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LOCAL LINEAR SPATIAL REGRESSION?

By MARC HALLIN, ZuDI LU AND LANH T. TRAN

Université Libre de Bruxellehinese Academy of Sciences and London School
of Economicsand Indiana University

A local linear kernel estimator of the regression functior> g(x) :=
E[Y;[X; = x], x € R?, of a stationary(d + 1)-dimensional spatial process
{(Yi, X;),i € ZV} observed over a rectangular domain of the fdn= {i =
(i1, in) €ZN|1<ip <np,k=1,...,N}, n=(nq,...,ny) € ZV, is
proposed and investigated. Under mild regularity assumptions, asymptotic
normality of the estimators ok (x) and its derivatives is established.
Appropriate choices of the bandwidths are proposed. The spatial process
is assumed to satisfy some very general mixing conditions, generalizing
classical time-series strong mixing concepts. The size of the rectangular
domainJp, is allowed to tend to infinity at different rates depending on the
direction inZ" .

1. Introduction. Spatial data arise in a variety of fields, including econo-
metrics, epidemiology, environmental science, image analysis, oceanography and
many others. The statistical treatment of such data is the subject of an abundant
literature, which cannot be reviewed hgfer background reading, we refer the
reader to the monographs by Anselin and Florax (1995), Cressie (1991), Guyon
(1995), Possolo (1991) or Ripley (1981).

LetZV, N > 1, denote the integer lattice points in tNedimensional Euclidean
space. A pointi = (i1,...,iy) in ZN will be referred to as asite. Spatial
data are modeled as finite realizations of vector stochastic processes indexed
byi e Z": random fieldsIn this paper, we will consider strictly stationa@y+ 1)-
dimensional random fields, of the form

(1.1) {(vi, Xp);i ez},

where Y;, with values inR, and X;, with values inR¢, are defined over some
probability spacé2, ¥, P).

A crucial problem for a number of applications is the problemspatial
regression where the influence of a vectof; of covariates on some response
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variable Y; is to be studied in a context of complex spatial dependence. More
specifically, assuming thaf has finite expectation, the quantity under study in
such problems is thgpatial regression function

g X g(x) := E[Y;[Xj =X].

The spatial dependence structure in this context plays the role of a nuisance,
and remains unspecified. Althoughof course is only defined up to a P-null

set of values ok (being a class of P-a.s. mutually equal functions rather than a
function), we will treat it, for the sake of simplicity, as a well-defined real-valued
X-measurable function, which has no implication for the probabilistic statements of
this paper. In the particular case under whightself is measurable with respect to

a subset otj’s, with j ranging over some neighborhoodiog is called aspatial
autaegression functionSuch spatial autoregression models were considered as
early as 1954, in the particular case of a linear autoregression fungtity
Whittle (1954, 1963); see Besag (1974) for further developments in this context.

In this paper, we are concerned with estimating the spatial regression (au-
toregression) functiorg:x — g(x); contrary to Whittle (1954), we adopt a
nonparametric point of view, avoiding any parametric specification of the possi-
bly extremely complex spatial dependent structure of the data.

For N =1, this problem reduces to the classical problem of (auto)regression
for serially dependent observations, which has received extensive attention in the
literature; see, for instance, Reras (1969, 1988), Mas($983, 1986), Rbinson
(1983, 1987), loannides and Roussas (1987), Masry and Gyorfi (1987), Yakowitz
(1987), Boente and Fraiman (1988), Bosq (1989), Gyorfi, Hardle, Sarda and Vieu
(1989), Tran (1989), Masry and Tjgstheim (1995), Hallin and Tran (1996), Lu
and Cheng (1997), Lu (2001) and Wu and Mielniczuk (2002), to quote only a
few. Quite surprisingly, despite its importance for applications, the spatial version
(N > 1) of the same problem remains essentially unexplored. Several recent papers
[e.g., Tran (1990), Tran and Yakowitz (1993), Carbon, Hallin and Tran (1996),
Hallin, Lu and Tran (2001, 2004), Biau (2003) and Biau and Cadre (2004)] deal
with the related problem of estimating the densftpf a random field of the form
{Xi;i € ZV}, or the prediction problem but, to the best of our knowledge, the
only results available on the estimation of spatial regression functions are those by
Lu and Chen (2002, 2004), who investigate the properties of a Nadaraya—\Watson
kernel estimator fop.

Though the Nadaraya—Watson method is central in most nonparametric regres-
sion methods in the traditional serial cagé £ 1), it has been well documented
[see, e.g., Fan and Gijbels (1996)] that this approach suffers from several se-
vere drawbacks, such as poor boundary performance, excessive bias and low effi-
ciency, and that the local polynomial fitting methods developed by Stone (1977)
and Cleveland (1979) are generally preferable. Local polynomial fitting, and par-
ticularly its special case—local linear fitting—recently have become increasingly
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popular in light of recent work by Cleveland and Loader (1996), Fan (1992), Fan
and Gijbels (1992, 1995), Hastie and Loader (1993), Ruppert and Wand (1994)
and several others. F&f = 1, Masry and Fan (1997) have studied the asymptot-
ics of local polynomial fitting for regression under general mixing conditions. In
this paper, we extend this approach to the context of spatial regresgisri{ by
defining an estimator of based on local linear fitting and establishing its asymp-
totic properties.
Extending classical or time-series asymptotids=£ 1) to spatial asymptotics
(N > 1), however, is far from trivial. Due to the absence of any canonical ordering
in the space, there is no obvious definition of tail sigma-fields. As a consequence,
such a basic concept as ergodicity is all but well defined in the spatial context. And,
little seems to exist abotitis in the literature, where opnkentral limit results are
well documented; see, for instance, Bolthausen (1982) or Nakhapetyan (1980).
Even the simple idea of a sample size going to infinity (the sample size here
is a rectangular domain of the fordy := {i = (i1, ...,in) € ZV|1 < iy < ng,
k=1,...,N}, for n = (n,...,ny) € Z" with strictly positive coordinates
ni,...,ny) or the concept of spatial mixing have to be clarified in this setting.
The assumptions we are making (A4), (Adnd (A4’) are an attempt to provide
reasonable and flexible generalizations of traditional time-series concepts.
Assuming thak — g(x) is differentiable ak, with gradieni — g’(x), the main
idea in local linear regression consists in approximagingthe neighborhood of
as

g@)~g(x) + (g (%) (z—x),

and estimatingg(x), g’(x)) instead of simply running a classical nonparametric
(e.g., kernel-based) estimation methodgdatself. In order to do this, we propose a
weighted least square estimatgr (x), g, (X)), and study its asymptotic properties.
Mainly, we establish its asymptotic normality under various mixing conditions,
asn goes to infinity in two distinct ways. Eithéotropic divergencén = oo) can

be considered; under this case, observations are made over a rectangulartjpmain
of ZV which expands at the same rate in all directions—see Theorems 3.1, 3.2
and 3.5. Or, due to the specific nature of the practical problem under study, the
rates of expansion of,, cannot be the same along all directions, and only a
less restrictive assumption of possilslgnisotropic divergencén — oo) can be
made—see Theorems 3.3 and 3.4.

The paper is organized as follows. In Section 2.1 we provide the notation and
main assumptions. Section 2.2 introduces the main ideas underlying local linear
regression in the context of random fields and sketches the main steps of the
proofs to be developed in the sequel. Section 2.3 is devoted to some preliminary
results. Section 3 is the main section of the paper, where asymptotic normality is
proved under the various types of asymptotics and various mixing assumptions.
Section 4 provides some numerical illustrations. Proofs and technical lemmas are
concentrated in Section 5.
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2. Local linear estimation of spatial regression.

2.1. Notation and main assumptionskor the sake of convenience, we
summarize here the main assumptions we are making on the random field (1.1)
and the kernek to be used in the estimation method. Assumptions (A1l)—(A4) are
related to the random field itself.

(A1) The random field (1.1) is strictly stationary. For all distin@ndj in Z",
the vectorsX; and X; admit a joint densityf; j; moreover,| fi j (X', X") —
FOOF(XN| < C for all i,j e ZN, all X', x" € R4, whereC > 0 is some
constant, ang® denotes the marginal density Xf.

(A2) The random variabl&; has finite absolute moment of ord&+ §); that is,
E[|Yi|2?] < oo for somes > 0.

(A3) The spatial regression functignis twice differentiable. Denoting by’ (x)
and g”(x) its gradient and the matrix of its second derivatives Xat
respectivelyx — g”(x) is continuous at alk.

Assumption (Al) is standard in this context; it has been used, for instance,
by Masry (1986) in the serial casg = 1, and by Tran (1990) in the spatial
context (v > 1). If the random fieldX; consists of independent observations, then
| fi,j (X, X") — f(X') f(xX")| vanishes as soon aandj are distinct. Thus (A1) also
allows for unbounded densities.

Assumption (A4) is an assumption of spatial mixing taking two distinct forms
[either (A4) and (A4) or (A4) and (A4)]. For any collection of sitess ¢ Z",
denote byB(4$) the Borelo-field generated by(Yi, Xj)| i € §}; for each couple
8, 8", letd(8’,8") :=min{|i’ —i"||i" € §,i" € 8"} be the distance betweet
and 8”, whereli| := (i2 + --- + i%)Y/2 stands for the Euclidean norm. Finally,
write Card 4) for the cardinality ofS.

(A4) There exist a functiorp such thate(r) | 0 ast — oo, and a function
¥ :N2 - Rt symmetric and decreasing in each of its two arguments, such
that the random field (1.1) is mixing, with spatial mixing coefficieats
satisfying

2.1) a(£(<§’), JB(/S”)) :=SUH|P(AB) — P(A)P(B)|, A € B(8'), B € B(5")}
<y (Card8"), Card$8"))p(d (8, 8")),
for any$’, 8” c Z". The functionyp, moreover, is such that
lim_me i N1 — o
j=m
for some constant > (4+8)N /(24 9).

The assumptions we are making on the funcijoare either
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(A4") Y (n',n") <min(n’,n")
or
(A4") Yr(n',n") < C(n' +n" + 1)* for someC > 0 andx > 1.

In case (2.1) holds witly = 1, the random field(Y;, X;)} is calledstrongly mixing

In the serial caseN = 1), many stochastic processes and time series are
known to be strongly mixing. Withers (1981) has obtained various conditions
for linear processes to be strongly mixing. Under certain weak assumptions,
autoregressive and more general nonlinear time-series models are strongly mixing
with exponential mixing rates; see Pham and Tran (1985), Pham (1986), Tjgstheim
(1990) and Lu (1998). Guyon (1987) has shown that the results of Withers under
certain conditions extend to linear random fields, of the fofim= 3", .z~ g Zn-j,
where theZj’s are independent random variables. Assumptions)(Add (A4')
are the same as the mixing conditions used by Neaderhouser (1980) and Takahata
(1983), respectively, and are weaker than the uniform strong mixing condition
considered by Nakhapetyan (1980). They are satisfied by many spatial models,
as shown by Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987).

Throughout, we assume that the random field (1.1) is observed over a rectan-
gular region of the forml, :={i = (i1,...,in) € ZN|1<ix <nmi,k=1,..., N},
forn=(n1,...,ny) € ZN with strictly positive coordinatesy, ..., ny. The total
sample size is thush := l_[;iV:lnk- We write n — oo as soon as
mini<x<n{nx} — oo. The rate at which the rectangular region expands thus can
depend on the direction i&". In some problems, however, the assumption that
this rate is the same in all directions is natural: we use the notatignoo if
n — oo and moreovefn;/ni| < C for some O< C < o0, 1< j, kK < N. In this
latter casen tends to infinity in arisotropicway. Thenonisotropiccasen — oo is
less restrictive. For more information on the nonisotropic case, we refer to Bradley
and Tran (1999) and Lu and Chen (2002).

Assumption (A5) deals with the kernel functidgh: R¢ — R to be used in the
estimation method. For any:= (co, ¢})° € R¥*1, define

(2.2) K¢(u) := (co+ ciu) K (u).

(A5)(i) For anyc € R¥*1, |Kc(u)| is uniformly bounded by some constakif",
and is integrablefpii1 | Kc(X)| dX < oo.
(i) For anyce R?*L |K¢| has an integrable second-order radial majorant,
that is, Q& () := supy= x [IYI2Kc(y)] is integrable.

Finally, for convenient reference, we list here some conditions on the asymptotic
behavior, a1 — oo, of the bandwidttb, that will be used in the sequel.

(B1) The bandwidttb, tends to zero in such a way thﬁiiﬁ — 00 asn — oo.
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(B2) There exist two sequences of positive integer vectoes,p, := (p1, ...,
py) €ZN andg=qn:=(q,...,q) € ZV, with g = gn — oo such thatpp =
pn =P = o((AbHY?), q/pr — 0 andny/py — oo forall k=1,..., N,
andfg(q) — 0.

(B2) Same as (B2), but the last condition is replaced(®y1/p)p(q) — 0,
wherex is the constant appearing in (A4

(B3) by, tends to zero in such a manner tk]aﬁd/[“(2+5)] >1and

o0
(2.3) bt/ EN N1} 2) 0 asn— co.
1=q

2.2. Local linear fitting. Local linear fitting consists in approximating, in a
neighborhood ok, the unknown functiory by a linear function. Under (A3), we
have

2@~ g(X) + (g (X)) (Z—X) :=ag+aj(z—X).

Locally, this suggests estimatingo, aj) = (g(X), g'(X)), hence constructing an
estimator ofg from

(gn(X)) _ (&o)
gn(X) &
— - _ 7oy, 2, (X=X
= arg(ao,a$;%d+1j§1(n ao — a3 (Xj — X)) K( o )
whereby, is a sequence of bandwidths tending to zero at an appropriate rate as
tends to infinity, andK () is a (bounded) kernel with valuesIRi*.

In the classical serial cas&/(= 1; we writei andn instead ofi andn), the so-
lution of the minimization problem (2.4) is easily shown to®&WX)~1X"WY,
where X is ann x (d + 1) matrix with ith row (1, bn—l(X,- - x5, W =
by diag K (23, ..., K(34)), and Y = (Y1,....Y,)" [see, e.g., Fan and
Gijbels (1996)]. In the spatial case, things are not as simple, and we rather write
the solution to (2.4) as

( a0 ):Un‘lvn whereV, := <5”°) and Uy, := <u”°° u”°1),

a1bn nl Unio Uni1
with [letting (7)o := 1]
Xi — X Xi — X
Vo) :=<ﬁbﬁ>—1ZYJ( j ) K( ' ) =04,
bn /i bn

jedn
and

Xi — X Xi — X Xi — X
Un)ie := (Ab%)~1 ( J )( J )K( ! ) i, 0=0,...,d.
(“”(”)anibng - i

jedn
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It follows that

H .:< ao — ao >:< gn(¥) —g(X) )
"7\ &by — a1bn (gh(X) — &' (X))bn

(2.5)

_ a _
()] e
where
e (i)
2.6) . Wn1/’
. X — Xi —
W= @ Y 7 () k(BF) im0

jeln bn i bn

andZj :=Yj —ao — aj(Xj — Xx).
The organization of the paper is as follows. If, under adequate conditions, we
are able to show that:

(C1) (AbdH)Y2(Wp — EW,) is asymptotically normal,
(C2) (hv)Y2EW,, — 0 and Var(hb?)/2wW,) — X, and
n n

(C3) Uy 5 U,

then (2.5) and Slutsky’s classical argument imply that, forxa{ball quantities
involved indeed depend o9),

sod12( &n(X) —g(Xx) )_ srd 12y L T N
(Abd) <(g(1(x) )b (AbdH)Y?H, S M (0, U U,
This asymptotic normality result (with explicit values BfandU), under various
forms (depending on the mixing assumptions [(Adr (A4”)], the choice of the
bandwidthb,, the wayn tends to infinity, etc.), is the main contribution of this
paper; see Theorems 3.1-3.5. Section 2.3 deals with (C2) and (C3)runden
(hence also under the stronger assumptionrihat co), and Sections 3.1 and 3.2
with (C1) undem = oo andn — oo, respectively.

2.3. Preliminaries. Claim (C3) is easily established from the following
lemma, the proof of which is similar to that of Lemma 2.2, and is therefore omitted.

LEMMA 2.1. Assume that(Al), (A4) and (A5) hold, that b, satisfies
8d/la(2+5)]

assumptior{B1) and thatn;bn > 1lasn — oo. Thenfor all x,
f(x)/K(u)du f(x)/ufl((u)du
=]
Un — U =

B f(x)/ul((u)du f(x)/uu’l((u)du

asn — oo.
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The remainder of this section is devoted to claim (C2). The usual Cramér—Wold
device will be adopted. For ati:= (co, ¢)* € R, let

R e Xj —X
Ap = (AbH Y2 W, = (Ab) Y2 Y 7 KC< - )
jedn n

with Kc(u) defined in (2.2). The following lemma provides the asymptotic
variance ofAp, for all ¢, hence that offbd)Y/2W,.

LEMMA 2.2. Assume thafAl), (A2), (A4) and (A5) hold, that b, satisfies

assumption(B1) and thatn;b2/! @4 < 1 forall k =1,..., N, asn — oo.

Then
(2.7) nIi_)mOOVar[An] = Var(Yj|Xj = x) f(X) /Rd Kg(u) du=c'Xc,

where

/Kz(u)du /ufl(z(u)du
X = Var(Yj|Xj =X) f(X)
/uKz(u)du /uu’Kz(u)a’u

Hencelimp_, o Var((hb4)/2Wp) = X.

For the proof see Section 5.1.
Next we consider the asymptotic behavior ¢#AE].

LEMMA 2.3. Under assumptionfA3) and (A5),

28 E[An] = VAbEB2L £ () tr[g”(x) f uu® Kc(u) du} + o(vAbgb?)
= VAbLb2[coBo(X) + CEB1(X)] 4 o(VAbIDb2),

where

d d
Bo)i= 3003 3 200 [[wi; K du,

i=1j=1

d d
B100i= 3700 )" " 800 [ wjujuk Wdu

i=1j=1

gij(X) = 8%g(x)/dx; 8xj,i,j=1,...,d,andu:= (u1, ...ug)* € R%.

For the proof see Section 5.2.
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3. Asymptotic normality.

3.1. Asymptotic normality under mixing assumptig®’). The asymptotic
normality of our estimators relies in a crucial manner on the following lemma
[see (2.6) for the definition OV, (X)].

LEMMA 3.1. Suppose that assumptiofsl), (A2), (A4), (A4) and (A5)
hold, and that the bandwidth,, satisfies conditionéB81)—(B3).Denote by 2 the
asymptotic varianc€2.7). Then(fb?)Y/?(c*[Wp, (x) — EW(X)]/0) is asymptoti-
cally standard normal ag — oc.

For the proof see Section 5.3.

We now turn to the main consistency and asymptotic normality results. First, we
consider the case where the sample size tends o the manner of Tran (1990),
that is,n = oo.

THEOREM 3.1. Let assumptionfA1l)—(A3), (A4) and (A5) hold, with
p(x) = 0((x~*) for someu > 2(3+ §)N /5. Suppose that there exists a sequence
of positive integerg = gn — oo such thatg, = o((Ab?)Y/@N)) andfig™* — O as
n = oo, and that the bandwidth, tends to zero in such a manner that

(3.2) qbgd/[a(2+8)] -1
forsome(4+8)N/(2+8) <a < ud/(2+8) — N asn = oco. Then

A1 d\1/2 gn(X) — g(X) ) -1 (Bo(X)) 2]
(Nbh) |:<bn(g,/1(x) —g' () U B1(X) bh
£ (0, Utz
asn = oo, whereU, X, Bo(X) andB1(x) are defined in Lemmadx1l, 2.2and 2.3,

respectively If, furthermore the kernelK(-) is a symmetric density functipn
then(3.2) can be reinforced into

(NbA)Y?[gn(x) — g(X) — BgOOBA] & ( (agoo 0 ))
N =S N0,
(b 2)Y2[gn () — g/ ()] 0 o2
[so thatgn(x) and g, (x) are asymptotically independénivhere
Var(Yj|Xj = x) [ K2(u)du
FX)

(3.2)

d
Be¥) =33 gii(x) f WKW du,  od(x) =
i=1

and
Var(Yj|X; = X)
FX)

X [/ uu’K(u)du]_l[/ uu’Kz(u)du][/ uu’K(u)du}

a%(x) =

-1
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The asymptotic normality results in Theorem 3.1 are statedfor) andg/, (X)
at a given sitex. They are easily extended, via the traditional Cramér—Wold
device, into a joint asymptotic normality result for any coupkeg, x2) (or any
finite collection) of sites; the asymptotic covariance terms [betwggr;) and
gn(X2), gn(X1) andgy,(X2), etc.] all are equal to zero, as in related results on density
estimation [see Hallin and Tran (1996) or Lu (2001)]. The same remark also holds
for Theorems 3.2—3.5 below.

PROOF OFTHEOREM3.1. Sincey is o((Ab¥)1/?V), there exists,, — 0 such

thatg = (ﬁbﬁ)l/ZNsn. Take py := (ﬁbﬁ)l/ZNs%/z, k=1,...,N. Theng/pr =
sw/2 5 0, p= (A Y2) % = o((AB9)Y/2) andfg(q) = Aig™" — 0. Asn = oo,
p = p < (AbdH)Y? for large f. It follows thati/p > (Ab;?4)Y? — oo, hence
ni/pr — oo for all k. Thus, condition (B2) is satisfied.

Becausen(j) =Cj#,

o0 o0
ma Z JN_l{@(J)}B/(2+8) — lel Z jN—lj—/,LB/(2+8)
j=m

j=m

< Cm@mN—18/@+8) _ —118/2+8)—a—N]

a quantity that tends to zero as — oo since (4 + )N/ (2+ 8) < a < us/
(2+38) — N, henceus/(2+ 8) > a + N. Assumption (A4) and the fact that
qbﬁd/[a(”a)] > 1 imply thatb,?ad/(”s) < g% and that (2.3) holds. Now

Hp — U™EW, = Us YW — EWp) + (Ut — U™ HEW,.

The theorem thus follows from Lemmas 2.1, 2.3 and 3[1.

One of the important advantages of local polynomial (and linear) fitting over the
more traditional Nadaraya—Watson approach is that it has much better boundary
behavior. This advantage often has been emphasized in the usual regression and
time-series settings when the regressors take values on a compact sukéet of
For example, as Fan and Gijbels (1996) and Fan and Yao (2003) illustrate, for
a univariate regressaoY with bounded support{@, 1], say; hered = 1), it can
be proved, using an argument similar to the one we develop in the proof of
Theorem 3.1, that asymptotic normality still holds at the boundary poiatch,

(herec is a positive constant), but with asymptotic bias and variances

1/0% ©
B, =—-(— KW du,
o 2(8x2)x:0+ /_C u“kK(u)du

,  Var(Yj|X; =0") /% K2(u)du
On .=
0 £(0%)

(3.3)
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and
Var(Yj| Xj =0h)[ oo —2r oo
(3.4) 012:= erl(oJJr) |:/_c u?K (u) dui| |:/_c usz(u)du],

respectively. This advantage is likely to be much more substantial gsows.
Therefore, results on the model of (3.3) and (3.4) on the boundary behavior
of our estimators would be highly desirable. Such results, however, are all but
straightforward, and we leave them for future research. On the other hand, the
statistical relevance of boundary effects is also of lesser importance, as the
ultimate objective in random fields, as opposed to time series, seldom consists
in “forecasting” the process beyond the boundary of the observed domain.

In the important particular case under whigfx) tends to zero at an exponential
rate, the same results are obtained under milder conditions.

THEOREM 3.2. Let assumptiongAl)—(A3), (A4) and (A5) hold, with
@(x) = O(e~5) for somet > 0. Then if b, tends to zero as = oo in such a
manner that

(3.5) (ﬁbrc]l(l+2N8/a(2+6)))1/2N(log ﬁ)—l s 00
for somea > (4+ 8)N/(2+ 8), the conclusions of TheoreBnl still hold.

PROOF By (3.5), there exists a monotone positive functior> g(n) such
thatg(n) — oo and (AL ET2NY/aCHN1/2N (4 (1) logA)~L — 0o asn = oco. Let
q = HYN ()=t and pp = (AbHY2Ng=V2m). Then q/pc =

g 2(n) = 0,p = ("AbH)Y2g=N/2(n) = o((Ab%)1/?) andny / pr — oo asn = oo.
For arbitraryC > 0, ¢ > C logn for sufficiently largen. Thus

fp(g) < Che 59 < Chexp(—Cé logh) = CA~CETL
which tends to zero if we chooge> 1/&. Hence condition (B2) is satisfied. Next,
for0<é& <é,

[ele) [ele)
qa Z l-N—l(p(l-)(S/(Z-l—B) < an Z iN—le—éi(S/(Z-l—zS)
i=q i=q

(e e]
< Cq* Z e—g’i&/(2+6)
i=q
S ane_é/qa/(2+5).
Note thatb¢ > CAi—! andgq > C logf, so that assumption (A4) holds. In addition,

N 1/2N _
qbgd/[a(2+a)] _ (nbﬁ-&-ZN(Sd/a(Z-HS)) / (g(n)) 1.1
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for fi large enough. It is easily verified that this implies that condition (B3) is
satisfied. The theorem follows [

Note that, in the one-dimensional ca¥e= 1, and for “large” values of, the
condition (3.5) is “close” to the condition thab,’f — 00, Which is usual in the
classical case of independent observations.

Next we consider the situation under which the sample size tends itothe
“weak” sense (i.e.n — oo instead oh = 00).

THEOREM 3.3. Let assumptiondA1)—-(A3), (A4) and (A5) hold, with
p(x) =0(x*) for someu > 2(3+ §)N /6. Let the sequence of positive integers
g = gn — oo and the bandwidthb, factor into b, := vazlbnl., such that
Ag~* — 0,9 = o(minlsksN(nkbgk)l/Z), and

gb%?a2+0) - 1 for some(4+8)N/(2+8) <a < u8/(2+8) — N.

Then the conclusions of Theor&m hold asn — oo.

PROOF  Sinceq = o(Mini<k<y (nkb? )¥/?), there exists a sequengg — 0

such that
. 1/2
g= mlnN((nkbffk) /

S asn — oo.
i )

Take px = (kb )Y2s3/%. Thengq/pi < sul” — 0, p = (AbHY2TIN  s0/% =
o((AbH)Y/?) and fp(q) = Aig™* — 0. As n — oo, pr < (mkb?)Y?, hence
ne/px > (b, MY? — oo, Thus condition (B2) is satisfied. The end of the proof
is entirely similar to that of Theorem 3.1[]

In the important case that(x) tends to zero at an exponential rate, we have the
following result, which parallels Theorem 3.2.

THEOREM 3.4. Let assumptiondAl)—(A3), (A4) and (A5) hold, with
@(x) = O(e5%) for somet > 0. Let the bandwidtlby, factor into by, := ﬂfvzlbni
in such a way thatasn — oo,

(3.6) min {(ubfy,) 216712 log )t — oo

for somea > (44 8)N/(2 + §). Then the conclusions of Theorerl hold as
n — oo.

PROOF By (3.6) there exist positive sequences indexednpysuch that
gn, 1 00 asny — oo and

; d\1/2_—1y,.ds/a(2+5) Av—1
lglgv{(nkbnk) & 1Ph (logh)™" — oo
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. _ ~1/2
asn — oo. Let g := miny<<n{(nxb?,)Y?(gn,) 1) and py := (nkb;’lk)l/zg,,k/ :

~1/2 N ~1/2 .
Theng/pi < gni - — 0, p = (ABHY2TTy g’ = o(A6)Y?) andny/ pr =
(nkb,;(d)l/zgi,{z — oo ash — oo. For arbitraryC > 0, ¢ > C logh for sufficiently

largef. Thus
fp(g) < Che 9 < Ch exp(—CE logh) = CA~C5+L,

which tends to zero foC > 1/&. Hence, condition (B2) is satisfied. Next, for
0<é&' <&,

o0 o0
i=q i=q

o0
< Cq” Ze—g’iS/(ZJra)
i=q
S ane_é/qa/(2+5).
Note thaty > C logh. Assumption (A4) and (3.1) imply thatybﬁd/”(2+8) > 1forn
large enough. This in turn implies that condition (B3) is satisfied. The theorem
follows. O

3.2. Asymptotic normality under mixing assumpti@a’”’). We start with an
equivalent, under (A%, of Lemma 3.1.

LEMMA 3.2. Suppose that assumptiofsl), (A2), (A4) or (A4”), and (A5)
hold, and that the bandwidth,, satisfies conditionéB1), (B2) and(B3). Then the
conclusions of Lemma.1 still hold asn — oo.

PROOF The proof is a slight variation of the argument of Lemma 3.1, and we
desgibe it ogly briefly. The only significant difference is in the checking of (5.18).
LetUsy, ..., Uy be asin Lemma 3.1. By Lemma 5.3 and assumptiorf JA4

M

01<CY Ip+ M —i)p+1p(g)
i=1

< CP* M p(q) < C(A*TV /p)o(q),

which tends to zero by condition (B2 (5.18) follows. [

We then have the following counterpart of Theorem 3.1.
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THEOREM 3.5. Let assumptiongA1)—(A3), (A4’) and (A5) hold, with
p(x) = 0x*) forsomeu > 2(3+8)N /8. Suppose that there exists a sequence of
positive integerg = gn — oo such thatg, = o((Ab9)Y/2V) andi*+1g=#—N - 0
asn = oo, and that the bandwidthy, tends to zero in such a manner th{8t1)is
satisfied a$1 = oco. Then the conclusions of Theor& hold.

PrROOF Choose the same values fpi, ..., py andg as in the proof of
Theorem 3.1. Note that, becayse ¢V andfi*tlg—#—N = o(1),

A /Pyp(q) < CA g Ng=r = pctlg=n=N 0

asn = oo. The end of the proof is entirely similar to that of Theorem 3.1, with
Lemma 3.2 instead of Lemma 3.1

Analogues of Theorems 3.2—3.4 can also be obtained under assumptign (A4
details are omitted for the sake of brevity.

4. Numerical results. In this section, we report the results of a brief Monte
Carlo study of the method described in this paper. We mainly consider two models,
both in a two-dimensional spac® (= 2) [writing (i, j) instead of(i1, i2) for the
sitesi € Z2]. For the sake of simplicityX (written asX) is univariate § = 1).

(a) Modell. Denoting by(u; ;, (i, j) € Z?} and{e; ;, (i, j) € Z?} two mutually
independent i.i.dN (0, 1) white-noise processes, let

Yi,j = g(Xl,/) + ui,j W|th g(X) = %ex + %e_x,
where{X; ;, (i, j) € 72} is generated by the spatial autoregression
Xij=sin(Xi-1; + Xij-1+ Xit1.; + Xij+1) +eij-

(b) Model2. Denoting again bye; ;, (i, j) € 72} ani.i.d. & (0, 1) white-noise
process, letY; ;, (i, j) € 72} be generated by

Yij=sinYi—1;+Yij-1+Yir1; +Yij+1) +eij,
and set
4.1) ng =Y +Yija+Yi; +Yi 4.

Then the prediction function — g(x) := E[Yi’j|X?’j = x] provides the optimal
prediction ofY; ; based onxgl. in the sense of minimal mean squared prediction
error. Note that, in the spatial context, this optimal prediction functi@n
generally differs from the spatial autoregression function itself [herg;)Ein
see Whittle (1954) for details. Beyond a simple estimatiorg ofve also will
investigate the impact, on prediction performance, of including additional spatial
lags ofY; ; into the definition ofX; ;.



LOCAL LINEAR SPATIAL REGRESSION 2483

Data were simulated from these two models over a rectangular domaix af
sites—more precisely, over a grid of the fofi, j)|76 <i <754+ m,76< j <
75 + n}, for various values ofn and n. Each replication was obtained itera-
tively along the following steps. First, we simulated i.i.d. random variables
over the grid{(Z, j),i =1,...,150+m, j =1, ..., 150+ n}. Next, all initial val-
ues ofY;; and X;; being set to zero, we generat&g’s (or X;;'s) over {(i, j),
i=1,...,150+m, j =1,...,150+ n} recursively, using the spatial autore-
gressive models. Starting from these generated values, the process was iterated
20 times. The results at the final iteration step €grj) inside {(i, j)|76 <i <
754+ m,76 < j < 75+ n} were taken as our simulatea x n sample. This dis-
carding of peripheral sites allows fomarming-up zongand the first 19 iterations
were taken as warming-up steps aiming at achieving stationarity. From the result-
ingm x n central data set, we estimated the spatial regression/prediction function
using the local linear approach described in this paper. A data-driven choice of
the bandwidth in this context would be highly desirable. In view of the lack of
theoretical results on this point, we uniformly chose a bandwidth.5fi® all
our simulations. The simulation results, each with 10 replications, are displayed
in Figures 1 and 2 for Models 1 and 2, respectively. Model 1 is a spatial regres-
sion model, with the covariate}; ; forming a nonlinear autoregressive process.
Inspection of Figure 1 shows that the estimation of the regression fungtiprs
guite good and stable, even for sample sizes as smaidl-a40 andn = 20.

Model 2 is a spatial autoregressive model, whEre forms a process with
nonlinear spatial autoregression function (sin Various definitions ofX; ;,
involving different spatial lags of; ;, yield various prediction functions, which
are shown in Figures 2(a)—(f). The results in Figures 2(a) and (b) correspond to
Xij=X2; :=Yi1;+Yij 1+ Y, + Yij1, thatis, the lags of ordei1
of ¥; WhICh also appear in the generating process (4.1). In Figure 2(a), the sample
sizesm = 10 andn = 20 are the same as in Figure 1, but the results (still, for 10
replications) are more dispersed. In Figure 2(b), the sample sizes 30 and
n = 40) are slightly larger, and the results (over 10 replications) seem much more
stable. These sample sizes therefore were maintained throughout all subsequent
simulations. In Figure 2(c), we chose

Xij=Yi2j+Yijo+Yic1;+Yij—1+Yipr; +Yijr1+Yiroj + Vi j42

thus including lagged values of; ; up to order+2, in an isotropic way.
Nonisotropic choices ofX; ; were made in the simulations reported in Fig-
ures 2(d)—(f)XlL{] = Yi—l,j + Yi,j—l in Figure 2(d)’Xij =Yy + Yi,j+1 in

Figure 2(e) and(l:’fj =Y 2 +Y j2+Yi_1;+Y; j_1inFigure 2(f).

A more systematic simulation study certainly would be welcome. However, it
seems that, even in very small samples (see Figure 1), the performance of our
method is excellent in pure spatial regression problems (with spatially correlated
covariates), while larger samples are required in spatiddregression models.
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Fic. 1. Simulation for Model 1The local linear estimates corresponding to th@replications
(solid lineg and actual spatial regression curydotted ling g(x) = E(Y;;|X;; =x) = %e" + %e*x,
for sample sizen = 10, n = 20, with autoregressive spatial covariate;; . The scatterplot shows the
observationgX;;, ¥;;) corresponding to one typical realization amoh@.

This difference is probably strongly related to differences in the corresponding
noise-to-signal ratiosLetting g(x) = E(Y|X = x) ande = Y — g(X), the noise-
to-signal ratio is defined as Ma / Var(g(X)); see, for example, Chapter 4 in Fan
and Gijbels (1996) for details. In a classical regression setting, independence is
generally assumed betwe&nande, so that this ratio, in simulations, can be set

in advance. Such an independence assumption cannot be made in a spatial series
context, but empirical versions of the ratio nevertheless can be computed from each
replication, then averaged, providing estimated values. In Model 1 this estimated
value (averaged over the 10 replications) of the noise-to-signal ratio is 0.214.
The values for the six versions of Model 2 (still, averaged over 10 replications)
are much larger: (a) 12.037, (b) 13.596, (c) 43.946, (d) 47.442, (e) 116.334 and
(f) 88.287.
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(@) (b) (©

FiG. 2. Simulation for Model 2The local linear estimates corresponding to thé replica-
tions (solid lineg of the spatial prediction functiorg(x) = E(Y;;|X;; = x), with sample sizes
m = 10,n = 20 in (a) and m = 30,n = 40 in (b)—(f), for different spatial covariatesX;;’s.
(@) ng =Yi1j+Yij-1+ Yy +Yijy1 (D) X,?j =Yi_qj+Yij—1+ Yiga; + Yi
© Xi; =VYi2j+Yij2+Yia;+Yij1+ Yipr; + Yijyr + Yigoj + Yij42
(d) Xiafj =Y 1+ Y1 (e) X;?,j =Yiy1,; +Yij+1 and (f) Xijjj =Y 2;+Y j2+
Y;_1,j +Y; j_1. The scatterplot shows the observatiai;;, ¥;;) corresponding to one typical
realization amondLO0.

5. Proofs.

5.1. Proof of Lemm&.2. The proof of Lemma 2.2 relies on two intermediate
results. The first one is a lemma borrowed from Ibragimov and Linnik (1971) or
Deo (1973), to which we refer for a proof.

LEMmMA 5.1. (i) Suppose thafAl) holds Let £,(¥) denote the class
of F-measurable random variables satisfying ||€ ||, := (E|€]")Y/" < oco. Let
X e L (B(8)) and Y € Ly (B(S)). Then for anyl < r,s,h < oo such that
ripsTtpni=1,

(5.1) |E[XY] — E[XIE[Y]] < CIX|l 1Y lls[ex(8, 81",
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where|| X ||z := |(X"X)Y/2],.
(i) If, moreover||X| := (X"X)¥2 and|Y| are P-a.s. boundedthe right-hand
side of (5.1) can be replaced b« (4, §').

The second one is a lemma of independent interest, which plays a crucial role
here and in the subsequent sections. For the sake of generality, and in order for this
lemma to apply beyond the specific context of this paper, we do not necessarily
assume that the mixing coefficiemtakes the form imposed in assumption (A4).

Before stating the lemma, let us first introduce some further notation. Let

An= (ABDY2 3" i (x)
jedn
and
Var(An) = (b))t Y E[AZO0T+ (AB) ™ D" Y E[AI(OA[(X)]
jedn {i,jednlT kL ir#ji}
= 1(X) + R(X), say,
where nj(X) := ZjKc(x — Xj) and Aj(x) := nj(X) — Enj(x). For anyc, :=

(ents .- cnn) € ZN with 1 < enx < ng for all k =1,..., N, define Ji(x) :
5d ) (4+8)+d
bp” N (geny) and

N ng ny ng
D) :=b2@ERN L Ny S Q.. i)Y ED

k=1 lisl=1  ljkl=cnk  1Jsl=1
s=1,....k—1 s=k+1,....N

LEMMA 5.2. Let{(Yj,Xj);] € ZN} denote a stationary spatial process with
general mixing coefficient

:=suf{|P(AB) — P(A)P(B)|: A € B({Yi, Xi}), B € B({Yi4j, Xi4j D},

and assume that assumptig@el), (A2) and (A5) hold. Then
(5.2) |RX)| < C(Ab) 1) + 22001.
If furthermoreyp (1, ..., jy) takes the formp(|lj ), then

Inll
(5.3) Ja(x) < Ch34/2+0p Z( DN 1{(p(t)}8/(2+8)>

k=1 \t=cnk
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PROOE SetL =Ly = brTZd/(4+8). Defining Zyj := Z; Iz)<L) and Zy :=
Zilyzj>1y, let
nij(X) := Z;jKc(X = Xj) and  Ajj(X) :=n;j(X) — En;j (%), i=12
ThenZ; = Zyj + Zyj, Aj(X) = Agj(X) + Agj(X), and hence
EAj(X)Ai(X) = EA7j () A2i(X) + EA1j (X) A2i(X)

(5.4)
+ EA2 (X) A1i(X) + EAj (X) Agi(X).

First, we note that
b /IEAL (X) Az (X)]
< {bn “Eng OYY2 (b, YEng (00} 2
_ 21, — 1/2
< (b 'EZ5 K2((x = Xj) /bn) } by “EZ5 KE((X = Xj) /bn) }
< by E|ZiP Iz~ Ly Ke((x — X0) /bn) } 72
< C{L7by EI1Z) PP 1y )2 1) Ke((X — X1) /bn) } /2
< CL;‘S/Z — Cpid/ o),

Similarly,
by |EAZ ()AL (X)| < CL%/2 = CbJ4/+D)  and
by IEA (X) Agi(X)| < CHPA/ A+,
Next, fori +j, letting Kn(X) := (1/b2)K (X/bn) andKcn(X) := (1/b8) Kc(X/bn),
by TEAL () A1 (%)
= bA{EZ1i Z1j Ken(X — Xi) Ken(X — X))
— EZ1iKen(X — Xi)EZgj Ken(X — X))}

:b’,{// Ken(X — U)Ken(X — V)

x g1 (U, V) fij (U, v) — g el W) £ W) F(» ) duav,
where g1ij (U, V) := E(Z3iZy|Xi = u,X; = v), and g{" (u) := E(Zyi|X; = u).
Since, by definition|Zi| < Ln, we have thatgj(u, V)| < L% and |g§1)(u) X
e’ W) < L2 Thus

|82 (U, V) fij (U, V) — gt (Wet? ) £ V)]
< [gij (U, V) (fi,j U, V) — f(W) f(V)|
+ (g (U, v) — g gt W) £ () £ (v)]
< L2]£ij(u,v) — f(U) fOV)| +2LEF () f (V).
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It then follows from (A1) and the Lebesgue density theorem [see Chapter 2 of
Devroye and Gyorfi (1985)] that

by |EAL(X) Agi (X))
< b ff Ken(X — WKen(X — V)L2|fi.; (U, V) — £(U) fF (V)| dudv

(5.5) 08 [ [212 7w rvauay

2 2
§Cbﬁ<Lﬁ{/1<m(x—u)du} +2Lﬁ{/1<n(x—u)f(u)du} )

< CHIL2 = CpdI/AHD),
Thus, by (5.4) and (5.5),
(5.6) brd|EA] () Ai(X)| < CLy%? 4+ ChA L2 = CH2I/ 40,

Let ch = (cn1, ..., cny) € RY be a sequence of vectors with positive compo-
nents. Define

S1:={i#jedn:|jx—ix] <cmk forallk=1,..., N}
and
82:={i,] € dn:ljrx — ix| > cnx fOorsomek =1,..., N}.
Clearly, Card$1) < 2VATIIY_; cni. Splitting R(x) into ("bd)~1(J1 + Jo), with

Jo:=Y Y EAAI(X),  £=12
i,jede

it follows from (5.6) that

N
(6.7)  |hl = ChYE Card 81) < 2V ChY/ IR T e
k=1

Turning to J2, we have|Jz| < 3737 jes, IEA](X)A(X)]. Lemma 5.1, with
r=s=2+¢8andh =(2+4)/8, yields

IEAj(X) A (X)]
< C(E|ZiKe((x — Xi) /bn) [2F2) 2 FHO (g (j — iy}3/ @ 1)

< Cbr21d/(2+8)(b;dE|Z| Kc((x _ Xi)/bn)|2+5)2/(2+3){¢(j _ i)}(g/(2+5)
< Cb%d/(”‘”{(p(j _ i)}zS/(Z-‘rS).

(5.8)

Hence,
(5.9) |2 < CHEEDN N o(j — i)}/ @) = Cp2/F 5y, say

i.jes2
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We now analyze the quantity, in detail. For anyV-tuple0O# € = (¢1, ..., 4nN) €
{0, 1}V, set

S8, ..., LNn):={i,) € In:|jr —ix| > cni if £ =1and
ljk — ikl <cnk if e =0,k=1,..., N}

and
V... ty) = >y e —D)E.
ijed(Ly,...kN)
Then
(5.10)  Xa=>_ > fe(j—D}EV = 3 V(1. L.
i.jedo 0#£Le{0, 1}V

Without loss of generality, conside¥ (1,0, ...,0). Because}_;, _j j=cy -+ )

. ny—cnk—1 <—ni ng—cnk—1 —n
decomposes intg_; Y jemivten+1C) + 2 Yip=jiren+1C )

. ng—cnk ~—~ik+cnk ng—cnk xJktenk
and > —jyzen (o) INE0 3004 ™ D05 e () + 2™ D (), we
have

V(,0,...,0
= 2> 2 e gy — i)
lit—jil>cn1liz—j2l<cn2  lin—jN|<cnN
ni ni Cn2 Cn2
sﬁ{ZJr > }[Z+Z}
a=emt —ji=ena) =1 —j=1

{Z + > }{w(jl,...,jmﬁ/(z”)

JN=1 —jn=1

n2 cnN

" Z )OS (oG, ..., jn)}/CF®

ljil=cn1lj2l=1  [|jnI=1

n1 n ny
LD DD DD D (G 10l Keab

ljitl=cn1ljal=1  |jnI=1

A

More generally,
(5.11) V(1 o, ) SAY DD g, -, I B,
/1l Lkl 1Nl

where the sumg_ ;| run over all values ofj; such that 1< |ji| < ny if £, =0,
and such thatn1 < |ji| < ny if £, = 1. Since the summands are nonnegative, for
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1<cni <ng,we havezljk| ey () = lek‘ 1), and (5.9)—(5.11) imply

Ng—1 nk+1

xz(z > ¥ o3

(5.12) J1=1  ljk—1l=1ljkl=cnk jr+1l=1

> {w(jl,...,m>}5/<2+8)).

lin1=1

Thus, (5.2) is a consequence of (5.7) and (5.12). If, furthermatg,, ..., jn)
depends offij || only, then

Ng—1 nk+1

Z Y Z Yo S ey E

/1=1  ljk—1l=2ljkl=cnk k2= [in]=1

2 2 2
ng—1 ng41 ny_1 Jitotiyoitny

SO D DD IR SID S O

=1 le-al=1lkl=ene eral=1 Uv-al=12=524..4 52 41

Inil ¢

=2 2 - Z lp0))Y/ ) < Z VL (1))D/ @)

t=cnk |jal=1  |jn-1l=1 1=Cnk

(5.3) follows. O

PROOF OFLEMMA 2.2. Observe that

519 [(x) = by "EAF(x) = by “[Enf — (Enj)?]
' = by /[EZPKE((X — X)) /bn) — {EZ; Kc((X — X)) /bn)}].

Under assumption (A5), by the Lebesgue density theorem,
Jim | b EIZEX = UIKS((X = u)/bn) f (W) du = gD 00 £ (00 /R K&udu,
Jim [ BRELZ 1% = WK~ U)/bo) F@) du = gV 0 700 [ Ky du

whereg® (x) := E[Zji|Xj =x] fori =1, 2. Itis easily seen that;{EZ; Kc((X —
Xj)/bn)}?2 — 0. Thus, from (5.13),

(5.14) Jm 700 =200/ 00 [ KEWdu,

whereg® (x) = E{ZXj = x} = E{(¥] — g(x))?|X] = X} = Var{Yj|Xj = x}.
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Let ¢?, := bp /@ _ oo, Clearly, cnx < ni becauseyby’/ “t¢ > 1 for

all k. Apply Lemma 5.2. Since, due to the fact that- (4 + §)N/(2 + §), and
N/(24+8)a <1/(4+9)

N 00
(5.15) (ﬁbﬁ)_lfz <C Z(Cgk Z tN—l{(p(t)}rS/(Z-FB)) -0
k=1

t=cnk
because;, — oo, (5.3) and assumption (A4) imply that
(A6 ~1J; < CHO/ HHD ey ey = Cbgd/(4+a)b;5dN/(2+a)a -0,
hence, by (5.2), that
(5.16) |R(x)| = (Ab) YT (0)| < C(AbR) T (J1+ J2) > 0.
Finally, (2.7) follows from (5.14) and (5.16), which completes the proof of
Lemma 2.2. [J

PROOF OF LEMMA 2.3. From (2.5) and the definition of, [recall that
ap=g(x), a1 = g'(x)],

. _ Xj —X
E[An]:(nbﬁ)l/zbndE[zj]KC< Jb )
n

. _ Xi — X
:(nbﬁ)l/zbndE(Y,-—ao—ai(x,-—x))Kc( ‘b )
n

. _ Xi — X
= (b)Y b YE(g (X)) — ao — al (X —x))Kc( ‘b )
n

= (NI 2by “E(X) — %)

X; —
x ¢ (¢ §0G =)0 — Ko L) (wherelg] <1

n

. Xj — X (Xj —X\* Xj — X
= (hb)Y/2p? b;dtrE[g”(X—i-'g'(Xj—x)) ‘ ( ‘ )}KC< ; );
bn bn bn

the lemma follows via assumption (A3)]

PROOF OFLEMMA 3.1. The proof consists of two parts and an additional
lemma (Lemma 5.3). Recalling that
(5.17) nj(X) :=ZjKc(x = Xj) and  Aj(X) := nj(x) — Enj(X),

definegyj := b;d/zAj , and letSy, := 23:21;1(:1

.....

A—Ll2s, = (ﬁbﬁ)l/zc’(Wn(X) — EWn(X)) = Ap — EAjp.
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Now, let us decompos /25, into smaller pieces involving “large” and “small”
blocks. More specifically, consider [all sums run ovet (i1, ...,iy)]

Je(Pr+q)+pi
uLnxjp= >  miX,
ir=jr(pk+q)+1
k=1,...N
Jk(pr+q)+pi Un+D(pNn+q)

unxj= Y > tni (%),

ik=jk(pk+q)+1 in=jn(pN+q)+pN+1

k=1,..,N—1

Jk(prk+q)+pi (n-1+D(pN-1+9) JN(PN+9)+DPN
uBnxj:= > > mi),

ik=jr(pk+q@)+1 iya=jv-1(pN-1+@)+pNy-1+1 in=jn(pN+q)+1

k=1,..,.N=2

Jk(prk+q)+pi (n-1+D(pN-1+9) UGN+ (pN+9)
u@dnxj:= > > > tni (%),

ir=jr(pk+q@)+1 iy-1=jn-1(pN-1+9)+pN-1+1 iN=jNn(PN+q)+PN+1
k=1,...,.N-2

and so on. Note that

U+ (pet+q) JN(PN+q)+PN

Uy —1,n,x,j):= Z Z &ni (X)
ir=jrk(px+q@)+px+1 in=jn(pN+q)+1
k=1,..,N—1
and
U t+D (pet+q)
U@ nxj) = > £ (X).
ik=Jjk(pr+q)+pr+1
k=1,...N

Without loss of generality, assume that, for some integars..,ry, N =
(n1,...,ny) issuch thatty =r1(p1+¢q),...,ny =ry(py + ¢q), With rp — oo
forallk=1,..., N.Foreach integer £ i <2V, define

re—1

T(n,x,i):= Y U@GNXJ).
Jk=0
k=1,..N

Clearly, Sp = Zl-zlzvl T(n,x,i). Note thatT(n, x, 1) is the sum of the random
variables¢,; over “large” blocks, wherea&(n, x,i),2 <i < 2V, are sums over
“small” blocks. Ifitis not the case thaty = r1(p1+¢),...,ny =rn(py +¢q) for
some integersy, ..., ry, then an additional terrfi (n, x, 2V + 1), say, containing

all thep;’s that are not included in the big or small blocks, can be considered. This
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term will not change the proof much. The general approach consists in showing
that, asn — oo,

re—1
(5.18) Ql::‘E[exqiuT(n,x,l)]]— ]_[ E[expiuU(1,n,x,j)]]|— 0

Jk=0
k=1,....N

2N 2
(5.19) Q2:= ﬁ_1E<ZT(n,x,i)> — 0,
i=2
ri—1
(5.20) Q3z:=A"1 Y EU@LNnx P> 0%
Jk=0

rr—1
(5.21) Qa:=H"1 Y E[(UQ nx))?HIUQN X} >eoh?)] -0,
Jk=0

for everye > 0. Note that

[An — EApl/o = (Ab)Y2CT [Wn(x) — EWn<x>]/o = Sn/(cAt/?)

—T(n,X, 1)/(0A1/2)+ZT(n X,i)/(chY?).
i=2

The term Y2, T(n, x, 1)/ (ch¥/2) is asymptotically negligible by (5.19). The
random variable#/ (1, n, X, j) are asymptotically mutually independent by (5.18).
The asymptotic normality off'(n, x, 1)/(cAl/?) follows from (5.20) and the
Lindeberg—Feller condition (5.21). The lemma thus follows if we can prove
(5.18)—(5.21). This proof is given here. The arguments are reminiscent of those
used by Masry (1986) and Nakhapetyan (1987).

Before turning to the end of the proof of Lemma 3.1, we establish the following
preliminary lemma, which significantly reinforces Lemma 3.1 in Tran (1990).

LEMMA 5.3. Let the spatial procesd;, X;} satisfy the mixing propert2. l)
and denote bg/J], j= , M, an M -tuple of measurable functions such tIﬁgt
is measurable with respect {0y, Xi),i € 1;}, whered; C 4. If Cardd;) < p
andd(d,, 4;) > g for any¢ # j, then

M M-1
‘E[exp[m 5 17,” [T Etexptin; | < ¢ 3 v, 4 — p)oi@,

j=1 j=1 j=1

wherei =+4/—1.
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PROOF  Leta; :=expliuU,;}. Then
Elai---am]— Elai]---Elay]
=Elai---am] — Elai]Elaz---ap]
+ Ela1l{Elaz - --am] — Elaz]Elaz - - -am]}
+ .-+ Ela1]Elaz2] - - - Elay—2{Elapy—1am] — Elap—1]Elam]}.
Since|E[q;]| < 1,
|Ela1---am] —Ela1]---Elam]|
< |Ela1---am]— ElailElaz---aml|

+ |Elaz---am] — Elaz]E[az- - -am]|
+ -+ |[Elay-1am] — Elay -1]E[apn]].

Note thatd(/y, 1;) > q for any £ # j. The lemma then follows by applying
Lemma 5.1(ii) to each term on the right-hand sidel

PrROOF OF LEMMA 3.1 (continued). In order to complete the proof of
Lemma 3.1, we still have to prove (5.18)—(5.21).

PROOF OF(5.18). Ranking the random variable¥1, n, x, ) in an arbitrary
manner, refer to them &Sy, ..., Uy. Note thatM = [T, re = AT, (px +
@)}t <f/p, wherep =[1_; px. Let

LA nx, ) ={iijupr+q@) +1<ix < jis(px +q) + pr. k=1,...,N}.
The distance between two distinct sé{d, n, x,j) andL(1, n, X, ') is at leasy.
Clearly, £(1,n, X, j) is the set of sites involved iV (1, n, X, ). As for the set of

sitesd; associated witli/;, it containsp elements. Hence, in view of Lemma 5.3
and assumption (A

M-1

Q1<C > min{p, (M —k)ple(g) < CMpy(q) < Chg(q),
k=1

which tends to zero by condition (B2)[
ProOF 0F(5.19). Inorderto prove (5.19), it is enough to show that
A~IE[T2(n,Xx,i)]—> 0  forany2<i <2V,
Without loss of generality, considef E2(n, X, 2)]. RAankingihe random variables
U(2,n,x,j) in an arbitrary manner, refer to them@s, ..., Uy,. We have
M
EIT?(n,x, 2= VarUn+2 Y. Cowl; U
(5.22) i=1 l<i<j<M
=Vi+ Vo  say
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SinceX,, is stationary [recall thagn; (x) := b,?d/zAj )],

Pr q 2
Var<Ul->=E[( > m(x)) }+ > Elgnj 00&ni ()] := Va1 + Va2,

ir=1 in=1 i#ed
k=1,...N-1

where 7 = 2P, ¢) :={i,j:1 < it jkr < pk=1,....N — 1 and1< iy,
Jn < q}. From (5.13) and the Lebesgue density theorem [see Chapter 2 of Devroye
and Gyorfi (1985)],

. N-1 N-1 N-1
Vi = (1‘[ pk)q Var{¢ni(x)} = (1‘[ pk)q{b;"’EA?<x>} < C<1‘[ pk)q.

k=1 k=1 k=1
Thus, applying Lemma 5.2 withy, = p;, k=1,..., N — 1, andny = g Yields
Viz =0, Y E[A(X)AI(X)]
i#jed

N-1
<t oo
k=1

N-1 N nl

k=1 k=1t=cnk

N-1 N
=C ( I Pk)q [bﬁd/ (4+5)( I1 an)
k=1

k=1

N o
+b;5d/(2+a)z Z tN_l{(p(t)}‘S/(2+5):|

k=1t=cnk
N-1
3=C( H Pk)qﬂ'n-
k=1
It follows that

ATV =AM (V11 + Vo)

(5.23) o N-1
<h~ MC( 11 pk)q[l+nn] =C(q/pNW)[1+ mnl.
k=1
Set

12, n, X)) ={i jx(pr+q@) +1<ir < jx(px +q) + px, 1 <k <N —1,
NN +q@) +pnv +1<iy < (n+D(py +9)}.
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Then U2, n,X,|) = Yicg@nxj) ni(X). Since px > ¢q, if i and i’ belong to
two distinct setsf(2,n,x,j) and £4(2,n,x,j), then|ji — V|| > ¢g. In view of
(5.8) and (5.22), we obtain

Vol<C > > IEni ()& O]

{iili=jll=q, 1<i, jx<ni}
<coyd N > IE[A () A (0]
{i.ili=jll=q, 1<ig, jx<ni}
<chy Y o DR E Dl — iy e
(i i=jll=q, 1<ik, jx <nk}
N In]]
k=1 1=q

Take ¢ = by*/®*¥ — oo. Condition (B3) implies thatghp’/“®*" > 1

so thatepr < g < pr. Then, as proved in (5.15) and (5.16), it follows from
assumption (A4) that, — 0. Thus, from (5.22), (5.23) and (5.24),

o0
ATYE[T?(N, X, 2)] < C(q/pn)[1+ mn] + Chy 24/ ZH0) ( Y N o) (2+3>),
t=q

which tends to zero by /py — 0 and condition (B3); (5.19) follows.

PROOF OF(5.20). LetS! := T(n, x, 1) andS! := Y2, T(n, x, i). Thens, is
asum oftj's over the “large” blockssy, over the “small” ones. Lemma 3.2 implies
A~LE[|Sn|?] — o2. This, combined with (5.19), entaifs *E[|S/,|°] — 2. Now,

re—1

ATELSPI=A" Y E[UALnxj)]

Jx=0

(5.25) k=1
+A71 Y Cov(U(L.n. x.}), UL n,x, D)),
i#eg*

where 4* = 4*(p,q) = {i,j:1 < ip, jx <rx — Lk =1,...,N}. Observe
that (5.20) follows from (5.25) if the last sum in the right-hand side of (5.25)
tends to zero as — oco. Using the same argument as in the derivation of the
bound (5.22) foiV, this sum can be bounded by

nk—l o
Cb;ad/(2+8) Z Z {90(””')}5/(24—8) SCb;Sd/(Z-l-a)(ZIN—]_{@(I)}B/(Z-FS))’

lill>g ix=1 1=q
k=1,...N

which tends to zero by condition (B3) [
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PROOF OF (5.21). We need a truncation argument becadseis not
necessarily bounded. S&" := ZiI{z <1}, nF := ZFK((Xi — X)/bp), AL =
nk — Enk, ¢k = bn?/?AL, where L is a fixed positive constant, and define
UL(l, n, X,j) = Ziel(l,n,x,j) ;rﬁ Put

ri—1
Ok :=n"t 3 E[(UFQ nx D)) IIUNQA, 0 X)) > s3],
Jx=0
k=1,...,N
L —d/2 L . —d/2
Clearly, |z < CLby "'~ TherefordU*(1,n,x,j)| < CLpby"'". Hence
re—1
0% <cp?oy?at Y PIURL N x,j) > eoft?].
Jk=0
k=1,..,N

Now, UL (1, n, x,))/(cAt/?) < cp(hnd)~1/2 — 0, sincep = [(AbE)Y/?/sn], where
sn — 0o. Thus RUL (1, n, x, |) > eoAl/2] = 0 at allj for sufficiently largen. Thus
Q{; = 0 for largef, and (5.21) holds for the truncated variables. Hence

nk
(5.26) AY2sk=a=2 3 ¢k S N(,6D),
Ji=1

whereos? := Var(ZL X = x) f(x) [ KZ(u) du.
Defining S5* := 3111 v (nj — &a), we havesh = St + S7*. Note that
|E[exp(iuSn/HY?)] — exp(—u’c?/2)|
< |[E[expliuSk /AY?) — exp(—u’o?/2)] expliuSE* /AY/?)|
+ |ElexpliuSL* /aY2) — 1] exp(—u’o?2/2)|
+ | exp(—u’o?/2) — exp(—u’c?/2)|
=E1+ E> + E3, say.

Letting n — oo, E; tends to zero by (5.26) and the dominated convergence
theorem. Letting. go to infinity, the dominated convergence theorem also implies
thato? := Var(Z! |Xi = x) f (x) [/ K2(u) du converges to

Var(Z;| X =x)f(x)/K§(u)du=Var(Yi|Xi =x)f(x)f1<§(u)du:= o2,

and hence thaEs tends to zero. Finally, in order to prove th&j also tends to
zero, it suffices to show thal-* /A'/2 — 0 in probability as firsh — oo and then
L — oo, which in turn would follow if we could show that

E[(SE*/0Y2)2] = Var(|Zi| Iz, 1) Xi :x)f(x)/l(g(u)du asn — oo.
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This follows along the same lines as Lemma 3.21
The proof of Lemma 3.1 is thus complete]
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