‖ =
√

tr
(
MM′). We use 1 {·} to denote the usual indicator function which takes
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value 1 if the condition inside the curly bracket holds and 0 otherwise, and C to signify a generic constant

whose exact value may vary from case to case. We use
d→ and

P→ to denote convergence in distribution

and probability, respectively.

2 Functional Coefficient Estimation with Mixed Data and Esti-

mated Covariate

In this section we first introduce a functional coefficient IV model where the coefficient function may

depend on both continuous and discrete exogenous regressors and the endogenous regressors enter the

model linearly. Then we propose local linear GMM estimates for the functional coefficients.

2.1 Functional coefficient representation

We consider the following functional coefficient IV model

Yi = g
(
Uc
i ,U

d
i

)′
Xi + εi =

d∑
j=1

gj
(
Uc
i ,U

d
i

)
Xi,j + εi, E (εi|Zi,Ui) = 0 a.s., (2.1)

where Yi is a scalar random variable, g = (g1, · · · , gd)′, {gj}dj=1 are the unknown structural functions

of interest, Xi,1 = 1, Xi = (Xi,1, · · · , Xi,d)
′ is a d × 1 vector consisting of d − 1 endogenous regressors,

Ui = (Uc′
i , Ud′

i )′, Uc
i and Ud

i denote a pc × 1 vector of continuous exogenous regressors and a pd × 1

vector of discrete exogenous regressors, respectively, Zi is a qz × 1 vector of instrumental variables, and

a.s. abbreviates almost surely. We assume that a random sample {Yi,Xi,Zi,Ui}ni=1 is observed.

In the absence of Ud
i , (2.1) reduces to the model of CDXW (2006). If none of the variables in Xi

are endogenous, the model becomes that of SCU (2009). As the latter authors demonstrate through

the estimation of earnings function, it is important to allow the variables in the functional coefficients to

include both continuous and discrete variables, where the discrete variables may represent race, profession,

region, etc.

2.2 Local linear GMM estimation

The orthogonality condition in (2.1) suggests that we can estimate the unknown functional coefficients

via the principle of nonparametric generalized method of moments (NPGMM), which is similar to the

GMM of Hansen (1982) for parametric models. Let Vi = (Z′i,U
′
i)
′
. It indicates that for any k× 1 vector

function Q (Vi), we have

E [Q (Vi) εi|Vi] = E

Q (Vi)

Yi −
d∑
j=1

gj
(
Uc
i ,U

d
i

)
Xi,j

 |Vi

 = 0. (2.2)

Following Cai and Li (2008), we propose an estimation procedure to combine the orthogonality condition

in (2.2) with the idea of local linear fitting in the nonparametrics literature to estimate the unknown

functional coefficients.

Like Racine and Li (2004), we use Ud
i,t to denote the tth component of Ud

i . Uc
i,t is similarly de-

fined. Analogously, we let udt and uct denote the tth component of ud and uc, respectively, i.e., ud =(
ud1, · · · , udpd

)′
and uc =

(
uc1, · · · , ucpc

)′
. We assume that Ud

i,t can take ct ≥ 2 different values, i.e.,
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Udi,t ∈ {0, 1, · · · , ct − 1} for t = 1, · · · , pd. Let u =
(
uc,ud

)
∈ Rpc × Rpd . To define the kernel weight

function, we focus on the case for which there is no natural ordering in Ud
i . Define

l
(
Udi,t, u

d
t , λt

)
=

{
1 if Ud

i,t = udt ,

λt if Ud
i,t 6= udt ,

(2.3)

where λt is a bandwidth that lies on the interval [0, 1]. Clearly, when λt = 0, l
(
Udi,t, u

d
t , 0
)

becomes an

indicator function, and λt = 1, l
(
Udi,t, u

d
t , 1
)

becomes a uniform weight function. We define the product

kernel for the discrete random variables by

L
(
Ud
i ,u

d, λ
)

= Lλ
(
Ud
i − ud

)
=

pd∏
t=1

l
(
Udi,t, u

d
t , λt

)
. (2.4)

For the continuous random variables, we use w (·) to denote a univariate kernel function and define

the product kernel function by Wh,iuc = Wh (Uc
i − uc) = Πpc

t=1h
−1
t w

((
U ci,t − uct

)
/ht
)
, where h =

(h1, · · · , hpc)
′

denotes the pc-vector of smoothing parameters. We then define the kernel weight function

Khλ,iu by

Khλ,iu = Wh,iucLλ,iud (2.5)

where Lλ,iud = L
(
Ud
i ,u

d, λ
)
.

To estimate the unknown functional coefficients in model (2.1) via the local linear regression tech-

nique, we assume that
{
gj
(
uc,ud

)
, j = 1, · · · , d

}
are twice continuously differentiable with respect to uc.

Denote by
.
gj
(
uc,ud

)
= ∂gj

(
uc,ud

)
/∂uc the pc× 1 vector of first order derivatives of gj with respect to

uc. Denote by
..
gj
(
uc,ud

)
= ∂2gj

(
uc,ud

)
/ (∂uc∂uc′) the pc × pc matrix of second order derivatives of gj

with respect to uc. We use gj,ss
(
uc,ud

)
to denote the sth diagonal element of

..
gj
(
uc,ud

)
. For any given

uc and Uc
i in a neighborhood of uc, it follows from a first order Taylor expansion of gj

(
Uc
i ,u

d
)

around(
uc,ud

)
that

d∑
j=1

gj
(
Uc
i ,u

d
)
Xi,j ≈

d∑
j=1

[
gj
(
uc,ud

)
+

.
gj
(
uc,ud

)′
(Uc

i − uc)
]
Xi,j = α (u)

′
ξi,u (2.6)

where α(u) = (g1 (u) , · · · , gd (u) ,
.
g1(u)′, · · · , .gd (u)

′
)′ and ξi,u =

(
Xi

Xi ⊗ (Uc
i − uc)

)
are both d (pc + 1)×

1 vectors.

Motivated by the idea of local linear fitting, for the “global” instrument Q (Vi) we define its associated

“local” version as

Qh,iu =

(
Q (Vi)

Q (Vi)⊗ (Uc
i − uc) /h

)
. (2.7)

Clearly, the dimension of Qh,iu is k (pc + 1) as Q (Vi) is a k × 1 vector. In view of the fact that the

orthogonality condition in (2.2) continues to hold when we replace (Q (Vi) , Vi) by (Qh,iu,Ui), we

approximate E[Qh,iu{Yi −
∑d
j=1 gj

(
Uc
i ,U

d
i

)
Xi,j}|Ui = u] by its sample analog

1

n

n∑
i=1

Qh,iu

[
Yi − α (u)

′
ξi,u
]
Khλ,iu =

1

n
Qh (u)

′
Khλ (u) [Y − ξ (u)α]

where Y = (Y1, · · · , Yn)
′
, ξ (u) = (ξ1,u, · · · , ξn,u)

′
, α = α (u) ,Khλ (u) =diag(Khλ,1u, · · · ,Khλ,nu) , and

Qh (u) =(Qh,1u, · · · ,Qh,nu)′. To obtain estimates of gj and
.
gj , we can choose α to minimize the following

local linear GMM criterion function

1

n

[
Qh (u)

′
Khλ (u) (Y − ξ (u)α)

]′
Ψn (u)

−1 [
Qh (u)

′
Khλ (u) (Y − ξ (u)α)

]
, (2.8)

5



where Ψn (u) is a symmetric k (pc + 1) × k (pc + 1) weight matrix that is positive definite for large n.

Clearly, the solution to the above minimization problem is given by

α̂Ψn (u; h, λ) =
[
ξ (u)

′
Khλ (u) Qh (u) Ψn (u)

−1
Qh (u)

′
Khλ (u) ξ (u)

]−1

×ξ (u)
′
Khλ (u) Qh (u) Ψn (u)

−1
Qh (u)

′
Khλ (u) Y. (2.9)

Let ej,d(1+pc) denote the d (1 + pc) × 1 unit vector with 1 at the jth position and 0 elsewhere. Let

ẽj,pc,d(1+pc) denote the pc × d (1 + pc) selection matrix such that ẽj,pc,d(1+pc)α =
.
gj (u) . Then the local

linear GMM estimator of gj (u) and
.
gj (u) are respectively given by

ĝj (u; h, λ) = e′j,d(1+pc)α̂Ψn
(u; h, λ) and

.̂
gj (u; h, λ) = ẽj,pc,d(1+pc)α̂Ψn

(u; h, λ) for j = 1, · · · , d.
(2.10)

We will study the asymptotic properties of α̂Ψn
(u; h, λ) in the next section.

Remark 1 (Choice of IVs) The choice of Q (Vi) is important in applications. One can choose it

from the union of Zi and Ui (e.g., Q (Vi) = Vi) such that a certain identification condition is satisfied. A

necessary identification condition is k ≥ d, which ensures that the dimension of Qh,iu is not smaller than

the dimension of α (u) . Below we will consider the optimal choice of Q (Vi) where optimality is in the

sense of minimizing the asymptotic variance-covariance (AVC) matrix for the class of local linear GMM

estimators given the orthogonal condition in (2.1). We do so by extending the work of Newey (1990,

1993), Baltagi and Li (2002), and Ai and Chen (2003) to our framework, but the latter authors only

consider optimal IVs for GMM estimates of finite dimensional parameters based on conditional moment

conditions.

Remark 2 (Local linear versus local constant GMM estimators) An alternative to the local

linear GMM estimator is the local constant GMM estimator; see, e.g., Lewbel (2007) and Tran and

Tsionas (2010). In this case, the parameter of interest α contains only the set of functional coefficients

gj , j = 1, · · · , d, evaluated at u =
(
uc′,ud′

)′
, but not their first order derivatives with respect to the

continuous arguments. As a result, one can set Qh,iu = Q (Vi) so that there is no distinction between

local and global instruments. In addition, our local linear GMM estimator in (2.9) reduces to that of Cai

and Li (2008) by setting Ψn(u) to be the identity matrix and choosing k = d global instruments. The

latter condition is necessary for the model to be locally just identified.

3 Asymptotic Properties of the Local Linear GMM Estimator

In this section, we first give a set of assumptions and then study the asymptotic properties of the local

linear GMM estimator.

3.1 Assumptions

To facilitate the presentation, define

Ω1 (u) = E (Q (Vi) X′i|Ui = u) and Ω2 (u) = E
[
Q (Vi) Q (Vi)

′
σ2 (Vi) |Ui = u

]
where σ2 (v) ≡ E

[
ε2
i |Vi = v

]
. Let fU (u) ≡ fU

(
uc,ud

)
denote the joint density of Uc

i and Ud
i and p

(
ud
)

be the marginal probability mass of Ud
i at ud. We use Uc and Ud=Πpd

t=1 {0, 1, · · · , ct − 1} to denote the

support of Uc
i and Ud

i , respectively.
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We now list the assumptions that will be used to establish the asymptotic distribution of our estimator.

Assumption A1. (Yi,Xi,Zi,Ui), i = 1, · · · , n, are independent and identically distributed (IID).

Assumption A2. E |εi|2+δ
<∞ for some δ > 0. E ‖Q (Vi) X′i‖

2
<∞.

Assumption A3. (i) Uc is compact. (ii) The functions fU

(
·, ũd

)
, Ω1

(
·, ũd

)
, and Ω2

(
·, ũd

)
are

continuously differentiable on Uc for all ũd ∈ Ud. 0 < fU

(
uc,ud

)
≤ C for some C < ∞. (iii) The

functions gj
(
·, ũd

)
, j = 1, · · · , d, are second order continuously differentiable on Uc for all ũd ∈ Ud.

Assumption A4. (i) rank(Ω1 (u)) = d, and the k × k matrix Ω2 (u) is positive definite. (ii)

Ψn (u) = Ψ (u) + oP (1) , where Ψ (u) is symmetric and positive definite.

Assumption A5. The kernel function w (·) is a probability density function (PDF) that is symmetric,

bounded, and has compact support [−cw, cw]. It satisfies the Lipschitz condition |w (v1)− w (v2)| ≤
Cw |v1 − v2| for all v1, v2 ∈ [−cw, cw] .

Assumption A6. As n → 0, the bandwidth sequences h = (h1, · · · , hpc)
′

and λ= (λ1, · · · , λpd)
′

satisfy (i) nh!→∞, and (ii) (nh!)
1/2

(‖h‖2 + ‖λ‖) = O (1) , where h! ≡ h1 · · ·hpc .

A1 requires IID observations. Following Cai and Li (2008) and SCU (2009), this assumption can

be relaxed to allow for time series observations. A2 and A3 impose some moment and smoothness

conditions, respectively. A4(i) imposes rank conditions for the identification of the functional coefficients

and their first order derivatives and A4(ii) is weak in that it allows the random weight matrix Ψn to be

consistently estimated from the data. As Hall, Wolf, and Yao (1999) remark, the requirement in A5 that

w (·) is compactly supported can be removed at the cost of lengthier arguments used in the proofs, and

in particular, the Gaussian kernel is allowed. A6 is standard for nonparametric regression with mixed

data; see, e.g., Li and Racine (2008).

3.2 Asymptotic theory for the local linear estimator

Let µs,t =
∫
R v

sw (v)
t
dv, s, t = 0, 1, 2. Define

Φ (u) = fU (u)

(
Ω1(u) 0k×dpc
0kpc×d µ2,1Ω1(u)⊗ Ipc

)
, and (3.1)

Υ (u) = fU (u)

(
µpc0,2Ω2(u) 0k×kpc

0kpc×k µ2,2Ω2(u)⊗ Ipc

)
. (3.2)

Clearly, Φ (u) is a k (1 + pc)× d (1 + pc) matrix and Υ (u) is k (1 + pc)× k (1 + pc) matrix.

To describe the leading bias term associated with the discrete random variables, we define an indicator

function Is (·, ·) by Is(u
d, ũd) = 1{ud 6= ũds}

pd∏
t6=s

1{ud = ũdt }. That is, Is(u
d, ũd) is one if and only if ud

and ũd differ only in the sth component and is zero otherwise. Let

B (u; h, λ) =

{(
1
2µ2,1fU (u) Ω1 (u) A (u; h)

0kpc×1

)

+
∑

ũd∈Ud

pd∑
s=1

λsIs
(
ud, ũd

)
fU

(
uc, ũd

)( Ω1

(
uc, ũd

) (
g
(
uc, ũd

)
− g

(
uc,ud

))
−µ2,1

(
Ω1

(
uc, ũd

)
⊗ Ipc

) ·
g
(
uc,ud

) )
 , (3.3)

where A (u; h) = (
∑pc
s=1 h

2
sg1,ss (u) , · · · ,

∑pc
s=1 h

2
sgd,ss (u))′, g (u) = (g1 (u) , · · · ., gd (u))′, and

·
g (u) =( .

g1 (u)
′
, · · · , .gd (u)

′)′
. Now we state our first main theorem.

7



Theorem 3.1 Suppose that Assumptions A1-A6 hold. Then
√
nh!{H[α̂Ψn (u; h, λ)−α (u)]−

(
Φ′Ψ−1Φ

)−1

Φ′Ψ−1B (u; h, λ)} d→ N(0,
(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1ΥΨ−1Φ

(
Φ′Ψ−1Φ

)−1
), where we have suppressed the

dependence of Φ, Ψ, and Υ on u, and H =diag(1, · · · , 1,h′, · · · ,h′) is a d (pc + 1)× d (pc + 1) diagonal

matrix with both 1 and h appearing d times.

Remark 3 (Optimal choice of the weight matrix) To minimize the AVC matrix of α̂Ψn
, we can

choose Ψn (u) as a consistent estimate of Υ(u) , say Υ̂ (u) . Then the AVC matrix of α̂Υ̂ (u; h, λ) is given

by Σ (u) = [Φ (u)
′
Υ (u)

−1
Φ (u)]−1, which is the minimum AVC matrix conditional on the choice of the

global instruments Q (Vi) . Let α̃ (u) be a preliminary estimate of α (u) by setting Ψn (u) = Ik(pc+1).

Define the local residual ε̃i (u) = Yi −
∑d
j=1 g̃j (u)Xi,j , where g̃j (u) is the jth component of α̃ (u). Let

Υ̂ (u) =
h!

n

n∑
i=1

(
QiQ

′
iε̃i (u)

2
(QiQ

′
i)⊗ ηi (uc)

′
ε̃i (u)

2

(QiQ
′
i)⊗ ηi (uc) ε̃i (u)

2
(QiQ

′
i)⊗ [ηi (uc) ηi (uc)

′
]ε̃i (u)

2

)
K2

hλ,iu

where Qi ≡ Q (Vi) and ηi (uc) ≡ (Uc
i − uc) /h. It is easy to show that under Assumptions A1-A6

Υ̂ (u) =Υ(u) +oP (1) . Alternatively, we can obtain the estimates α̃ (u) and thus g̃j (u) for u = Ui,

i = 1, · · · , n, and then we can define the global residual ε̃i = Yi−
∑d
j=1 g̃j (Ui)Xi,j . Replacing ε̃i (u) in the

definition of Υ̂ (u) by ε̃i also yields a consistent estimate of Υ (u) , but this needs preliminary estimation

of the functional coefficients at all data points and thus is much more computationally expensive. By

choosing Ψn (u) = Υ̂ (u) , we denote the resulting local linear GMM estimator of α (u) as α̂Υ̂ (u; h, λ) .

We summarize the asymptotic properties of this estimator in the following corollary, whose proof is

straightforward.

Corollary 3.2 Suppose that Assumptions A1-A4(i) and A5-A6 hold. Then
√
nh!{H[α̂Υ̂ (u; h, λ) −

α (u)] −
(
Φ′Υ−1Φ

)−1
Φ′Υ−1B (u; h, λ)} d→ N(0,

(
Φ′Υ−1Φ

)−1
). In particular,

√
nh!{ĝΥ̂ (u; h, λ) −

g (u) − fU (u)
−1

[Ω′1 (u) Ω2 (u)
−1

Ω1 (u)]−1 Ω′1 (u) Ω2 (u)
−1

B0 (u; h, λ)} d→ N(0, µpc0,2fU (u)
−1

[Ω′1 (u)

Ω2 (u)
−1

Ω1 (u)]−1), where ĝΥ̂ (u; h, λ) and B0 (u; h, λ) denote the first d elements of α̂Υ̂ (u; h, λ) and

B (u; h, λ), respectively.

Remark 4 (Asymptotic independence between estimates of functional coefficients and

their first order derivatives) Theorem 3.1 indicates that, for the general choice of Ψn that may not

be block diagonal, the estimators of the functional coefficients and those of their first order derivatives

may not be asymptotically independent. Nevertheless, if one chooses Ψn as an asymptotically block

diagonal matrix (i.e., the limit of Ψn is block diagonal) as in Corollary 3.2, then we have asymp-

totic independence between the estimates of g (u) and
·
g (u) . If further k = d, then the formulae

for the asymptotic bias and variance of ĝΥ̂ (u) can be simplified to Ω1 (u)
−1

B0 (u; h, λ) /fU (u) and

µpc0,2Ω1 (u)
−1

Ω2 (u) (Ω1 (u)
−1

)′/fU (u) , respectively.

3.3 Optimal choice of global instruments

To derive the optimal global instruments for the estimation of α (u) based on the conditional moment

restriction given in (2.1), define

Q∗ (Vi) = CE (Xi|Vi) /σ
2 (Vi) (3.4)

where C is any nonsingular nonrandom d × d matrix. As Q∗ (Vi) is a d × 1 vector, the weight matrix

Ψn does not play a role. It is easy to verify that the local linear GMM estimator corresponding to this
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choice of IV has the following AVC matrix

Σ∗ (u) = f−1
U (u)

(
µpc0,2Ω

∗(u)−1 0d×dpc
0dpc×d

(
µ2,2/µ

2
2,1

)
Ω∗(u)−1 ⊗ Ipc

)

= f−1
U (u)K

(
µpc0,2Ω

∗(u) 0d×dpc
0dpc×d µ2,2Ω

∗(u)⊗ Ipc

)−1

K,

where Ω∗ (u) ≡ E[E (Xi|Vi)E (Xi|Vi)
′
σ−2 (Vi) |Ui = u] and K ≡

(
µpc0,2Id 0d×dpc
0dpc×d (µ2,2/µ2,1)Idpc

)
. Not-

ing that Σ∗ (u) is free of the choice of C, hereafter we simply take C = Id and continue to use Q∗ (Vi)

to denote E (Xi|Vi) /σ
2 (Vi) . We now follow Newey (1993) and argue that Q∗ (Vi) is the optimal IV in

the sense of minimizing the AVC matrix of our local linear GMM estimator of α (u) among the class of

all local linear GMM estimators.

Let Q∗i ≡ Q∗ (Vi) . Define mi,Q ≡ Φ (u)
′
Ψ (u)

−1

(
Qi

Qi ⊗ ηi (uc)

)
εiKhλ,iu (h!)

1/2
and mi,Q∗ ≡

K−1

(
Q∗i

Q∗i ⊗ ηi (uc)

)
εiKhλ,iu (h!)

1/2
. By the law of iterated expectations and moment calculations,

E
(
mi,Q∗m

′
i,Q∗

)
= K−1E

[(
Q∗iQ

∗′
i (Q∗iQ

∗′
i )⊗ ηi (uc)

′

(Q∗iQ
∗′
i )⊗ ηi (uc) (Q∗iQ

∗′
i )⊗ [ηi (uc) ηi (uc)

′
]

)
σ2 (Vi)K

2
hλ,iuh!

]
K−1

= K−1E

[(
Ω∗ (Ui) Ω∗ (Ui)⊗ ηi (uc)

′

Ω∗ (Ui)⊗ ηi (uc) Ω∗ (Ui)⊗ [ηi (uc) ηi (uc)
′
]

)
K2

hλ,iuh!

]
K−1

= fU (u)K−1

(
µpc0,2Ω

∗(u) 0d×dpc
0dpc×d µ2,2Ω

∗(u)⊗ Ipc

)
K−1 + o (1)

= [Σ∗ (u)]
−1

+ o (1) .

Similarly, E(mi,Qm
′
i,Q) = Φ (u)

′
Ψ (u)

−1
Υ (u) Ψ (u)

−1
Φ (u)+o (1) and E(mi,Qm

′
i,Q∗) = Φ (u)

′
Ψ (u)

−1

Φ (u) + o (1) . It follows that(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1ΥΨ−1Φ

(
Φ′Ψ−1Φ

)−1 −Σ∗ (u)

=
[
E(mi,Qm

′
i,Q∗)

]−1
E(mi,Qm

′
i,Q)

[
E(mi,Qm

′
i,Q∗)

]−1 −
[
E(mi,Q∗m

′
i,Q∗)

]−1
+ o (1)

=
[
E(mi,Qm

′
i,Q∗)

]−1
{
E(mi,Qm

′
i,Q)− E(mi,Qm

′
i,Q∗)

[
E(mi,Q∗m

′
i,Q∗)

]−1
E(mi,Q∗m

′
i,Q)

}
×
[
E(mi,Q∗m

′
i,Q)

]−1
+ o (1)

= E [RiR
′
i] + o (1)

whereRi ≡ [E(mi,Qm
′
i,Q∗)]

−1{mi,Q−E(mi,Qm
′
i,Q∗)[E(mi,Q∗m

′
i,Q∗)]

−1mi,Q∗}. The positive semi-definiteness

of E [RiR
′
i] implies that the local linear GMM estimator of α (u) based on Q∗ (Vi) is asymptotically op-

timal among the class of all local linear GMM estimators of α (u) . In this sense, we say that Q∗ (Vi) is

the optimal IV within the class.

Remark 5 (Comparison with the optimal IV for parametric GMM estimation) Consider

a simple parametric model in which Yi = β′Xi + εi and E (εi|Vi) = 0 a.s. The results in Newey (1993)

imply that the optimal IV for the GMM estimation of β is given by E (Xi|Vi) /E
(
ε2
i |Vi

)
. Such an IV will

minimize the AVC matrix of the GMM estimator of β among the class of all GMM estimators based on

the given conditional moment restriction. The optimal IV Q∗ (Vi) for our functional coefficient model in
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(2.1) takes the same functional form. In addition, it is worth mentioning that the squared asymptotic bias

for a parametric GMM estimate is asymptotically negligible in comparison with its asymptotic variance,

whereas for our nonparametric GMM estimate it is not unless one uses an undersmoothing bandwidth

sequence in the estimation. Different choices of IVs yield different asymptotic bias formulae and it is

extremely hard to compare them. Even if the use of the optimal IV Q∗ (Vi) minimizes the asymptotic

variance of the estimate of each element in α (u) , it may not minimize the asymptotic mean squared error

(AMSE). We think that this is an important reason why we cannot find any application of optimal IV for

nonparametric GMM estimation in the literature. Another reason is also essential. To apply the optimal

IV, we have to estimate both E (Xi|Vi) and σ2 (Vi) nonparametrically, and the theoretical justification

is technically challenging and beyond the scope of this paper. The similar results and remarks also hold

when one considers the optimal IV for local constant GMM estimation. In particular, Q∗ (Vi) is also the

optimal IV for local constant estimation of g (u) . We will compare local linear and local constant GMM

estimates based on non-optimal and estimated optimal IVs through Monte Carlo simulations.

3.4 Data-dependent bandwidth

By Theorem 3.1 we can define the asymptotic mean integrated squared error (AMISE) of {ĝj (u) , j =

1, ..., d}, and choose hr (r = 1, · · · , pc) and λs (s = 1, · · · , pd) to minimize it. By an argument similar

to Li and Racine (2008), it is easy to obtain the optimal rates of bandwidths in terms of minimizing the

AMISE: hr ∝ n−1/(4+pc) and λs ∝ n−2/(4+pc) for r = 1, · · · , pc and s = 1, · · · , pd. Nevertheless, the exact

formula for the optimal smoothing parameters is difficult to obtain except for the simplest cases (e.g.,

pc = 1 and pd = 0 or 1). This also suggests that it is infeasible to use the plug-in bandwidth in applied

setting since the plug-in method would first require the formula for each smoothing parameter and then

pilot estimates for some unknown functions in the formula.

In practice, we propose to use least squares cross validation (LSCV) to choose the smoothing param-

eters. We choose (h, λ) to minimize the following least squares cross validation criterion function

CV (h, λ) =
1

n

n∑
i=1

Yi − d∑
j=1

ĝ
(−i)
j (Ui; h, λ)Xi,j

2

a (Ui) ,

where ĝ
(−i)
j (Ui; h, λ) is the leave-one-out functional coefficient estimate of gj (Ui) using bandwidth (h, λ) ,

and a (Ui) is a weight function that serves to avoid division by zero and perform trimming in areas of

sparse support. In practice and the following numerical study we set a (Ui) = Πpc
j=11{|U ci,j−U

c

j | ≤ 2sUc
j
},

where U
c

j and sUc
j

denote the sample mean and standard deviation of {U ci,j , 1 ≤ i ≤ n}, respectively.

To implement, one can use grid search for (h, λ) when the dimensions of Uc
i and Ud

j are both small.

Alternatively, one can apply the minimization function built in various software; but multiple starting

values are recommended.

In the following we argue that the result in Theorem 3.1 continues to hold when the nonstochastic

bandwidth (h, λ) is replaced by some data-dependent stochastic bandwidth, say, ĥ ≡ (ĥ1, ..., ĥpc)′ and

λ̂≡ (λ̂1, ..., λ̂pd)
′
. Following Li and Li (2010) we assume that (ĥr − h0

r)/h
0
r = oP (1) and (λ̂s − λ0

s)/λ
0
s =

oP (1) for r = 1, · · · , pc and s = 1, · · · , pd, where h0 ≡ (h0
1, ..., h

0
pc)′ and λ0≡ (λ0

1, ..., λ
0
pd

)
′

denotes

nonstochastic bandwidth sequences for Uc
i and Ud

i , respectively. For example, (ĥ, λ̂) could be the LSCV

bandwidth. If so, one can follow Hall, Racine and Li (2004) and Hall, Li and Racine (2007) and show

that the above requirement holds for (h0, λ0) which is optimal in minimizing a weighted version of the

AMISE of {ĝj (u) , j = 1, ..., d}. The following theorem summarizes the key result.
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Theorem 3.3 Suppose that Assumptions A1-A5 hold. Suppose that (ĥr − h0
r)/h

0
r = oP (1) and (λ̂s −

λ0
s)/λ

0
s = oP (1) for r = 1, · · · , pc and s = 1, · · · , pd, where h0 and λ0satisfy A6. Then

√
nĥ!{Ĥ[α̂Ψn

(u; ĥ,λ̂)

−α (u)]−
(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1B

(
u; h0, λ0

)
} d→ N(0,

(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1 ΥΨ−1Φ

(
Φ′Ψ−1Φ

)−1
), where

Ĥ is analogously defined as H with h being replaced by ĥ.

4 A Specification Test

In this section, we consider testing the hypothesis that some of the functional coefficients are constant.

The test can be applied to any nonempty subset of the full set of functional coefficients.

4.1 Hypotheses and test statistic

We first split up the set of regressors in Xi and the set of functional coefficients in g (u) into two

components (after possibly rearranging the regressors): X1i = (Xi,1, · · · , Xi,d1)
′

associated with g1 (u) =

(g1 (u) , · · · , gd1 (u))
′
, and X2i = (Xi,d1+1, · · · , Xi,d)

′
, associated with g2 (u) = (gd1+1 (u) , · · · , gd (u))

′
,

where Xi,1 may not denote the constant term in this section. Then we can rewrite the model in (2.1) as

Yi = g1 (Ui)
′
X1i + g2 (Ui)

′
X2i + εi, E (εi|Zi,Ui) = 0 a.s. (4.1)

Suppose that we want to test for the constancy of functional coefficients for a subset of the regressors X1i

and maintain the assumption that the functional coefficients of X2i may depend on the set of exogenous

regressors Ui. Then the null hypothesis is

H0 : g1 (Ui) = θ1 a.s. for some parameter θ1 ∈ Rd1 , (4.2)

and the alternative hypothesis H1 denotes the negation of H0. Under H0, d1 of the d functional coefficients

are constant whereas under H1, at least one of the functional coefficients in g1 is not constant.

There are many ways to test the null hypothesis in (4.2). One way is to estimate the following

restricted semiparametric functional coefficient IV model

Yi = θ′1X1i + g2 (Ui)
′
X2i + ε

(r)
i (4.3)

where ε
(r)
i is the restricted error term defined by (4.3) such that E(ε

(r)
i |Zi,Ui) = 0 a.s. under the null.

Then one can propose a Lagrangian multiplier (LM) type of test based on the estimation of this restricted

model only, say, by considering the test statistic based on the sample analog of E[ε
(r)
i E[ε

(r)
i |Vi]fV (Vi)]

where fV is the PDF of Vi = (Z′i,U
′
i)
′
. The second way is to adopt the likelihood ratio (LR) principle

to estimate both the unrestricted and restricted models and construct various test statistics, say, by

comparing the estimates of either g1 or g = (g′1,g
′
2)′ in both models through certain distance measure

(e.g., Hong and Lee, 2009), or by extending the generalized likelihood ratio (GLR) test of Fan, Zhang, and

Zhang (2001) to our framework where endogeneity is present. Clearly tests based the LM principle (and

E[ε
(r)
i E[ε

(r)
i |Vi]fV (Vi)] in particular) may suffer from the problem of curse of dimensionality because

the dimension of the continuous variables in Vi is typically larger than the dimension pc of Uc
i . Tests

based on the LR principle requires nonparametric/semiparametric estimation under both the null and

alternative, and unless d1 = d, the estimation of the restricted model (4.3) is more involved than the

estimation of the unrestricted model.

For this reason, we propose a Wald-type statistic that requires only consistent estimation of the

unrestricted model. Let ĝΨn
(u) denote the first d element of α̂Ψn

(u) ≡ α̂Ψn
(u; h, λ) . It is the estimator
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of g (u) = (g1 (u)
′
,g2 (u))′. Split ĝΨn

(u) as ĝ1 (u) = ĝ1,Ψn
(u) and ĝ2 (u) = ĝ2,Ψn

(u) so that ĝl (u)

estimates gl (u) for l = 1, 2. Our proposed test statistic is

Tn = (h!)
1/2

n∑
i=1

∥∥∥ĝ1 (Ui)− ĝ1

∥∥∥2

(4.4)

where ĝ1 ≡ n−1
∑n
i=1 ĝ1 (Ui) . In the next subsection, we show that after being suitably normalized, Tn

is asymptotically distributed as N (0, 1) under H0 and diverges to infinity under H1.

4.2 Asymptotic distribution of the test statistic

Let Φn (u) ≡ n−1Qh (u)
′
Khλ (u) ξ (u) H

−1
. Define

Γn1 (u) = S1

[
Φn (u)

′
Ψn (u)

−1
Φn (u)

]−1

Φn (u)
′
Ψn (u)

−1
, and

Γ1 (u) = S1

[
Φ (u)

′
Ψ (u)

−1
Φ (u)

]−1

Φ (u)
′
Ψ (u)

−1
, (4.5)

where S1=
(
Id1 ,0d1×(d1pc+d2(pc+1))

)
is a selection matrix. We add the following assumptions.

Assumption A7. (i) Ψn (u) = Ψ (u) + OP (νn) uniformly in u, where Ψ (u) is symmetric and

positive definite for each u and νn → 0 as n→∞. (ii) supu

∣∣Γ1 (u)
∣∣ < C <∞.

Assumption A8. As n → ∞, (i) n1/2(‖h‖2 + ‖λ‖)νn → 0, (ii) (‖h‖2 + ‖λ‖)
(
h!−1/2

)√
log n → 0,

and (iii) n (h!)
1/2

( ‖h‖4 + ‖λ‖2 )→ 0.

A7 strengthens A4(ii). It is satisfied if one chooses Ψn (u) as the identity matrix Ik(pc+1) for all u,

in which case νn = 0. Alternatively, if one chooses Ψn (u) = Υ̂ (u) , then one can verify that A7(i)

is satisfied with νn = ‖h‖2 + ‖λ‖ + (nh!/ log n)
−1/2

. A7(ii) is weak given the compact support of the

continuous regressor Uc
i . A8(i) can easily be satisfied whereas A8(ii) requires that pc ≤ 3; one can use

higher order local polynomial estimation if pc > 3. A8(iii) requires that undersmoothing bandwidth must

be used in order to remove the effect of asymptotic bias of our nonparametric estimators. Without loss of

generality, we consider the choice of Ψn (u) as Υ̂ (u) and set hs ∝ n−1/δ for s = 1, ..., pc and λt ∝ n−2/δ

for t = 1, ..., pd ; i.e., h1, ..., hpc pass to 0 at the same rate and similarly for λ1, ..., λpd . Then the conditions

in A8 are all satisfied by setting δ ∈ (1, 4.5) for pc = 1, δ ∈ (2, 5) for pc = 2, and δ ∈ (3, 5.5) for pc = 3.

To proceed, we first consider the consistent estimation of θ1 under H0. We estimate it by

θ̂1 = ĝ1 = n−1
n∑
i=1

ĝ1 (Ui) . (4.6)

By (A.1) in the appendix, we have the following usual bias and variance decomposition for ĝ1 (Ui) :

ĝ1 (Ui)− g1 (Ui) = Γn1 (Ui)Bn (Ui) + Γn1 (Ui)Vn (Ui) , (4.7)

where Γn1 (u) is defined in (4.5), and the bias term Bn (Ui) and the variance term Vn (Ui) are defined

in the line after (A.1). Under H0,

√
n
(
θ̂1 − θ1

)
= n−1/2

n∑
i=1

Γn1 (Ui)Bn (Ui) + n−1/2
n∑
i=1

Γn1 (Ui)Vn (Ui) . (4.8)

We shall show that the first term (bias) on the right hand side of (4.8) is asymptotically negligible under

some extra condition on the bandwidth sequence, whereas the second term contributes to the AVC of θ̂1.
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To characterize the AVC matrix of θ̂1, let ζi ≡ (U′i,Q
′
i, εi)

′, and

ϕ(ζi, ζj) ≡ Γ1 (Ui)

(
Qjεj

(Qjεj)⊗ ηj (Uc
i )

)
Khλ,jUi , and ϕ(ζi) =

∫
ϕ(ζ, ζi)dFζ (ζ) , (4.9)

where Fζ denotes the CDF of ζi. Let Σθ1 = limn→∞E [ϕ(ζi)ϕ(ζi)
′] . Straightforward but tedious calcu-

lations show that

Σθ1 =

(∫ ∫
w (t)w(t− s)dtds

)pc ∫
Γ1 (u)

(
Ω2 (u) 0k×pck

0pck×k 0pck×pck

)
Γ1(u)′fU (u)

2
dFU (u) . (4.10)

The following theorem establishes the
√
n-consistency and asymptotic normality of θ̂1 under H0.

Theorem 4.1 Suppose Assumptions A1-A4(i) and A5-A8 hold. Suppose that n1/2(‖h‖2 + ‖λ‖) = o (1) ,

νn (h!)
−1/2

= o (1) , and n (h!)
2
/ log n→∞ as n→∞. Then under H0,

√
n(θ̂1 − θ1)

d→ N (0,Σθ1) .

Clearly Theorem 4.1 says that under H0, θ̂1 can consistently estimate θ1 at the usual
√
n-rate. The

extra conditions on the bandwidth in the above theorem ensures that the bias term in (4.7) vanishes

asymptotically and the replacement of Γn1 (Ui) in (4.7) by Γ1 (Ui) has asymptotically negligible effect

on the asymptotic normality of θ̂1. If all functional coefficients are constant under H0, then Bn (Ui) = 0

a.s. so that we do not need the first extra condition on the bandwidth in the theorem.

Let Bn ≡ n−2 (h!)
1/2∑n

i=1

∑n
j=1 ||ϕ(ζi, ζj)||2 and σ2

0 ≡ limn→∞ 2h!EjEl[
∫
ϕ(ζ, ζj)

′ϕ(ζ, ζl)dFζ (ζ)]2,

where Ej denotes the expectation with respect to ζj . The next theorem studies the asymptotic distribution

of Tn under H0.

Theorem 4.2 Suppose Assumptions A1-A4(i) and A5-A8 hold. Then under H0, Tn −Bn
d→ N(0, σ2

0).

Following the last remark after Theorem 4.1, Assumption A8(iii) is not needed for the above theorem

if we are testing the constancy of all functional coefficients.

To implement the test, we consistently estimate Bn and σ2
0 using

B̂n ≡
(h!)

1/2

n2

n∑
i=1

n∑
j=1

‖ϕ̂ij‖2 and σ̂2
n =

2h!

n (n− 1)

n∑
j=1

n∑
l 6=j

[
1

n

n∑
i=1

ϕ̂′ijϕ̂il

]2

,

where ϕ̂ij = Γn1 (Ui)

(
Qj ε̂j

(Qj ε̂j)⊗ ηj (Uc
i )

)
Khλ,jUi

, and ε̂i = Yi − ĝΨn
(Ui)

′
Xi. It is straightforward

to show that B̂n −Bn = oP (1) and σ̂2
n − σ2

0 = oP (1) . Then we have

Jn ≡
(
Tn − B̂n

)
/
√
σ̂2
n

d→ N (0, 1) under H0.

When n is sufficiently large, we can compare Jn to the one-sided critical value zα, the upper α percentile

from the N (0, 1) distribution, and reject the null at asymptotic level α if Jn > zα.

To examine the asymptotic local power, we consider the sequence of Pitman local alternatives

H1 (rn) : g1 (Ui) = θ1 + rnδn(Ui) a.s.

where rn → 0 as n→∞ and the δn’s are a sequence of real continuous vector-valued functions such that

µ0 ≡ limn→∞E[‖δn (Ui)− E [δn (Ui)]‖2] < ∞. The following theorem establishes the asymptotic local

power of the Jn test.
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Theorem 4.3 Suppose Assumptions A1-A4(i) and A5-A8 hold. Then under H1 (rn) with rn = n−1/2

(h!)
−1/4

, Jn
d→ N (µ0/σ0, 1) .

Theorem 4.3 shows that the Jn test has nontrivial power against Pitman local alternatives that

converge to zero at rate n−1/2 (h!)
−1/4

. The asymptotic local power function is given by limn→∞ P (Jn ≥ z
| H1 (rn)) = 1− Φ (z − µ0/σ0) , where Φ is the standard normal CDF.

The next theorem establishes the consistency of the test.

Theorem 4.4 Suppose Assumptions A1-A4(i) and A5-A8 hold. Then under H1, n
−1 (h!)

−1/2
Jn =

µA/σ0 + oP (1) where µA ≡ E [g1 (Ui)− θ1]
2
, so that P (Jn > cn) → 1 under H1 for any nonstochastic

sequence cn = o(n (h!)
1/2

).

4.3 A bootstrap version of our test

It is well known that a nonparametric test based on its asymptotic normal null distribution may perform

poorly in finite samples. So we suggest using a bootstrap method to obtain the bootstrap approximation

to the finite-sample distribution of our test statistic under the null. We find that it is easy to adopt

the fixed-design wild bootstrap method in the spirit of Hansen (2000) in our framework; see also Su and

White (2010) and Su and Ullah (2012). The great advantage of this method lies in the fact that we do

not need to mimic some important features (such as dependence or endogeneity structure) in the data

generating process and can still justify its asymptotic validity.

We propose to generate the bootstrap version of Jn as follows:

1. Obtain the local linear GMM estimates ĝ1 (Ui) and ĝ2 (Ui) by using the weight matrix Ψn and

the bandwidth (h, λ), and calculate the unrestricted residuals ε̂i = Yi− ĝ1 (Ui)
′
X1i− ĝ2 (Ui)

′
X2i.

2. For i = 1, ..., n, generate the wild bootstrap residuals ε∗i = ε̂iei where ei’s are IID N (0, 1) .

3. For i = 1, ..., n, generate Y ∗i = θ̂′1X1i + θ̂′2X2i + ε∗i where θ̂1 ≡ n−1
∑n
i=1 ĝ1 (Ui) and θ̂2 ≡

n−1
∑n
i=1 ĝ2 (Ui) are the restricted local linear GMM estimates under the null hypothesis H0s :

g (Ui) = θ a.s. for some parameter θ ∈ Rd.

4. Compute the bootstrap test statistic J∗n in the same way as Jn by using {Y ∗i ,Ui,Xi,Zi}ni=1 and

the weight matrix Ψ∗n.

5. Repeat Steps 1-4 B times to obtain B bootstrap test statistic {J∗nj}Bj=1. Calculate the bootstrap

p-values p∗ ≡ B−1
∑B
j=1 1{J∗nj ≥ Jn} and reject the null hypothesis H0 : g1 (Ui) = θ1 a.s. if p∗ is

smaller than the prescribed nominal level of significance.

Note that in Step 3 we impose the null hypothesis H0s : g (Ui) = θ a.s., which is stronger than H0 :

g1 (Ui) = θ1 a.s. unless d1 = d. Intuitively speaking, in order to justify the asymptotic validity of the

above bootstrap procedure, we need to demonstrate that the bootstrap test statistic J∗n has the asymptotic

distribution N (0, 1) no matter whether the original sample is generated under the null hypothesis (H0) or

not. We will show that conditional on the original sample J∗n is asymptotically N (0, 1) , which implies that

it is also asymptotically N (0, 1) unconditionally. Note that the original test statistic Jn is asymptotically

N (0, 1) under H0 and our bootstrap statistic has the same asymptotic distribution. This ensures the

correct asymptotic size of our bootstrap test. Further, note that the original test statistic Jn diverges

to infinity at the rate n (h!)
1/2

under the global alternative hypothesis H1 whereas the bootstrap test
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statistic J∗n remains asymptotically N (0, 1) in this case. This ensures the consistency of our bootstrap

test.

By imposing a stronger hypothesis H0s than the original null hypothesis of interest (H0), our bootstrap

test has both pros and cons. The major pros lie in two aspects. First, one can easily conduct the bootstrap

test for testing the constancy of various subvectors of g (·) in a single step because we can generate the

same bootstrap dependent variable once for all and the computation burden is almost identical to the case

of testing the constancy of a single subvector of g (·). Second, one can easily justify the asymptotic validity

of our bootstrap method and there is no need to use oversmoothing bandwidth for first stage estimation

as in Härdle and Marron (1991). Our simulations indicate this procedure does not result in a loss of

power in comparison with the alternative approach by generating Y ∗i through θ̃′1X1i + g̃2 (Ui)
′
X2i + ε∗i

where one imposes the exact null hypothesis to be tested, θ̃1 ≡ n−1
∑n
i=1 g̃1 (Ui) , and (g̃1, g̃2) is a

preliminary estimate of (g1,g2). But the justification for the validity of this latter approach would be

much harder because one needs to show that the second order derivatives of g̃2 (·) are uniformly well

behaved, which typically requires oversmoothing; see Härdle and Marron (1991). The major cons of our

bootstrap procedure lie in the potential loss of second order efficiency. In other words, the imposition of a

stronger hypothesis than necessary in the bootstrap world is expected to have a second order asymptotic

effect. For parametric tests, it is often argued that a bootstrap test based on an asymptotically pivotal

statistic may yield a higher order efficiency than a test based on the asymptotic normal or chi-square

distributions. For nonparametric tests, it is extremely challenging to demonstrate higher order efficiency

for a bootstrap test statistic. Therefore we think higher order efficiency is a less important issue than

ensuring the correct asymptotic size and consistency of a bootstrap test. Its formal study is certainly

beyond the scope of the current paper.

To show that the bootstrap statistic J∗n can be used to approximate the asymptotic null distribution of

Jn, we follow Li, Hsiao and Zinn (2003) and Su and Ullah (2012) and rely on the notion of convergence in

distribution in probability, which generalizes the usual convergence in distribution to allow for conditional

(random) distribution functions. The following theorem establishes the asymptotic validity of the above

bootstrap procedure.

Theorem 4.5 Suppose Assumptions A1-A4(i) and A5-A8 hold. Suppose that Ψ∗n (u) = Ψn (u) +

OP∗ (νn) uniformly in u, where P ∗ is the probability measure induced by the wild bootstrap. Let z∗α be the

α-level bootstrap critical value based on B → ∞ bootstrap resamples. Then J∗n converges to N(0, 1) in

distribution in probability, limn→∞ P (Jn ≥ z∗α) = α under H0, limn→∞ P (Jn ≥ z∗α)→ 1−Φ(zα−µA/σ0)

under H1(n−1/2h−p/4), and limn→∞ P (Jn ≥ z∗α) = 1 under H1, where zα denotes the 100(1− α)th per-

centile of the standard normal distribution.

Theorem 4.5 shows that the bootstrap provides an asymptotic valid approximation to the limit null

distribution of Jn. This holds as long as we generate the bootstrap data by imposing the null hypothesis.

If the null hypothesis does not hold in the observed sample, then Jn explodes at the rate n (h!)
1/2

but

J∗n is still well behaved, which intuitively explains the consistency of the bootstrap-based test J∗n.

5 Monte Carlo Simulations

In this section, we conduct a small set of Monte Carlo experiments to illustrate the finite sample perfor-

mance of our local linear GMM estimator of functional coefficients and that of our test for the constancy

of some functional coefficients.
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5.1 Evaluation of the local linear GMM estimates

To evaluate the local linear GMM estimates, we consider two data generating processes (DGPs):

DGP 1: Yi = (1 + 0.25U c2i + 0.5Udi,1 + 0.25Udi,2) + [1 + U ci,1 + ϕ (U ci )− 0.5Udi,1 + 0.5Udi,2]Xi + σiεi,

DGP 2: Yi = (1 + e−U
c
i ) + [1 + 2 sin(U ci )]Xi + σiεi,

where U ci v N (0, 1) truncated at ±2, Udi,1 and Udi,2 are both Bernoulli random variables taking value 1

with probability 0.5, Xi = (Zi + τεi) /
√

1 + τ2, (Zi, εi)
′ v N (0, I2) , and ϕ (·) is the standard normal

PDF. Note that there is no discrete random variable in DGP 2. Here we use τ to control the degree

of endogeneity; e.g., τ =0.32 and 0.75 indicates that the correlations between Xi and εi are 0.3 and

0.6, respectively. We consider both conditionally homoskedastic and heteroskedastic errors. For the

homoskedastic case, σi = 1 in both DGPs 1 and 2; for the heteroskedastic case, we specify σi as follows

σi =
√

0.1 + 0.5(Z2
i + U c2i + 0.5Udi,1 + Udi,2) in DGP 1 and σi =

√
0.1 + 0.5(Z2

i + U c2i ) in DGP 2.

We assume that we observe
{
Yi, U

c
i , U

d
i,1, U

d
i,2, Xi, Zi

}n
i=1

and {Yi, U ci , Xi, Zi}ni=1 in DGP 1 and DGP 2,

respectively. The definitions of the functional coefficients, g1 (u) and g2 (u) , in each DGP are self-evident.

We consider six nonparametric estimates for g1 (u) and g2 (u) . The first estimate is the local linear

estimate of SCU (2009) where the endogeneity of Xi is neglected. The second and third estimates are

obtained as our local linear GMM functional coefficient estimators by choosing the global IV respectively

as Q (Vi) = [1, Zi]
′

and local linear estimate of Q∗ (Vi) = [1, E (Xi|Vi)]
′
/σ2 (Vi) ,respectively, where

Vi = (Zi, U
c
i , U

d
i,1, U

d
i,2)′ and Vi = (Zi, U

c
i )′ in DGPs 1 and 2, respectively. Since the dimension of Q (Vi)

is the same as that of [1, Xi]
′
, the weight matrix Ψn does not affect the local linear GMM estimate so

that we can simply use the identity weight (IW) matrix as the weight matrix for our second estimate,

which also reduces to the estimate of Cai and Li (2008). Similarly, the third estimate is the optimal IV

(OIV) estimate which is not influenced by the choice of weight matrix. The fourth and fifth estimates are

the local constant analogues of the second and third estimates, respectively; they are also the estimates

of Tran and Tsionas (2010, TT) when the IV is chosen to be Q (Vi) and the local constant estimate of

Q∗ (Vi) , respectively. The sixth estimate is the two-stage local linear estimate of CDXW. Below we will

denote these six estimates as SCU, IWll, OIVll, IWlc, OIVlc, and CDXW in order.

For all estimators, we use the standardized Epanechnikov kernel k (u) = 3
4
√

5
(1 − 1

5u
2)1{|u| ≤

√
5},

and consider two choices of smoothing parameters [(h, λ) = (h, λ1, λ2) for the conditioning variables

U ci , U
d
i,1, U

d
i,2 in the functional coefficients in DGP 1 and h = h for the conditioning variable U ci in the

functional coefficients in DGP 2]; one is obtained by the LSCV method discussed in Section 3.4, and the

other by the simple rule of thumb (ROT): h = sUcn−1/5 in both DGPs 1 and 2, and λ1 = λ2 = n−2/5

in DGP 1. Here sA denotes the sample standard deviation of {Ai}ni=1 . To estimate the optimal IVs,

we need to estimate both E (Xi|Vi) and σ2 (Vi) by the local linear or local constant method. For both

cases, we use the standardized Epanechnikov kernel and undersmoothing ROT bandwidths by specifying

h̃ = [sZn
−1/5 sUcn−1/5] in both DGPs 1 and 2 and λ̃1 = λ̃2 = n−2/5 in DGP 2 when we regress either Xi

or ε̂2
i on Vi. The use of undersmoothing bandwidths helps to eliminate the effect of early stage estimates’

bias on the final estimate; see Mammen, Rothe and Schienle (2010). To obtain the CDXW estimate,

we need first to obtain the local linear estimate of E (Xi|Vi) by specifying a similar undersmoothing

bandwidth. In addition, we find that the LSCV and ROT choices of (h, λ) yield qualitatively similar

results. So we focus on the ROT bandwidth below for brevity.

To evaluate the finite sample performance of different functional coefficient estimates, we calculate

both the mean absolute deviation (MAD) and mean squared error (MSE) for each estimate evaluated at
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all n data points:

MAD
(r)
l =

1

n

n∑
i=1

∣∣∣ĝ(r)
l (Ui)− gl (Ui)

∣∣∣ and MSEl =
1

n

n∑
i=1

[
ĝ

(r)
l (Ui)− gl (Ui)

]2
where for l = 1, 2, ĝ

(r)
l (·) is an estimator of gl (·) in the rth replication by using any one of the above

estimation methods. We consider two sample sizes: n = 100 and 400.

Table 1 reports the results where the MADs and MSEs are averages over 500 replications for each

functional coefficient. We summarize some important findings from Table 1. First, in both homoskedastic

and heteroskedastic cases, the SCU estimate without taking into account the endogeneity issue is generally

the worst estimate among all six estimates. Exceptions may occur when n is small or no heteroskedasticity

is present. Second, in the case of homoskedastic errors, the local GMM estimates obtained by using the

estimated optimal IVs for either our local linear method or TT’s local constant method may or may

not outperform the one using simple IV with identity weight matrix. This is similar to the findings in

Altonji and Segal (1996) who show that the use of optimal weights in the GMM estimation may be

dominated by the one-step equally weighted GMM estimation in finite samples. Third, in the case of

heteroskedastic errors, we observe substantial gain by using the estimated optimal IVs in the local GMM

estimation procedure; this is true for both our local linear GMM estimates and TT’s local constant

estimates. Fourth, for both DGPs under investigation, the local linear method tends to outperform the

local constant method. We conjecture this is due to the notorious boundary bias issue associated with

the local constant estimates when the support of U ci is compact. Fifth, the CDXW estimate generally is

outperformed in DGP 1 by both the local linear and local constant estimates with or without using the

estimated optimal IVs. For DGP 2, the CDXW may outperform the local constant GMM estimates but

not the local linear GMM estimates.

5.2 Tests for the constancy of functional coefficients

We now consider the finite sample performance of our test. To this goal, we modify DGPs 1-2 as follows

DGP 1′: Yi =
[
1 + δ

(
0.25U c2i + 0.5Udi,1 + 0.25Udi,2

)]
+ [1 + δ(U ci,1 + ϕ (U ci )− 0.5Udi,1 + 0.5Udi,2)]Xi + σiεi,

DGP 2′: Yi = (1 + δe−U
c
i ) + [1 + 2δ sin(U ci )]Xi + σiεi,

where all variables are generated as in the above subsection, and we allow δ to take different values to

evaluate both the size and power properties of our test. When δ = 1, DGPs 1′ and 2′ reduce to DGPs 1

and 2, respectively. For both DGPs, we consider the following three null hypotheses:

H0,1 : g1 (Ui) = θ1 a.s.,

H0,2 : g2 (Ui) = θ2 a.s., (5.1)

H0,12 : (g1 (Ui) , g2 (Ui)) = (θ1, θ2) a.s.,

for some unknown parameters θ1 and θ2.

To construct the test statistic, we need to choose both the kernel and the bandwidth. As in the

previous section, we choose the standardized Epanechnikov kernel and consider the use of the bootstrap

to approximate the asymptotic null distribution of our test statistics. Assumption A8(iii) suggests that

we need to choose undersmoothing bandwidth sequences. We set h = csUcn−1/(pc+3), and λ1 = λ2 =

cn−2/(pc+3) for DGP 1 and h = csUcn−1/(pc+3) in DGP 2 for different values of c to check the sensitivity

of our test to the choice of bandwidth. We have tried three values for c : 0.5, 1 and 2 and found that

our test is not sensitive to the choice of c. To save space, we only focus on the case where c = 1 in the
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following analysis. We consider two sample sizes: n = 100 and 200, four values for δ : 0, 0.2, 0.4, and 0.6,

and two values for τ : 0.32 and 0.75. For each scenario, we consider 500 replications and 200 bootstrap

resamples for each replication.

The results for our bootstrap-based test at 5% nominal level are reported in Table 2. We summarize

some important findings from Table 2. First, the empirical levels of our test (corresponding to δ = 0 in

the table) generally behave very well for all values of τ and all three null hypotheses, and under both

conditional homoskedasticity and heteroskedasticity. The only exception occurs for testing H0,1 in DGP

2 when n = 100, in which case the test is moderately undersized. Second, the power of our test is

reasonably good in almost all cases– the relatively low power in testing H0,1 in DGP 2 simply reflects the

difficulty in testing exponential alternatives of the form δe−U
c
i . As either δ or the sample size increases,

we observe a fast increase of the empirical power. Third, the degree of endogeneity has some effect on

the level and power behavior of our test but the direction is not obvious.

6 An Empirical Example: Estimating the Wage Equation

Labor economists have been devoting a tremendous amount of effort to investigating the causal effect of

education on labor market earnings. As Card (2001, p. 1127) suggests, the endogeneity of education in

the wage equation might partially explain the continuing interest “in this very difficult task of uncovering

the causal effect of education in labor market outcomes.” The classical framework of the human capital

earnings function due to Mincer (1974) assumes additivity of education and work experience that are used

as explanatory variables. However, recent studies have questioned the appropriateness of this assumption.

In particular, Card (2001) approaches the matter of non-additivity of the explanatory variables by arguing

that the returns to education are heterogeneous since the economic benefits of schooling are individual-

specific. Becker and Chiswick (1966) are among the authors who maintain that variation in returns

to education can partially account for variation over time in aggregate inequality. Card’s (2001) claim

suggests that a more general functional form of heterogeneity in the returns to education would make

the empirical relation between earnings and education even more realistic. Indeed, if, for example, work

experience is valued by employers, then one can expect earnings to be increasing in experience for any

given level of education. Further, the returns to education may also differ substantially among different

groups defined by some individual-specific characteristics, say, a person’s marital status. Therefore, we

estimate the causal effect of education on earnings in the following functional coefficient model:

log(Y ) = g1(U) + g2(U)S + ε, (6.1)

where Y is a measure of individual earnings, S is years of education, and U is a vector of mixed (both

continuous and discrete) variables. Equation (6.1) allows studying not only the direct effects of variables

in U on wage in a flexible way but also the effects of these variables on the return to education. The

existing literature has already provided support for a nonlinear relation between wage and work experience

(see, for example, Murphy and Welch (1990) and Ullah (1985)). In addition, Card and Lemieux (2001)

emphasize that the rising return to education has been more profound in the younger cohorts than in the

older ones since the 1980s.

Our goal is to study the empirical relation between earnings and education as presented in (6.1) using

our proposed estimator from the previous sections. For this purpose, we use the Australian Longitudinal

Survey (ALS) conducted annually since 1984. Specifically, we employ the 1985 wave of the ALS, and

consider young Australian women, who reported working and were aged 16 to 25 in 1985. Our sample
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is constructed using the guidelines from Vella (1994), who was among the first researchers extensively

working with this dataset. We follow the empirical analysis from Vella (1994) and choose U to in-

clude a continuous variable – work experience, and four categorical variables for marital status, union

membership, government employment, and whether a person is born in Australia.

We follow CDXW (2006) and Das, Newey, and Vella (2003), who rely on findings from Vella (1994),

and use an index of labor market attitudes as the instrumental variable for the schooling levels. Here,

we do not question the credibility of the instrument but take its validity as a maintained assumption in

order to illustrate the proposed estimation method. The ALS includes seven questions about work, social

roles and school attitudes of individuals toward working women. Individuals respond to these questions

with “(1) strongly agree; (2) agree; (3) don’t know; (4) disagree; and (5) strongly disagree”. The wording

of the questions implies that a response with a higher score indicates more positive attitude towards the

schooling of women and their role in the labor market. We use only six out of seven available questions

to construct our attitudes index, since questions (ii) and (iii) seem to be very similar to each other and

might be repetitive. We choose question (ii) over question (iii). We sum the responses to the questions

we pick, and divide the total by 10. This way our attitudes index can range from 0.6 to 3.0, similar

to CDXW (2006). We exclude two observations with reported wage being more than $200 per hour as

extreme outliers. The highest hourly wage in the sample after the exclusion of the two outliers is $47.5

per hour. The resulting sample consists of 2049 observations. Table 3 reports summary statistics for

our sample. Figure 1 plots wage against work experience and years of education. The right panel of

Figure 1 suggests that there is a positive relationship between wage and years of education. The left

panel describing the relation between wage and work experience is not that straightforward. However,

both figures also provide some evidence of a nonlinear nature of the two relationships they present. The

peculiar relation between wage and experience is actually not surprising as our sample consists of young

adults being 15 to 25 years old.

Without accounting for the endogeneity of education in the wage equation, SCU (2009) estimate the

returns to education using the same specification – (6.1), while also allowing for mixed covariates in the

model. CDXW (2006) employ the same data we do – the ALS – but use a somewhat different model

specification:

log(Y ) = Zδ + g1(U) + g2(U)S + ε, (6.2)

where U contains work experience only, and Z includes the four categorical variables, i.e., indicators for

marital status, union membership, government employment, and whether a person is born in Australia.

CDXW (2006) exploit a two-step nonparametric procedure to estimate the returns to education in the

context of model (6.2). Cai and Xiong (2010) consider the same data set and model specification as

in CDXW (2006). However, they use a three-step nonparametric method to estimate this model. We

compare our estimates of the return to education with the estimates based on all there existing approaches

– the ones from SCU (2009), CDXW (2006) and Cai and Xiong (2010). When doing so, we mainly

concentrate on work experience below or equal to 8 years. The main reason for our decision is that

our sample contains only 8 observations (out of 2049 available) with experience being more or equal to

9 years. We also suspect that the sample used by CDXW (2006) and Cai and Xiong (2010) excludes

observations at the high levels of the observed years of experience in our sample, as their sample contains

1996 observations only. Thus, for comparative purposes, we primarily focus on work experience being

less than 9 years.

For the ease of presentation of the regression results of model (6.1) we plot wage-experience profiles

of different cells defined by a discrete characteristic averaged over other categorical regressors. We use
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the second order Epanechnikov kernel in our estimation, and choose the bandwidth by both the rule of

thumb and LSCV methods discussed in Section 3.4.

Figure 2 reports the estimated g1(Experience, :) and g2(Experience, :) of model (6.1) depending on

whether a woman is married or not, a union member or not, employed by the government or not, and born

in Australia or not averaged over all other categorical variables. We use the rule of thumb bandwidth

to obtain Figure 2. Following SCU (2009), we will view g1(Experience, Individual Characteristic, :) as

the direct effects of experience on wage for a particular characteristic of a woman (averaged over all other

categorical variables). At the same time, we can think that g2(Experience, Individual Characteristic, :)

represents the return to education as a function of experience for a particular individual characteristic. In

both profiles – with and without controlling for endogeneity, i.e., profiles using the SCU method and our

approach with optimal weight matrix, respectively, we find that the range of ĝ2 is positive and nonlinear

for all values of experience in our sample. However, the apparent differences between correcting and

not correcting for endogeneity are in the magnitude and shape of ĝ2. When correcting for endogeneity,

the returns to education, on average, are predicted to be higher for most of the observed years of work

experience. Also, when correcting for endogeneity, ĝ2 is mostly concave, while it is convex for low levels of

experience (below about 5 years) and concave for high levels of experience (above 5 years) when we do not

correct for endogeneity. Further, we observe that the returns to education are smaller for non-unionized

women than for the unionized ones. We also note that the profile of ĝ1 when correcting for endogeneity

is almost constant, while it is quite nonlinear without the correction. Specifically, the estimated direct

effects of the four categorical individual characteristics we are able to control for seem to be close to

zero for most of the interval of the observed work experience, when controlling for endogeneity. Without

correcting for endogeneity, we do observe some differences both across and within the categories of the

four individual characteristics.

Figure 3 plots the estimated g1(Experience, :) and g2(Experience, :) of model (6.1) averaged over all

categorical variables. We use the rule of thumb bandwidth to obtain Figure 3. Similarly to Figure 2,

we notice that the direct effect of work experience on wage is almost constant and close to zero for high

levels of experience when controlling for endogeneity. At the same time, when correcting for endogeneity,

the derivative of return to education as a function of experience changes over its range, being negative

at high levels of experience (above about 8 years) and positive at low and (most of) middle levels of

experience (below 8 years). In other words, while the marginal returns to education are positive, the

returns themselves decline in experience for high levels of the observed years of experience. To the

contrary, when we do not correct for endogeneity, it is the other way around: the returns to education

decrease in experience for low levels of experience (below about 5 years) and increase for high levels of

experience (above 5 years).

While we do not observe overly drastic distinctions in the results based on our approach and ap-

proaches by CDXW (2006) and Cai and Xiong (2010), we do see some notable differences across the

three approaches. First, findings by Cai and Xiong’s (2010) and CDXW (2006) indicate that the returns

to education may vary from (roughly) 15 to 22% and 16.5 to 30%, respectively. Our findings reported

in Figure 3 suggest that the returns to education may vary from about 12 to 18%. Clearly, our range

is tighter than the other two ranges suggested, and the middle point for the range obtained using our

approach is (at least) 2.5 percentage points smaller than the middle points for the other two intervals.

Second, the shapes of the estimated g2 from the three methods being compared – our approach, CDXW

(2006) and Cai and Xiong (2010) – are somewhat different, as well. Contrary to CDXW (2006), our

approach suggests that the returns to education start declining after (about) 8 years of experience, which
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would be more compatible with the shape of the estimated g2 from Cai and Xiong (2010) for the high

levels of observed experience. However, in sharp contrast to Cai and Xiong (2010), our results predict a

different behavior of the estimated g2 for the low levels of observed experience. Cai and Xiong’s (2010)

results are indicative of the sharply declining returns to education for experience below (about) 3 years.

We suggest that the returns to education are increasing for that interval of observed work experience.

Figures 4 and 5 provide the same information as Figures 2 and 3, respectively, when the LSCV method

is used instead of the rule of thumb to obtain the bandwidths for findings in Figures 4 and 5. The LSCV

method provides very similar results to the ones based on the rule of thumb approach.

A potential concern regarding our model specification (6.1) is that some of the categorical variables

in U are endogenous. For example, Lee (2005, p. 431) maintains that “for women, marital status is

endogenous and jointly determined with labor supply decisions.” Further, Duncan and Leigh (1985)

reject the hypothesis of the exogeneity of union status in their wage equation. However, the empirical

evidence on endogeneity of these individual characteristics is actually mixed. In particular, Korenman

and Neumark (1992) find that female marital status is neither endogenous nor significant in the standard

wage equation. Nevertheless, we attempt to address this potential concern by checking the sensitivity of

our findings to the choice of U. First, we re-estimate model (6.1) for all four combinations of our four

categorical variables in the original U taken three at a time. Then, we also consider the case when U

contains only indicators for government employment and whether a person is born in Australia, since

these two indicators are more likely to be viewed exogenous. When using these alternative choices of U,

our original findings are mainly unchanged (results are available upon request). Specifically, the estimated

returns to education vary mainly between 12 and 19% except for the observed years of education of 8

years and more. When education exceeds 8 years, the returns to education are estimated to be less than

12%. However, given our above discussion of the latter case, we do not find this result surprising. A slight

increase in the average of the estimated returns to education is also anticipated, since fewer controls are

included in the functional coefficient of our model similar to CDXW (2006) and Cai and Xiong (2010).

We conclude that our findings based on the original U are sufficiently robust to our choice of categorical

variables.

Finally, using the specification tests introduced in Section 4, we test the hypothesis that g1, g2 or

both are constant over the four categorical variables and experience. We calculate the normalized test

statistics for the three null hypotheses in (5.1) where U contains work experience and four categorical

variables for marital status, union membership, government employment, and whether a person is born

in Australia. Using the rule of thumb approach and 500 replications, the obtained p-values for the three

considered hull hypotheses are 0.012, 0.000, and 0.008, respectively. These results imply that we can

reject H0,1 at the 5% level only. Clearly, this finding is not surprising, given that ĝ1 obtained when

correcting for endogeneity seems almost constant and close to zero for a large domain of work experience

in Figures 2-5. More importantly, both H0,2 and H0,12 can be rejected in favor of a one-sided alternative

at the 1% level. Therefore, our empirical findings strongly support the discussion of the nonlinear nature

of the effect of education on wages from Card (2001).

7 Concluding Remarks

This paper proposes a local linear GMM estimation procedure for functional coefficient IV models where

endogenous regressors enter the model linearly, and the functional coefficients contain both continuous and

discrete exogenous regressors. We establish the asymptotic normality of the local linear GMM estimator
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and propose a test for the constancy of a subvector of the functional coefficients. Simulations indicate

that our estimator and test perform reasonably well in finite samples. Applications to an Australian

Longitudinal Survey data indicate the importance of our estimation and testing procedure in empirical

research.

Some extensions are possible. First, as we have discussed in Section 3.3, we follow the parametric

literature and consider the choice of optimal IVs in the sense of minimizing the AVC matrix among the

class of local linear GMM estimators. It seems worth considering the choice of IVs that is optimal in the

sense of minimizing certain AMSE or AMISE criterion function. Second, the optimal IVs depend on two

conditional expectation objects which are typically to be estimated nonparametrically. It is worthwhile to

develop the asymptotic theory by allowing for nonparametrically estimated optimal IVs. We conjecture

that research along this line can be done by extending either Newey’s (1993) sieve and nearest-neighbor

estimates or Mammen, Rothe and Schienle’s (2010) kernel approach to our framework. Third, it is also

interesting to estimate a restricted functional coefficient model where some functional coefficients are

constant while others are not. To this goal, one can follow the idea of profile least squares or likelihood

(e.g., Fan and Huang (2005), Su and Jin (2010)) and extend it to our local linear GMM framework.

Fourth, it is also possible to allow the variables in the functional coefficients to be endogenous. This

is associated with the well-known ill-posed inverse problem as in typical nonparametric IV regression

and several regularization techniques can be called upon. Fifth, one can consider the optimal choice of

data-driven bandwidth for the testing problem. We leave these for future research.

Appendix

A Proof of the Results in Section 3

Proof of Theorem 3.1. For notational simplicity, in this proof we suppress the dependence of ξ, Khλ,
Qh, and Ψn on u. Let dUd

i ud ≡
∑pd
t=1 1{Udi,t 6= udt }, indicating the number of disagreeing components

between Ud
i = (Udi,1, · · · , Udi,pd)′ and ud = (ud1, · · · , udpd)′. LetGi,j ≡ Gi,j (u) = [gj

(
Uc
i ,U

d
i

)
−gj

(
uc,ud

)
−

.
gj
(
uc,ud

)′
(Uc

i −uc)], and Gi ≡ Gi (u) = (Gi,1 (u) , · · · , Gi,d (u))
′
. Let Ri ≡ Ri (u) = Gi (u)

′
Xi. Then

Yi =
∑d
j=1[gj(u

c,ud)− .
gj(u

c,ud)′ (Uc
i − uc)]Xi,j + εi+Ri = ξ′i,uα (u) +εi+Ri, where α (u) and ξi,u are

defined after eq. (2.6). Let ε ≡ (ε1, · · · , εn)′ and R ≡ R (u) = (R1 (u) , · · · , Rn (u))′. Then we have the
following bias-variance decomposition:

H [α̂Ψn (u; h, λ)− α (u)]

=
(
H−1ξ′KhλQhΨ−1

n Q′hKhλξH
−1
)−1

H−1ξ′KhλQhΨ−1
n Q′hKhλR

+
(
H−1ξ′KhλQhΨ−1

n Q′hKhλξH
−1
)−1

H−1ξ′KhλQhΨ−1
n Q′hKhλε

=
[
Φn (u)

′
Ψ−1
n Φn (u)

]−1
Φn (u)

′
Ψ−1
n Bn (u) +

[
Φn (u)

′
Ψ−1
n Φn (u)

]−1
Φn (u)

′
Ψ−1
n Vn (u)(A.1)

where Φn (u) ≡ Φn (u; h, λ) = n−1Q′hKhλξH
−1, Bn (u) ≡ Bn (u; h, λ) = n−1Q′hKhλR, and Vn (u) ≡

Vn (u; h, λ) = n−1Q′hKhλε. We prove Theorem 3.1 by proving the following three lemmata.

Lemma A.1 Φn (u) = Φ (u) + oP (1) , where Φ (u) is defined in (3.1).

Proof. Recall that ηi (uc) ≡ (Uc
i − uc) /h and Qi ≡ Q(Vi). By the definition of Qh,iu in (2.7) we have

Φn (u) =
1

n

n∑
i=1

Khλ,iu

(
Qi

Qi ⊗ ηi (uc)

)(
X′i X′i ⊗ (Uc

i − uc)
′)

H−1 =

 Φn,11
k×d

Φn,12
k×pcd

Φn,21
kpc×d

Φn,22
kpc×pcd

 ,
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where Φn,11 ≡ Φn,11 (u; h, λ) = 1
n

∑n
i=1Khλ,iuQiX

′
i, Φn,12 ≡ Φn,12 (u; h, λ) = 1

n

∑n
i=1Khλ,iu(QiX

′
i) ⊗

ηi (uc)
′
, Φn,21 ≡ Φn,21 (u; h, λ) = 1

n

∑n
i=1Khλ,iu(QiX

′
i)⊗ηi (uc) , and Φn,22 ≡ Φn,22 (u; h, λ) = 1

n

∑n
i=1

Khλ,iuQiX
′
i ⊗ [ηi (uc) ηi (uc)

′
]. It suffices to show that Φn,lj = Φlj (u) + oP (1) for l, j = 1, 2, where

Φlj (u) denotes the (l, j) block of the block diagonal matrix Φ (u).
By Assumptions A1-A3,

E [Φn,11] = E[QiX
′

iKhλ,iu]

= E[QiX
′

iWh,iuc |dUd
i ud = 0]p

(
ud
)

+

pd∑
s=1

E[QiX
′

iWh,iucLλ,iud |dUd
i ud = s]p(dUd

i ud = s)

= E[Ω1

(
Uc
i ,U

d
i

)
Wh,iuc |dUd

i ud = 0]p
(
ud
)

+O (‖λ‖)

=

∫
Ω1

(
uc + h� t,ud

)
fU

(
uc + h� t,ud

)
W (t) dt +O (‖λ‖)

= Ω1 (u) fU (u) +O
(
‖h‖2 + ‖λ‖

)
. (A.2)

Define two column vectors ω1 ∈ Rk and ω2 ∈ Rd such that ‖ωl‖ = 1 for l = 1, 2. Then it is easy to

show that Var(ω′1Φn,11ω2) = 1
nVar(ω′1QiX

′

iω2Khλ,iu) = O((nh!)
−1

) = o (1) . It follows by Chebyshev’s
inequality that Φn,11 = Ω1 (u) fU (u) + oP (1) . Similarly,

Φn,22 = E [Φn,22] +OP

(
(nh!)

−1/2
)

= E
[
(QiX

′
i)⊗ (ηi (uc) ηi (uc)

′
)Khλ,iu

]
+OP

(
(nh!)

−1/2
)

=

∫ [
Ω1

(
uc + h� t,ud

)
⊗ tt′

]
fU

(
uc + h� t,ud

)
W (t) dt +OP

(
‖λ‖+ (nh!)

−1/2
)

= µ2,1 [Ω1 (u)⊗ Ipc ] fU (u) + oP (1) .

By the same token, Φn,12 = oP (1) , and Φn,21 = oP (1) . This completes the proof. �

Lemma A.2
√
nh!Bn (u) =

√
nh!B (u; h, λ) + oP (1), where B (u; h, λ) is defined in (3.3).

Proof. Write
√
nh!Bn (u) = 1

n

∑n
i=1

√
nh!Khλ,iuQh,iuRi = 1

n

∑n
i=1 ςi, where

ςi =
√
nh!

d∑
j=1

[
gj(U

c
i ,U

d
i )− gj(uc,ud)−

.
gj(u

c,ud)′ (Uc
i − uc)

]( QiXi,j

QiXi,j ⊗ ηi (uc)

)
Khλ,iu

=
√
nh!

(
QiX

′
iGi

(QiX
′
iGi)⊗ ηi (uc)

)
Khλ,iu.

It follows that
√
nh!E [Bn (u)] = E (ςi) = E(ςi|dUd

i ud = 0)p
(
ud
)

+ E(ςi|dUd
i ud = 1) P (dUd

i ud = 1) +

O(
√
nh! ‖λ‖2) ≡ bn,1 + bn,2 + o (1) .

On the set
{
Ud
i = ud, Wh,iuc > 0

}
, gj(U

c
i ,U

d
i ) − gj(u

c,ud) − .
gj(u

c,ud)′ (Uc
i − uc) = 1

2Ai,j (u) +

o(‖h‖2), where Ai,j (u) ≡ (Uc
i − uc)

′ ..
gj (u) (Uc

i − uc) and
..
gj (u) ≡ ∂ .gj (u) /∂uc′. Let Ai (u) ≡ (Ai,1 (u) ,

· · · , Ai,d (u))′. Then we have

bn,1 =
1

2

√
nh! E0

[(
QiX

′
iAi (u)

(QiX
′
iAi (u))⊗ ηi (uc)

)
Wh,iuc

]
p(ud) + o(

√
nh! ‖h‖2)

=
1

2

√
nh! E0

[(
Ω1 (Ui) Ai (u)

(Ω1 (Ui) Ai (u))⊗ ηi (uc)

)
Wh,iuc

]
p(ud) + o (1)

=

√
nh!µ2,1

2

(
fU (u) Ω1 (u) A (u; h)

0kpc×1

)
+ o (1) , and
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bn,2 =
√
nh!E1


d∑
j=1

[gj (Ui)− gj (u)− .
gj (u)

′
(Uc

i − uc)]

(
QiXi,j

QiXi,j ⊗ ηi (uc)

)
Khλ,iu

 p1

=
√
nh!E1

 d∑
j=1

(
QiX

′
iGi

(QiX
′
iGi)⊗ ηi (uc)

)
Khλ,iu

 p1

=
√
nh!E1

[(
Ω1 (Ui) [g (Ui)− g (u)]−

(
Ω1 (Ui)⊗ ηi (uc)

′) ·
g (u)

(Ω1 (Ui) [g (Ui)− g (u)])⊗ ηi (uc)−
(
Ω1 (Ui)⊗ [ηi (uc) ηi (uc)

′
]
) ·
g (u)

)
Khλ,iu

]
p1

+o (1)

=
√
nh!

∑
ũd∈Ud

pd∑
s=1

λsIs
(
ud, ũd

)
fU

(
uc, ũd

)( Ω1

(
uc, ũd

) (
g
(
uc, ũd

)
− g

(
uc,ud

))
−µ2,1

(
Ω1

(
uc, ũd

)
⊗ Ipc

) ·
g
(
uc,ud

) )+ o (1) ,

where A (u; h) and
·
g (u) are defined in Section 3.2, El {·} = E{·|dUd

i ud = l} for l = 0 and 1, and p1 =

P (dUd
i ud = 1). Consequently,

√
nh!E[Bn (u)] =

√
nh!B (u; h, λ) + o (1). Noting that Var(

√
nh!Bn (u)) =

O(‖h‖2 + ‖λ‖) = o (1) , the conclusion then follows by Chebyshev’s inequality. �

Lemma A.3
√
nh!Vn (u) = n−1/2 (h!)

1/2∑n
i=1

(
Qiεi

(Qiεi)⊗ ((Uc
i − uc) /h)

)
Khλ,iu

d→ N (0,Υ (u)) ,

where Υ(u) is defined in (3.2).

Proof. Let c be a unit vector on Rk(pc+1). Let ζi = (h!)
1/2

c′

(
Qiεi

(Qiεi)⊗ ηi (uc)

)
Khλ,iu. By the

Cramér-Wold device, it suffices to prove
√
nh!c′Vn (u) = n−1/2

∑n
i=1 ζi

d→ N (0, c′Υc) . By the law of
iterated expectations, E (ζi) = 0. Now by arguments similar to those used in the proof of Lemma A.1,

Var
(√

nh!c′Vn (u)
)

= Var (ζ1)

= h!c′E

{(
QiQ

′
iε

2
i (QiQ

′
i)⊗ ηi (uc)

′
ε2
i

(QiQ
′
i)⊗ ηi (uc) ε2

i (QiQ
′
i)⊗ [ηi (uc) ηi (uc)

′
]ε2
i

)
K2

hλ,iu

}
c

= h!c′E

{(
QiQ

′
iσ

2 (Vi) (QiQ
′
i)⊗ ηi (uc)

′
σ2 (Vi)

(QiQ
′
i)⊗ ηi (uc)σ2 (Vi) (QiQ

′
i)⊗ [ηi (uc) ηi (uc)

′
]σ2 (Vi)

)
K2

hλ,iu

}
c

= h!c′E

{(
Ω2(Ui) Ω2(Ui)⊗ ηi (uc)

′

Ω2(Ui)⊗ ηi (uc) Ω2(Ui)⊗ [ηi (uc) ηi (uc)
′
]

)
K2

hλ,iu

}
c = c′Υc + o (1) .

The result follows as it is standard to check the Liapounov condition; see, e.g., Li and Racine (2007). �
By Lemmas A.1-A.3 and the Slutsky lemma,

√
nh!

[
H (α̂Ψn

(u)− α (u))−
(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1B (u; h, λ)

]
=

[
Φn (u)

′
Ψ−1
n Φn (u)

]−1
Φn (u)

′
Ψ−1
n

√
nh!Vn (u) +

[
Φn (u)

′
Ψ−1
n Φn (u)

]−1
Φn (u)

′
Ψ−1
n

√
nh!Bn (u)

−
[
Φ (u)

′
Ψ−1Φ (u)

]−1
Φ (u)

′
Ψ−1
√
nh!B (u; h, λ)

d→ N
(

0,
(
Φ′Ψ−1Φ

)−1
Φ′Ψ−1ΥΨ−1Φ

(
Φ′Ψ−1Φ

)−1
)
,

where dependence of Φ, Ψ and Υ on u is suppressed. This completes the proof of Theorem 3.1.

Proof of Theorems 3.3. Let Φn (u; h, λ) , Bn (u; h, λ) and Vn (u; h, λ) be as defined after (A.1). Let

B̄n (u; h, λ) ≡ Bn (u; h, λ)−B (u; h, λ) . Let J1n ≡ Φn(u;ĥ,λ̂) − Φn (u; h, λ) , J2n ≡
√
nh![Vn(u;ĥ,λ̂) −
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Vn (u; h, λ)], and J3n ≡
√
nh![B̄n(u;ĥ,λ̂)− B̄n (u; h, λ)]. By the result in Theorem 3.1 and the expansion

in (A.1), it suffices to show that (i) J1n = oP (1) , (ii) J2n = oP (1) , and (iii) J3n = oP (1) .
For notational simplicity, for the moment we assume that pc = pd = 1 so that we can write the

bandwidth (h, λ) simply as (h, λ) . Similarly, we write (Uc
i ,u

c) and
(
Ud
i ,u

d
)

as (U ci , u
c) and

(
Udi , u

d
)
,

respectively. Let h = bn−δ and λ = rn−σ for some b ∈
[
b, b̄
]
, r ∈ [r, r̄] , δ > 0, and σ > 0. Note that

when pc = pd = 1, we can write h!Khλ,iu as

hKhλ,iu = w

(
U ci − uc

h

)
λ1{Ud

i 6=u
d} = w

(
U ci − uc

bn−δ

)(
rn−σ

)1{Ud
i 6=u

d} ≡ Kbr,iu.

For any nonnegative random variable ςi, define mζ (u) = E(ςi|Ui = u). mζ is usually continuous and
uniformly bounded below. Then by the Cr inequality, for any γ > 0,

E
[∣∣Kb′r′,iu −Kbr,iu

∣∣γ
i
ςi

]
= E

[
|h′Kh′λ′,iu − hKhλ,iu|

γ
mς (Ui)

]
≤ cγ

{
E
[
|h′Kh′λ′,iu − hKhλ,iu|

γ
mζ (Ui)

]
+ E [h |Khλ′,iu −Khλ,iu|γmζ (Ui)]

}
≡ cγ {K1 +K2} , say,

where cγ = 1 if γ ∈ (0, 1] and cγ = 2γ−1 if γ > 1. Here and in the remainder of this proof prime does not
denote transpose. Let cb = b̄/b. By the fact that λ′ ∈ (0, 1] and Assumption A5, for any b, b′ ∈

[
b, b̄
]
,

K1 =
∑
ud
i∈Ud

∫ ∣∣∣∣[w(uci − uch′

)
− w

(
uci − uc

h

)]
(λ′)

1{ud
i 6=u

d}
∣∣∣∣γmς

(
uci , u

d
i

)
f
(
uci , u

d
i

)
duci

≤ h
∑
ud
i∈Ud

∫ cwcb

−cwcb
|w (vh/h′)− w (v)|γmς

(
uc + hv, udi

)
f
(
uc + hv, udi

)
dv

≤ C1ςC
γ
wh |1− h/h′|

γ
∫ cwcb

−cwcb
|v|γ dv = C1ςC

γ
wh |(b′ − b)/b′|

γ
∫ cwcb

−cwcb
|v|γ dv ≤ C2ςh |b′ − b|

γ
,

where Csς is a finite constant that depends on ςi; e.g., C1ς ≡ supuc∈Uc

∑
ud
i∈Ud mς

(
uc + hv, udi

)
f
(
uc + hv, udi

)
dv

<∞. Similarly,

K2 =
∑

ud
i∈Ud,ud

i 6=ud

∫ ∣∣∣∣w(uci − uch

)∣∣∣∣γ |λ′ − λ|γmς

(
uci , u

d
i

)
f
(
uci , u

d
i

)
duci

= h |λ′ − λ|γ
∑
ud
i∈Ud

∫ cwcb

−cwcb
w (v)

γ
mς

(
uc + hv, udi

)
f
(
uc + hv, udi

)
dv

≤ C3ςh |λ′ − λ|
γ ≤ C3ςhn

−γσ |r′ − r|γ .

It follows that
E
[∣∣Kb′r′,iu −Kbr,iu

∣∣γ ςi] ≤ cγ (C2ς ∨ C3ς)h
(
|b′ − b|γ + |r′ − r|γ

)
, (A.3)

where a ∨ b = max (a, b) . Then by the Cr inequality

E
[∣∣Kb′r′,iu

∣∣γ ςi] ≤ cγE
[
|h′Kh′λ′,iu − hKhλ,iu|

γ
ςi
]

+ cγE [|hKhλ,iu|γ ςi]

≤ cγ (C2ς ∨ C3ς)h
(
|b′ − b|γ + |λ′ − λ|γ

)
+ C4ςh ≤ C5ςh. (A.4)

Note that ∣∣(h′)α − hα∣∣ =
∣∣(b′)α − bα∣∣n−αδ = αn−αδ (b∗)

α−1 |b′ − b| ≤ C6h
α |b′ − b| (A.5)
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where the second equality follows from the intermediate value theory and b∗ lies between b′ and b. Then
by the Cr inequality, and (A.3)-(A.5), we have that for any α > 0 and γ > 0,

E
[∣∣∣(h′)−αKb′r′,iu − hαKbr,iu

∣∣∣γ ςi]
≤ cγE

[∣∣h−α (Kb′r′,iu −Kbr,iu

)∣∣γ ςi]+ cγE
[∣∣∣[(h′)−α − h−α]Kb′r′,iu

∣∣∣γ ςi]
≤ cγh

−αγE
[∣∣Kb′r′,iu −Kbr,iu

∣∣γ ςi]+ cγ

∣∣∣(h′)−α − h−α∣∣∣γ E [∣∣Kb′r′,iu

∣∣γ ςi]
≤ c2γh

1−αγ (|b′ − b|γ + |λ′ − λ|γ
)

+ cγC6h
−αγ |b′ − b|C5ςh ≤ C7ςh

1−αγ (|b′ − b|γ + |λ′ − λ|γ
)
.

In the general case where pc > 1 or pd > 1, with a little bit abuse of notation we use row vectors
to denote the bandwidth parameters. We can write hs = bsn

−δs and λt = rtn
−σt for some bs, rt, δs,

σt > 0, s = 1, ..., pc, and t = 1, ..., pd. Let b = (b1, ..., bpc) and r = (r1, ..., rpd) . Similarly, (h′, λ′) =
(h′1, ..., h

′
pc , λ

′
1, ..., λ

′
pd

) and (b′, r′) = (b′1, ..., b
′
pc , r

′
1, ..., r

′
pd

) are connected through h′s = b′sn
−δs and λ′t =

r′tn
−σt for b′s, r

′
t > 0. Then using the fact that our multivariate kernel function is a product of univariate

kernel functions, we can follow the above arguments and readily show that

E
[∣∣∣(h′!)−αKb′r′,iu − (h!)

α
Kbr,iu

∣∣∣γ ςi] ≤ C8ςh
1−αγ (‖b′ − b‖γ + ‖λ′ − λ‖γ

)
(A.6)

where C8ς is a finite constant depending on ςi. Below we use C to denote a generic constant that can
vary from equation to equation.

Now we prove (i) . Let J1n,st (b, r) = Φn,st (u; h, λ) for s, t = 1, 2, where Φn,st’s are defined in the
proof of Lemma A.1. By Theorem 3.1 in Li and Li (2010), it suffices to show that for any (b′, r′) and
(b, r) that lie in a compact set (e.g.,

[
b, b̄
]
× [r, r̄] for the case pc = pd = 1), there exist α > 0 and γ > 1

such that

E
{
‖J1n,st (b′, r′)− J1n,st (b, r)‖α

}
≤ C

{
‖b′ − b‖γ + ‖λ′ − λ‖γ

}
for some C <∞. (A.7)

We only show (A.7) for the case (s, t) = (1, 1) as the other cases are similar. Let ςi,jl denote the (j, l)th

element of QiX
′
i for j = 1, ..., k and l = 1, ..., d. Let J

(j,l)
1n,st (b, r) denote the (j, l)th element of J1n,st (b, r) .

Then E|J (j,l)
1n,11 (b′, r′)− J (j,l)

1n,11 (b, r) |2 is bounded above by
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}∣∣∣2 ≡ 2S1 + 2S2, say.

By Assumption A1, Jensen’s inequality, and (A.6), for sufficiently large n

S1 =
1
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≤ n−1E
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Kbr,iu

]
ςi,jl

}2

≤ n−1Ch1−2
(
‖b′ − b‖2 + ‖λ′ − λ‖2

)
≤ C

(
‖b′ − b‖2 + ‖λ′ − λ‖2

)
as nh→∞ implies that for sufficiently large n, n−1h−1 can be bounded by the constant 1. By (A.6),

S2 =
∣∣∣E {[(h′!)−1

Kb′r′,iu − (h!)
−1
Kbr,iu

]
ςi,jl

}∣∣∣2
≤ [C (‖b′ − b‖+ ‖λ′ − λ‖)]2 ≤ C

(
‖b′ − b‖2 + ‖λ′ − λ‖2

)
.

It follows that E{|J (j,l)
1n,11 (b′, r′)−J (j,l)

1n,11 (b, r) |2} ≤ C(‖b′ − b‖2+‖λ′ − λ‖2) and (A.7) holds for α = γ = 2
and (s, t) = (1, 1) . Analogously, we can show that it also holds for α = γ = 2 and other values of s and
t. This completes the proof of (i) .
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Next we prove (ii) . Let J2n (b, r) ≡
√
nh!Vn (u; h, λ) . By Theorem 3.1 in Li and Li (2010), it suffices

to show that for any (b′, r′) and (b, r) that lie in a compact set, there exist α > 0 and γ > 1 such that

E
{
‖J2n (b′, r′)− J2n (b, r)‖α

}
≤ C

{
‖b′ − b‖γ + ‖λ′ − λ‖γ

}
for some C <∞. (A.8)

Let ei ≡ (Q′i, Q′i ⊗ ((Uc
i − uc)

′
/h)′. By (A.6)

E
{
‖J2n (b′, r′)− J2n (b, r)‖2

}
= E


∥∥∥∥∥n−1/2

n∑
i=1

[
(h′!)

−1/2
Kb′r′,iu − (h!)

−1/2
Kbr,iu

]
eiεi

∥∥∥∥∥
2


= E

{∣∣∣(h′!)−1/2
Kb′r′,iu − (h!)

−1/2
Kbr,iu

∣∣∣2 e′ieiε
2
i

}
≤ C

(
‖b′ − b‖2 + ‖λ′ − λ‖2

)
.

Thus (ii) follows.
Next, we prove (iii) . Decompose B̄n (u; h, λ) = B̄1n (u; h, λ) + B̄2n (u; h, λ) , where B̄1n (u; h, λ) ≡

1
n

∑n
i=1{Khλ,iuQh,iuRi (u) −E [Khλ,iuQh,iuRi (u)]}, and B̄2n (u; h, λ) ≡ E [Khλ,iuQh,iuRi (u)] − B(u;

h, λ). Then J3n = J3n,1+J3n,2, where J3n,1 ≡
√
nh![B̄1n(u;ĥ,λ̂)−B̄1n (u; h, λ)] and J3n,2 ≡

√
nh![B̄2n(u;ĥ,λ̂)

−B̄2n (u; h, λ)]. It suffices to prove (iii) by showing that (iii1) J3n,1 = oP (1) and (iii2) J3n,2 = o (1) . By

Taylor expansion and Assumptions A3 and A6,
√
nh!B̄2n (u; h, λ) =

√
nh!o

(
|h|2 + |λ|

)
= o (1) uniformly

in (h, λ) , which implies (iii2) by Corollary 3.1 in Li and Li (2010). The proof of (iii1) is analogous to
that of (ii) and thus omitted. �

B Proof of the Results in Section 4

Proof of Theorem 4.1. Observe that
√
n(θ̂1−θ1) = n−1/2

∑n
i=1 Γn1 (Ui)Bn (Ui)+n−1/2

∑n
i=1 Γn1 (Ui)

Vn (Ui) . Noting that supu ‖Φn (u)−Φ (u)‖ = OP (‖h‖2 + ‖λ‖+ (nh!/ log n)
−1/2

) by strengthening the
result in Lemma A.1, following the same lines of proof as in Masry (1996) we can readily show that

sup
u
‖Γn1 (u)‖ = OP (1) and sup

u

∥∥Γn1 (u)− Γ1 (u)
∥∥ = OP

(
νn + ‖h‖2 + ‖λ‖+ (nh!/ log n)

−1/2
)

(B.1)

by Assumption A7, where Γ1 (u) is defined in (4.5). It is standard to show that

sup
u
‖Bn (u)‖ = OP (‖h‖2 + ‖λ‖) and sup

u
‖Vn (u)‖ = OP ((nh!/ log n)

−1/2
). (B.2)

It follows that n−1/2
∑n
i=1 Γn1 (Ui)Bn (Ui) = n1/2OP (‖h‖2 + ‖λ‖) = o (1) , and

n−1/2
n∑
i=1

Γn1 (Ui)Vn (Ui) = n−1/2
n∑
i=1

Γ1 (Ui)Vn (Ui) + n−1/2
n∑
i=1

[
Γn1 (Ui)− Γ1 (Ui)

]
Vn (Ui)

= An + n1/2OP

((
νn + ‖h‖2 + ‖λ‖+ (nh!/ log n)

−1/2
)

(nh!/ log n)
−1/2

)
= An + oP (1)

whereAn = n−1/2
∑n
i=1 Γ1 (Ui)Vn (Ui) .Next, using the notation in (4.9), we haveAn = n−3/2

∑n
i=1

∑n
j=1

ϕ(ζi, ζj) = n−1/2
∑n
i=1 ϕ(ζi) + oP (1) . By direct calculations, E [ϕ(ζi)] = 0, and

E [ϕ(ζi)ϕ(ζi)
′] = E

[∫ ∫
Γ1 (U)

(
QjQ

′
jε

2
j (QjQ

′
jε

2
j )⊗ ηj(Ũc)′

(QjQ
′
jε

2
j )⊗ ηj (Uc) (QjQ

′
jε

2
j )⊗ (ηj (Uc) ηj(Ũ

c)′

)
× Γ1(Ũ)′Khλ,jUKhλ,jŨdFζ (ζ) dFζ(ζ̃)

]
= Σθ1 + o (1) ,
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where Σθ1 is defined in (4.10). One can verify the Liapounov condition and conclude An
d→ N (0,Σθ1) .

This completes the proof. �

Proof of Theorems 4.2 and 4.3. We only prove Theorem 4.3, as the proof of Theorem 4.2 is a special
case. Decompose Tn as follows

Tn = (h!)
1/2

n∑
i=1

[
ĝ1 (Ui)− g1 + g1 − ĝ1

]′ [
ĝ1 (Ui)− g1 + g1 − ĝ1

]
= Tn1 − Tn2, (B.3)

where Tn1 = (h!)
1/2∑n

i=1[ĝ1 (Ui)− g1]′[ĝ1 (Ui)− g1], and Tn2 = n (h!)
1/2

[g1 − ĝ1]′[g1 − ĝ1]. It suffices
to show that under H1 (rn) , (i) Tn1 −Bn − µ0 → N

(
0, σ2

0

)
and (ii) Tn2 = oP (1) .

To prove (i) , we further decompose Tn1 as follows:

Tn1 = (h!)
1/2

n∑
i=1

[ĝ1 (Ui)− g1 (Ui)]
′
[ĝ1 (Ui)− g1 (Ui)] + (h!)

1/2
n∑
i=1

[g1 (Ui)− g]
′
[g1 (Ui)− g]

+2 (h!)
1/2

n∑
i=1

[ĝ1 (Ui)− g1 (Ui)]
′
[g1 (Ui)− g1]

≡ Tn11 + Tn12 + 2Tn13, say. (B.4)

We study each of the three terms on the right hand side. By (4.7), we can decompose Tn11 as follows:

Tn11 = (h!)
1/2

n∑
i=1

Vn (Ui)
′
Γn1 (Ui)

′
Γn1 (Ui)Vn (Ui) + (h!)

1/2
n∑
i=1

Bn (Ui)
′
Γn1 (Ui)

′
Γn1 (Ui)Bn (Ui)

+2 (h!)
1/2

n∑
i=1

Bn (Ui)
′
Γn1 (Ui)

′
Γn1 (Ui)Vn (Ui)

= Tn11 + T
(1)
n11 + 2T

(2)
n11, say.

First, T
(1)
n11 = OP ((n (h!)

1/2
(‖h‖2 + ‖λ‖)2) = oP (1) by (B.1), (B.2), and Assumption A8. Applying

(B.1), (B.2), the fact that n−1
∑n
i=1 ‖Vn (Ui)‖ = OP ((nh!)

−1/2
), and the fact that B (u) = E[Bn (u)] =

O(‖h‖2 +‖λ‖) and Bn (u)−E[Bn (u)] = OP ((nh!/ log n)
−1/2

(‖h‖2 +‖λ‖)) uniformly in u, we can readily

show that T
(2)
n11 = oP (1) . It follows that Tn11 = Tn11 + oP (1) . Now, write

Tn11 = (h!)
1/2

n∑
i=1

Vn (Ui)
′
Γ1 (Ui)

′
Γ1 (Ui)Vn (Ui)

+ (h!)
1/2

n∑
i=1

Vn (Ui)
′ [

Γn1 (Ui)− Γ1 (Ui)
]′ [

Γn1 (Ui)− Γ1 (Ui)
]
Vn (Ui)

+2 (h!)
1/2

n∑
i=1

Vn (Ui)
′ [

Γn1 (Ui)− Γ1 (Ui)
]′
Vn (Ui) Γ1 (Ui)Vn (Ui)

≡ T 11a + T 11b + 2T 11c, say. (B.5)

Using the definitions of ζi and ϕ(ζi, ζj) in (4.9) we have

Tn11a =
(h!)

1/2

n2

n∑
i=1

n∑
j=1

n∑
l=1

ϕ(ζi, ζj)
′ϕ(ζi, ζl)

=
(h!)

1/2

n2

n∑
i=1

n∑
j=1

‖ϕ(ζi, ζj)‖2 +
(h!)

1/2

n2

n∑
i=1

n∑
j 6=i

n∑
l 6=j,i

ϕ(ζi, ζj)
′ϕ(ζi, ζl)

+
2 (h!)

1/2

n2

n∑
i=1

n∑
j 6=i

ϕ(ζi, ζj)
′ϕ(ζi, ζi) ≡ Bn + Vn1 +Rn1, say. (B.6)
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Let ϕ(ζi, ζj , ζl) ≡ [ϕ(ζi, ζj)
′ϕ(ζi, ζl) + ϕ(ζj , ζi)

′ϕ(ζj , ζl) + ϕ(ζl, ζi)
′ϕ(ζl, ζj)]/3. Then Vn1 = 6 (h!)

1/2
n−2∑

1≤i<j<l≤n ϕ(ζi, ζj , ζl) = (n−1)(n−2)
n V n1, where V n1 ≡ 6(h!)1/2

n(n−1)(n−2)

∑
1≤i<j<l≤n ϕ(ζi, ζj , ζl). Note that

for all i 6= j 6= l, θ ≡ E[ϕ(ζi, ζj , ζl)] = 0, ϕ1 (a) ≡ E[ϕ(a, ζj , ζl)] = 0, and ϕ2 (a, ã) ≡ E [ϕ (a, ã, ζl)] =
1
3E[ϕ (ζl,a)

′
ϕ (ζl, ã)], where a and ã are nonrandom. Let ϕ3 (a, ã,a) ≡ ϕ (a, ã,a)−ϕ2 (a, ã)−ϕ2 (a,a)−

ϕ2 (ã,a) . By the Hoeffding decomposition, V n1 = 3H
(2)
n +H

(3)
n where H

(2)
n ≡ 2(h!)1/2

n(n−1)

∑
1≤i<j≤n ϕ2(ζi, ζj)

and H
(3)
n ≡ 6(h!)1/2

n(n−1)(n−2)

∑
1≤i<j<l≤n ϕ3(ζi, ζj , ζl). Noting that E[ϕ3 (a, ã, ζi)] = 0 and that ϕ3 is sym-

metric in its arguments by construction, it is straightforward to show that E[H
(3)
n ] = 0 and E[H

(3)
n ]2 =

O(n−3 (h!)
−1

). Hence, H
(3)
n = OP (n−3/2 (h!)

−1/2
) = oP

(
n−1

)
by Chebyshev’s inequality. It follows that

Vn1 = n(n−2)
n−1 V n1 = {1 + o (1)}Hn + oP (1) , where

Hn ≡
2 (h!)

1/2

n

∑
1≤i<j≤n

3ϕ2(ζi, ζj) =
2 (h!)

1/2

n

∑
1≤i<j≤n

∫
ϕ (a, ζi)

′
ϕ(a, ζj)dFζ (a) .

As Hn is a second order degenerate U -statistic, it is straightforward but tedious to verify that all the
conditions of Theorem 1 of Hall (1984) are satisfied, implying that a central limit theorem applies to

Hn : Hn
d→ N

(
0, σ2

0

)
, where the asymptotic variance of Hn is given by σ2

0 ≡ limn→∞ σ2
n and σ2

n ≡
2h!EjEl[

∫
ϕ(ζ, ζj)

′ϕ(ζ, ζl)Fζ (dζ)]2. Consequently Vn1
d→ N

(
0, σ2

0

)
. For Rn1, it is easy to verify that

E (Rn1) = 0 and E
(
R2
n1

)
= O

(
(nh!)−1

)
= o (1) . So Rn1 = oP (1) by Chebyshev’s inequality and

Tn11a −Bn
d→ N

(
0, σ2

0

)
. (B.7)

By (B.1)-(B.2) and Assumption A8, we have

Tn11b ≤ (h!)
1/2

sup
u

∥∥Γn1 (u)− Γ1 (u)
∥∥2

n∑
i=1

Vn (Ui)
′ Vn (Ui)

= (h!)
1/2

OP

((
n−1/2 (h!)

−1/2
√

log n+ ‖h‖2 + ‖λ‖
)2
)
OP

(
(h!)

−1
)

= oP (1) .

Similarly, Tn11c = (h!)
1/2

OP (((nh!)
−1/2√

log n + ‖h‖2 + ‖λ‖))OP ((h!)
−1

) = oP (1) . It follows that

Tn11 −Bn
d→ N

(
0, σ2

0

)
, and that Tn11 −Bn

d→ N
(
0, σ2

0

)
.

Under H1 (rn) , g1 = n−1
∑n
i=1 g1 (Ui) = θ1 + rnδn, where δn = n−1

∑n
i=1 δn (Ui) = E [δn (Ui)] +

OP
(
n−1/2

)
. So Tn12 = n−1

∑n
i=1

∥∥δn (Ui)− δn
∥∥2

= limn→∞E
[
‖δn (Ui)− E [δn (Ui)]‖2

]
= µ0, and

Tn13 = rn (h!)
1/2

n∑
i=1

[Γn1 (Ui)Bn (Ui) + Γn1 (Ui)Vn (Ui)]
′ [
δn (Ui)− δn

]
= rn (h!)

1/2
n∑
i=1

Γ1 (Ui)Vn (Ui)
[
δn (Ui)− δn

]
+ oP (1) = Tn13 + oP (1) ,

where Tn13 = rn(h!)1/2

n

∑n
i=1

∑n
j 6=i ϕ(ζi, ζj) {δn (Ui)− E [δn (Ui)]} .Noting that E

[
Tn13

]
= 0 and E

[
Tn13

]2
=

r2
nh!O(n + (h!)

−1
) = o (1) , we have Tn13 = oP (1) by Chebyshev’s inequality. Thus Tn13 = oP (1) . In

sum, we have Tn1 −Bn − µ0
d→ N

(
0, σ2

0

)
.

Now we show (ii) . Noting that ĝ1−g1 = 1
n

∑n
i=1 [Γn1 (Ui)Bn (Ui) + Γn1 (Ui)Vn (Ui)], we have Tn2 =

(h!)1/2

n

∑n
i=1

∑n
j=1 Bn (Ui)

′
Γn1 (Ui)

′
Γn1 (Uj)Bn (Uj) + (h!)1/2

n

∑n
i=1

∑n
j=1 Vn (Ui) Γn1 (Ui)

′
Γn1 (Uj) Vn (Uj)

+ 2(h!)1/2

n

∑n
i=1

∑n
j=1 Bn (Ui)

′
Γn1 (Ui)

′
Γn1 (Uj)Vn (Uj) ≡ Tn21 + Tn22 + 2Tn23, say. For Tn21, we have

Tn21 ≤ supu ‖Bn (u)‖2 (h!)1/2

n

∑n
i=1

∑n
j=1tr(Γn1 (Ui)

′
Γn1 (Uj)) = n (h!)

1/2
supu ‖Bn (u)‖2tr(Γ

′
n1Γn1) =

n (h!)
1/2

OP ((‖h‖2 + ‖λ‖)2) = oP (1) , where Γn1 = n−1
∑n
i=1 Γn1 (Ui) = OP (1) . For Tn22, we can show
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that Tn22 = Tn22 + oP (1) , where Tn22 = (h!)1/2

n

∑n
i=1

∑n
j=1 Vn (Ui) Γ1 (Ui)

′
Γ1 (Uj)Vn (Uj) . Noting

that E
∣∣Tn2,2

∣∣ = E
[
Tn2,2

]
= O((h!)

1/2
+ n−1 (h!)

−1
), we have Tn22 = oP (1) by Markov’s inequality.

Then by Cauchy-Schwarz’s inequality, Tn23 ≤ {Tn21}1/2 {Tn22}1/2 = oP (1) . So Tn2 = oP (1) . �

Proof of Theorems 4.4. Using the notation defined in the proof of Theorem 4.3, we have n−1 (h!)
−1/2

Tn
= n−1 (h!)

−1/2
(Tn1 − Tn2). Under H1, it is easy to show that n−1 (h!)

−1/2
Tn2 = oP (1) and

n−1 (h!)
−1/2

Tn1 = n−1 (h!)
−1/2

Tn12 + oP (1) = n−1
n∑
i=1

[g1 (Ui)− g]
′
[g1 (Ui)− g] + oP (1)

= E ‖g1 (Ui)− E [g1 (Ui)]‖2 + oP (1) = µA + oP (1) ,

On the other hand, n−1 (h!)
−1/2

B̂n = OP
(
n−1(h!)−1

)
= oP (1) and σ̂2

n = σ2
0 + oP (1). It follows that

n−1 (h!)
−1/2

Jn = (n−1 (h!)
−1/2

Tn − n−1 (h!)
−1/2

B̂n)/
√
σ̂2
n
P→ µA/σ0, and the conclusion follows. �

Proof of Theorems 4.5. Let P ∗ denote the probability measure induced by the wild bootstrap con-
ditional on the original sample Wn and E∗ and Var∗ denote the expectation and variance with respect
to P ∗. Let OP∗ (·) and oP∗ (·) denote the probability order under P ∗; e.g., bn = oP∗ (1) if for any ε > 0,
P ∗ (‖bn‖ > ε) = oP (1) . Note that bn = oP (1) implies that bn = oP∗ (1) . The proof follows closely from
that of Theorem 4.3.

Let ĝ∗1, ĝ
∗
1, T

∗
n , Γ∗n1, B∗n, V∗n, B∗n, B̂∗n and σ̂∗2n denote the bootstrap analogue of ĝ1, ĝ1, Tn, Γn1, Bn, Vn,

Bn, B̂n and σ̂2
n, respectively. For example, Γ∗n1 (u) = S1[Φn (u)

′
Ψ∗n (u)

−1
Φn (u)]−1Φn (u)

′
Ψ∗n (u)

−1
as

Φn (u) is the same in both the real data and bootstrap worlds. Note that θ̂1 = n−1
∑n
i=1 ĝ1 (Ui) in the

bootstrap world plays the role of g1 (·) in the real data world. The decomposition of Tn in (B.3) continues

to hold for T ∗n in the bootstrap world: T ∗n = (h!)
1/2∑n

i=1[ĝ∗1 (U∗i )− θ̂1 + θ̂1− ĝ
∗
1]′ [ĝ∗1 (U∗i )− θ̂1 + θ̂1− ĝ

∗
1] =

T ∗n1 − T ∗n2, where T ∗n1 = (h!)
1/2∑n

i=1[ĝ∗1 (Ui)− θ̂1]′[ĝ∗1 (Ui)− θ̂1], and Tn2 = n (h!)
1/2

[θ̂1 − ĝ
∗
1]′[θ̂1 − ĝ

∗
1].

We prove the first part of the theorem by showing that (i) (T ∗n1 −B∗n) /σ∗2n → N (0, 1) in distribution

in probability, (ii) T ∗n2 = oP∗ (1) , (iii) B̂∗n − B∗n = oP∗ (1) , and (iv) σ̂∗2n − σ∗2n = oP∗ (1) , where σ∗2n is
defined below.

Note that Y ∗i = θ̂′1X1i+ θ̂
′
2X2i+ε

∗
i . As θ̂1 and θ̂2, when treated as functions of u, have zero derivatives

up to the infinite order, B∗n (Ui) = 0 for all i and (4.7) now takes the following form in the bootstrap
world

ĝ∗1 (Ui)− θ̂1 = Γ∗n1 (Ui)V∗n (Ui) (B.8)

By the definition of Γ∗n1 (u) and the extra condition in the theorem

Γ∗n1 (u) = Γn1 (u) +OP∗(νn) uniformly in u. (B.9)

Let ζ∗i (u) ≡

(
Qiε

∗
i

(Qiε
∗
i )⊗ ηi (uc)

)
Khλ,iu. Then V∗n (u) = n−1

∑n
i=1 ζ

∗
i . Observing that E∗ [V∗n (u)] = 0

and Var∗ [V∗n (u)] = n−2
∑n
i=1E

∗[ζ∗i (u) ζ∗i (u)
′
] = OP ((nh!)

−1
), V∗n (u) = OP∗((nh!)

−1/2
) by Cheby-

shev’s inequality. By the use of the exponential inequality, this result can be strengthened to

V∗n (u) = OP∗((nh!)
−1/2

√
log n) uniformly in u. (B.10)

To show (i) , observe that by (B.8)-(B.10) and Assumption A8, T ∗n1 = T
∗
n1 + oP∗ (1) , where T

∗
n1 =

(h!)
1/2∑n

i=1 V∗n (Ui)
′
Γn1 (Ui)

′
Γn1 (Ui)V∗n (Ui) . Let ϕ∗in(ej) = Γn1 (Ui) ζ

∗
j (Ui) and ϕ̄∗n(ei, ej) = n−1

∑n
s=1

ϕ∗sn(ei)
′ϕ∗sn(ej). Then

T
∗
n1 =

(h!)
1/2

n

n∑
i=1

ϕ̄∗n(ei, ei) +
2 (h!)

1/2

n

∑
1≤i<j≤n

ϕ̄∗n(ei, ej) ≡ B∗n + V ∗n1, say.
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As V ∗n1 is a second order degenerate U -statistic, we can apply the CLT for second order degenerate U -
statistic for independent but nonidentically distributed observations (e.g., De Jong, 1987) and conclude
that V ∗n1/σ

∗2
n → N (0, 1) in distribution in probability, where σ∗2n ≡ 2h!E∗[ϕ̄∗n(e1, e2)]2. Then (i) follows.

Now we show (ii) . By (B.8)-(B.10) and Assumption A8, Tn2 = (h!)1/2

n

∑n
i=1

∑n
j=1 V∗n (Ui) Γ∗n1 (Ui)

′

Γ∗n1 (Uj)V∗n (Uj) = T
∗
n2 + oP (1) , where T

∗
n2 = (h!)1/2

n

∑n
i=1

∑n
j=1 V∗n (Ui) Γn1 (Ui)

′
Γn1 (Uj)V∗n (Uj) .

Then (ii) follows by the fact that E∗|T ∗n2| = E∗[T
∗
n2] = oP (1) and Markov’s inequality. For (iii) ,

noting that B∗n = n−2 (h!)
1/2∑n

i=1

∑n
j=1 ||ϕ∗jn(ei)||2 and the bootstrap analogue of B̂n is given by

B̂∗n = n−2 (h!)
1/2∑n

i=1

∑n
j=1 ||ϕ̂∗ij ||2 where ϕ̂∗ij = Γn1 (Ui)

(
Qj ε̂

∗
j(

Qj ε̂
∗
j

)
⊗ ηj (Uc

i )

)
Khλ,jUi

and ε̂∗j =

Y ∗j − ĝ∗1 (Uj)
′
X1j − ĝ∗2 (Uj)

′
X2j , it is standard to show that B̂∗n = B∗n + oP∗ (1) by using (B.8)-(B.10),

the corresponding result for ĝ∗2, and Chebyshev’s inequality. Analogously, we can prove (iv) .
Let z̄∗α denote the 1 − α conditional quantile of J∗n given Wn, i.e., P (J∗n ≥ z̄∗α|Wn) = α. Recall z∗α is

the 1−α quantile of the empirical distribution of {J∗nj}Bj=1. By choosing B sufficiently large, the approx-
imation error of z∗α to z̄∗α can be made arbitrarily small and negligible. By the first part of the theorem,
z̄∗α → zα in probability. Then in view of Theorem 4.2 and the remark after it, limn→∞ P (Jn ≥ z∗α) =

limn→∞ P (Jn ≥ zα) = α under H0. By Theorem 4.3 and the fact that B̂n = Bn + oP (1) and σ̂2
n = σ2

0 +
oP (1) under H1(n−1/2(h!)−1/4), we have limn→∞ P (Jn ≥ z∗α) = limn→∞ P (Jn ≥ zα) = 1−Φ(zα−µ0/σ0)
under H1(n−1/2(h!)−1/4). By Theorem 4.4 limn→∞ P (Jn ≥ z∗α) = limn→∞ P (Jn ≥ zα) = 1 under H1.�

ACKNOWLEDGMENTS

The authors sincerely thank Keisuke Hirano, the associate editor, and two anonymous referees for their
many insightful comments and suggestions that lead to a substantial improvement of the presentation.
They are also thankful to David Card, Todd Sorensen, and seminar participants at the University of
Queensland, City University of Hong Kong, and the conference in honor of M. Hashem Pesaran at
Cambridge University. The third author gratefully acknowledges the financial support from the Academic
Senate, UCR.

31



References

Ai, C. and X. Chen (2003), “Efficient Estimation of Models with Conditional Moment Restrictions
Containing Unknown Functions,” Econometrica 71, 1795-1843.

Altonji, J. and L. Segal (1996), “Small-sample Bias in GMM Estimation of Covariance Structures,”
Journal of Business & Economic Statistics 14, 353-366.

Baltagi, B. H. and Q. Li (2002), “On Instrumental Variable Estimation of Semiparametric Dynamic
Panel Data Models,” Economics Letters 76, 1-9.

Becker, G. and B. Chiswick (1966), “Education and Distribution of Earnings,” American Economic
Review 56, 358-369.

Cai, Z., and H. Xiong (2010), “Efficient Estimation of Partially Varying Coefficient Instrumental Vari-
ables models,” WISE Working Paper Series WISEWP 0614, Xiamen University.

Cai, Z., M. Das, H. Xiong, and X. Wu (2006), “Functional Coefficient Instrumental Variables Models,”
Journal of Econometrics 133, 207-241.

Cai, Z., J. Fan, and Q. Yao (2000), “Functional-coefficient Regression Models for Nonlinear Time Series,”
Journal of American Statistical Association 95, 941–956.

Cai, Z. and Li, Q. (2008), “Nonparametric Estimation of Varying Coefficient Dynamic Panel Data
Models,” Econometric Theory 24, 1321-1342.

Card, D. (2001), “Estimating the Return to Schooling: Progress on Some Persistent Econometric Prob-
lems,” Econometrica 69, 1127-1160.

Card, D., and T. Lemieux (2001), “Can Falling Supply Explain the Rising Return to College for Younger
Men? A Cohort-based Analysis,” The Quarterly Journal of Economics 116, 705-746.

Chen, R. and R. S. Tsay (1993), “Functional-coefficient Autoregressive Models,” Journal of the American
Statistical Association 88, 298-308.

Cleveland, W. S., E. Grosse, and W. M. Shyu (1992), “Local Regression Models,” in J. M. Chambers
and T. J. Hastie (Eds.), Statistical Models in S, pp. 309-376. Pacific Grove, CA: Wadsworth &
Brooks/Cole.

Das, M. (2005), “Instrumental Variables Estimators for Nonparametric Models with Discrete Endoge-
nous Regressors,” Journal of Econometrics 124, 335-361.

Das, M., W. K. Newey and F. Vella (2003), “Nonparametric Estimation of Sample Selection Models,”
Review of Economic Studies 80, 33-58.

De Jong, P. (1987), “A Central Limit Theorem for Generalized Quadratic Forms,” Probability Theory
and Related Fields 75, 261-277.

Duncan, G. M. and D. E. Leigh (1985), “The Endogeneity of Union Status: An Empirical Test,” Journal
of Labor Economics 3, 385-402.

Fan, J. and T. Huang (2005), “Profile Likelihood Inferences on Semiparametric Varying-Coefficient
Partially Linear Models,” Bernoulli 11, 1031-1057.

Fan, J. and W. Zhang (1999), “Statistical Estimation in Varying Coefficient Models,” The Annals of
Statistics 27, 1491–1518.

Fan, J., C. Zhang, and J. Zhang (2001), “Generalized Likelihood Ratio Statistics and Wilks Phe-
nomenon,” The Annals of Statistics 29, 153-193.
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Table 1: Finite Sample Comparison of Various Nonparametric Estimators

DGP n τ Estimates Homoskedasticity Heteroskedasticity
g1 g2 g1 g2

MAD MSE MAD MSE MAD MSE MAD MSE
1 100 0.32 SCU 0.742 0.984 0.400 0.304 1.247 2.722 0.703 0.920

IWll 0.497 0.433 0.264 0.124 0.754 1.091 0.468 0.400
OIVll 0.498 0.437 0.284 0.138 0.580 0.622 0.380 0.253
IWlc 0.671 0.828 0.391 0.274 0.884 1.585 0.547 0.555
OIVlc 0.676 0.814 0.419 0.300 0.700 0.951 0.469 0.395
CDXW 0.699 0.967 0.373 0.268 0.929 1.679 0.566 0.594

0.75 SCU 0.982 1.251 0.628 0.515 1.744 3.899 1.100 1.579
IWll 0.540 0.684 0.340 0.314 0.834 1.769 0.602 0.811
OIVll 0.473 0.391 0.310 0.168 0.549 0.545 0.421 0.305
IWlc 0.680 1.018 0.456 0.469 0.916 2.029 0.658 0.938
OIVlc 0.636 0.729 0.449 0.356 0.674 0.892 0.517 0.491
CDXW 0.845 1.470 0.522 0.566 1.074 2.301 0.751 1.092

400 0.32 SCU 0.603 0.503 0.322 0.139 1.071 1.622 0.575 0.469
IWll 0.323 0.192 0.164 0.049 0.525 0.572 0.316 0.196
OIVll 0.328 0.195 0.178 0.056 0.406 0.337 0.258 0.127
IWlc 0.379 0.250 0.217 0.080 0.535 0.550 0.332 0.198
OIVlc 0.402 0.280 0.247 0.103 0.424 0.353 0.281 0.144
CDXW 0.455 0.441 0.226 0.105 0.640 0.876 0.371 0.274

0.75 SCU 0.946 0.988 0.602 0.395 1.697 3.261 1.060 1.253
IWll 0.344 0.287 0.205 0.112 0.565 0.863 0.400 0.386
OIVll 0.323 0.195 0.202 0.075 0.400 0.333 0.299 0.177
IWlc 0.379 0.287 0.247 0.122 0.549 0.686 0.396 0.322
OIVlc 0.388 0.266 0.269 0.126 0.421 0.365 0.320 0.196
CDXW 0.573 0.770 0.332 0.258 0.754 1.284 0.502 0.534

2 100 0.32 SCU 0.626 0.692 0.664 2.882 1.006 1.636 0.611 0.673
IWll 0.421 0.398 0.795 2.967 0.585 0.778 0.440 0.506
OIVll 0.518 0.720 0.686 2.005 0.460 0.594 0.402 0.432
IWlc 0.546 0.701 0.929 3.141 0.648 0.946 0.526 0.639
OIVlc 0.602 0.808 0.892 2.705 0.552 0.760 0.501 0.580
CDXW 0.523 0.615 0.826 3.012 0.662 0.976 0.467 0.559

0.75 SCU 0.917 1.051 0.690 1.915 1.541 2.865 1.008 1.262
IWll 0.434 0.466 0.623 1.775 0.618 1.007 0.518 0.681
OIVll 0.494 0.689 0.566 1.261 0.468 0.636 0.444 0.451
IWlc 0.533 0.698 0.747 1.954 0.648 1.014 0.571 0.727
OIVlc 0.579 0.778 0.731 1.696 0.561 0.819 0.531 0.611
CDXW 0.601 0.785 0.696 1.829 0.743 1.208 0.577 0.760

400 0.32 SCU 0.533 0.343 0.322 0.395 0.912 1.010 0.508 0.332
IWll 0.205 0.082 0.213 0.346 0.309 0.214 0.225 0.094
OIVll 0.242 0.188 0.230 0.362 0.240 0.154 0.202 0.078
IWlc 0.277 0.176 0.292 0.404 0.343 0.257 0.273 0.130
OIVlc 0.309 0.213 0.313 0.387 0.287 0.208 0.260 0.114
CDXW 0.257 0.133 0.228 0.364 0.353 0.276 0.240 0.110

0.75 SCU 0.903 0.854 0.599 0.389 1.530 2.491 0.984 1.041
IWll 0.209 0.092 0.177 0.079 0.319 0.259 0.261 0.141
OIVll 0.241 0.199 0.195 0.119 0.245 0.177 0.226 0.107
IWlc 0.270 0.168 0.252 0.135 0.339 0.257 0.298 0.164
OIVlc 0.300 0.202 0.277 0.155 0.290 0.215 0.278 0.140
CDXW 0.309 0.202 0.224 0.113 0.404 0.365 0.302 0.182

Note. See the text for the definition of the six estimates: SCU, IWll, OIVll, IWlc, OIVlc, and CDXW. The
MAD and MSE are averages over 500 replications.
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Table 2: Rejection Frequency of Nonparametric Tests for the Constancy of Functional Coefficients (nom-
inal level: 0.05)

DGP n δ τ Homoskedasticity Heteroskedasticity
H0,1 H0,2 H0,12 H0,1 H0,2 H0,12

1 100 0 0.32 0.042 0.058 0.046 0.056 0.058 0.048
0.75 0.016 0.066 0.032 0.022 0.062 0.036

0.2 0.32 0.180 0.922 0.732 0.126 0.358 0.354
0.75 0.192 0.824 0.696 0.096 0.280 0.270

0.4 0.32 0.800 0.996 1.000 0.560 0.890 0.886
0.75 0.862 0.998 0.996 0.602 0.754 0.804

0.6 0.32 0.988 1.000 1.000 0.892 0.994 0.992
0.75 0.992 1.000 1.000 0.920 0.958 0.974

200 0 0.32 0.058 0.048 0.058 0.068 0.036 0.056
0.75 0.026 0.056 0.050 0.036 0.044 0.048

0.2 0.32 0.282 0.996 0.924 0.156 0.572 0.478
0.75 0.292 0.984 0.928 0.154 0.448 0.420

0.4 0.32 0.904 1.000 1.000 0.648 0.992 0.990
0.75 0.968 1.000 1.000 0.738 0.960 0.970

0.6 0.32 1.000 1.000 1.000 0.952 1.000 1.000
0.75 1.000 1.000 1.000 0.986 0.998 1.000

2 100 0 0.32 0.018 0.040 0.024 0.038 0.066 0.048
0.75 0.018 0.026 0.022 0.026 0.046 0.038

0.2 0.32 0.038 0.754 0.184 0.048 0.264 0.112
0.75 0.038 0.618 0.196 0.040 0.190 0.092

0.4 0.32 0.204 0.990 0.734 0.132 0.724 0.438
0.75 0.214 0.982 0.768 0.132 0.580 0.402

0.6 0.32 0.366 0.914 0.882 0.280 0.960 0.786
0.75 0.424 0.994 0.980 0.318 0.866 0.738

200 0 0.32 0.060 0.066 0.064 0.060 0.058 0.052
0.75 0.042 0.048 0.040 0.038 0.050 0.040

0.2 0.32 0.132 0.944 0.386 0.088 0.398 0.172
0.75 0.126 0.864 0.374 0.076 0.288 0.156

0.4 0.32 0.474 1.000 0.986 0.260 0.940 0.684
0.75 0.494 1.000 0.970 0.268 0.836 0.632

0.6 0.32 0.792 0.992 0.976 0.552 0.998 0.972
0.75 0.848 1.000 1.000 0.572 0.986 0.936

Table 3: The ALS Sample Characteristics

Variable Source Mean St. Dev. Min Max
Born in Australia B.3 .862 .345 0 1
Married A.7 .183 .386 0 1
Union Member G.11 .425 .494 0 1
Government Employee G.10 .286 .452 0 1
Age A.4 20.718 2.622 15 25
Years of Education E.3, 5, 8, 12, 14, 21, 23 11.736 1.529 3 16
Years of Experience F.3-4, 7-10, 31-3, G.23-5 1.489 1.997 0 14
Hourly Wage ($) G.3-5 and 7-8 6.662 2.579 .375 47.5
Attitudes Index O.1 1.969 .351 .7 2.8
Notes: The sample is based on the 1985 wave of the Australian Longitudinal Survey (ALS). The
sample size is 2049 observations. Column Source provides information about the questions from
the ALS, which were used to obtain the variables. Hourly wage is in 1985 dollars. Attitudes Index
is constructed using only six out of seven equations about work, social roles and school attitudes
of individuals toward working women. Specifically, we exclude question (iii).
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Figure 1: Experience-Wage and Education-Wage Profiles
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Figure 2: Plots of g1(Experience, Individual Characteristic, :) and g2(Experience, Individual
Characteristic, :) Averaged over Other Categorical Variables

Notes: Horizontal Axis - Experience. Vertical Axis - g1 or g2. SCU estimate, dashed line; our proposed estimate with
optimal weight matrix, solid line. The rule of thumb method is used to choose the bandwidth. The four rows correspond
to Individual Characteristic being a binary indicator of whether a woman is married, a union member, a government
employee, and born in Australia, from the top to the bottom. The four columns from the left to the right correspond to g1
for Individual Characteristic = 1 and 0, and g2 for Individual Characteristic = 1 and 0, respectively.

Figure 3: Plots of g1(Experience, :) and g2(Experience, :) Averaged over All Categorical Vari-
ables

Notes: Horizontal Axis - Experience. Vertical Axis - g1 or g2. SCU estimate, dashed line; our proposed estimate with
optimal weight matrix, solid line. The rule of thumb method is used to choose the bandwidth. The two columns from the
left to the right correspond to g1 and g2, respectively.
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Figure 4: Plots of g1(Experience, Individual Characteristic, :) and g2(Experience, Individual
Characteristic, :) Averaged over Other Categorical Variables

Notes: Horizontal Axis - Experience. Vertical Axis - g1 or g2. SCU estimate, dashed line; our proposed estimate with optimal
weight matrix, solid line. The LSCV method is used to choose the bandwidth. The four rows correspond to Individual
Characteristic being a binary indicator of whether a woman is married, a union member, a government employee, and
born in Australia, from the top to the bottom. The four columns from the left to the right correspond to g1 for Individual
Characteristic = 1 and 0, and g2 for Individual Characteristic = 1 and 0, respectively.

Figure 5: Plots of g1(Experience, :) and g2(Experience, :) Averaged over All Categorical Vari-
ables

Notes: Horizontal Axis - Experience. Vertical Axis - g1 or g2. SCU estimate, dashed line; our proposed estimate with
optimal weight matrix, solid line. The LSCV method is used to choose the bandwidth. The two columns from the left to
the right correspond to g1 and g2, respectively.
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