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SUMMARY

The maximum of a Gaussian random field was used by Worsley et al. (1992) to test

for activation at an unknown point in positron emission tomography images of blood flow

in the human brain. The Euler characteristic of excursion sets was used as an estimator of

the number of regions of activation. The expected Euler characteristic of excursion sets of

stationary Gaussian random fields has been derived by Adler and Hasofer (1976) and Adler

(1981). In this paper we extend the results of Adler (1981) to χ2, F and t fields. The theory

is applied to some three dimensional images of cerebral blood flow from a study on pain

perception.
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1 Introduction

Many studies of brain function with positron emission tomography (PET) involve the inter-

pretation of subtracted PET images, usually the difference between two three-dimensional

images of cerebral blood flow under baseline and stimulation conditions. The purpose of

these studies is to see which areas of the brain show an increase in blood flow, or ‘activa-

tion’, due to the stimulation condition. The experiment is repeated on several subjects, and

the subtracted images are averaged to improve the signal to noise ratio. The averaged im-

age is standardized to have unit variance and then searched for local maxima, which might

indicate points in the brain that are activated by the stimulus. The main statistical problem

has been to assess the significance of these local maxima.

Worsley et al. (1992) have shown that the averaged image can be modelled as a Gaussian

random field with a covariance function depending on the known resolution of the PET

camera. They have used the Euler characteristic of excursion sets of this Gaussian random

field as an estimator of the number of regions of activation. The excursion set inside a fixed

set C is just the set of points where the field exceeds a fixed threshold value. Adler (1981)

defines the DT (differential topology) characteristic of the excursion set in such a way that

it equals the Euler characteristic when the excursion set does not touch the boundary of

C. For excursion sets above high threshold values the DT characteristic approximates the

number of local maxima above the threshold. The importance of the DT characteristic, as

opposed to the number of local maxima, is that it is more amenable to statistical analysis.

There is no known result for the expected number of local maxima above a threshold, but

Adler and Hasofer (1976) and Adler (1981) derived a simple expression for the expected DT

characteristic of excursion sets of stationary Gaussian random fields. When no activation is

present in the PET image, Worsley et al. (1992) show that the observed DT characteristic

is close to the expected DT characteristic.

Similar problems arise in astrophysics. Hamilton, Gott and Weinberg (1986) and more

recently Beaky, Scherrer, and Villumsen (1992) have applied methods similar to those dis-

cussed in this paper to study the density of matter in the universe. Gott, Park, Juskiewicz,

Bies, Bennett, Bouchet and Stebbins (1986) have used similar tools to study the fluctuations

in the cosmic microwave background which were recently discovered by Smoot et al. (1992).

Throughout their analyses, Worsley et al. (1992) have assumed that the variance of the

image is stationary, thus enabling them to pool the sample variance over all values in the

image. There has been some doubt about this assumption, and some workers have suggested

using a local standard deviation rather than a pooled standard deviation to normalise the

image, thus producing an image of t-statistics.

The purpose of this paper is to extend the work of Adler (1981) to derive the expected

Euler characteristic of excursion sets of such non-Gaussian random fields. In section two we

shall review the work of Adler and Hasofer (1976) and Adler (1981). In section three we

shall extend a result of Adler (1981) for a χ2 field in two dimensions to higher dimensions.
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In section four we shall consider the F field and we shall use this to derive results for a t

field in section 5. Finally in section six we shall apply this work to some PET images from

a study in pain perception.

2 Local maxima and the DT characteristic

2.1 The DT Characteristic

Let Z = Z(t), t = (t1, . . . , tN)′ ∈ IRN , be a homogeneous real-valued random field and let C

be a compact subset of IRN . The excursion set of Z(t) inside C above the level z is defined

as Az(Z,C) = {t ∈ C : Z(t) ≥ z}. Throughout this paper we shall denote derivatives with

respect to tk by a superscript (k) and second order derivatives with respect to tk and tl by

superscript (kl). Thus we denote Z(k) = Z(k)(t) = ∂Z/∂tk and Z(kl) = Z(kl)(t) = ∂2Z/∂tk∂tl,

k, l = 1, . . . , N . Let DN−1 = DN−1(t) be the (N − 1) × (N − 1) matrix of second order

partial derivatives of Z(t), with (k, l) element Z(kl), k, l = 1, . . . , N − 1. Under suitable

regularity conditions on Z(t), Adler (1981), page 90, defines the DT (differential topology)

characteristic of A = Az(Z,C) as

χ(A) = (−1)N−1
N−1∑
j=0

(−1)jχj(A),

where χj(A) is the number of points t ∈ C satisfying the conditions: (a) Z(t) = z, (b)

Z(1)(t) = 0, . . . , Z(N−1)(t) = 0, (c) Z(N)(t) > 0, and (d) the number of negative eigenvalues

of DN−1(t) is exactly j.

It can be shown that provided the excursion set does not touch the boundary of the

region C then χ(A) is the Euler, or Euler-Poincaré characteristic of the excursion set, and

χ(A) is thus invariant under rotations of the coordinate system. Roughly speaking, it counts

the number of connected components of the excursion set, minus the number of ‘holes’. An

illustration of the DT characteristic of the excursion set of an artificial two-dimensional image

is shown in Figure 1(a,b). As the threshold level z increases Adler (1981) shows that the

holes tend to disappear and that we are left with isolated regions each of which contains just

one local maximum (Figure 1(c)). Thus for large z the presence of holes is a rare occurrence

and the DT characteristic approximates the number of local maxima of Z(t) above z inside

C, denoted by M+
z (Z,C). For even larger z near the global maximum of Z(t) inside C,

denoted by Zmax, the DT characteristic takes the value 0 if Zmax < z and 1 if Zmax ≥ z

(Figure 1(d)). Hasofer (1978) uses this approach to show that

P(Zmax ≥ z) = P(M+
z (Z,C) ≥ 1) ≤ E(M+

z (Z,C)) ≈ E(χ(A))

as P(M+
z (Z,C) > 1) → 0 for x → ∞, and so the expected DT characteristic approximates

the exceedence probability of Zmax.
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2.2 Expectations

The importance of χ(A), as opposed to M+
z (Z,C), is that despite its complex definition it is

more amenable to statistical analysis. Only asymptotic results are known for the expectation

of M+
z (Z,C), but for the DT characteristic χ(A) Adler and Hasofer (1976) and Adler (1981)

obtained an expression for the expectation of χ(A) in terms of the second-order derivatives

of Z.

We shall need the following notation. For any scalar d, let d+ = d if d > 0 and zero

otherwise. For any symmetric matrix D, let D− = D if D is negative definite and zero

otherwise. Let DN = DN(t) be the N × N matrix of all second order partial derivatives

of Z(t), with (k, l) element Z(kl), k, l = 1, . . . , N . Let λ(C) be the Lebesgue measure of C.

Finally, we define the moduli of continuity of Z(k) and Z(kl) inside C to be:

ωk(h) = sup
‖t−s‖<h

∣∣∣Z(k)(t)− Z(k)(s)
∣∣∣ , ωkl(h) = sup

‖t−s‖<h

∣∣∣Z(kl)(t)− Z(kl)(s)
∣∣∣ ,

where the supremum is taken over all t, s ∈ C, k, l = 1, . . . , N . Then Theorem 5.2.1, page

105, and Theorem 6.1.1, page 123, of Adler(1981) give the following results, which we shall

state here, under slightly different conditions, for future reference:

Theorem 2.1 Assume (i) that for any ε > 0

P
(

max
k,l
{ωk(h), ωkl(h)} > ε

)
= o(hN) as h ↓ 0.

If (ii) all the second order partial derivatives Z(kl) have finite variances conditional on

Z,Z(1), . . . , Z(N), and the density θN(z, z1, . . . , zN) of Z,Z(1), . . . , Z(N) is bounded above, then

the expectation of M+
z (Z,C) is

E(M+
z (Z,C)) = λ(C)

∞∫
z

E{−det(D−N)|Z = y, Z(1) = 0, . . . , Z(N) = 0}θN(y, 0, . . . , 0) dy.

If (iii) the second order partial derivatives {Z(kl), 1 ≤ k ≤ N , 1 ≤ l ≤ N − 1}, and Z(N)

have finite variances conditional on Z,Z(1), . . . , Z(N−1), and the density θN−1(z, z1, . . . , zN−1)

of Z,Z(1), . . . , Z(N−1) is bounded above, and provided C is a convex subset of IRN , then the

expectation of χ(Az(Z,C)) is

E(χ(Az(Z,C))) = λ(C)(−1)N−1E{Z(N)+det(DN−1)|Z = z, Z(1) = 0, . . . , Z(N−1) = 0}

θN−1(z, 0, . . . , 0).

Proof. The conditions (ii) and (iii) given here replace those given by Lemma 5.2.1 of

Adler(1981), page 98, which require finite variances of Z(k) conditional on Z and Z(kl), and

bounds on the density of Z(kl) conditional on Z. It is straightforward to re-work the proof

of Lemma 5.2.1 by taking expectations over Z(kl) conditional on Z and Z(k), before applying

the dominated convergence theorem and Fatou’s Lemma to bound the integral. 2
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2.3 Comments

There is no simple relationship between the DT characteristic of an excursion set Az(Z,C)

and the DT characteristic of its ‘complement’ A−z(−Z,C), even though their union is C and

their intersection is the contour Z(t) = z. However if the field is homogeneous then there

is a simple relationship between the expectations of the DT characteristics. We shall need

this result in section five:

Corollary 2.2 If Z(t) satisfies the conditions of Theorem 2.1 then

E(χ(A−z(−Z,C))) = (−1)N−1E(χ(Az(Z,C)))

Proof. Using the same notation as in Theorem 2.1 we have

E(χ(A−z(−Z,C))) = λ(C)(−1)N−1E{(−Z(N))+det(−DN−1)|Z = z, Z(1) = 0, . . . , Z(N−1) = 0}

θN−1(z, 0, . . . , 0).

Since Z(t) is homogeneous then −Z(N) = ∂Z/∂(−tN) has the same distribution as Z(N).

Since det(−DN−1) = (−1)N−1det(DN−1), the result follows. 2

The main importance of Theorem 2.1 is that it allows us to calculate the mean number of

local maxima and the mean DT characteristic of excursion sets from the joint density of the

field Z(t) and its partial derivatives up to second order. Adler and Hasofer (1976) applied

this result to a homogeneous Gaussian random field. Worsley et al. (1993) have extended

this to a non-homogeneous Gaussian random field in three dimensions. Unfortunately the

awkwardness of D−N prevents us from obtaining an exact expression for the mean number

of local maxima above z, except in some special cases, but Adler(1981), Theorem 6.3.1,

page 133, gives an asymptotic result for large values of z. On the other hand, Adler (1981),

Theorem 5.3.1, page 111, derived an exact expression for the mean DT characteristic for a

Gaussian random field with zero mean and unit variance.

Before embarking on the extension of these results to χ2, F and t fields, it may be worth

mentioning the main steps. Results are first obtained for the F field, and results for the χ2

and t fields are derived as special cases. The method of proof hinges on a representation of

the F field and its derivatives up to second order in terms of independent random variables.

We first derive such a representation for the Gaussian field (Lemma 3.1), then the χ2 field

(Lemma 3.2), and finally the F field (Lemma 4.1); a similar result is given for the t field

without proof (Lemma 5.1). The sufficient regularity of the F field then follows (Lemma 4.2).

We are then ready to apply Theorem 2.1 to find the mean number of local maxima greater

than a high threshold level for the F field (Theorem 4.1); similar results for the χ2 and t fields

then follow (Theorems 3.3 and 5.2). An asymptotic expression for the distribution of the

global maximum is a simple corollary to these results. Before tackling the DT characteristic,

we must establish some lemmata on the expected determinants of linear combinations of
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Wishart matrices and a normally distributed matrix with the same invariance properties as

a Wishart matrix (Lemmata 7.1 to 7.5 in the Appendix). After this we are ready for our final

results on the DT characteristic of the F field (Theorem 4.6) which is immediately applied

to the χ2 and t fields (Theorems 3.5 and 5.4).

3 The χ2 field

3.1 Definition

Let X1(t), . . . , Xn(t), t ∈ IRN , be independent, identically distributed, homogeneous, real-

valued Gaussian random fields with zero mean and unit variance. Then Adler (1981), page

169, defines the χ2 field U(t) as

U(t) =
n∑
i=1

Xi(t)2, t ∈ IRN .

Clearly the marginal distribution of U(t) at each t is χ2 with n degrees of freedom. Adler

(1981), page 169, notes that a chi-squared field is twice as ‘rough’ as its component Gaussian

fields, in the sense that the variance of its partial derivatives relative to its variance is twice

as great as that of its component fields.

3.2 Representations of derivatives

We shall need the following two lemmata, the first proved by Adler (1981), page 114, which

give a representation of the first and second derivatives of a Gaussian and a χ2 field in terms

of independent random variables. We shall use the notation Normald(µ,Σ) to represent

the multivariate normal distribution on IRd with mean µ and variance Σ, χ2
ν to represent

the χ2 distribution with ν degrees of freedom, and Wishartd(Σ, ν) to represent the Wishart

distribution of a d× d matrix with expectation νΣ and degrees of freedom ν.

Let Λ = Var(∂Xi(t)/∂t) be the N ×N variance-covariance matrix of the partial deriva-

tives of Xi(t) with (k, l) element λkl = Cov(X
(k)
i , X

(l)
i ), k, l = 1, . . . , N , i = 1, . . . , n.

Lemma 3.1 Let X(t) = Xi(t) for any i = 1, . . . , n, then

(a)
∂X

∂t
∼ NormalN(0,Λ) independent of X and

∂2X

∂t∂t′
,

(b) Conditional on X,

∂2X

∂t∂t′

∣∣∣∣X ∼ NormalN×N(−XΛ,M(Λ))

where the elements of M(Λ) are such that

Cov

(
∂2X

∂ti∂tj
,
∂2X

∂tk∂tl

∣∣∣∣X
)

= ε(i, j, k, l)− λijλkl
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where ε(i, j, k, l) is symmetric in its arguments.

Lemma 3.2 We can write the first two derivatives of U = U(t) in terms of independent

random variables as follows, where the equalities are equalities in law:

(a)
∂U

∂t
= 2U

1
2 z, (b)

∂2U

∂t∂t′
= 2(P + zz′ − UΛ + U

1
2 H),

where U ∼ χ2
n, z ∼ NormalN(0,Λ), P ∼WishartN(Λ, n−1) and H ∼ NormalN×N(0,M(Λ)),

all independently.

Proof. Let Xi = Xi(t) and X′ = (X1, . . . , Xn) so that U = X′X. Let ∂X′/∂t denote

the N × n matrix with (k, i) element X
(k)
i , and ∂X/∂t′ its transpose. Then conditioning on

X and applying Lemma 3.1(a) to each Xi we have

∂U

∂t
= 2

n∑
i=1

Xi
∂Xi

∂t
= 2

∂X′

∂t
X ∼ NormalN(0, 4UΛ).

Since this depends on X only through U , then it is the distribution of ∂U/∂t conditional on

U alone. Letting z = U−
1
2 (∂X′/∂t)X gives the first result (a).

For the second result (b) we have

∂2U

∂t∂t′
= 2

n∑
i=1

∂Xi

∂t

∂Xi

∂t′
+ 2

n∑
i=1

Xi
∂2Xi

∂t∂t′
.

Conditional on X and ∂X′/∂t we have, from Lemma 3.1(b) applied to each Xi,

∂2U

∂t∂t′

∣∣∣∣X, ∂X′

∂t
∼ NormalN×N

(
2
∂X′

∂t

∂X

∂t′
− 2UΛ, 4UM(Λ)

)
,

so that we can write
∂2U

∂t∂t′
= 2

(
∂X′

∂t

∂X

∂t′
− UΛ + U

1
2 H

)
.

Let In be the n× n identity matrix, A = In −XX′/U and

P =
∂X′

∂t
A
∂X

∂t′
.

Since z = U−
1
2 (∂X′/∂t)X then we can write

∂2U

∂t∂t′
= 2(P + zz′ − UΛ + U

1
2 H).

Assume for the moment that X is fixed. Then A is fixed and P ∼WishartN(Λ, n− 1) since

A is idempotent of rank n− 1. Since AX = 0 and z is a linear combination of ∂X′/∂t then

z is independent of P conditional on X. Since the distributions of P and z do not depend

on X, then P and z are independent unconditionally. 2
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3.3 Expectations

We shall assume that each of the component fields Xi(t) satisfies the same regularity con-

ditions inside a compact set C ⊂ IRN as are required for Theorem 2.1 to hold. Then Adler

(1981), Lemma 7.1.1., page 171, shows that U(t) is also suitably regular for Theorem 2.1 to

hold, and Theorem 2.1 is used to derive the expected DT characteristic in two dimensions.

In this section we shall extend this to higher dimensions.

First we shall give an asymptotic expression for the expectation of M+
u (U,C), the mean

number of local maxima greater than u, and M−
u (U,C), the mean number of local minima

less than u. We shall postpone the proofs of the results in this subsection until the end of

section four where we shall derive them as special cases of the F field (Corollaries 4.5 and

4.8).

Theorem 3.3 Under the same regularity conditions as are required for Theorem 2.1 to hold

for each of the component fields Xi(t),

E(M+
u (U,C)) =

λ(C)det(Λ)
1
2u

1
2

(n−N)e−
1
2
u

(2π)
1
2
N2

1
2

(n−2)Γ
(
n
2

) uN−1{1 +O(u−
1
2 )},

and provided n > N then

E(M−
u (U,C)) =

λ(C)det(Λ)
1
2u

1
2

(n−N)e−
1
2
u

(2π)
1
2
N2

1
2

(n−2)Γ
(
n
2

) (n− 1)!

(n−N)!
{1 +O(u

1
2 )}.

We can immediately find an asymptotic expression for the global maximum and global

minimum of U(t) using the same argument as Hasofer (1978):

Corollary 3.4 Let Umax = sup{U(t) : t ∈ C} and Umin = inf{U(t) : t ∈ C}. Then

P(Umax ≥ u)→ λ(C)det(Λ)
1
2u

1
2

(n−N)e−
1
2
u

(2π)
1
2
N2

1
2

(n−2)Γ
(
n
2

) uN−1 as u→∞,

and provided n > N then

P(Umin ≤ u)→ λ(C)det(Λ)
1
2u

1
2

(n−N)e−
1
2
u

(2π)
1
2
N2

1
2

(n−2)Γ
(
n
2

) (n− 1)!

(n−N)!
as u→ 0.

Theorem 3.5 For N ≥ 2, and under the same regularity conditions as are required for

Theorem 2.1 to hold for each of the component fields Xi(t),

E(χ(Au(U,C))) =
λ(C)det(Λ)

1
2u

1
2

(n−N)e−
1
2
u

(2π)
1
2
N2

1
2

(n−2)Γ
(
n
2

) PN,n(u),

where PN,n(u) is a polynomial of degree N − 1 in u with integer coefficients, given by

PN,n(u) =
[(N−1)/2]∑

j=0

N−1−2j∑
k=0

(
n− 1

N − 1− 2j − k

)
(−1)N−1+j+k(N − 1)!

2jj!k!
uj+k,

where division by the factorial of a negative integer is treated as multiplication by zero.
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Corollary 3.6 If N = 2

E(χ(Au(U,C))) =
λ(C)det(Λ)

1
2u

1
2

(n−2)e−
1
2
u

2π2
1
2

(n−2)Γ
(
n
2

) {u− (n− 1)},

and if N = 3

E(χ(Au(U,C))) =
λ(C)det(Λ)

1
2u

1
2

(n−3)e−
1
2
u

(2π)
3
2 2

1
2

(n−2)Γ
(
n
2

) {u2 − (2n− 1)u+ (n− 1)(n− 2)}.

3.4 Comments

The two dimensional result (N = 2) for C a unit square was obtained by Adler(1981),

Theorem 7.1.2, page 172. Hamilton (1988) has derived the expected DT characteristic of

excursion sets of a random field generated by the Rayleigh-Lévy random-walk fractal of

Mandelbrot (1982). This turns out to be identical to that of a χ2 field in three dimensions

with two degrees of freedom (N = 3, n = 2).

As Adler(1981), page 176, points out, Theorem 3.3 and 3.5 tell us a lot about the zeros

of χ2 fields and Gaussian fields. For small, but non-zero, u it is clear that the excursion

set Au(U,C) consists essentially of the whole of C except for a few ‘holes’ where the field

drops below the level u, of which there are approximately (−1)N−1χ(Au(U,C)) in num-

ber. Note that E(χ(Au(U,C))) is proportional to e−
1
2
uu

1
2

(n−N)PN,n(u). Taking the limit of

E(χ(Au(U,C))) as u→ 0 tells us that if n > N then there are with probability one, no zeros,

confirming the result of Theorem 3.3. If n = N there are an almost surely finite number of

zeros, and on average

λ(C)det(Λ)
1
2 Γ{(N + 1)/2}π−

1
2

(N+1),

since PN,N(0) = (N − 1)! = 2N−1Γ{(N + 1)/2}Γ{N/2}/π 1
2 . Thus Theorem 3.3 can be ex-

tended to the case n = N . If n = N−1 then there are an infinite number of zeros which form

‘strings’ with an expected DT characteristic of zero, since PN,N−1(0) = 0 and the coefficient

of u in PN,N−1(u) is non-zero. In particular, the zeros of a χ2 field in three dimensions with

two degrees of freedom, or the Rayleigh-Lévy random-walk fractal, form closed ‘loops’ with

an expected DT characteristic of zero. These observations will be important for defining F

and t fields in the following sections.

4 The F field

4.1 Definition

Let X1(t), . . . , Xn(t), Y1(t), . . . , Ym(t), t ∈ IRN , be independent, identically distributed,

homogeneous, real-valued Gaussian random fields with zero mean, unit variance, and let Λ
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= Var(∂Xi(t)/∂t) = Var(∂Yj(t)/∂t), i = 1, . . . , n, j = 1, . . . ,m. Then define the F field as

F (t) =

{
n∑
i=1

Xi(t)2/n

}/{
m∑
i=1

Yi(t)2/m

}
.

The marginal distribution of F (t) for fixed t is an F -distribution with n and m degrees of

freedom. However there is a serious difficulty with the above definition which does not arise

in the univariate case. If the degrees of freedom are small there may be many values of

t inside a compact set C where the numerator and denominator in the definition of F (t)

both take the value zero, with non-zero probability, and so F (t) is not defined. This will

happen when each of the component Gaussian fields takes the value zero, that is when

W (t) = X1(t)2 + . . .+Xn(t)2 + Y1(t)2 + . . .+ Ym(t)2 = 0. However W (t) is a χ2 field with

m+ n degrees of freedom and we have seen from the previous section that W (t) has almost

surely no zeros provided that m+n > N . Thus the definition of the F -field will be restricted

to m+ n > N .

4.2 Representations of derivatives

To make the algebra simpler we shall work with the field G(t) = (n/m)F (t) = U(t)/V (t),

where U(t) =
n∑
i=1

Xi(t)2 and V (t) =
m∑
i=1

Yi(t)2 are independent χ2 fields with n and m degrees

of freedom, respectively. We shall need the following Lemmata, similar to Lemma 3.2.

Lemma 4.1 We can express the first and second derivatives of G = G(t) in terms of inde-

pendent random variables as follows, where the equalities are equalities in law:

(a)
∂G

∂t
= 2G

1
2 (1 +G)W− 1

2 z1

(b)
∂2G

∂t∂t′
= 2(1 +G)[W−1{P−GQ + (1 + 3G)z1z

′
1 −G

1
2 (z1z

′
2 + z2z

′
1)}+G

1
2W− 1

2 H]

where (m/n)G ∼ Fn,m, W ∼ χ2
m+n, z1, z2 ∼ NormalN(0,Λ), P ∼WishartN(Λ, n−1), Q ∼

WishartN(Λ,m− 1) and H ∼ NormalN×N(0,M(Λ)), all independently.

Proof. Let U = U(t), V = V (t) and W = W (t) = U + V . It is easily verified that

W ∼ χ2
m+n and that G and W are independent. For the first derivative we have

∂G

∂t
=

1

V

∂U

∂t
− U

V 2

∂V

∂t
.

From Lemma 3.2(a) we can make the substitutions

∂U

∂t
= 2U

1
2 zU and

∂V

∂t
= 2V

1
2 zV ,

where zU , zV ∼ NormalN(0,Λ), to give

∂G

∂t
= 2U

1
2V −

3
2

(
V

1
2 zU − U

1
2 zV

)
.
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Letting

z1 =
1

2
U−

1
2V

3
2W− 1

2
∂G

∂t
= W− 1

2

(
V

1
2 zU − U

1
2 zV

)
, U =

GW

1 +G
, and V =

W

1 +G

gives the first result (a). It is easily verified that z1 ∼ NormalN(0,Λ).

For the second derivative (b) we have

∂2G

∂t∂t′
=

1

V

∂2U

∂t∂t′
− U

V 2

∂2V

∂t∂t′
− 1

V 2

(
∂U

∂t

∂V

∂t′
+
∂V

∂t

∂U

∂t′

)
+

2U

V 3

∂V

∂t

∂V

∂t′
.

From Lemma 3.2(b) we can make the substitutions

∂2U

∂t∂t′
= 2(P + zUz′U − UΛ + U

1
2 HU) and

∂2V

∂t∂t′
= 2(Q + zV z′V − VΛ + V

1
2 HV ),

where P ∼WishartN(Λ, n−1), Q ∼WishartN(Λ,m−1) and HU ,HV ∼ NormalN×N(0,M(Λ)).

This gives

∂2G

∂t∂t′
= 2V −1

(
P−GQ + zUz′U − 2G

1
2 (zUz′V + zV z′U) + 3GzV z′V +G

1
2 (V

1
2 HU − U

1
2 HV )

)
.

We now find a linear combination of zU and zV that is independent of z1:

z2 =
1

2
W− 1

2
∂W

∂t
= W− 1

2

(
U

1
2 zU + V

1
2 zV

)
.

Then we can write

zU = W− 1
2

(
V

1
2 z1 + U

1
2 z2

)
and zV = W− 1

2

(
−U

1
2 z1 + V

1
2 z2

)
.

If we let

H = W− 1
2 (V

1
2 HU − U

1
2 HV ),

and substitute these into the above then we obtain the result (b). It is easily verified that

H ∼ NormalN×N(0,M(Λ)), z2 ∼ NormalN(0,Λ) and that z1 and z2 are independent. 2

4.3 Expectations

Lemma 4.2 Provided that m+ n > N and the component fields X1, . . . , Xn and Y1, . . . , Ym

satisfy the conditions of Theorem 2.1 then F is suitably regular for Theorem 2.1 to hold.

Proof. For the regularity conditions (i) of Theorem 2.1 we follow the arguments of

Lemma 7.1.1 of Adler(1981), page 171. Let M be the supremum over all t ∈ C of the

absolute value of Xi(t) and all its derivatives up to second order, i = 1, . . . , n, Yi(t) and

all its derivatives up to second order, i = 1, . . . ,m, and V (t)−1. The moduli of continuity

of G(t) will converge to zero at the right probabilistic rate if we condition on M < K

throughout the proof of Lemma 5.2.2 of Adler(1981), page 100, eventually letting K →∞.
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For conditions (iii) of Theorem 2.1 we shall use the representation of Lemma 4.1 for the

first and second derivatives of G in terms of independent random variables. The conditions

(iii) are not directly satisfied by G, but we can nevertheless prove that Theorem 2.1 holds

by conditioning on W while working through the proof of Lemma 5.2.1 of Adler(1981), page

98. Now conditional on G,W, ∂G/∂t1, . . . , ∂G/∂tN−1, we see from Lemma 4.1 that ∂G/∂tN

is O(W− 1
2 ), the determinant of any (N−1)× (N−1) minor of ∂2G/∂t∂t′ is W− 1

2
(N−1) times

a polynomial in W− 1
2 of degree N − 1, and the joint density of G, ∂G/∂t1, . . . , ∂G/∂tN−1

conditional on W is O(W
1
2

(N−1)). The bound required by the proof is the product of these,

which is thus a polynomial of degree N in W− 1
2 with coefficients that have finite variance.

Taking expectations over W ∼ χ2
m+n, we see that this bound has finite variance provided

that m+ n−N ≥ 1, or m+ n > N . Similar arguments apply to the conditions (ii). 2

Theorem 4.3 For m > N , and under the same regularity conditions as are required for

Theorem 2.1 to hold for each of the component fields Xi(t) and Yi(t), then

E(M+
f (F,C)) =

λ(C)det(Λ)
1
2

(2π)
1
2
N2

1
2

(N−2)

Γ
(
m+n−N

2

)
Γ
(
m
2

)
Γ
(
n
2

) (m− 1)!

(m−N)!

(
nf

m

)− 1
2

(m−N)

{1 +O(f−
1
2 )}.

Proof. Since m > N implies m + n > N then by Lemma 4.2 we can apply Theorem

2.1 to F (t). Let G = G(t) = (n/m)F (t) = U/V and G = ∂G/∂t. We shall evaluate the

expectations in Theorem 2.1 by conditioning on both G and W and then taking expectations

over W . Now since W ∼ χ2
m+n, independent of G, using Theorem 2.1 we can write

E(M+
g (G,C)) = λ(C)

∞∫
g

EW{E{−det(D−N)|G = h,W,G = 0} ψN(0;h,W )}ψ0(h) dh

where DN is the N × N matrix of all second order partial derivatives of G, ψN(g;h,W ) is

the density of G conditional on G = h and W , and ψ0(h) is the density of G. By Lemma

4.1 we can see that if G = 0 then we can write

DN = 2(1 +G)[W−1(P−GQ) +G
1
2W− 1

2 H],

where P ∼WishartN(Λ, n− 1), Q ∼WishartN(Λ,m− 1) and H ∼ NormalN×N(0,M(Λ)),

independently of G and W . Thus det(D−N) is a polynomial in G
1
2 of degree 2N , multiplied

by (1+G)N . Following the same arguments as in the proof of Theorem 6.3.1 of Adler(1981),

page 134, it can be shown that as G→∞ then DN approaches the negative definite matrix

−2(1 +G)GW−1Q to give

E{−det(D−N)|G = h,W,G = 0} = E(det(Q))(2(1 + h)hW−1)N{1 +O(h−
1
2 )}.

From standard multivariate statistics we have E{det(Q)} = det(Λ)(m − 1)!/(m − 1 − N)!

(see for example Anderson(1984), page 265), which is non-zero since m > N . From Lemma

4.1(a) the density of G at zero conditional on G = h and W is

ψN(0;h,W ) = (2π)−
1
2
Ndet(Λ)−

1
2 2−N(1 + h)−Nh−

1
2
NW

1
2
N .

11



Multiplying these together gives

E{−det(D−N)|G = h,W,G = 0} ψN(0;h,W )

=
det(Λ)

1
2 (m− 1)!

(2π)
1
2
N(m− 1−N)!

h
1
2
N{1 +O(h−

1
2 )}W− 1

2
N .

Using the fact that E(W d) = 2dΓ{(m + n)/2 + d}/Γ{(m + n)/2} and multiplying by the

density of G:

ψ0(h) =
Γ
(
m+n

2

)
Γ
(
m
2

)
Γ
(
n
2

)h 1
2
n−1(1 + h)−

1
2

(m+n)

gives:

EW{E{−det(D−N)|G = h,W,G = 0} ψN(0;h,W )}ψ0(h)

=
λ(C)det(Λ)

1
2

(2π)
1
2
N2

1
2
N

Γ
(
m+n−N

2

)
Γ
(
m
2

)
Γ
(
n
2

) (m− 1)!

(m− 1−N)!
h−

1
2

(m−N)−1{1 +O(h−
1
2 )}.

Integrating over h and converting back from G to F gives the result. 2

Corollary 4.4 Let Fmax = sup{F (t) : t ∈ C}. For m > N and as f →∞

P(Fmax ≥ f)→ λ(C)det(Λ)
1
2

(2π)
1
2
N2

1
2

(N−2)

Γ
(
m+n−N

2

)
Γ
(
m
2

)
Γ
(
n
2

) (m− 1)!

(m−N)!

(
nf

m

)− 1
2

(m−N)

.

Proof. Following Hasofer (1978) we have

P(Fmax ≥ f) = P(M+
f (F,C) ≥ 1) ≤ E(M+

f (F,C))

with convergence as f →∞. 2

Corollary 4.5 Theorem 3.3 holds.

Proof. Since U(t) = nF (t) in the limit as m→∞ then the first result of Theorem 3.3 for

E(M+
u (U,C)) can be obtained by letting m→∞ in the result of Theorem 4.3. The second

result of Theorem 3.3 can be obtained by noting that E(M−
v (V,C)) = E(M+

1/v(1/V, C)) and

1/V (t) = F (t)/m as n→∞. Provided m > N , Theorem 4.3 gives the desired result, after

a change of parameters from m to n. 2

Theorem 4.6 For N ≥ 2, m + n > N , and under the same regularity conditions as are

required for Theorem 2.1 to hold for each of the component fields Xi(t) and Yi(t), then

E(χ(Af (F,C))) =
λ(C)det(Λ)

1
2

(2π)
1
2
N2

1
2

(N−2)

Γ
(
m+n−N

2

)
Γ
(
m
2

)
Γ
(
n
2

) (nf
m

) 1
2

(n−N) (
1 +

nf

m

)− 1
2

(m+n−2)

KN,m,n(f),
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where KN,m,n(f) is a polynomial of degree N − 1 in nf/m with integer coefficients given by

KN,m,n(f) = (−1)N−1(N − 1)!
[(N−1)/2]∑

j=0

Γ
(
m+n−N

2
+ j

)
Γ
(
m+n−N

2

)
j!

N−1−2j∑
k=0

(
m− 1

k

)(
n− 1

N − 1− 2j − k

)
(−1)j+k

(
nf

m

)j+k
.

Proof. Let G = G(t) = (n/m)F (t) = U/V and G(k) = ∂G/∂tk. We shall evaluate the

expectations in Theorem 2.1 by conditioning on both G and W and then taking expectations

over W . Now since W ∼ χ2
m+n, independent of G, we can write

E(χ(Ag(G,C))) = (−1)N−1λ(C)EW{E(G(N)+det(DN−1)|G = g,W,G(1) = 0, . . . , G(N−1) = 0)

ψN−1(0, . . . , 0; g,W )}ψ0(g),

where DN−1 is the (N − 1) × (N − 1) matrix of second order partial derivatives of G with

respect to t1, . . . , tN−1, ψN−1(g1, . . . , gN−1;G,W ) is the density of G(1), . . . , G(N−1) condi-

tional on G and W , and ψ0(g) is the density of G. By Lemma 4.1 we can see that if

G(1) = 0, . . . , G(N−1) = 0 then we can write

DN−1 = c(P∗ + aQ∗ + bH∗),

where c = 2(1+G)W−1, a = −G, b = G
1
2W

1
2 , Λ∗ is the (N −1)× (N −1) matrix of the first

N−1 rows and columns of Λ, and P∗ ∼WishartN−1(Λ∗, n−1), Q∗ ∼WishartN−1(Λ∗,m−1)

and H∗ ∼ Normal(N−1)×(N−1)(0,M(Λ∗)), independently. Thus G(N) is independent of DN−1

and

E(G(N)+det(DN−1)|G,W,G(1) = 0, . . . , G(N−1) = 0)

= E(G(N)+|G,W,G(1) = 0, . . . , G(N−1) = 0)E(det(DN−1)|G,W,G(1) = 0, . . . , G(N−1) = 0).

We shall start with the first term. Let z1 = (z1, . . . , zN)′ ∼ NormalN(0,Λ) independent

of P∗, Q∗ and H∗, and let λN = Var(zN |z1, . . . , zN−1). Then from Lemma 4.1(a) and Adler

(1981), Lemma 5.3.3, page 111, we have

E(G(N)+|G,W,G(1) = 0, . . . , G(N−1) = 0) = bcE(z+
N |z1 = 0, . . . , zN−1 = 0) = bc(2π)−

1
2λ

1
2
N .

For the second term, let B be an orthogonal (N − 1) × (N − 1) matrix such that

B′Λ∗B = IN−1. Then

E(det(DN−1)|G,W,G(1) = 0, . . . , G(N−1) = 0) = cN−1E(det(P∗ + aP∗ + bH∗))

= det(Λ∗)cN−1E(det(B′(P∗ + aQ∗ + bH∗)B)

= det(Λ∗)cN−1E(det(P + aQ + bH))

13



where P = B′P∗B ∼ WishartN(IN−1, n − 1), Q = B′Q∗B ∼ WishartN(IN−1,m − 1) and

H = B′H∗B ∼ Normal(N−1)×(N−1)(0,M(IN−1)) independently, by Lemma 7.1(a). We can

now apply Lemma 7.5 to obtain

E(det(DN−1)|G,W,G(1) = 0, . . . , G(N−1) = 0) = det(Λ∗)2N−1(1 +G)N−1

[(N−1)/2]∑
j=0

N−1−2j∑
k=0

(
m− 1

k

)(
n− 1

N − 1− 2j − k

)
(−1)j+k(N − 1)!

2jj!
Gj+kW−(N−1−j).

From Lemma 4.1(a) the density of G(1), . . . , G(N−1) at zero conditional on G = g and W is

ψN−1(0, . . . , 0; g,W ) = (2π4g(1 + g)2W−1)−
1
2

(N−1)det(Λ∗)−
1
2 .

Multiplying these together gives

E(G(N)+det(DN−1)|G = g,W,G(1) = 0, . . . , G(N−1) = 0)ψN−1(0, . . . , 0; g,W )

= (2π)−
1
2
Ndet(Λ)

1
2 2(1 + g)g−

1
2
N+1

[(N−1)/2]∑
j=0

N−1−2j∑
k=0

(
m− 1

k

)(
n− 1

N − 1− 2j − k

)
(−1)j+k(N − 1)!

2jj!k!
gj+kW− 1

2
(N−2j),

since λNdet(Λ∗) = det(Λ). Using the fact that E(W d) = 2dΓ{(m+n)/2 + d}/Γ{(m+n)/2}
and multiplying by the density of G:

ψ0(g) =
Γ
(
m+n

2

)
Γ
(
m
2

)
Γ
(
n
2

)g 1
2
n−1(1 + g)−

1
2

(m+n)

gives:

E(χ(Ag(G,C))) =
λ(C)det(Λ)

1
2 g

1
2

(n−N)(1 + g)−
1
2

(m+n−2)

(2π)
1
2
NΓ

(
m
2

)
Γ
(
n
2

)
[(N−1)/2]∑

j=0

N−1−2j∑
k=0

(
m− 1

k

)(
n− 1

N − 1− 2j − k

)
(−1)N−1+j+k(N − 1)!Γ

(
m+n−N+2j

2

)
2

1
2

(N−2)j!
gj+k.

Converting back from G to F gives the result. 2

Corollary 4.7 If N = 2 and m+ n ≥ 3 then

E(χ(Af (F,C))) =
λ(C)det(Λ)

1
2

2π

Γ
(
m+n−2

2

)
Γ
(
m
2

)
Γ
(
n
2

) (nf
m

) 1
2

(n−2) (
1 +

nf

m

)− 1
2

(m+n−2)

{
(m− 1)

nf

m
− (n− 1)

}
,

and if N = 3 and m+ n ≥ 4 then

E(χ(Af (F,C))) =
λ(C)det(Λ)

1
2

(2π)
3
2 2

1
2

Γ
(
m+n−3

2

)
Γ
(
m
2

)
Γ
(
n
2

) (nf
m

) 1
2

(n−3) (
1 +

nf

m

)− 1
2

(m+n−2)

{
(m− 1)(m− 2)

(
nf

m

)2

− (2mn−m− n− 1)
nf

m
+ (n− 1)(n− 2)

}
.
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Corollary 4.8 Theorem 3.5 holds.

Proof. Since U(t) = nF (t) in the limit as m → ∞ then the result of Theorem 3.5 can

be obtained by letting m→∞ in the result of Theorem 4.6. 2

4.4 Comments

It is worth noting three things about these results. First, they only depend on the distribution

of the component fields through the variance of their first order derivatives, even though the

definition of M+ and χ(A) depend on second order derivatives. Second, E(χ(A)) is invariant

under rotations of the coordinate system, even though χ(A) is not invariant under rotations if

A touches the boundary of the region C. Third, E(M+
f (F,C)) and E(χ(Af (F,C))) converge

to the same limit as f →∞, but the former at the rate O(f−
1
2 ) and the latter at the faster

rate O(f−1). These comments also apply to Gaussian, χ2, and, as we shall see in the next

section, t fields.

We end this section with some comments on infinite values of F (t). For large f it

is clear that the excursion set Af (F,C) consists essentially of the whole of C except for

a few ‘peaks’ where the field F (t) exceeds the level f , of which there are approximately

χ(Af (F,C)) in number. Note that E(χ(Af (F,C))) is proportional to f−
1
2

(m−N). Taking the

limit of E(χ(Af (F,C))) as f → ∞ tells us that if m > N then there are with probability

one, no points where the field is infinite. If m = N there are an almost surely finite number

of infinities, and on average

λ(C)det(Λ)
1
2 Γ{(N + 1)/2}π−

1
2

(N+1).

Thus Theorem 4.3 can be extended to the case m = N . It is not surprising that this result

is the same as the expected number of zeros of a χ2 field with N degrees of freedom, from

Theorem 3.3; in fact we can see that the behaviour of an F field near infinity depends largely

on the behaviour of its denominator χ2 field near zero. Similar results apply to the zeros of

F fields, as can be seen by taking the reciprocal of the F field.

5 The t field

5.1 Definition

Let X(t), Y1(t), . . . , Ym(t), t ∈ IRN , be independent, identically distributed, homogeneous,

real-valued Gaussian random fields with zero mean, unit variance, and Λ = Var(∂X(t)/∂t)

= Var(∂Yi(t)/∂t), i = 1, . . . ,m. Define the t field as

T (t) = X(t)
/{

m∑
i=1

Yi(t)2/m

} 1
2

.
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The marginal distribution of T (t) for fixed t is a t distribution with m degrees of freedom,

written tm. Note that T (t)2 is an F field with 1 and m degrees of freedom. Once again

we must avoid the possibility that the numerator and denominator both take the value zero

inside a compact set C. This will happen when each of the component Gaussian fields takes

the value zero, or when S(t) = X(t)2 +Y1(t)2 + . . .+Ym(t)2 = 0. However S(t) is a χ2 field

with m+ 1 degrees of freedom and we have seen from the section three that S(t) has almost

surely no zeros provided that m+ 1 > N . Thus the definition of the t-field will be restricted

to m ≥ N .

5.2 Representations of derivatives

We can find a representation for the derivatives of a t field, similar to that of Lemma 3.2.

The proof is similar and is omitted.

Lemma 5.1 We can express the first and second derivatives of T = T (t) in terms of inde-

pendent random variables as follows, where equalities are equlities in law:

(a)
∂T

∂t
= m

1
2 (1 + T 2/m)S−

1
2 z1

(b)
∂2T

∂t∂t′
= m(1 + T 2/m)S−1{−m−

1
2T (Q− 2z1z

′
1)− z1z

′
2 − z2z

′
1 + S

1
2 H}

where T ∼ tm, S ∼ χ2
m+1, z1, z2 ∼ NormalN(0,Λ), Q ∼ WishartN(Λ,m − 1) and H ∼

NormalN×N(0,M(Λ)), all independently.

5.3 Expectations

Theorem 5.2 For N ≥ 2 and m ≥ N , and under the same regularity conditions as are

required for Theorem 2.1 to hold for each of the component fields X(t) and Yi(t),

E(M+
t (T,C)) =

λ(C)det(Λ)
1
2 Γ
(
m+1

2

)
m

1
2

(m−N)

2(π)
1
2

(N+1)Γ
(
m+2−N

2

) t−(m−N){1 +O(t−1)}.

Proof. This result follows from Theorem 4.3 and the fact that T (t)2 is an F field

with 1 and m degrees of freedom. Since T (t) has the same distribution as −T (t) then

for t > 0 E(M+
t (T,C)) = E(M+

−t(−T,C)) = E(M+
t2 (T 2, C))/2. For m > N the result

is obtained using Theorem 4.3 with n = 1 and f = t2, and the relation (m − N)! =

2m−NΓ{(m + 2 − N)/2}Γ{(m + 1 − N)/2}/Γ(1/2). We can extend the result to the case

m = N following the comments at the end of Theorem 4.6. 2

Corollary 5.3 Let Tmax = sup{T (t) : t ∈ C}. For m > N and as t→∞

P(Tmax ≥ t)→
λ(C)det(Λ)

1
2 Γ
(
m+1

2

)
m

1
2

(m−N)

2(π)
1
2

(N+1)Γ
(
m+2−N

2

) t−(m−N).

16



Theorem 5.4 For N ≥ 2 and m ≥ N , and under the same regularity conditions as are

required for Theorem 2.1 to hold for each of the component fields X(t) and Yi(t),

E(χ(At(T,C))) =
λ(C)det(Λ)

1
2

(2π)
1
2

(N+1)

(
1 +

t2

m

)− 1
2

(m−1)

QN,m(t),

where QN,m(t) is a polynomial of degree N − 1 in t given by

QN,m(t) =
[(N−1)/2]∑

j=0

(−1)j(N − 1)!

2jj!(N − 1− 2j)!

Γ
(
m+1

2

)
Γ
(
m+2−N+2j

2

) (
m
2

) 1
2

(N−1−2j)
tN−1−2j.

Proof. Suppose first that t > 0, so that the two excursion sets At(T,C) and A−t(−T,C)

are disjoint and their union is At2(T 2, C). Since the DT characteristic of the union of two

disjoint sets is the sum of the DT characteristics of the two sets, and T (t) has the same

distribution as −T (t), then E(χ(At(T,C))) = E(χ(At2(T 2, C)))/2. Since T 2 is an F field

with n = 1 then the result is obtained using Theorem 4.6, and the relation (m−N + 2j)! =

2m−N+2jΓ{(m + 2 − N)/2 + j}Γ{(m + 1 − N)/2 + j}/Γ(1/2). Suppose now that t < 0. It

is straightforward to show by a proof similar to that of Lemma 4.2 that the conditions of

Theorem 2.1 are satisfied by T (t) so by Corollary 2.2 we have

E(χ(At(T,C))) = (−1)N−1E(χ(A−t(−T,C))) = (−1)N−1E(χ(A−t(T,C)))

since T (t) has the same distribution as −T (t). Since QN,m(−t) = (−1)N−1QN,m(t) then

the result of the Theorem can be extended to t 6= 0. For t = 0, T = 0 implies X = 0

almost surely. It can be checked that the expected DT characteristic of a Gaussian field at

zero, from Adler (1981), Theorem 5.3.1, page 111, agrees with the result of the Theorem for

t = 0. 2

Corollary 5.5 If N = 2 and m ≥ 2 then

E(χ(At(T,C))) =
λ(C)det(Λ)

1
2

(2π)
3
2

(
1 +

t2

m

)− 1
2

(m−1) Γ
(
m+1

2

)
Γ
(
m
2

) (
m
2

) 1
2

t,

and if N = 3 and m ≥ 3 then

E(χ(At(T,C))) =
λ(C)det(Λ)

1
2

(2π)2

(
1 +

t2

m

)− 1
2

(m−1) {
m− 1

m
t2 − 1

}
.

5.4 Comments

Note that the coefficients of QN,m(t) are equal to those of the Hermite polynomial of degree

N − 1, HeN−1(t), mutiplied by a term that is less than one but which converges to one as

m→∞. Thus as the degrees of freedom approaches infinity, the expected DT characteristic

of the t field converges to that of the Gaussian field, as given by Adler (1981), Theorem
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5.3.1, page 111. At extreme thresholds, the behaviour of the t field is largely dominated by

the behaviour near zero of the denominator χ2 field V (t). If m = N then we saw in section

three that V (t) takes the value zero at a finite number of points, so that the t field can be

infinite at a finite number of points. Since the numerator X(t) takes positive values with a

probability of one half, then we expect that the number of positive infinite values of T (t)

to be one half the expected number of zeros of V (t). It is reassuring to note that letting

t→∞ in the result of Theorem 5.4 confirms this.

6 Applications to positron emission tomography im-

ages

The PET technique uses positron-emitting isotope labelled carriers, created in an on-site

cyclotron, to produce an image of brain activity such as glucose utilization, oxygen con-

sumption or blood flow. In the last three years, researchers have succeeded in carrying out

a new type of experiment in which a group of subjects in a randomised block design are

given a set of stimuli such as word-recognition or a painfull heat stimulus. The number of

subjects and stimuli is small, typically 10 and 6 respectively. The unusual statistical feature

is that each observation is a three-dimensional image of blood flow in the brain. By careful

alignment it is possible to subtract the blood flow image under one stimulus condition from

that under another to look for changes in blood flow, or activation between the two stimuli.

Such an experiment is fully described in Worsley et al. (1992) and the relevant details of

the analysis will now be given.

Suppose that there are p subjects and that for the ith subject, ∆i(t) is the value of

this differenced image at a point t ∈ C, where C ⊂ IR3 is the brain, i = 1, . . . , p. Let

µ(t) = E(∆i(t)) be the mean change in blood flow, or mean activation, between the two

stimuli, and let σ(t)2 = Var(∆i(t)), i = 1, . . . , p. Then it was assumed that for each subject,

{∆i(t) − µ(t)}/σ(t) was an independent homogeneous Gaussian field with zero mean and

unit variance, i = 1, . . . , p. We are interested in testing the null hypothesis of no activation,

µ(t) = 0. The sample mean ∆̄(t) and sample variance S(t) of the differenced images over

all subjects were then calculated:

∆̄(t) =
p∑
i=1

∆i(t)/p, and S2(t) =
p∑
i=1

(
∆i(t)− ∆̄(t)

)2
/(p− 1).

Worsley et al. (1992) made the assumption that the standard deviation was stationary, that

is σ(t) = σ, say. The variance σ2 was then estimated by pooling the sample variance S2(t)

over all t ∈ C to give

σ̂2 =
∫

t∈C

S2(t)dt/λ(C).
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The sample mean image was then standardised to give

X(t) = p
1
2 ∆̄(t)/σ̂.

Since the brain volume was large relative to the resolution of the image, then σ̂ is approxi-

mately constant, so that under the null hypothesis µ(t) = 0, X(t) can be well approximated

by a homogeneous Gaussian field with zero mean and unit variance. Since activation was

expected to produce a few isolated regions of high mean, then the null hypothesis was tested

by calculating the probability that the global maximum Xmax exceeded its observed value,

using Adler (1981), Theorem 6.9.1, page 160. The number of isolated regions of activation

was investigated by comparing the observed DT characteristic of excursion sets of X(t) with

its expected value as given by Adler (1981), Theorem 5.3.1, page 111.

It has been claimed by some workers that the standard deviation σ(t) of the individual

images is not stationary. This claim can be investigated using the standardised sums of

squares image

U(t) = (p− 1)S2(t)/σ̂2.

If σ(t) is stationary then U(t) is a χ2 field with n = p− 1 degrees of freedom, independent

of X(t). The global maximum Umax and the global minimum Umin can be used as a test

statistic for a few regions of high or low standard deviation, respectively; their approximate

null distributions are given by Corollary 3.4. The number of isolated regions of high or

low standard deviation can be investigated by comparing the observed DT characteristic of

excursion sets of U(t) with its expected value as given by Theorem 3.5.

If the standard deviation σ(t) is not stationary then we can use the image

T (t) = p
1
2 ∆̄(t)/S(t)

which is a t field with m = p−1 degrees of freedom under the null hypothesis µ(t) = 0. The

global maximum Tmax can be used as a test statistic for regions of high mean; its approximate

null distribution is given by Corollary 5.3. The number of isolated regions of high mean can

be investigated by comparing the observed DT characteristic of excursion sets of T (t) with

its expected value as given by Theorem 5.4.

Talbot et al. (1990) investigated the regions of the brain showing an increased blood flow

in response to a painfull heat stimulus. There were p = 8 subjects and the baseline condition

of no heat stimulus was repeated twice on each subject. Worsley et al. (1992) used these

images as a convenient control experiment to validate the models, since the null hypothesis

of zero mean difference between the same two stimuli, µ(t) = 0, should be satisfied in this

case, although the standard deviation σ(t) may still be non-stationary. Horizontal slices of

the images X(t), U(t) and T (t) = X(t)/{U(t)/n} 1
2 are shown in Figure 2. Note that U(t)

is twice as ‘rough’ as X(t), and that T (t) has much sharper peaks than X(t).

The 3× 3 variance-covariance matrix Λ of the partial derivatives of X(t) was estimated

numerically and found to be in good agreement with a theoretical estimate based on the
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known resolution of the PET camera. The unitless parameter λ(C)det(Λ)
1
2 was estimated

to be 1564. The observed global maxima and minima of these fields, together with their

exceedence probabilities, are given in Table 1. There is no evidence against the null hy-

potheses, apart from some evidence of regions of high standard deviation (Umax = 52.4).

The observed DT characteristic of the excursion sets for several values of the threshold level,

together with their expected values, are given in Figure 3. In all cases they seem to be in

reasonable agreement.

The analyses were repeated on data from the same study, but for the difference between a

painful heat stimulus minus a control stimulus. Horizontal slices of the imagesX(t), U(t) and

T (t) = X(t)/{U(t)/n} 1
2 are shown in Figure 4; one subject had missing values and so p = 7.

The test statistics are given in Table 1, and they indicate that there has been an increase in

mean activation (Xmax = 4.99) and some regions of high standard deviation (Umax = 38.9).

The test based on Tmax failed to detect an increase in mean activation. This can be explained

by some simulation results of Worsley et al. (1992) which showed that a test based on Tmax

was not as powerful as that based on Xmax if indeed the standard deviation was stationary.

Plots of the DT characteristics, shown in Figure 5, show considerable discrepancies between

the observed values of X(t) and T (t) and their expectations under the null hypothesis

µ(t) = 0. Worsley et al. (1992) concluded on the basis of Figure 5(a) that there were three

isolated regions of activation caused by the heat stimulus. The horizontal slices in Figures

2 and 4 were in fact chosen to pass through one of these regions, the left cingulate, which is

approximately 3 centimetres left frontal of the centre of the slice.

TABLE 1. Global maxima and minima, z, of the fields Z(t) from the pain study, together

with the expected DT characteristic of excursion sets above z.

Global minimum Global maximum

Z(t) stimuli z E(χ(Az(Z,C))) z E(χ(Az(Z,C)))

X(t) no activation -3.47 1.14 4.16 0.121

X(t) heat stimulus -4.32 0.066 4.99 0.0039

U(t) no activation 0.0814 0.973 52.4 0.00013

U(t) heat stimulus 0.0375 1.703 38.9 0.012

T (t) no activation -17.9 0.105 7.4 2.65

T (t) heat stimulus -42.6 0.037 15.6 0.72

7 Appendix

For the expected DT characteristic, we shall need the following lemmata in order to find the

expected determinant of the matrix of second order derivatives, DN−1. Let A be an N ×N
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matrix, and define detrj(A) to be the sum of the determinant of all the j×j principal minors

of A, so that detrN(A) = det(A), detr1(A) = tr(A) and detr0(A) is defined to be one. Note

that (−1)jdetrN−j(A) is the coefficient of xj in the characteristic polynomial det(A− xIN),

and detrj(A) equals the product of j eigen values of A, summed over all possible subsets of

j eigen values of A.

Lemma 7.1 (a) If H ∼ NormalN×N(0,M(Σ)) and B is a fixed N × k matrix then

B′HB ∼ Normalk×k(0,M(B′ΣB)).

(b) If H ∼ NormalN×N(0,M(IN)) then

E(det(H)) =
(−1)j(2j)!

2jj!

if N = 2j is even, and zero if N is odd.

Proof. The result (a) is proved by expanding and using Lemma 3.1(b), and result (b) is

given by Adler (1981), Lemma 5.3.2, page 110. 2

The following result is a generalisation of the Corollary to Lemma 5.3.2 of Adler (1981),

page 110:

Lemma 7.2 Let H ∼ NormalN×N(0,M(IN)) and let A be a fixed symmetric N×N matrix.

Then

E(det(A + H)) =
[N/2]∑
j=0

(−1)j(2j)!

2jj!
detrN−2j(A).

Proof. Let B be an orthonormal matrix such that B′AB = L = diag(l1, . . . , lN) is a

diagonal matrix of eigen values of A. Then

det(A + H) = det(B′(A + H)B) = det(D + H∗)

where H∗ = B′HB ∼ NormalN×N(0,M(IN)) by Lemma 7.1(a). Now since L is diagonal

then det(L + H∗) can be expanded in terms of products of the determinant of each k × k
principal minor of H∗ with the N−k members of {l1, . . . , lN} corresponding to the remaining

rows and columns not included in the principal minor. By Lemma 7.1(a) the distribution

of any k × k principal minor of H∗ is Normalk×k(0,M(Ik)). Since the expected value of

its determinant depends only on k, then using Lemma 7.1(b) with k = 2j we obtain the

result. 2

Lemma 7.3 Let P ∼WishartN(IN , ν) and let a be a fixed scalar. Then

E(detrj(P)) =

(
N

j

)
ν!

(ν − j)!
,

where division by the factorial of a negative integer is treated as multiplication by zero.
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Proof. Each j × j principal minor of P has a Wishartj(Ij, ν) distribution. From

standard multivariate statistics, the expected determinant of such a matrix is ν!/(ν − j)!
(see for example Anderson(1984), page 265). 2

Lemma 7.4 Let P ∼ WishartN(IN , ν) and Q ∼ WishartN(IN , η) independently, and let a

be a fixed scalar. Then

E(detrj(P + aQ)) =
N !

(N − j)!

j∑
k=0

(
η

k

)(
ν

j − k

)
ak,

where division by the factorial of a negative integer is treated as multiplication by zero.

Proof. Let B be an orthonormal matrix such that B′QB = L = diag(l1, . . . , lN) is a

diagonal matrix of eigen values of Q. Then

detrj(P + aQ) = detrj(B
′(P + aQ)B) = detrj(P

∗ + aL),

where P∗ = B′PB. If Q is fixed then B is fixed and so P∗ ∼WishartN(IN , ν). From Lemma

7.3 the expected determinant of each (j−k)×(j−k) principal minor of P∗ is ν!/(ν − j + k)!.

Thus we can expand E(detrj(P + aQ)) in powers of a as follows:

E(detrj(P
∗ + aL)|Q) =

j∑
k=0

(
N − k
j − k

)
ν!

(ν − j + k)!
detrk(L)ak.

Using the fact that detrk(L) = detrk(Q) and taking expectations over Q using Lemma 7.3,

gives the result. 2

Lemma 7.5 Let P ∼WishartN(IN , ν), Q ∼WishartN(IN , η) and H ∼ NormalN×N(0,M(IN))

independently, and let a and b be fixed scalars. Then

E(det(P + aQ + bH)) =
[N/2]∑
j=0

(−1)jN !

2jj!
b2j

N−2j∑
k=0

(
η

k

)(
ν

N − 2j − k

)
ak.

Proof. Holding P and Q fixed and applying Lemma 7.2 with A = P + aQ we get

E(det(P + aQ + bH)) =
[N/2]∑
j=0

(−1)j(2j)!

2jj!
b2jE(detrN−2j(P + aQ)).

Applying Lemma 7.4 gives the result. 2
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Figure 1. The DT characteristic of an artificial image in IR2. (a) The image, with colour

bar in (e); darker shading denotes higher values. Local maxima are indicated by L and the

global maximum is indicated by G. (b) Excursion set A (shaded areas) above a threshold

z = 3.2. Points which are counted in χ0(A), and contribute -1 to χ(A), are indicated by

O. Points which are counted in χ1(A), and contribute +1 to χ(A), are indicated by X.

Since the excursion set does not touch the boundary the DT characteristic equals the Euler

characteristic, which counts the number of isolated regions minus the number of ‘holes’,

giving χ(A) = 2. The number of local maxima greater then 3.2 is M+ = 4. (b) As the

threshold is increased to z = 4.0 the holes disappear and the DT characteristic counts the

number of local maxima, giving χ(A) = M+ = 4. (c) At even higher levels z = 5.6, the

DT characteristic takes the value one if the global maximum exceeds z and zero otherwise,

giving χ(A) = M+ = 1. (e) A plot of the DT characteristic χ(A) against z. For z > 2.7

the excursion set does not touch the boundary and the DT characteristic equals the Euler

characteristic.

Figure 2 Horizontal slices of the three dimensional Gaussian field X(t) (a), the χ2 field

U(t) (b), and the t field T (t) = X(t)/{U(t)/n} 1
2 (c), as defined in section 6. The slice is

taken roughly mid way through the brain, 3.2 cms above the anterior commissure-posterior

commissural line. Darker shading denotes higher values. Note that the scale on the χ2

field with n degrees of freedom (d.f.) has been transformed to {U(t)/n} 1
2 to give a better

rendering of the image. The data shown is from a study with p = 8 subjects in which the

two stimuli were identical, so that we expect to see no increase or decrease in the means of

X(t) and T (t).

Figure 3 The DT characteristics of excursion sets of the three dimensional fields in

Figure 2, as a function of the level of the excursion set, together with the expected DT

characteristic under the null hypothesis of no mean activation. The maxima and minima

are marked with arrows. Note that the scale on the χ2 field with n degrees of freedom (d.f.)

has been transformed to {U(t)/n} 1
2 . The observed and expected values appear to be in

reasonable agreement.

Figure 4 Horizontal slices of the three dimensional fields, as in Figure 2, but for the

difference between a painfull heat stimulus and a control stimulus. Worsley et al. (1992)

found evidence of significant activation in the Gaussian field X(t) (a) in the left cingulate

region, 3 centimetres left frontal of the centre of the slice.

Figure 5 The DT characteristics of excursion sets of the three dimensional fields in

Figure 4, for the difference between a painfull heat stimulus and a control stimulus. There

are some discrepancies between between the observed and expected DT characteristics of

X(t) (a) and T (t) (c). On the basis of (a), Worsley et al. (1992) estimated that there were

three regions of activation caused by the heat stimulus.
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