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LOCAL LINEAR SPATIAL REGRESSION1

BY MARC HALLIN , ZUDI LU AND LANH T. TRAN

Université Libre de Bruxelles, Chinese Academy of Sciences and London School
of Economics, and Indiana University

A local linear kernel estimator of the regression functionx �→ g(x) :=
E[Yi|Xi = x], x ∈ R

d , of a stationary(d + 1)-dimensional spatial process
{(Yi,Xi), i ∈ Z

N } observed over a rectangular domain of the formIn := {i =
(i1, . . . , iN ) ∈ Z

N |1 ≤ ik ≤ nk, k = 1, . . . ,N}, n = (n1, . . . , nN ) ∈ Z
N , is

proposed and investigated. Under mild regularity assumptions, asymptotic
normality of the estimators ofg(x) and its derivatives is established.
Appropriate choices of the bandwidths are proposed. The spatial process
is assumed to satisfy some very general mixing conditions, generalizing
classical time-series strong mixing concepts. The size of the rectangular
domainIn is allowed to tend to infinity at different rates depending on the
direction inZ

N .

1. Introduction. Spatial data arise in a variety of fields, including econo-
metrics, epidemiology, environmental science, image analysis, oceanography and
many others. The statistical treatment of such data is the subject of an abundant
literature, which cannot be reviewed here; for background reading, we refer the
reader to the monographs by Anselin and Florax (1995), Cressie (1991), Guyon
(1995), Possolo (1991) or Ripley (1981).

Let ZN , N ≥ 1, denote the integer lattice points in theN -dimensional Euclidean
space. A pointi = (i1, . . . , iN ) in Z

N will be referred to as asite. Spatial
data are modeled as finite realizations of vector stochastic processes indexed
by i ∈ Z

N : random fields. In this paper, we will consider strictly stationary(d +1)-
dimensional random fields, of the form

{(Yi,Xi); i ∈ Z
N },(1.1)

whereYi, with values inR, and Xi, with values inR
d , are defined over some

probability space(�,F ,P).
A crucial problem for a number of applications is the problem ofspatial

regression, where the influence of a vectorXi of covariates on some response
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variableYi is to be studied in a context of complex spatial dependence. More
specifically, assuming thatYi has finite expectation, the quantity under study in
such problems is thespatial regression function

g : x �→ g(x) := E[Yi|Xi = x].
The spatial dependence structure in this context plays the role of a nuisance,
and remains unspecified. Althoughg of course is only defined up to a P-null
set of values ofx (being a class of P-a.s. mutually equal functions rather than a
function), we will treat it, for the sake of simplicity, as a well-defined real-valued
x-measurable function, which has no implication for the probabilistic statements of
this paper. In the particular case under whichXi itself is measurable with respect to
a subset ofYj’s, with j ranging over some neighborhood ofi, g is called aspatial
autoregression function. Such spatial autoregression models were considered as
early as 1954, in the particular case of a linear autoregression functiong, by
Whittle (1954, 1963); see Besag (1974) for further developments in this context.

In this paper, we are concerned with estimating the spatial regression (au-
toregression) functiong : x �→ g(x); contrary to Whittle (1954), we adopt a
nonparametric point of view, avoiding any parametric specification of the possi-
bly extremely complex spatial dependent structure of the data.

For N = 1, this problem reduces to the classical problem of (auto)regression
for serially dependent observations, which has received extensive attention in the
literature; see, for instance, Roussas (1969, 1988), Masry(1983, 1986), Robinson
(1983, 1987), Ioannides and Roussas (1987), Masry and Györfi (1987), Yakowitz
(1987), Boente and Fraiman (1988), Bosq (1989), Györfi, Härdle, Sarda and Vieu
(1989), Tran (1989), Masry and Tjøstheim (1995), Hallin and Tran (1996), Lu
and Cheng (1997), Lu (2001) and Wu and Mielniczuk (2002), to quote only a
few. Quite surprisingly, despite its importance for applications, the spatial version
(N > 1) of the same problem remains essentially unexplored. Several recent papers
[e.g., Tran (1990), Tran and Yakowitz (1993), Carbon, Hallin and Tran (1996),
Hallin, Lu and Tran (2001, 2004), Biau (2003) and Biau and Cadre (2004)] deal
with the related problem of estimating the densityf of a random field of the form
{Xi; i ∈ Z

N }, or the prediction problem but, to the best of our knowledge, the
only results available on the estimation of spatial regression functions are those by
Lu and Chen (2002, 2004), who investigate the properties of a Nadaraya–Watson
kernel estimator forg.

Though the Nadaraya–Watson method is central in most nonparametric regres-
sion methods in the traditional serial case (N = 1), it has been well documented
[see, e.g., Fan and Gijbels (1996)] that this approach suffers from several se-
vere drawbacks, such as poor boundary performance, excessive bias and low effi-
ciency, and that the local polynomial fitting methods developed by Stone (1977)
and Cleveland (1979) are generally preferable. Local polynomial fitting, and par-
ticularly its special case—local linear fitting—recently have become increasingly
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popular in light of recent work by Cleveland and Loader (1996), Fan (1992), Fan
and Gijbels (1992, 1995), Hastie and Loader (1993), Ruppert and Wand (1994)
and several others. ForN = 1, Masry and Fan (1997) have studied the asymptot-
ics of local polynomial fitting for regression under general mixing conditions. In
this paper, we extend this approach to the context of spatial regression (N > 1) by
defining an estimator ofg based on local linear fitting and establishing its asymp-
totic properties.

Extending classical or time-series asymptotics (N = 1) to spatial asymptotics
(N > 1), however, is far from trivial. Due to the absence of any canonical ordering
in the space, there is no obvious definition of tail sigma-fields. As a consequence,
such a basic concept as ergodicity is all but well defined in the spatial context. And,
little seems to exist aboutthis in the literature, where only central limit results are
well documented; see, for instance, Bolthausen (1982) or Nakhapetyan (1980).
Even the simple idea of a sample size going to infinity (the sample size here
is a rectangular domain of the formIn := {i = (i1, . . . , iN) ∈ Z

N |1 ≤ ik ≤ nk,

k = 1, . . . ,N}, for n = (n1, . . . , nN) ∈ Z
N with strictly positive coordinates

n1, . . . , nN ) or the concept of spatial mixing have to be clarified in this setting.
The assumptions we are making (A4), (A4′) and (A4′′) are an attempt to provide
reasonable and flexible generalizations of traditional time-series concepts.

Assuming thatx �→ g(x) is differentiable atx, with gradientx �→ g′(x), the main
idea in local linear regression consists in approximatingg in the neighborhood ofx
as

g(z) ≈ g(x) + (
g′(x)

)τ
(z − x),

and estimating(g(x), g′(x)) instead of simply running a classical nonparametric
(e.g., kernel-based) estimation method forg itself. In order to do this, we propose a
weighted least square estimator(gn(x), g′

n(x)), and study its asymptotic properties.
Mainly, we establish its asymptotic normality under various mixing conditions,
asn goes to infinity in two distinct ways. Eitherisotropic divergence(n ⇒ ∞) can
be considered; under this case, observations are made over a rectangular domainIn
of Z

N which expands at the same rate in all directions—see Theorems 3.1, 3.2
and 3.5. Or, due to the specific nature of the practical problem under study, the
rates of expansion ofIn cannot be the same along all directions, and only a
less restrictive assumption of possiblynonisotropic divergence(n → ∞) can be
made—see Theorems 3.3 and 3.4.

The paper is organized as follows. In Section 2.1 we provide the notation and
main assumptions. Section 2.2 introduces the main ideas underlying local linear
regression in the context of random fields and sketches the main steps of the
proofs to be developed in the sequel. Section 2.3 is devoted to some preliminary
results. Section 3 is the main section of the paper, where asymptotic normality is
proved under the various types of asymptotics and various mixing assumptions.
Section 4 provides some numerical illustrations. Proofs and technical lemmas are
concentrated in Section 5.
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2. Local linear estimation of spatial regression.

2.1. Notation and main assumptions.For the sake of convenience, we
summarize here the main assumptions we are making on the random field (1.1)
and the kernelK to be used in the estimation method. Assumptions (A1)–(A4) are
related to the random field itself.

(A1) The random field (1.1) is strictly stationary. For all distincti and j in Z
N ,

the vectorsXi and Xj admit a joint densityfi,j; moreover,|fi,j(x′,x′′) −
f (x′)f (x′′)| ≤ C for all i, j ∈ Z

N , all x′,x′′ ∈ R
d , whereC > 0 is some

constant, andf denotes the marginal density ofXi.
(A2) The random variableYi has finite absolute moment of order(2 + δ); that is,

E[|Yi|2+δ] < ∞ for someδ > 0.
(A3) The spatial regression functiong is twice differentiable. Denoting byg′(x)

and g′′(x) its gradient and the matrix of its second derivatives (atx),
respectively,x �→ g′′(x) is continuous at allx.

Assumption (A1) is standard in this context; it has been used, for instance,
by Masry (1986) in the serial caseN = 1, and by Tran (1990) in the spatial
context (N > 1). If the random fieldXi consists of independent observations, then
|fi,j(x,x′′) − f (x′)f (x′′)| vanishes as soon asi andj are distinct. Thus (A1) also
allows for unbounded densities.

Assumption (A4) is an assumption of spatial mixing taking two distinct forms
[either (A4) and (A4′) or (A4) and (A4′′)]. For any collection of sitesS ⊂ Z

N ,
denote byB(S) the Borelσ -field generated by{(Yi,Xi)| i ∈ S}; for each couple
S′,S′′, let d(S′,S′′) := min{‖i′ − i′′‖ | i′ ∈ S′, i′′ ∈ S′′} be the distance betweenS′
andS′′, where‖i‖ := (i2

1 + · · · + i2
N)1/2 stands for the Euclidean norm. Finally,

write Card(S) for the cardinality ofS.

(A4) There exist a functionϕ such thatϕ(t) ↓ 0 as t → ∞, and a function
ψ :N2 → R

+ symmetric and decreasing in each of its two arguments, such
that the random field (1.1) is mixing, with spatial mixing coefficientsα

satisfying

α
(
B(S′),B(S′′)

) := sup{|P(AB) − P(A)P(B)|,A ∈ B(S′),B ∈ B(S′′)}
≤ ψ

(
Card(S′),Card(S′′)

)
ϕ
(
d(S′,S′′)

)
,

(2.1)

for anyS′,S′′ ⊂ Z
N . The functionϕ, moreover, is such that

lim
m→∞ma

∞∑
j=m

jN−1{ϕ(j)}δ/(2+δ) = 0

for some constanta > (4+ δ)N/(2+ δ).

The assumptions we are making on the functionψ are either
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(A4′) ψ(n′, n′′) ≤ min(n′, n′′)

or

(A4′′) ψ(n′, n′′) ≤ C(n′ + n′′ + 1)κ for someC > 0 andκ > 1.

In case (2.1) holds withψ ≡ 1, the random field{(Yi,Xi)} is calledstrongly mixing.
In the serial case (N = 1), many stochastic processes and time series are

known to be strongly mixing. Withers (1981) has obtained various conditions
for linear processes to be strongly mixing. Under certain weak assumptions,
autoregressive and more general nonlinear time-series models are strongly mixing
with exponential mixing rates; see Pham and Tran (1985), Pham (1986), Tjøstheim
(1990) and Lu (1998). Guyon (1987) has shown that the results of Withers under
certain conditions extend to linear random fields, of the formXn =∑

j∈ZN gjZn−j,
where theZj’s are independent random variables. Assumptions (A4′) and (A4′′)
are the same as the mixing conditions used by Neaderhouser (1980) and Takahata
(1983), respectively, and are weaker than the uniform strong mixing condition
considered by Nakhapetyan (1980). They are satisfied by many spatial models,
as shown by Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987).

Throughout, we assume that the random field (1.1) is observed over a rectan-
gular region of the formIn := {i = (i1, . . . , iN ) ∈ Z

N |1 ≤ ik ≤ nk, k = 1, . . . ,N},
for n = (n1, . . . , nN) ∈ Z

N with strictly positive coordinatesn1, . . . , nN . The total
sample size is thusn̂ := ∏N

k=1 nk . We write n → ∞ as soon as
min1≤k≤N {nk} → ∞. The rate at which the rectangular region expands thus can
depend on the direction inZN . In some problems, however, the assumption that
this rate is the same in all directions is natural: we use the notationn ⇒ ∞ if
n → ∞ and moreover|nj/nk| < C for some 0< C < ∞, 1 ≤ j, k ≤ N . In this
latter case,n tends to infinity in anisotropicway. Thenonisotropiccasen → ∞ is
less restrictive. For more information on the nonisotropic case, we refer to Bradley
and Tran (1999) and Lu and Chen (2002).

Assumption (A5) deals with the kernel functionK :Rd → R to be used in the
estimation method. For anyc := (c0, cτ

1)
τ ∈ R

d+1, define

Kc(u) := (c0 + cτ
1u)K(u).(2.2)

(A5)(i) For anyc ∈ R
d+1, |Kc(u)| is uniformly bounded by some constantK+

c ,
and is integrable:

∫
Rd+1 |Kc(x)|dx < ∞.

(ii) For any c ∈ R
d+1, |Kc| has an integrable second-order radial majorant,

that is,QK
c (x) := sup‖y‖≥‖x‖[‖y‖2Kc(y)] is integrable.

Finally, for convenient reference, we list here some conditions on the asymptotic
behavior, asn → ∞, of the bandwidthbn that will be used in the sequel.

(B1) The bandwidthbn tends to zero in such a way thatn̂bd
n → ∞ asn → ∞.
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(B2) There exist two sequences of positive integer vectors,p = pn := (p1, . . . ,

pN) ∈ Z
N andq = qn := (q, . . . , q) ∈ Z

N , with q = qn → ∞ such thatp =
pn := p̂ = o((n̂bd

n)1/2), q/pk → 0 andnk/pk → ∞ for all k = 1, . . . ,N ,
andn̂ϕ(q) → 0.

(B2′) Same as (B2), but the last condition is replaced by(n̂κ+1/p)ϕ(q) → 0,
whereκ is the constant appearing in (A4′′).

(B3) bn tends to zero in such a manner thatqb
δd/[a(2+δ)]
n > 1 and

b−δd/(2+δ)
n

∞∑
t=q

tN−1{ϕ(t)}δ/(2+δ) → 0 asn → ∞.(2.3)

2.2. Local linear fitting. Local linear fitting consists in approximating, in a
neighborhood ofx, the unknown functiong by a linear function. Under (A3), we
have

g(z) ≈ g(x) + (
g′(x)

)τ
(z − x) := a0 + aτ

1(z − x).

Locally, this suggests estimating(a0,aτ
1) = (g(x), g′(x)), hence constructing an

estimator ofg from(
gn(x)

g′
n(x)

)
=
(

â0
â1

)
:= arg min

(a0,a1)∈Rd+1

∑
j∈In

(
Yj − a0 − aτ

1(Xj − x)
)2

K

(
Xj − x

bn

)
,

(2.4)

wherebn is a sequence of bandwidths tending to zero at an appropriate rate asn
tends to infinity, andK(·) is a (bounded) kernel with values inR+.

In the classical serial case (N = 1; we writei andn instead ofi andn), the so-
lution of the minimization problem (2.4) is easily shown to be(Xτ WX)−1Xτ WY,
where X is an n × (d + 1) matrix with ith row (1, b−1

n (Xi − x)τ ), W =
b−1
n diag(K(X1−x

bn
), . . . ,K(Xn−x

bn
)), and Y = (Y1, . . . , Yn)

τ [see, e.g., Fan and
Gijbels (1996)]. In the spatial case, things are not as simple, and we rather write
the solution to (2.4) as(

â0
â1bn

)
= U−1

n Vn whereVn :=
(

vn0
vn1

)
and Un :=

(
un00 un01
un10 un11

)
,

with [letting (
Xj−x
bn

)0 := 1]

(Vn)i := (n̂bd
n)−1

∑
j∈In

Yj

(
Xj − x

bn

)
i

K

(
Xj − x

bn

)
, i = 0, . . . , d,

and

(Un)i	 := (n̂bd
n)−1

∑
j∈In

(
Xj − x

bn

)
i

(
Xj − x

bn

)
	

K

(
Xj − x

bn

)
, i, 	 = 0, . . . , d.
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It follows that

Hn :=
(

â0 − a0
â1bn − a1bn

)
=
(

gn(x) − g(x)(
g′

n(x) − g′(x)
)
bn

)

= U−1
n

{
Vn − Un

(
a0

a1bn

)}
=: U−1

n Wn,

(2.5)

where

Wn :=
(

wn0
wn1

)
,

(Wn)i := (n̂bd
n)−1

∑
j∈In

Zj

(Xj − x
bn

)
i

K

(Xj − x
bn

)
, i = 0, . . . , d,

(2.6)

andZj := Yj − a0 − aτ
1(Xj − x).

The organization of the paper is as follows. If, under adequate conditions, we
are able to show that:

(C1) (n̂bd
n)1/2(Wn − EWn) is asymptotically normal,

(C2) (n̂bd
n)1/2EWn → 0 and Var((n̂bd

n)1/2Wn) → �, and

(C3) Un
P→ U,

then (2.5) and Slutsky’s classical argument imply that, for allx (all quantities
involved indeed depend onx),

(n̂bd
n)1/2

(
gn(x) − g(x)(

g′
n(x) − g′(x)

)
bn

)
= (n̂bd

n)1/2Hn
L→ N

(
0,U−1�(U−1)τ

)
.

This asymptotic normality result (with explicit values of� andU), under various
forms (depending on the mixing assumptions [(A4′) or (A4′′)], the choice of the
bandwidthbn, the wayn tends to infinity, etc.), is the main contribution of this
paper; see Theorems 3.1–3.5. Section 2.3 deals with (C2) and (C3) undern → ∞
(hence also under the stronger assumption thatn ⇒ ∞), and Sections 3.1 and 3.2
with (C1) undern ⇒ ∞ andn → ∞, respectively.

2.3. Preliminaries. Claim (C3) is easily established from the following
lemma, the proof of which is similar to that of Lemma 2.2, and is therefore omitted.

LEMMA 2.1. Assume that(A1), (A4) and (A5) hold, that bn satisfies

assumption(B1) and thatnkb
δd/[a(2+δ)]
n > 1 asn → ∞. Then, for all x,

Un
P→ U :=

 f (x)

∫
K(u) du f (x)

∫
uτK(u) du

f (x)

∫
uK(u) du f (x)

∫
uuτK(u) du


asn → ∞.



2476 M. HALLIN, Z. LU AND L. T. TRAN

The remainder of this section is devoted to claim (C2). The usual Cramér–Wold
device will be adopted. For allc := (c0, cτ

1)
τ ∈ R

1+d , let

An := (n̂bd
n)1/2cτ Wn = (n̂bd

n)−1/2
∑
j∈In

ZjKc

(
Xj − x

bn

)
,

with Kc(u) defined in (2.2). The following lemma provides the asymptotic
variance ofAn for all c, hence that of(n̂bd

n)1/2Wn.

LEMMA 2.2. Assume that(A1), (A2), (A4) and (A5) hold, that bn satisfies

assumption(B1) and thatnkb
δd/[(2+δ)a]
n > 1 for all k = 1, . . . ,N , as n → ∞.

Then

lim
n→∞ Var[An] = Var(Yj|Xj = x)f (x)

∫
Rd

K2
c (u) du = cτ�c,(2.7)

where

� := Var(Yj|Xj = x)f (x)


∫

K2(u) du
∫

uτK2(u) du∫
uK2(u) du

∫
uuτK2(u) du

 .

Hencelimn→∞ Var((n̂bd
n)1/2Wn) = �.

For the proof see Section 5.1.
Next we consider the asymptotic behavior of E[An].

LEMMA 2.3. Under assumptions(A3) and(A5),

E[An] =
√

n̂bd
nb2

n
1
2f (x) tr

[
g′′(x)

∫
uuτKc(u) du

]
+ o

(√
n̂bd

nb2
n
)

=
√

n̂bd
nb2

n[c0B0(x) + cτ
1B1(x)] + o

(√
n̂bd

nb2
n
)
,

(2.8)

where

B0(x) := 1
2f (x)

d∑
i=1

d∑
j=1

gij (x)

∫
uiujK(u) du,

B1(x) := 1
2f (x)

d∑
i=1

d∑
j=1

gij (x)

∫
uiuj uK(u) du,

gij (x) = ∂2g(x)/∂xi ∂xj , i, j = 1, . . . , d , andu := (u1, . . . ud)τ ∈ R
d .

For the proof see Section 5.2.
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3. Asymptotic normality.

3.1. Asymptotic normality under mixing assumption(A4′). The asymptotic
normality of our estimators relies in a crucial manner on the following lemma
[see (2.6) for the definition ofWn(x)].

LEMMA 3.1. Suppose that assumptions(A1), (A2), (A4), (A4′) and (A5)
hold, and that the bandwidthbn satisfies conditions(B1)–(B3).Denote byσ 2 the
asymptotic variance(2.7).Then(n̂bd

n)1/2(cτ [Wn(x) − EWn(x)]/σ ) is asymptoti-
cally standard normal asn → ∞.

For the proof see Section 5.3.
We now turn to the main consistency and asymptotic normality results. First, we

consider the case where the sample size tends to∞ in the manner of Tran (1990),
that is,n ⇒ ∞.

THEOREM 3.1. Let assumptions(A1)–(A3), (A4′) and (A5) hold, with
ϕ(x) = O(x−µ) for someµ > 2(3+ δ)N/δ. Suppose that there exists a sequence
of positive integersq = qn → ∞ such thatqn = o((n̂bd

n)1/(2N)) andn̂q−µ → 0 as
n ⇒ ∞, and that the bandwidthbn tends to zero in such a manner that

qbδd/[a(2+δ)]
n > 1(3.1)

for some(4+ δ)N/(2+ δ) < a < µδ/(2+ δ) − N asn ⇒ ∞. Then,

(n̂bd
n)1/2

[(
gn(x) − g(x)

bn
(
g′

n(x) − g′(x)
))− U−1

(
B0(x)

B1(x)

)
b2

n

]
L→ N

(
0,U−1�(U−1)τ

)(3.2)

asn ⇒ ∞, whereU, �, B0(x) andB1(x) are defined in Lemmas2.1, 2.2and2.3,
respectively. If, furthermore, the kernelK(·) is a symmetric density function,
then(3.2)can be reinforced into(

(n̂bd
n)1/2[gn(x) − g(x) − Bg(x)b2

n]
(n̂bd+2

n )1/2[g′
n(x) − g′(x)]

)
L→ N

(
0,

(
σ 2

0 (x) 0

0 σ2
1(x)

))
[so thatgn(x) andg′

n(x) are asymptotically independent], where

Bg(x) := 1
2

d∑
i=1

gii (x)

∫
(u)2

i K(u) du, σ 2
0 (x) := Var(Yj|Xj = x)

∫
K2(u) du

f (x)

and

σ 2
1(x) := Var(Yj|Xj = x)

f (x)

×
[∫

uuτK(u) du
]−1[∫

uuτK2(u) du
][∫

uuτK(u) du
]−1

.
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The asymptotic normality results in Theorem 3.1 are stated forgn(x) andg′
n(x)

at a given sitex. They are easily extended, via the traditional Cramér–Wold
device, into a joint asymptotic normality result for any couple(x1,x2) (or any
finite collection) of sites; the asymptotic covariance terms [betweengn(x1) and
gn(x2), gn(x1) andg′

n(x2), etc.] all are equal to zero, as in related results on density
estimation [see Hallin and Tran (1996) or Lu (2001)]. The same remark also holds
for Theorems 3.2–3.5 below.

PROOF OFTHEOREM 3.1. Sinceq is o((n̂bd
n)1/2N), there existssn → 0 such

that q = (n̂bd
n)1/2Nsn. Take pk := (n̂bd

n)1/2Ns
1/2
n , k = 1, . . . ,N . Then q/pk =

s
1/2
n → 0, p̂ = (n̂bd

n)1/2s
N/2
n = o((n̂bd

n)1/2) andn̂ϕ(q) = n̂q−µ → 0. As n ⇒ ∞,

p := p̂ < (n̂bd
n)1/2 for large n̂. It follows that n̂/p > (n̂b−d

n )1/2 → ∞, hence
nk/pk → ∞ for all k. Thus, condition (B2) is satisfied.

Becauseϕ(j) = Cj−µ,

ma
∞∑

j=m

jN−1{ϕ(j)}δ/(2+δ) = Cma
∞∑

j=m

jN−1j−µδ/(2+δ)

≤ CmamN−µδ/(2+δ) = m−[µδ/(2+δ)−a−N],

a quantity that tends to zero asm → ∞ since (4 + δ)N/(2 + δ) < a < µδ/

(2 + δ) − N , henceµδ/(2 + δ) > a + N . Assumption (A4) and the fact that
qb

δd/[a(2+δ)]
n > 1 imply thatb−δd/(2+δ)

n < qa and that (2.3) holds. Now

Hn − U−1EWn = U−1
n (Wn − EWn) + (U−1

n − U−1)EWn.

The theorem thus follows from Lemmas 2.1, 2.3 and 3.1.�

One of the important advantages of local polynomial (and linear) fitting over the
more traditional Nadaraya–Watson approach is that it has much better boundary
behavior. This advantage often has been emphasized in the usual regression and
time-series settings when the regressors take values on a compact subset ofR

d .
For example, as Fan and Gijbels (1996) and Fan and Yao (2003) illustrate, for
a univariate regressorX with bounded support ([0, 1], say; here,d = 1), it can
be proved, using an argument similar to the one we develop in the proof of
Theorem 3.1, that asymptotic normality still holds at the boundary pointx = cbn
(herec is a positive constant), but with asymptotic bias and variances

Bg := 1

2

(
∂2g

∂x2

)
x=0+

∫ ∞
−c

u2K(u)du,

σ 2
0 := Var(Yj|Xj = 0+)

∫∞
−c K2(u) du

f (0+)

(3.3)
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and

σ 2
1 := Var(Yj|Xj = 0+)

f (0+)

[∫ ∞
−c

u2K(u)du

]−2[∫ ∞
−c

u2K2(u) du

]
,(3.4)

respectively. This advantage is likely to be much more substantial asN grows.
Therefore, results on the model of (3.3) and (3.4) on the boundary behavior
of our estimators would be highly desirable. Such results, however, are all but
straightforward, and we leave them for future research. On the other hand, the
statistical relevance of boundary effects is also of lesser importance, as the
ultimate objective in random fields, as opposed to time series, seldom consists
in “forecasting” the process beyond the boundary of the observed domain.

In the important particular case under whichϕ(x) tends to zero at an exponential
rate, the same results are obtained under milder conditions.

THEOREM 3.2. Let assumptions(A1)–(A3), (A4′) and (A5) hold, with
ϕ(x) = O(e−ξx) for someξ > 0. Then, if bn tends to zero asn ⇒ ∞ in such a
manner that (

n̂bd(1+2Nδ/a(2+δ))
n

)1/2N
(log n̂)−1 → ∞(3.5)

for somea > (4+ δ)N/(2+ δ), the conclusions of Theorem3.1still hold.

PROOF. By (3.5), there exists a monotone positive functionn �→ g(n) such
thatg(n) → ∞ and(n̂b

d(1+2Nδ/a(2+δ))
n )1/2N(g(n) logn̂)−1 → ∞ asn ⇒ ∞. Let

q := (n̂bd
n)1/2N(g(n))−1, and pk := (n̂bd

n)1/2Ng−1/2(n). Then q/pk =
g−1/2(n) → 0, p̂ = (n̂bd

n)1/2g−N/2(n) = o((n̂bd
n)1/2) andnk/pk → ∞ asn ⇒ ∞.

For arbitraryC > 0, q ≥ C logn̂ for sufficiently largen̂. Thus

n̂ϕ(q) ≤ Cn̂e−ξq ≤ Cn̂ exp(−Cξ log n̂) = Cn̂−Cξ+1,

which tends to zero if we chooseC > 1/ξ . Hence condition (B2) is satisfied. Next,
for 0 < ξ ′ < ξ ,

qa
∞∑

i=q

iN−1ϕ(i)δ/(2+δ) ≤ Cqa
∞∑

i=q

iN−1e−ξ iδ/(2+δ)

≤ Cqa
∞∑

i=q

e−ξ ′iδ/(2+δ)

≤ Cqae−ξ ′qδ/(2+δ).

Note thatbd
n ≥ Cn̂−1 andq > C log n̂, so that assumption (A4) holds. In addition,

qbδd/[a(2+δ)]
n = (

n̂bd+2Nδd/a(2+δ)
n

)1/2N
(g(n))−1 > 1
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for n̂ large enough. It is easily verified that this implies that condition (B3) is
satisfied. The theorem follows.�

Note that, in the one-dimensional caseN = 1, and for “large” values ofa, the
condition (3.5) is “close” to the condition thatnbd

n → ∞, which is usual in the
classical case of independent observations.

Next we consider the situation under which the sample size tends to∞ in the
“weak” sense (i.e.,n → ∞ instead ofn ⇒ ∞).

THEOREM 3.3. Let assumptions(A1)–(A3), (A4′) and (A5) hold, with
ϕ(x) = O(x−µ) for someµ > 2(3+ δ)N/δ. Let the sequence of positive integers
q = qn → ∞ and the bandwidthbn factor into bn := ∏N

i=1 bni
, such that

n̂q−µ → 0, q = o(min1≤k≤N(nkb
d
nk

)1/2), and

qbδd/a(2+δ)
n > 1 for some(4+ δ)N/(2+ δ) < a < µδ/(2+ δ) − N.

Then the conclusions of Theorem3.1hold asn → ∞.

PROOF. Sinceq = o(min1≤k≤N(nkb
d
nk

)1/2), there exists a sequencesnk
→ 0

such that

q = min
1≤k≤N

((
nkb

d
nk

)1/2
snk

)
asn → ∞.

Take pk = (nkb
d
nk

)1/2s
1/2
nk . Then q/pk ≤ s

1/2
nk → 0, p̂ = (n̂bd

n)1/2∏N
k=1 s

1/2
nk =

o((n̂bd
n)1/2) and n̂ϕ(q) = n̂q−µ → 0. As n → ∞, pk < (nkb

d
nk

)1/2, hence
nk/pk > (nkb

−d
nk

)1/2 → ∞. Thus condition (B2) is satisfied. The end of the proof
is entirely similar to that of Theorem 3.1.�

In the important case thatϕ(x) tends to zero at an exponential rate, we have the
following result, which parallels Theorem 3.2.

THEOREM 3.4. Let assumptions(A1)–(A3), (A4′) and (A5) hold, with
ϕ(x) = O(e−ξx) for someξ > 0. Let the bandwidthbn factor intobn := ∏N

i=1 bni

in such a way that, asn → ∞,

min
1≤k≤N

{(
nkb

d
nk

)1/2}
bdδ/a(2+δ)

n (log n̂)−1 → ∞(3.6)

for somea > (4 + δ)N/(2 + δ). Then the conclusions of Theorem3.1 hold as
n → ∞.

PROOF. By (3.6) there exist positive sequences indexed bynk such that
gnk

↑ ∞ asnk → ∞ and

min
1≤k≤N

{(
nkb

d
nk

)1/2
g−1

nk

}
bdδ/a(2+δ)

n (log n̂)−1 → ∞
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as n → ∞. Let q := min1≤k≤N {(nkb
d
nk

)1/2(gnk
)−1} andpk := (nkb

d
nk

)1/2g
−1/2
nk .

Thenq/pk ≤ g
−1/2
nk → 0, p̂ = (n̂bd

n)1/2∏N
k=1 g

−1/2
nk = o((n̂bd

n)1/2) andnk/pk =
(nkb

−d
nk

)1/2g
1/2
nk → ∞ asn → ∞. For arbitraryC > 0, q ≥ C logn̂ for sufficiently

largen̂. Thus

n̂ϕ(q) ≤ Cn̂e−ξq ≤ Cn̂ exp(−Cξ logn̂) = Cn̂−Cξ+1,

which tends to zero forC > 1/ξ . Hence, condition (B2) is satisfied. Next, for
0 < ξ ′ < ξ ,

qa
∞∑

i=q

iN−1ϕ(i)δ/(2+δ) ≤ Cqa
∞∑

i=q

iN−1e−ξ iδ/(2+δ)

≤ Cqa
∞∑

i=q

e−ξ ′iδ/(2+δ)

≤ Cqae−ξ ′qδ/(2+δ).

Note thatq > C logn̂. Assumption (A4′) and (3.1) imply thatqb
δd/a(2+δ)
n > 1 for n

large enough. This in turn implies that condition (B3) is satisfied. The theorem
follows. �

3.2. Asymptotic normality under mixing assumption(A4′′). We start with an
equivalent, under (A4′′), of Lemma 3.1.

LEMMA 3.2. Suppose that assumptions(A1), (A2), (A4) or (A4′′), and (A5)
hold, and that the bandwidthbn satisfies conditions(B1), (B2′) and(B3).Then the
conclusions of Lemma3.1still hold asn → ∞.

PROOF. The proof is a slight variation of the argument of Lemma 3.1, and we
describe it only briefly. The only significant difference is in the checking of (5.18).
Let Ũ1, . . . , ŨM be as in Lemma 3.1. By Lemma 5.3 and assumption (A4′′),

Q1 ≤ C

M∑
i=1

[p̂ + (M − i)p̂ + 1]κϕ(q)

≤ Cp̂κMκ+1ϕ(q) ≤ C
(
n̂(κ+1)/p̂

)
ϕ(q),

which tends to zero by condition (B2′); (5.18) follows. �

We then have the following counterpart of Theorem 3.1.
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THEOREM 3.5. Let assumptions(A1)–(A3), (A4′′) and (A5) hold, with
ϕ(x) = O(x−µ) for someµ > 2(3+δ)N/δ. Suppose that there exists a sequence of
positive integersq = qn → ∞ such thatqn = o((n̂bd

n)1/2N) andn̂κ+1q−µ−N → 0
asn ⇒ ∞, and that the bandwidthbn tends to zero in such a manner that(3.1) is
satisfied asn ⇒ ∞. Then the conclusions of Theorem3.1hold.

PROOF. Choose the same values forp1, . . . , pN and q as in the proof of
Theorem 3.1. Note that, becausep̂ > qN andn̂κ+1q−µ−N = o(1),

(n̂κ+1/p̂)ϕ(q) ≤ Cn̂κ+1q−Nq−µ = n̂κ+1q−µ−N → 0

asn ⇒ ∞. The end of the proof is entirely similar to that of Theorem 3.1, with
Lemma 3.2 instead of Lemma 3.1.�

Analogues of Theorems 3.2–3.4 can also be obtained under assumption (A4′′);
details are omitted for the sake of brevity.

4. Numerical results. In this section, we report the results of a brief Monte
Carlo study of the method described in this paper. We mainly consider two models,
both in a two-dimensional space (N = 2) [writing (i, j) instead of(i1, i2) for the
sitesi ∈ Z

2]. For the sake of simplicity,X (written asX) is univariate (d = 1).

(a) Model1. Denoting by{ui,j , (i, j) ∈ Z
2} and{ei,j , (i, j) ∈ Z

2} two mutually
independent i.i.d.N (0,1) white-noise processes, let

Yi,j = g(Xi,j ) + ui,j with g(x) := 1
3ex + 2

3e−x,

where{Xi,j , (i, j) ∈ Z
2} is generated by the spatial autoregression

Xi,j = sin(Xi−1,j + Xi,j−1 + Xi+1,j + Xi,j+1) + ei,j .

(b) Model2. Denoting again by{ei,j , (i, j) ∈ Z
2} an i.i.d.N (0,1) white-noise

process, let{Yi,j , (i, j) ∈ Z
2} be generated by

Yi,j = sin(Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1) + ei,j ,

and set

X0
i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1.(4.1)

Then the prediction functionx �→ g(x) := E[Yi,j |X0
i,j = x] provides the optimal

prediction ofYi,j based onX0
i,j in the sense of minimal mean squared prediction

error. Note that, in the spatial context, this optimal prediction functiong(·)
generally differs from the spatial autoregression function itself [here, sin(·)];
see Whittle (1954) for details. Beyond a simple estimation ofg, we also will
investigate the impact, on prediction performance, of including additional spatial
lags ofYi,j into the definition ofXi,j .
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Data were simulated from these two models over a rectangular domain ofm×n

sites—more precisely, over a grid of the form{(i, j)|76≤ i ≤ 75+ m,76≤ j ≤
75 + n}, for various values ofm and n. Each replication was obtained itera-
tively along the following steps. First, we simulated i.i.d. random variableseij

over the grid{(i, j), i = 1, . . . ,150+ m, j = 1, . . . ,150+ n}. Next, all initial val-
ues ofYij andXij being set to zero, we generatedYij ’s (or Xij ’s) over {(i, j),

i = 1, . . . ,150+ m, j = 1, . . . ,150+ n} recursively, using the spatial autore-
gressive models. Starting from these generated values, the process was iterated
20 times. The results at the final iteration step for(i, j) inside {(i, j)|76 ≤ i ≤
75+ m,76≤ j ≤ 75+ n} were taken as our simulatedm × n sample. This dis-
carding of peripheral sites allows for awarming-up zone, and the first 19 iterations
were taken as warming-up steps aiming at achieving stationarity. From the result-
ing m × n central data set, we estimated the spatial regression/prediction function
using the local linear approach described in this paper. A data-driven choice of
the bandwidth in this context would be highly desirable. In view of the lack of
theoretical results on this point, we uniformly chose a bandwidth of 0.5 in all
our simulations. The simulation results, each with 10 replications, are displayed
in Figures 1 and 2 for Models 1 and 2, respectively. Model 1 is a spatial regres-
sion model, with the covariatesXi,j forming a nonlinear autoregressive process.
Inspection of Figure 1 shows that the estimation of the regression functiong(·) is
quite good and stable, even for sample sizes as small asm = 10 andn = 20.

Model 2 is a spatial autoregressive model, whereYi,j forms a process with
nonlinear spatial autoregression function sin(·). Various definitions ofXi,j ,
involving different spatial lags ofYi,j , yield various prediction functions, which
are shown in Figures 2(a)–(f ). The results in Figures 2(a) and (b) correspond to
Xi,j = X0

i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1, that is, the lags of order±1
of Yi,j which also appear in the generating process (4.1). In Figure 2(a), the sample
sizesm = 10 andn = 20 are the same as in Figure 1, but the results (still, for 10
replications) are more dispersed. In Figure 2(b), the sample sizes (m = 30 and
n = 40) are slightly larger, and the results (over 10 replications) seem much more
stable. These sample sizes therefore were maintained throughout all subsequent
simulations. In Figure 2(c), we chose

Xc
i,j := Yi−2,j + Yi,j−2 + Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1 + Yi+2,j + Yi,j+2,

thus including lagged values ofYi,j up to order ±2, in an isotropic way.
Nonisotropic choices ofXi,j were made in the simulations reported in Fig-
ures 2(d)–(f ):Xd

i,j := Yi−1,j + Yi,j−1 in Figure 2(d),Xe
i,j := Yi+1,j + Yi,j+1 in

Figure 2(e) andXf
i,j := Yi−2,j + Yi,j−2 + Yi−1,j + Yi,j−1 in Figure 2(f ).

A more systematic simulation study certainly would be welcome. However, it
seems that, even in very small samples (see Figure 1), the performance of our
method is excellent in pure spatial regression problems (with spatially correlated
covariates), while larger samples are required in spatialautoregression models.
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FIG. 1. Simulation for Model 1.The local linear estimates corresponding to the10 replications
(solid lines) and actual spatial regression curve(dotted line) g(x) = E(Yij |Xij = x) = 1

3ex + 2
3e−x ,

for sample sizem = 10, n = 20,with autoregressive spatial covariateXij . The scatterplot shows the
observations(Xij ,Yij ) corresponding to one typical realization among10.

This difference is probably strongly related to differences in the corresponding
noise-to-signal ratios. Letting g(x) = E(Y |X = x) andε = Y − g(X), the noise-
to-signal ratio is defined as Var(ε)/Var(g(X)); see, for example, Chapter 4 in Fan
and Gijbels (1996) for details. In a classical regression setting, independence is
generally assumed betweenX andε, so that this ratio, in simulations, can be set
in advance. Such an independence assumption cannot be made in a spatial series
context, but empirical versions of the ratio nevertheless can be computed from each
replication, then averaged, providing estimated values. In Model 1 this estimated
value (averaged over the 10 replications) of the noise-to-signal ratio is 0.214.
The values for the six versions of Model 2 (still, averaged over 10 replications)
are much larger: (a) 12.037, (b) 13.596, (c) 43.946, (d) 47.442, (e) 116.334 and
(f ) 88.287.
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FIG. 2. Simulation for Model 2.The local linear estimates corresponding to the10 replica-
tions (solid lines) of the spatial prediction functiong(x) = E(Yij |Xij = x), with sample sizes
m = 10, n = 20 in (a) and m = 30, n = 40 in (b)–(f ), for different spatial covariatesXij ’s:

(a) X0
i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1; (b) X0

i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1;

(c) Xc
i,j := Yi−2,j + Yi,j−2 + Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1 + Yi+2,j + Yi,j+2;

(d) Xd
i,j := Yi−1,j + Yi,j−1; (e) Xe

i,j := Yi+1,j + Yi,j+1; and (f ) X
f
i,j := Yi−2,j + Yi,j−2 +

Yi−1,j + Yi,j−1. The scatterplot shows the observations(Xij ,Yij ) corresponding to one typical
realization among10.

5. Proofs.

5.1. Proof of Lemma2.2. The proof of Lemma 2.2 relies on two intermediate
results. The first one is a lemma borrowed from Ibragimov and Linnik (1971) or
Deo (1973), to which we refer for a proof.

LEMMA 5.1. (i) Suppose that(A1) holds. Let Lr (F ) denote the class
of F -measurable random variablesξ satisfying‖ξ‖r := (E|ξ |r )1/r < ∞. Let
X ∈ Lr(B(S)) and Y ∈ Ls(B(S′)). Then for any1 ≤ r, s, h < ∞ such that
r−1 + s−1 + h−1 = 1,

|E[XY ] − E[X]E[Y ]| ≤ C‖X‖r‖Y‖s[α(S,S′)]1/h,(5.1)
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where‖X‖2 := ‖(X′X)1/2‖r .
(ii) If, moreover, ‖X‖ := (XrX)1/2 and |Y | are P-a.s. bounded, the right-hand

side of (5.1)can be replaced byCα(S,S′).

The second one is a lemma of independent interest, which plays a crucial role
here and in the subsequent sections. For the sake of generality, and in order for this
lemma to apply beyond the specific context of this paper, we do not necessarily
assume that the mixing coefficientα takes the form imposed in assumption (A4).

Before stating the lemma, let us first introduce some further notation. Let

An = (n̂bd
n)−1/2

∑
j∈In

ηj(x)

and

Var(An) = (n̂bd
n)−1

∑
j∈In

E[�2
j (x)] + (n̂bd

n)−1
∑

{i,j∈In|∃

∑
k : ik �=jk}

E[�i(x)�j(x)]

:= Ĩ (x) + R̃(x), say,

where ηj(x) := ZjKc(x − Xj) and �j(x) := ηj(x) − Eηj(x). For any cn :=
(cn1, . . . , cnN) ∈ Z

N with 1 < cnk < nk for all k = 1, . . . ,N , define J̃1(x) :=
b

δd/(4+δ)+d
n

∏N
k=1(nkcnk) and

J̃2(x) := b2d/(2+δ)
n n̂

N∑
k=1


ns∑

|js |=1
s=1,...,k−1

nk∑
|jk |=cnk

ns∑
|js |=1

s=k+1,...,N

{ϕ(j1, . . . , jN )}δ/(2+δ)

 .

LEMMA 5.2. Let {(Yj,Xj); j ∈ Z
N } denote a stationary spatial process with

general mixing coefficient

ϕ( j) = ϕ(j1, . . . , jN)

:= sup
{|P(AB) − P(A)P(B)| :A ∈ B({Yi,Xi}),B ∈ B({Yi+j,Xi+j})},

and assume that assumptions(A1), (A2) and (A5) hold. Then

|R̃(x)| ≤ C(n̂bd
n)−1[J̃1(x) + J̃2(x)].(5.2)

If furthermoreϕ(j1, . . . , jN) takes the formϕ(‖j‖), then

J̃2(x) ≤ Cb2d/(2+δ)
n n̂

N∑
k=1

( ‖n‖∑
t=cnk

tN−1{ϕ(t)}δ/(2+δ)

)
.(5.3)
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PROOF. Set L = Ln = b
−2d/(4+δ)
n . Defining Z1j := ZjI{|Zj|≤L} and Z2j :=

ZjI{|Zj|>L}, let

ηij(x) := ZijKc(x − Xj) and �ij(x) := ηij(x) − Eηij(x), i = 1,2.

ThenZj = Z1j + Z2j,�j(x) = �1j(x) + �2j(x), and hence

E�j(x)�i(x) = E�1j(x)�1i(x) + E�1j(x)�2i(x)

+ E�2j(x)�1i(x) + E�2j(x)�2i(x).
(5.4)

First, we note that

b−d
n |E�1j(x)�2i(x)|

≤ {b−d
n Eη2

1j(x)}1/2{b−d
n Eη2

2i(x)}1/2

≤ {
b−d

n EZ2
1jK

2
c
(
(x − Xj)/bn

)}1/2{
b−d

n EZ2
2iK

2
c
(
(x − Xj)/bn

)}1/2

≤ C
{
b−d

n E|Zi|2I{|Zi|>L}Kc
(
(x − X1)/bn

)}1/2

≤ C
{
L−δb−d

n E|Zj|2+δI{|Zj|>L}Kc
(
(x − X1)/bn

)}1/2

≤ CL−δ/2
n = Cbδd/(4+δ)

n .

Similarly,

b−d
n |E�2j(x)�1i(x)| ≤ CL−δ/2

n = Cbδd/(4+δ)
n and

b−d
n |E�2j(x)�2i(x)| ≤ Cb2δd/(4+δ)

n .

Next, for i + j, lettingKn(x) := (1/bd
n)K(x/bn) andKcn(x) := (1/bd

n)Kc(x/bn),

b−d
n E�1j(x)�1i(x)

= bd
n{EZ1iZ1jKcn(x − Xi)Kcn(x − Xj)

− EZ1iKcn(x − Xi)EZ1jKcn(x − Xj)}
= bd

n

∫ ∫
Kcn(x − u)Kcn(x − v)

× {
g1ij(u,v)fi,j(u,v) − g

(1)
1 (u)g

(1)
1 (v)f (u)f (v)

}
dudv,

where g1ij(u,v) := E(Z1iZ1j|Xi = u,Xj = v), and g
(1)
1 (u) := E(Z1i|Xi = u).

Since, by definition,|Z1i| ≤ Ln, we have that|g1ij(u,v)| ≤ L2
n and |g(1)

1 (u) ×
g

(1)
1 (v)| ≤ L2

n. Thus∣∣g1ij(u,v)fi,j(u,v) − g
(1)
1 (u)g

(1)
1 (v)f (u)f (v)

∣∣
≤ ∣∣g1ij(u,v)

(
fi,j(u,v) − f (u)f (v)

)∣∣
+ ∣∣(g1ij(u,v) − g

(1)
1 (u)g

(1)
1 (v)

)
f (u)f (v)

∣∣
≤ L2

n|fi,j(u,v) − f (u)f (v)| + 2L2
nf (u)f (v).
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It then follows from (A1) and the Lebesgue density theorem [see Chapter 2 of
Devroye and Györfi (1985)] that

b−d
n |E�1j(x)�1i(x)|

≤ bd
n

∫ ∫
Kcn(x − u)Kcn(x − v)L2

n|fi,j(u,v) − f (u)f (v)|dudv

+ bd
n

∫ ∫
2L2

nf (u)f (v) dudv

≤ Cbd
n

(
L2

n

{∫
Kcn(x − u) du

}2

+ 2L2
n

{∫
Kn(x − u)f (u) du

}2)
≤ Cbd

nL2
n = Cbδd/(4+δ)

n .

(5.5)

Thus, by (5.4) and (5.5),

b−d
n |E�j(x)�i(x)| ≤ CL−δ/2

n + Cbd
nL2

n = Cbδd/(4+δ)
n .(5.6)

Let cn = (cn1, . . . , cnN) ∈ R
N be a sequence of vectors with positive compo-

nents. Define

S1 := {i �= j ∈ In : |jk − ik| ≤ cnk for all k = 1, . . . ,N}
and

S2 := {i, j ∈ In : |jk − ik| > cnk for somek = 1, . . . ,N}.
Clearly, Card(S1) ≤ 2N n̂

∏N
k=1 cnk . Splitting R̃(x) into (n̂bd

n)−1(J1 + J2), with

J	 :=∑∑
i, j∈S	

E�j(x)�i(x), 	 = 1,2,

it follows from (5.6) that

|J1| ≤ Cbδd/(4+δ)+d
n Card(S1) ≤ 2NCbδd/(4+δ)+d

n n̂
N∏

k=1

cnk.(5.7)

Turning to J2, we have|J2| ≤ ∑∑
i,j∈S2

|E�j(x)�i(x)|. Lemma 5.1, with
r = s = 2+ δ andh = (2+ δ)/δ, yields

|E�j(x)�i(x)|
≤ C

(
E
∣∣ZiKc

(
(x − Xi)/bn

)∣∣2+δ)2/(2+δ){ϕ( j − i)}δ/(2+δ)

≤ Cb2d/(2+δ)
n

(
b−d

n E
∣∣ZiKc

(
(x − Xi)/bn

)∣∣2+δ)2/(2+δ){ϕ( j − i)}δ/(2+δ)

≤ Cb2d/(2+δ)
n {ϕ( j − i)}δ/(2+δ).

(5.8)

Hence,

|J2| ≤ Cb2d/(2+δ)
n

∑∑
i,j∈S2

{ϕ( j − i)}δ/(2+δ) := Cb2d/(2+δ)
n �2, say.(5.9)
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We now analyze the quantity�2 in detail. For anyN -tuple0 �= � = (	1, . . . , 	N) ∈
{0,1}N , set

S(	1, . . . , 	N) := {i, j ∈ In : |jk − ik| > cnk if 	k = 1 and

|jk − ik| ≤ cnk if 	k = 0, k = 1, . . . ,N}
and

V (	1, . . . , 	N) := ∑∑
i,j∈S(	1,...,	N )

{ϕ( j − i)}δ/(2+δ).

Then

�2 =∑∑
i,j∈S2

{ϕ( j − i)}δ/(2+δ) = ∑
0 �=�∈{0,1}N

V (	1, . . . , 	N).(5.10)

Without loss of generality, considerV (1,0, . . . ,0). Because
∑

|ik−jk |>cnk
(· · ·)

decomposes into
∑nk−cnk−1

ik=1
∑nk

jk=ik+cnk+1(· · ·) + ∑nk−cnk−1
jk=1

∑nk

ik=jk+cnk+1(· · ·),
and

∑
|ik−jk |≤cnk

(· · ·) into
∑nk−cnk

ik=1
∑ik+cnk

jk=ik+1(· · ·) + ∑nk−cnk

jk=1
∑jk+cnk

ik=jk+1(· · ·), we
have

V (1,0, . . . ,0)

= ∑
|i1−j1|>cn1

∑
|i2−j2|≤cn2

· · · ∑
|iN−jN |≤cnN

{ϕ(j1 − i1, . . . , jN − iN )}δ/(2+δ)

≤ n̂

{
n1∑

j1=cn1

+
n1∑

−j1=cn1

}{
cn2∑

j2=1

+
cn2∑

−j2=1

}
· · ·

{
cnN∑

jN=1

+
cnN∑

−jN=1

}
{ϕ(j1, . . . , jN)}δ/(2+δ)

≤ n̂
n1∑

|j1|=cn1

cn2∑
|j2|=1

· · ·
cnN∑

|jN |=1

{ϕ(j1, . . . , jN )}δ/(2+δ)

≤ n̂
n1∑

|j1|=cn1

n2∑
|j2|=1

· · ·
nN∑

|jN |=1

{ϕ(j1, . . . , jN )}δ/(2+δ).

More generally,

V (	1, 	2, . . . , 	N) ≤ n̂
∑
|j1|

· · ·∑
|jk|

· · ·∑
|jN |

{ϕ(j1, . . . , jN)}δ/(2+δ),(5.11)

where the sums
∑

|jk| run over all values ofjk such that 1≤ |jk| ≤ nk if 	k = 0,
and such thatcn1 ≤ |jk| ≤ nk if 	k = 1. Since the summands are nonnegative, for
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1 ≤ cnk ≤ nk , we have
∑nk|jk |=cnk

(· · ·) ≤∑nk|jk|=1(· · ·), and (5.9)–(5.11) imply

|J2| ≤ Cb2d/(2+δ)
n n̂

×
N∑

k=1

(
n1∑

|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk|=cnk

nk+1∑
|jk+1|=1

· · ·

nN∑
|jN |=1

{ϕ(j1, . . . , jN)}δ/(2+δ)

)
.

(5.12)

Thus, (5.2) is a consequence of (5.7) and (5.12). If, furthermore,ϕ(j1, . . . , jN)

depends on‖j‖ only, then

n1∑
|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk|=cnk

nk+1∑
|jk+1|=1

· · ·
nN∑

|jN |=1

{ϕ(‖j‖)}δ/(2+δ)

≤
n1∑

|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk|=cnk

nk+1∑
|jk+1|=1

· · ·
nN−1∑

|jN−1|=1

j2
1+···+j2

N−1+n2
N∑

t2=j2
1+···+j2

N−1+1

{ϕ(t)}δ/(2+δ)

≤
‖n‖∑

t=cnk

t∑
|j1|=1

· · ·
t∑

|jN−1|=1

{ϕ(t)}δ/(2+δ) ≤
‖n‖∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ);

(5.3) follows. �

PROOF OFLEMMA 2.2. Observe that

Ĩ (x) = b−d
n E�2

j (x) = b−d
n [Eη2

j − (Eηj)
2]

= b−d
n
[
EZ2

j K2
c
(
(x − Xj)/bn

)− {
EZjKc

(
(x − Xj)/bn

)}2]
.

(5.13)

Under assumption (A5), by the Lebesgue density theorem,

lim
n→∞

∫
Rd

b−d
n E[Z2

j |Xj = u]K2
c
(
(x − u)/bn

)
f (u) du = g(2)(x)f (x)

∫
Rd

K2
c (u) du,

lim
n→∞

∫
Rd

b−d
n E[Zj|Xj = u]Kc

(
(x − u)/bn

)
f (u) du = g(1)(x)f (x)

∫
Rd

K(u) du,

whereg(i)(x) := E[Zi
j |Xj = x] for i = 1, 2. It is easily seen thatb−d

n {EZjKc((x −
Xj)/bn)}2 → 0. Thus, from (5.13),

lim
n→∞ Ĩ (x) = g(2)(x)f (x)

∫
Rd

K2
c (u) du,(5.14)

whereg(2)(x) = E{Z2
j |Xj = x} = E{(Yj − g(x))2|Xj = x} = Var{Yj|Xj = x}.
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Let ca
nk := b

−δd/(2+δ)
n → ∞. Clearly, cnk < nk becausenkb

δd/(2+δ)a
n > 1 for

all k. Apply Lemma 5.2. Since, due to the fact thata > (4 + δ)N/(2 + δ), and
N/(2+ δ)a < 1/(4+ δ)

(n̂bd
n)−1J̃2 ≤ C

N∑
k=1

(
ca

nk

∞∑
t=cnk

tN−1{ϕ(t)}δ/(2+δ)

)
→ 0(5.15)

becausecnk → ∞, (5.3) and assumption (A4) imply that

(n̂bd
n)−1J̃1 ≤ Cbδd/(4+δ)

n cn1 · · · cnN = Cbδd/(4+δ)
n b−δdN/(2+δ)a

n → 0,

hence, by (5.2), that

|R̃(x)| = (n̂bd
n)−1|J̃ (x)| ≤ C(n̂bd

n)−1(J̃1 + J̃2) → 0.(5.16)

Finally, (2.7) follows from (5.14) and (5.16), which completes the proof of
Lemma 2.2. �

PROOF OF LEMMA 2.3. From (2.5) and the definition ofAn [recall that
a0 = g(x), a1 = g′(x)],

E[An] = (n̂bd
n)1/2b−d

n E[Zj]Kc

(
Xj − x

bn

)

= (n̂bd
n)1/2 b−d

n E
(
Yj − a0 − aτ

1(Xj − x)
)
Kc

(Xj − x
bn

)

= (n̂bd
n)1/2b−d

n E
(
g(Xj) − a0 − aτ

1(Xj − x)
)
Kc

(
Xj − x

bn

)
= (n̂bd

n)1/2b−d
n E(Xj − x)τ

× g′′(x + ξ(Xj − x)
)
(Xj − x)Kc

(
Xj − x

bn

)
(where|ξ | < 1)

= (n̂bd
n)1/2b2

n b−d
n tr E

[
g′′(x + ξ(Xj − x)

)Xj − x
bn

(Xj − x
bn

)τ]
Kc

(Xj − x
bn

)
;

the lemma follows via assumption (A3).�

PROOF OF LEMMA 3.1. The proof consists of two parts and an additional
lemma (Lemma 5.3). Recalling that

ηj(x) := ZjKc(x − Xj) and �j(x) := ηj(x) − Eηj(x),(5.17)

defineζnj := b
−d/2
n �j, and letSn :=∑nk

jk=1;k=1,...,N ζnj. Then

n̂−1/2Sn = (n̂bd
n)1/2cτ

(
Wn(x) − EWn(x)

)= An − EAn.
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Now, let us decomposên−1/2Sn into smaller pieces involving “large” and “small”
blocks. More specifically, consider [all sums run overi := (i1, . . . , iN)]

U(1,n,x, j) :=
jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N

ζni(x),

U(2,n,x, j) :=
jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−1

(jN+1)(pN+q)∑
iN=jN (pN+q)+pN+1

ζni(x),

U(3,n,x, j) :=
jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−2

(jN−1+1)(pN−1+q)∑
iN−1=jN−1(pN−1+q)+pN−1+1

jN (pN+q)+pN∑
iN =jN(pN+q)+1

ζni(x),

U(4,n,x, j) :=
jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−2

(jN−1+1)(pN−1+q)∑
iN−1=jN−1(pN−1+q)+pN−1+1

(jN+1)(pN+q)∑
iN =jN(pN+q)+pN+1

ζni(x),

and so on. Note that

U(2N − 1,n,x, j) :=
(jk+1)(pk+q)∑

ik=jk(pk+q)+pk+1
k=1,...,N−1

jN (pN+q)+pN∑
iN =jN(pN+q)+1

ζni(x)

and

U(2N,n,x, j) :=
(jk+1)(pk+q)∑

ik=jk(pk+q)+pk+1
k=1,...,N

ζni(x).

Without loss of generality, assume that, for some integersr1, . . . , rN , n =
(n1, . . . , nN) is such thatn1 = r1(p1 + q), . . . , nN = rN(pN + q), with rk → ∞
for all k = 1, . . . ,N . For each integer 1≤ i ≤ 2N , define

T (n,x, i) :=
rk−1∑
jk=0

k=1,...,N

U(i,n,x, j).

Clearly, Sn = ∑2N

i=1 T (n,x, i). Note thatT (n,x,1) is the sum of the random
variablesζni over “large” blocks, whereasT (n,x, i),2 ≤ i ≤ 2N , are sums over
“small” blocks. If it is not the case thatn1 = r1(p1 +q), . . . , nN = rN(pN +q) for
some integersr1, . . . , rN , then an additional termT (n,x,2N + 1), say, containing
all theζnj’s that are not included in the big or small blocks, can be considered. This
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term will not change the proof much. The general approach consists in showing
that, asn → ∞,

Q1 :=
∣∣∣∣∣E[exp[iuT (n,x,1)]]− rk−1∏

jk=0
k=1,...,N

E
[
exp[iuU(1,n,x, j)]]∣∣∣∣∣→ 0,(5.18)

Q2 := n̂−1E

( 2N∑
i=2

T (n,x, i)

)2

→ 0,(5.19)

Q3 := n̂−1
rk−1∑
jk=0

k=1,...,N

E[U(1,n,x, j)]2 → σ 2,(5.20)

Q4 := n̂−1
rk−1∑
jk=0

k=1,...,N

E
[(

U(1,n,x, j)
)2

I {|U(1,n,x, j)| > εσ n̂1/2}]→ 0,(5.21)

for everyε > 0. Note that

[An − EAn]/σ = (n̂bd
n)1/2cτ [Wn(x) − EWn(x)]/σ = Sn/(σ n̂1/2)

= T (n,x,1)/(σ n̂1/2) +
2N∑
i=2

T (n,x, i)/(σ n̂1/2).

The term
∑2N

i=2 T (n,x, i)/(σ n̂1/2) is asymptotically negligible by (5.19). The
random variablesU(1,n,x, j) are asymptotically mutually independent by (5.18).
The asymptotic normality ofT (n,x,1)/(σ n̂1/2) follows from (5.20) and the
Lindeberg–Feller condition (5.21). The lemma thus follows if we can prove
(5.18)–(5.21). This proof is given here. The arguments are reminiscent of those
used by Masry (1986) and Nakhapetyan (1987).

Before turning to the end of the proof of Lemma 3.1, we establish the following
preliminary lemma, which significantly reinforces Lemma 3.1 in Tran (1990).

LEMMA 5.3. Let the spatial process{Yi,Xi} satisfy the mixing property(2.1),
and denote bỹUj , j = 1, . . . ,M , anM-tuple of measurable functions such thatŨj

is measurable with respect to{(Yi,Xi), i ∈ Ĩj }, whereĨj ⊂ In. If Card(Ĩj ) ≤ p

andd(Ĩ	, Ĩj ) ≥ q for any	 �= j , then∣∣∣∣∣E
[

exp

{
iu

M∑
j=1

Ũj

}]
−

M∏
j=1

E[exp{iuŨj }]
∣∣∣∣∣≤ C

M−1∑
j=1

ψ
(
p, (M − j)p

)
ϕ(q),

wherei = √−1.
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PROOF. Let aj := exp{iuŨj }. Then

E[a1 · · ·aM ] − E[a1] · · ·E[aM ]
= E[a1 · · ·aM ] − E[a1]E[a2 · · ·aM ]

+ E[a1]{E[a2 · · ·aM ] − E[a2]E[a3 · · ·aM ]}
+ · · · + E[a1]E[a2] · · ·E[aM−2]{E[aM−1aM ] − E[aM−1]E[aM ]}.

Since|E[ai]| ≤ 1,

|E[a1 · · ·aM ] − E[a1] · · ·E[aM ]|
≤ |E[a1 · · ·aM ] − E[a1]E[a2 · · ·aM ]|

+ |E[a2 · · ·aM ] − E[a2]E[a3 · · ·aM ]|
+ · · · + |E[aM−1aM ] − E[aM−1]E[aM ]|.

Note thatd(I	, Ij ) ≥ q for any 	 �= j . The lemma then follows by applying
Lemma 5.1(ii) to each term on the right-hand side.�

PROOF OF LEMMA 3.1 (continued). In order to complete the proof of
Lemma 3.1, we still have to prove (5.18)–(5.21).

PROOF OF(5.18). Ranking the random variablesU(1,n,x, j) in an arbitrary
manner, refer to them as̃U1, . . . , ŨM . Note thatM = ∏N

k=1 rk = n̂{∏N
k=1(pk +

q)}−1 ≤ n̂/p, wherep =∏N
k=1pk. Let

I(1,n,x, j) := {i : jk(pk + q) + 1 ≤ ik ≤ jk(pk + q) + pk, k = 1, . . . ,N}.
The distance between two distinct setsI(1,n,x, j) andI(1,n,x, j′) is at leastq.
Clearly,I(1,n,x, j) is the set of sites involved inU(1,n,x, j). As for the set of
sitesĨj associated with̃Uj , it containsp elements. Hence, in view of Lemma 5.3
and assumption (A4′),

Q1 ≤ C

M−1∑
k=1

min{p, (M − k)p}ϕ(q) ≤ CMpϕ(q) ≤ Cn̂ϕ(q),

which tends to zero by condition (B2).�

PROOF OF(5.19). In order to prove (5.19), it is enough to show that

n̂−1E[T 2(n,x, i)] → 0 for any 2≤ i ≤ 2N.

Without loss of generality, consider E[T 2(n,x,2)]. Ranking the random variables
U(2,n,x, j) in an arbitrary manner, refer to them asÛ1, . . . , ÛM . We have

E[T 2(n,x,2)] =
M∑
i=1

Var(Ûi) + 2
∑

1≤i<j≤M

Cov(Ûi, Ûj )

:= V̂1 + V̂2 say.

(5.22)
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SinceXn is stationary [recall thatζnj(x) := b
−d/2
n �j(x)],

Var(Ûi) = E

[( pk∑
ik=1

k=1,...,N−1

q∑
iN=1

ζni(x)

)2]
+ ∑

i�=j∈J

E[ζnj(x)ζni(x)] := V̂11 + V̂12,

where J = J(p, q) := {i, j : 1 ≤ ik, jk ≤ pk, k = 1, . . . ,N − 1, and 1≤ iN ,

jN ≤ q}. From (5.13) and the Lebesgue density theorem [see Chapter 2 of Devroye
and Györfi (1985)],

V̂11 =
(

N−1∏
k=1

pk

)
q Var{ζni(x)} =

(
N−1∏
k=1

pk

)
q{b−d

n E�2
i (x)} ≤ C

(
N−1∏
k=1

pk

)
q.

Thus, applying Lemma 5.2 withnk = pk , k = 1, . . . ,N − 1, andnN = q yields

V̂12 = b−d
n

∑
i�=j∈J

E[�j(x)�i(x)]

≤ Cb−d
n

[
bδd/(4+δ)+d

n

(
N−1∏
k=1

pkcnk

)
qcnN

+ b2d/(2+δ)
n

(
N−1∏
k=1

pk

)
q

N∑
k=1

‖n‖∑
t=cnk

tN−1{ϕ(t)}δ/(2+δ)

]

= C

(
N−1∏
k=1

pk

)
q

[
bδd/(4+δ)

n

(
N∏

k=1

cnk

)

+ b−δd/(2+δ)
n

N∑
k=1

∞∑
t=cnk

tN−1{ϕ(t)}δ/(2+δ)

]

:= C

(
N−1∏
k=1

pk

)
qπn.

It follows that

n̂−1V̂1 = n̂−1M(V̂11 + V̂12)

≤ n̂−1MC

(
N−1∏
k=1

pk

)
q[1+ πn] ≤ C(q/pN)[1+ πn].

(5.23)

Set

I(2, n,x, j) := {i : jk(pk + q) + 1≤ ik ≤ jk(pk + q) + pk,1 ≤ k ≤ N − 1,

jN(pN + q) + pN + 1 ≤ iN ≤ (jN + 1)(pN + q)}.
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Then U(2,n,x, j) = ∑
i∈I(2,n,x,j) ζni(x). Since pk > q, if i and i′ belong to

two distinct setsI(2,n,x, j) and I(2,n,x, j′), then ‖i − i′‖ > q. In view of
(5.8) and (5.22), we obtain

|V̂2| ≤ C
∑

{i,j : ‖i−j‖≥q,

∑
1≤ik ,jk≤nk}

|E[ζni(x)ζnj(x)]|

≤ Cb−d
n

∑
{i,j : ‖i−j‖≥q,

∑
1≤ik,jk≤nk}

|E[�ni(x)�nj(x)]|

≤ Cb−d
n

∑
{i,j : ‖i−j‖≥q,

∑
1≤ik,jk≤nk}

b2d/(2+δ)
n {ϕ(‖j − i‖)}δ/(2+δ)

≤ Cb−δd/(2+δ)
n

(
N∏

k=1

nk

)( ‖n‖∑
t=q

tN−1{ϕ(t)}δ/(2+δ)

)
.(5.24)

Take ca
nk = b

−δd/(2+δ)
n → ∞. Condition (B3) implies thatqb

δd/a(2+δ)
n > 1,

so that cnk < q ≤ pk . Then, as proved in (5.15) and (5.16), it follows from
assumption (A4) thatπn → 0. Thus, from (5.22), (5.23) and (5.24),

n̂−1E[T 2(n,x,2)] ≤ C(q/pN)[1+ πn] + Cb−δd/(2+δ)
n

( ∞∑
t=q

tN−1{ϕ(t)}δ/(2+δ)

)
,

which tends to zero byq/pN → 0 and condition (B3); (5.19) follows.�

PROOF OF(5.20). LetS′
n := T (n,x,1) andS′′

n :=∑2N

i=2 T (n,x, i). ThenS′
n is

a sum ofYj’s over the “large” blocks,S′′
n over the “small” ones. Lemma 3.2 implies

n̂−1E[|Sn|2] → σ 2. This, combined with (5.19), entailŝn−1E[|S′
n|2] → σ 2. Now,

n̂−1E[|S′
n|2] = n̂−1

rk−1∑
jk=0

k=1,...,N

E[U2(1,n,x, j)]

+ n̂−1
∑

i�=j∈J∗
Cov

(
U(1,n,x, j),U(1,n,x, i)

)
,

(5.25)

where J∗ = J∗(p, q) := {i, j : 1 ≤ ik, jk ≤ rk − 1, k = 1, . . . ,N}. Observe
that (5.20) follows from (5.25) if the last sum in the right-hand side of (5.25)
tends to zero asn → ∞. Using the same argument as in the derivation of the
bound (5.22) for̂V2, this sum can be bounded by

Cb−δd/(2+δ)
n

∑
‖i‖>q

nk−1∑
ik=1

k=1,...,N

{ϕ(‖i‖)}δ/(2+δ) ≤ Cb−δd/(2+δ)
n

( ∞∑
t=q

tN−1{ϕ(t)}δ/(2+δ)

)
,

which tends to zero by condition (B3).�
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PROOF OF (5.21). We need a truncation argument becauseZi is not
necessarily bounded. SetZL

i := ZiI{|Zi|≤L}, ηL
i := ZL

i Kc((Xi − x)/bn), �L
i :=

ηL
i − EηL

i , ζL
ni := b

−d/2
n �L

i , where L is a fixed positive constant, and define
UL(1,n,x, j) :=∑

i∈I(1,n,x,j) ζ
L
ni. Put

QL
4 := n̂−1

rk−1∑
jk=0

k=1,...,N

E
[(

UL(1,n,x, j)
)2

I {|UL(1,n,x, j)| > εσ n̂1/2}].
Clearly,|ζL

ni| ≤ CLb
−d/2
n . Therefore|UL(1,n,x, j)| < CLpb

−d/2
n . Hence

QL
4 ≤ Cp̂2b−d

n n̂−1
rk−1∑
jk=0

k=1,...,N

P[UL(1,n,x, j) > εσ n̂1/2].

Now,UL(1,n,x, j)/(σ n̂1/2) ≤ Cp̂(n̂bd
n)−1/2 → 0, sincep̂ = [(n̂bd

n)1/2/sn], where
sn → ∞. Thus P[UL(1,n,x, j) > εσ n̂1/2] = 0 at allj for sufficiently largen̂. Thus
QL

4 = 0 for largen̂, and (5.21) holds for the truncated variables. Hence

n̂−1/2SL
n := n̂−1/2

nk∑
jk=1

k=1,...,N

ζL
nj

L→ N(0, σ 2
L),(5.26)

whereσ 2
L := Var(ZL

i |Xi = x)f (x)
∫

K2
c (u) du.

DefiningSL∗
n :=∑nk

jk=1;k=1,...,N (ζnj − ζL
nj), we haveSn = SL

n + SL∗
n . Note that

|E[exp(iuSn/n̂1/2)] − exp(−u2σ 2/2)|
≤ |E[exp(iuSL

n /n̂1/2) − exp(−u2σ 2
L/2)]exp(iuSL∗

n /n̂1/2)|
+ |E[exp(iuSL∗

n /n̂1/2) − 1]exp(−u2σ 2
L/2)|

+ |exp(−u2σ 2
L/2) − exp(−u2σ 2/2)|

= E1 + E2 + E3, say.

Letting n → ∞, E1 tends to zero by (5.26) and the dominated convergence
theorem. LettingL go to infinity, the dominated convergence theorem also implies
thatσ 2

L := Var(ZL
i |Xi = x)f (x)

∫
K2

c (u) du converges to

Var(Zi|Xi = x)f (x)

∫
K2

c (u) du = Var(Yi|Xi = x)f (x)

∫
K2

c (u) du := σ 2,

and hence thatE3 tends to zero. Finally, in order to prove thatE2 also tends to
zero, it suffices to show thatSL∗

n /n̂1/2 → 0 in probability as firstn → ∞ and then
L → ∞, which in turn would follow if we could show that

E[(SL∗
n /n̂1/2)2] → Var

(|Zi|I{|Zi|>L}|Xi = x
)
f (x)

∫
K2

c (u) du asn → ∞.
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This follows along the same lines as Lemma 3.2.�

The proof of Lemma 3.1 is thus complete.�
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