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1. Introduction

X is a normed linear space with unit sphere S, and Y is a closed linear subspace
of X. If x € X, then Pyx denotes the set of elements y € Y such that

[lx—yll = inf [lx—y"l].
¥ ey

The (set-valued) operator Py is called the metric projection operator (m.p.0.)
onto Y, and here it will just be studied at points where it is single-valued; however,
see Remark 1.

If ||x—y|| = ||x|| for all y € ¥, then x is said to be metrically orthogonal to Y
and after a translation (by Pyx) we can (and shall) here assume that so is the case.
For the basic properties of Py see Holmes and Kripke [5].

The purpose of this paper is to study the local continuity of Py at an element
x, metrically orthogonal to a fixed subspace Y; more precisely, if |lx—xol| < &,
how small is then ||Pyx—PyX|| = [|Pyx||?

We say that Py is locally Lipx at X, if in a neighbourhood of x, we have

[|Pyx—Pyxoll € Cullx—xoll%
for some constant Cy,. The magnitude of Cx, depends on the size of the neigh-
bourhood of x, considered and will not be investigated here.

There are two fairly general methods for the study of the continuity of the
m.p.o.: the first method, described in Section 2, is frequently simple to apply but
does not 50 often give sharp results. However, it can be used if one is interested
just to establish that Py is continuous, cf. Kahane [6]. The second method (Section
3), which can be considered as a refinement of the first one, is applicable e.g. when
geometric properties like convexity and smoothness of the unit sphere at xo/|[xol|
are known.

This method gives sharp estimates in the classical ZP-spaces as is shown by
counter-examples in Section 4. Section 4 also contains some applications of the
results derived by the second method.

[43]
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2. Continuity of the m.p.o. via strong unicity of the best approximation

Suppose that x, has a “strongly unique” best approximating element in Y in the
sense that there exists a positive increasing function xy(x,, *), such that

(€Y] lxo =yl =lIxoll > #y(x0, lI¥ID,
for every y € Y. By elementary inequalities,

’ llxo— Py || < [l¥o— ] +Ilx-- Py ]|
< [lwo— [l +1Ix]l < 2[lxo—x]1+lxoll,
50 xy(Xo, ||[Pyx|]) € 2|lxo—x|] and hence
()] [1Pyx|l < #7 (%o, 2]1x0—x]]),
where »~* denotes the inverse function to .

Let us see what this rough method gives in some concrete cases. If ¥ is finite
dimensional and x, has a unique best approximation in Y, then the existence of
a »-function is obvious, but there remains to estimate it from below.

(i) Let Q be a compact Hausdorff space, let X = C(Q) and Y be a Haar sub-

space of X. D. J. Newman and H. S. Shapiro proved in 1963 the following “strong
unicity” theorem for f metrically orthogonal to Y (Shapiro [11], pp. 24-27):

1f=plI=1fll = eryllpll  C(Q) real,
[1f=pll=1IA1l 2 erplipll*  C(Q) complex,

if p e Y and in the complex case ||p|| < K. Thus, by (2), Py is locally Lip1 in the
real case, a fact proved directly by G. Freud already in 1958. It is also easily de-
monstrated that the Lipschitz constant C; is unbounded - as f ranges over S. In
the complex case, (2) gives Lip(1/2) and it has been shown by the present author
and, independently, by R. Wegmann ([13]) that this result is sharp.

(ii) Let 7 be a compact interval of the real line, let dx denote Lebesgue measure,
and take X to be the continuous functions in L*(Z, dx). Then we know (Jackson—
Krein) that if Y is a Haar subspace, then Py is single-valued. When X is real, this
unicity result can be strengthened as follows.

Let w, be the modulus of wniform continuity of f. Then, for 8 sufficiently small,

—1
ay (i

f=pli=1lf1l = 2 s cd—awp(x)dx,

&
6. In particular, if w;(8) = O(8%), then the

®

where ¢ = ¢;y and p €Y satisfies ||p|| =
integral in (3) is of order &+<"1,
Combination of (2) and (3) gives an estimate for the continuity of Py at f and,
for any Haar subspace, there are functions such that this estimate is of the right
order.
(iii) Let X be uniformly convex with modulus of uniform -convexity éx and
let ||xol] = 1. If y €Y, one easily obtains
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%o~ yll—=llxo0ll = [lx0—¥I| 8(II/l1x0—¥II)
= 6(Iyll/lIxo=¥I1),

so if ||y]] < 3, then [lxo—yll—|Ixoll > &(Ily||/4). Hence, for Hx—x;!l <172,
@ [1Pyx]| < 4671 2[lx—xolD),

i.e. essentially the inverse of 8y gives a bound for Py. Note that the estimate is
uniform in x,, as x, varies over S. R. Wegmann ([13]) has shown that, if ¢ is
convex (which is not always the case), one even has ||Pyx]| < 267(|[x—x,[[). The
most well-known uniformly convex spaces are the classical LP-spaces, and for 1
< p <2 8() = (p—1)e*?/8+ O(e*) and in the range 2 < p < , 6(s) = £/ /p2°+
+ O(e?¥). Hence, we can say that Pyislocally Lip(1/2), respectively Lip(1/p). However,
these estimates are not sharp for any choise of x, and Y; see Corollary 3.

Finally, it should be mentioned that the strong unicity technique has been
utilized by J. P. Kahane in his study of the m.p.o. onto closed translation-invariant
subspaces of L*(T). He found e.g. that for every subspace Y of L*(T), such that
Py is single-valued, Py is also continuous; Kahane [6], [7].

3. Continuity of the m.p.o. — geometric approach

For this method, two new geometric moduli must be introduced, but first let us
recall the definitions of some well-known moduli which will be used in the corollaries.
Besides the modulus of uniform convexity dx of X we have the modulus of uniform
smoothness gx, defined as follows

®) ox(m) = uiﬁzx (lx+yll+1lx—yl1-2)/2.

lirl]==
X is uniformly smooth if px(7) = o(7) and then, in particular, X is smooth which
means that through each point on S there is only one hyperplane supporting S;
a point with this property is called a smooth point. M. Day showed that X is uni-
formly smooth if and only if its dual space X* is uniformly convex, and this fact
was given an exact quantitative formulation by the following duality relation of
Lindenstrauss [8]:

(6) ox(7) = sup {ve/2—3x:(e)}.

082
In this formula the positions of X and X* can be changed and also ¢ and 6 may
change places if 6 is replaced by its largest convex minorant.

If in (5) x is kept fixed, one obtains a local modulus of smoothness gx(x, 7)
and we can obtain a generalisation of Lindenstrauss duality relation, if we define
a local modulus of convexity as follows. Assume, just for simplicity of notation,
that x, is a smooth point on S and let f, be the unique element on the unit sphere
of X* (the “dual point”) that peaks at x,, i.e. satisfies fo(xo) = [|foll = 1. Then, if

Sx(x0, &) = inf {I-fo(x+7)/2},

x, ye
[lx—yl| =8
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we will have

Q] ex(x0, 7) = Oiltgz{n/% Sx+(fo» &)}

Using (7) and its variants, one can compare the shape of the unit spheres at dual
points. However, the local moduli dx(xo, *) and g¢(xo, - ), which are studied in
the literature, are still not what we want to study the m.p.o. at x,, so we introduce
even subtler measures of the geometry of S at x,.
If x, is a smooth point and f; its peaking functional, let x, = (1—a)x, and
= {x: fo(x) = 1—a}. Define, for 0 < @ < 1,
inf
Hy ~

w(xo, 0) =
X€e

'Q(x(): o) =

%~ xall,
s

sup  ||x—xql.
€Hy ~S§

(Problem. Find duality relations for w and Q.
If x, is non-smooth, we have to write Hy,, ., w(xo, fo, &), etc., for each peaking
functional f, and can then in Lemma 2 and Theorem 2 take the infimum over the

set of functionals peaking at x,. We assume from now on, that x, is a smooth
point.

For the corollaries we need the following estimate.
LemMa L. () w(xo, %) 2 (1— )™ (xo, 2/2(1—)), so also
w(xe, @) = (1~ )™ («/2(1—a)).
671(xo, @), S0 also
(x0, @) < 67(e).

Proof. (i) If 6 > 1, there is an x € H,n S such that u = x—x, satisfies [[u]|
< 6w (x,, ). Now,

) Hull
"("“1 « H
o
> 2(1—a+1) =5’

el = (1~ o)™ (x0, /21— a))

and since w(xo, «) = (1—o)o~* (%o, ¢/2(1 — @)} holds for all # > 1, x, and « being
fixed, it must hold also for § = 1.

(i) We have fo(x+1)/2 = 1—a, if x, y € Hyn S, so certainly
JoGx+3)2 21—

(i) Q(xo, @) <

hence,

sup

X, ye
{[x=|| > 2 (%0, )
Then

1n.f

||¥--VH 39("0'11)

o>

{I—folx+2)/2} = 6("0, Q0x, ®). m
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Before proceeding, recall that x, is metrically orthogonal to Y if and only if
there is an element f in the annihilator of ¥ peaking at x,. The (solid) unit ball
of X is denoted by B.

LeEmMA 2. Let there be a positive €y, such that if ||x—xo|| < &, then Py is
single-valued and ||Pyx|| < B for some B < 1. Then, if € < /2,

sup |[Pyx]| < sup |[Pyx]],
|| ~x0|| <8 xeHx ~nB
where
- +2
o= (xo, If 3 )

Proof. Let {|x—xo|| < & < €0/2, so |[Pyx|| < f < 1. The line through x and
Pyx intersects S at x', with f(x") > 0. Define o by f(x") = 1—«. Then,

x =Pyx+ f() (x Pyx),
50
l1—a
(1% — || = Pyx+——~x) (x—Pyx)— (1 —a)xo
J)—1+a _
< T |Pyx||+ —=— f() = [[x=f0) %ol
< Ete +(1—a)25 _ a(f-2e)+(B+2)e
ST AT T I—¢ :
Since « < {|x'—2x4||, one obtains an estimate for «,
_B+2
ST1-p+e ¢
which then gives (if ¢ < $/2, which is the case since &y < )
, _B+2 f+2
[P =l S 7 ge® S Top

so actually one has

0™ (x0, e(B+2)/(1-B))-
Since Pyx" = Pyx, if x" is on the ray through x and Pyx, the conclusion follows. w

Remark 1. The condition on single-valuedness may be dropped if [|Pyx|| is
replaced by sup||y|| over the set of elements y € Y, such that x—y is metrically
orthogonal to Y.

The following theorem is now a simple consequence of the geometry of H,nS;
the more “rounded” H, S is (in the sense that  and & are of similar order), the
stronger continuity of Py at xo. If Hyn S is “needle-shaped”, Py may have poor
continuity properties as is shown by counter-examples in Section 4. Hence, the
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relevant condition is how S curves away from the supporting hyperplane through
Xo in different directions.

THEOREM 1. Let there be a positive &y such that if ||x—x,|| < €y, then Py is
single-valued and ||Pyx|| < § for some § < 1. Then, if ¢ < &4/2,

® sup [|Pyx]l < 20(x,, a),
|[x%=x0|[< 2
where
- +2
o= 1(x0, ‘19-—/3 s).
Proof. Instead of considering elements within distance & (< £,/2) of x, we can,

B+2
T:Fa)
and assume they have unique best approximations in Y. So, let x be such and
consider the affine subspace x+Y = {x+y: y e Y} which lies in H,. Now contract
B until it has just one point x' in common with x+ Y (which is possible, because
Py is single-valued at x). Evidently, Pyx’ =0 so if x' = x—y, ye ¥, Pyx = y+
+Pyx’ = y. Since both x and x' are in H.n B, ||y|| = ||x—x'|| € 22(x,,0). m

Remark 1 applies again. Note that the estimate (8) is uniform over all subspaces
Y such that x, is metrically orthogonal to Y (but if x, is non-smooth, remember
the remark preceding Lemma 1), so for certain “directions” of ¥, Py may be much
better than what follows from (8). Another level of uniformity has been studied
by V.1 Berdyshev, see [2], namely uniform continuity of Py as x, ranges over S
and Y over all closed subspaces of X.

If 6(x, @) > 0 for « > 0, then Py is continuous at x,, so for x sufficiently
close to x, we will have ||Pyx|| < f = 1/4 and for this 8, (8+2)/(1—p) = 3. If
o < 1/2, then by Lemma 1, w(xo, &) = (1/2)0™ (0, 2/2), 1.6. 01 (%o, &) < 20(x0,20).
Hence, & < 1/6 implies w™*(xo, 38) < 20(x,, 68).

COROLLARY 1. Let xo (||xol| = 1) be metrically orthogonal to the closed sub-
space Y and suppose 5(x,, €) > 0 for ¢ > 0. Then, for ¢ < x5

1Pyl < 267" (%o, 200, 62))-

by Lemma 2 (and its proof), consider elements in Hyn B where & = w"‘(xo,

sup

[Jx~xo}| <&

We see that convexity is the decisive conditipn, but that smoothness of S at

Xo improves the continuity of the m.p.o. at that point; then we also get a better

result than what is in general obtainable by the strong unicity method, cf. (4). Note

that we will have similar estimates for Py if K is a closed convex set in X; the con-

stants may be bigger if dist(x,, K) is large. In a uniformly convex space the estimate
is uniform over the unit sphere:

COROLLARY 2. In the uniformly convex space X, let xo (||xo|| = 1) be metrically
orthogonal to the closed subspace Y. Then, for ¢ < &,

sup  ||Pyxi| < 2672(20(6¢)).

e —xolj<2

icm

LOCAL LIPSCHITZ CONTINUITY 49

It is known, that many Orlicz spaces have uniformly convex and uniformly
smooth norms, or at least have an equivalent norm with these properties, and
T. Figiel has shown how under certain conditions (essentially the A, condition),
the moduli of uniform convexity and smoothness can be estimated by means of
the Orlicz function, see [3]. Hence, Corollary 2 is immediately applicable to such
spaces, but here we content ourselves to the following simple (but important) ap-
plication. '

COROLLARY 3. Let xo have norm one and be metrically orthogonal to the closed
subspace Y of L¥{u}. Then there are constants ¢, and c,, just depending on p, much
that for ¢ < &,

sup ||[Pyx|| < ¢,e??, 1<pg2,
[|x=xo|| <&

sup [I1Pyx[| < 6%, 2<p < 0.
|Je—xo|| <&

¢, remains bounded as p — oo but, as derived here, behaves like -1y asp—1.

4. Applications and counterexamples

4.1. Normed linear spaces isomorphic to inner-product spaces

1t is known that inner-product spaces are the most convex spaces in the sense that,
for every space X, dx(e) < du(e), where dn(s) = 1— (1—(g/2)*)* = £2/8+ O(c*)
is the modulus of uniform convexity for an inner-product space. They are also the
most globally smooth spaces, since always px(7) > ou(7) = (1+ )2 —1 = 2/2+
+O0(7%). D. A. Senechalle has shown in [10] that, if for some null-sequence (z,),
Ox(e)/dnle)) — 1, then X is (linearly isometric to) an inner-product space. Now, if
we relax somewhat on the convexity condition but instead require high smoothness,
then we have the following result.

THEOREM 2. Let the normed linear space X have a uniformly convex norm which
satisfies

® Ox(e) > 28%,
and an equivalent uniformly smooth norm which satisfies

(10) ox(7) < 77l
Then X is isomorphic to an inner-product space.

Proof. First we use Asplunds’ renorming technique (see [1]) to find a third
equivalent norm on X which simultaneously satisfies inequalities like (9) and (10),
and henceforth we work with that norm. We shall show that every closed subspace
is the range of a uniformly continuous linear projection and thus is complemented.
Let ¥ be a closed subspace of X; since X is reflexive, there are elements x, on S
which are metrically orthogonal to ¥ and, by Corollary 2 and (9), (10), we have
for & < g,

sup |[|Pyx|| < Ke

[|x—xo]|<e

4 Banach Center t. IV
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with &, and K independent of x,. But then (cf. Holmes and Kripke [5], pp. 227-228),
[|Pyx;—PyX,|| < max(K, 2+2¢5%) ||x, —x.f|,

for all x;, x, in X, i.e. Py is uniformly continuous. Then, by a result of Linden-
strauss, [9], p. 270, there exists a bounded linear projection onto ¥ (with no bigger
norm that of Py). Hence, ¥ is complemented and by the Complemented Subspace
Theorem the conclusion follows. m

This result was also derived in Lindenstrauss [8] under an additional basis
condition. That basis condition is also removed in Figiel and Pisier [4], where the
above theorem is proved by probabilistic methods. Possibly the conditions could be
weakened somewhat, since (9) and (10) give a bound on the Py uniform over ¥
which is not necessary for our purposes.

4.2, Inheritance of smoothness

H. S. Shapiro has in [12] studied the regularity properties of the element of best
approximation for the case when Y is a closed translation-invariant subspace of
ILX(T), T denoting the unit circle. He showed that Pyf might possess less regularity
than f: the regularity being measured by the integral modulus of continuity: f e 42,
0 < o < Lif || f—£ll, = O(z%). f may belong to Af but Pyf belongs to no smoother
class than A} where 8 = p~'+(p—1)~* (< 1). He also showed, just using the uni-
form convexity of L7, that if f€ A%, then Pyfe df,, 2 <p < w.

Since translation on T commutes with the operation of taking best approxima-
tion, it follows from Corollary 3 that

If fe A, then Pyfe Aby, for 1 <p < 3 and Pyfe Ay, for 2 < p < .
Problem. Can this result be improved? A negative answer to this question

would also solve an important problem on saturation of Fourier multipliers, see
[12], p. 138.

4.3. Counterexamples in L"-spaceé
Now we shall see that the m.p.o. may possess no better continuity properties than
what follows from the general geometric theory of Section 3.

THEOREM 3. There exists a closed subspace Y of X = L*(I, dx) and an element
Jfo in X such that, for e < e,

@ sup ||Pyf—Pyfoll = 8?2, 1<p<2,
(1 f~foll <e

(i) sup [|Pyf—Pyfoll > cpe®®?, 2 <p < oo,
|1f~foll e

JSor some positive constant ¢, = ¢y, y,y,.

Remark 2. A simpler version of the theorem, just giving the Lipschitz-ex-
ponents can be given a more intuitive proof. This proof is based on the fact that
through a point x, within distance ¢, from x = 2C-1/» (1,1, 0), one may draw
a tangent, perpendicular to (1, 1, 0), with touches the unit sphere of /°(3) at a distance
-of order &&/* (67/%) from x if 1<p<2 (2<p< w); Fig. 1.a, 1.b, Let ¥, be
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the line through the origin (subspace) parallel to this tangent. Now, in the con-

secutive 3-dimensional subspaces of X = IP(N) construct the corresponding ¥, (for
some null-sequence (e,)) and let ¥ be the closed linear span of the Y,. If x,

P

o H
£/
&
p<2
/ p<2
Fig. la Fig. 1.b

=(1,1,0,27% ...,n", n™%,0,..), we can then have an element x, such that
”xo_xn“ = n—lsng PYxn = PYnxn and

IPrXall = cpn™telf? = un®P =t (™ e, P12
if 1 < p < 2. Hence, by choosing the ¢, rapidly decreasing, we see that an inequality
[|Pyxa]| < KeP/+8 is impossible for any & > 0.

Similarly an inequality ||Pyx,|] < Ke?/P*® is impossible if 2 < p < 0. One
cannot work around the point (1,1,0,0, ...), since then x, does not pick up its
best approximation just from ¥, and we do not obtain the effect wanted here.
Note, that x is a point where the unit sphere of /7(3) curves maximally in one direc-
tion and minimally in another; then the “global” Corollary 2 may give a sharp
result.

Proof of Theorem 3. We shall work in L?([0, 2], dx) and I supply the details
for 2 <p < oo, Let @,(x) = sgn(sin2"x) on [0,1] (Rademacher functions on
[0,1]) and @,(x) =0 on (1,2]. ,(x) =0 on [0,1] and yu(x) = ¢» (x—1) for
1 <x<2. Let ()2 be a strictly decreasing null-sequence and let ¥, denote the
one-dimensional subspace spanned by §, = &,@,+¢27% and ¥ = span{Yy, Y3, ...}.
We shall study Py at f,(x), the characteristic function of [0, 1]. To prove that fo(x)
is metrically orthogonal to ¥ it suffices to show that f; is orthogonal to each ¥,
(this is a property of LP-spaces; see e.g. Shapiro [11], p. 56), i.e.

2
[Fasenfo® Ifo(IP~2dx = 0

[
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and obviously the integral vanishes here for each n. Put f, = fo+eu®u; fu— Py, f,
= f,—t,¢n is orthogonal to every Y,, since
2

{ Gmsgn(fo—Pr.f) [fu— Py, fulP=1dx
0
1

= Em S qv,,,sgn(l + (1~ t)ey ‘Pn) 14+ (L= t)enpul?*dx+
0

2
+ &3/ { pnsen(=tuyn) |1ae2lop,P=2dx = 0.
i
If m # n, the integral over [1, 2] trivially vanishes, and to see that also that over
[0,1] is zero, just note that |14+ (1—1#,)e,@,P~! = o+ fe,. Hence f,—Py.f, is
orthogonal to ¥, which may be stated as Pyf, = Py,f,. Now, the norm of Py,f,
is easily estimated; we just compute the value ¢ = #, for which || f;,—¢@,|| is minimal
and ||Py, full = [[2.al(:
1 2
/= 15all? = § 114+ L= DYea PP+ § 11622, Pl
0 1
= (1/2) (1+ (A~ 2)eaP+ 1= (A= Dea|P) + [t [767 .
It is easily verified that the minimum occurs for some ¢ in (0, 2) and hence for
(@enf2) (— 1+ (1= 1), )P~ + (1= (1= 1)s, Poi4 217 1s,) = 0.
Accordingly,
(- (1-t)+O0(ED)+E =0,

so certainly #, cannot tend to zero as &, tends to zero, say #, > ¢,. In conclusion,
we have

Wo—full = en  but |[Pefo—Pefill = [Py full > cpell®.

For 1 < p < 2 we use the same functions f;, ¢, and y, as above, but change the
“direction” of ¥, (remember Fig. 1.a, 1.b); here let ¥, be spanned by @, = &&/2p,+
+éeny, and take fo(x) = fo(x)+ epppu(x). m :

Finally, a few comments about metric projections onto finite-dimensional sub-
spaces of real LP-spaces. Holmes and Kripke proved in [5] that, if 2 < p < co and
Y is finite-dimensional, then Py is locally Lip1. However, this result is no longer
true for 1 < p < 2; in LP([—1, 1], d%) take fo(x) = sgnx- [x|>~P"* and Y to be
the constant functions on [—1, 1]. Let £3(x) = 6 on [0, 6*~7] and f3(x) = fo(x) on
the rest of [—1, 1]. Then ||f,—fll < 627 but

([Prfo—Pefsll = [|1Prfoll = ¢,)8/Ind],
i.e. Py satisfies no higher Lipschitz-condition than Lip(p[2) at fy.

On the other hand, if X = L? is finite dimensional, then Py is always locally
Lipl.
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