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Loal Maximum Likelihood Estimation and InfereneJianqing FanDepartment of Statistis, University of North Carolina, Chapel Hill, NC 27599-3260, USA, andDepartment of Statistis, University of California, Los Angeles, CA 90095-1555, USAMark FarmenRoss Produts Division, Abbott Laboratories, Columbus OH 43215, USAIr�ene GijbelsInstitut de Statistique, Universit�e Catholique de Louvain, Voie du Roman Pays 20, B-1348Louvain-la-Neuve, BelgiumOtober 15, 1998AbstratLoal maximum likelihood estimation is a nonparametri ounterpart of the widely-usedparametri maximum likelihood tehnique. It extends the sope of the parametri maximumlikelihood method to a muh wider lass of parametri spaes. Assoiated with this nonpara-metri estimation sheme is the issue of bandwidth seletion and bias and variane assessment.This artile provides a uni�ed approah to seleting a bandwidth and onstruting on�deneintervals in loal maximum likelihood estimation. The approah is then applied to least-squaresnonparametri regression and to nonparametri logisti regression. Our experienes in these twosettings show that the general idea outlined here is powerful and enouraging.1 IntrodutionMaximum likelihood estimation provides a useful blueprint for various statistial estimation prob-lems. It also provides a uni�ed method for onstruting on�dene intervals for parameters. AAbbreviated title: Loal likelihood estimation.AMS 1991 subjet lassi�ation. Primary 62G07. Seondary 62A10.Key words and phrases: Bandwidth seletion; on�dene intervals; generalized linear models; logit regression;maximum likelihood; nonparametri regression. 1



drawbak of this method is that one has to assume a partiular parametri form for the unknowntarget funtion. This restritive assumption an be removed by using a maximum loal kernel-weighted likelihood estimator. An important issue is then to hoose the size of the neighborhood.Further, the question arises of how to onstrut on�dene intervals. These problems are halleng-ing and so far they have no satisfatory answer in the literature. This artile attempts to providea uni�ed approah to these problems.Loal maximum likelihood estimation is based on the idea of loal �tting. Satterplot smoothingby loal �tting has been around for many years. Loal �tting is indeed a partiular useful tehniquein nonparametri estimation. Among the earlier papers in the ontext of nonparametri regressionare Stone (1977, 1980), Cleveland (1979) and Friedman and Stuetzle (1981). Further, there is a vastliterature on likelihood-based models in various domains of appliation, and these models mainlyappear in parametri estimation problems.The idea of using loal �tting for likelihood-based regression models was applied by Tibshiraniand Hastie (1987) to the lass of generalized linear models (see Nelder and Wedderburn (1972)) andto the proportional hazards model of Cox (1972). Fan, Hekman and Wand (1995) show that theapproah has good sampling properties when used with loal polynomial �tting in the ontext ofgeneralized linear models. Staniswalis (1989) approahed the same problem using a kernel method.These nie sampling properties arry further to the hazard regression setting (see Fan, Gijbels andKing (1997)). There is a vast interest in applying the loal likelihood method to the problem ofdensity estimation or hazard rate estimation. For more on this, see for example Hjort (1991, 1995),Jones (1994), Copas (1995), Hjort and Glad (1995), Hjort and Jones (1996) and Loader (1996).A related idea to the loal maximum likelihood method is the loal estimating equation approahintrodued by Carroll, Ruppert and Welsh (1996) who uses the empirial-bias idea of Ruppert(1995) to selet the bandwidth.An important issue when using loal tehniques is the determination of the `loal neighborhood',whih is ommonly desribed by a kernel funtion K and a bandwidth parameter h. It is well-known that among these two quantities, the hoie of the bandwidth is the more ruial one. Thisbandwidth ontrols the size of the loal neighborhood, and an be hosen to be onstant or todepend on loation. 2



The building bloks for bandwidth seletion are bias and variane estimates of the nonparametriestimator. A general idea for this estimation task is proposed in the paper, and is appliable tomost of the likelihood-based models. The idea is an extension of the pre-asymptoti substitutionmethod developed by Fan and Gijbels (1995) in the least-squares ontext. The bias assessmentrelies on the di�erene of two maximum loal likelihood �ts with di�erent auraies. Fan andGijbels (1995) provide extensive evidene showing that the resulting proedure performs very welland we show further in this paper that the generalized idea is appealing for logisti regression.Therefore, it is expeted that the extension will work well in a more general likelihood ontext.The assessed bias and variane also have important appliations in onstruting on�deneintervals and even on�dene bands. Indeed, one an use the estimated bias and variane andrely on the asymptoti normality of the estimator to onstrut on�dene intervals and on�denebands. See for example Eubank and Spekman (1993).The organization of the paper is as follows. In the next setion we disuss briey the idea ofloal likelihood tehniques using loal polynomial �tting. Setions 3 and 4 show how to aess thebias and variane of the loal maximum likelihood estimator. Setion 5 disusses a simple approahto selet a pilot bandwidth. The appliations to bandwidth seletion are disussed in Setion 6.Setion 7 presents how to onstrut on�dene intervals based on the assessed bias and variane.The proposed methodology is then illustrated for loal least-squares regression and for loal logistiregression in Setion 8.2 Loal log-likelihood estimationIn order to introdue the loal likelihood idea, we reall the maximum likelihood estimation methodfor a parametri model. Suppose that the ith observation (Xi; Yi) in a sample (X1; Y1); � � � ; (Xn; Yn)has a ontribution `fg(Xi); Yig to the onditional log-likelihood, where g(�) is an unknown para-metrized funtion of interest, i.e. g(x) = g�(x) where � is an unknown parameter. The onditionallog-likelihood of the n observations is then given by Pni=1 `fg�(Xi); Yig: We require that � is theunique solution to the likelihood equationEf`0fg�(x); Y gjX = xg = 0; (2.1)3



where `0(t; u) = ��t`(t; u). Note that one an regard (2.1) as the de�nition of the parameter �.We now turn to nonparametri estimation of g(�) in whih the form of g(�) is ompletely un-known. Suppose that we want to estimate g(x0). Assume that the funtion g has a (p + 1)thontinuous derivative at the point x0. For data points Xi in a neighborhood of x0 we approximateg(Xi) via a Taylor expansion by a polynomial of degree p:g(Xi) � g(x0) + g0(x0)(Xi � x0) + � � � + g(p)(x0)p! (Xi � x0)p � XTi �0;where Xi = (1;Xi � x0; � � � ; (Xi � x0)p)T and �0 = (�00 ; � � � ; �0p)T , with �0� = g(�)(x0)=�!, � =0; 1; � � � ; p. For data points (Xi; Yi) in a neighborhood of x0, the ontribution to the log-likelihoodis `(XTi �; Yi), weighted by Kh(Xi � x0), with Kh(�) = K(�=h)=h where � = (�0; � � � ; �p)T is themodel parameter. These onsiderations yield the onditional loal kernel-weighted log-likelihoodLp(�;h; x0) = nXi=1 `(XTi �; Yi)Kh(Xi � x0): (2.2)The subsript p indiates the degree of the polynomial used for the loal �tting. Maximizingthe loal kernel-weighted log-likelihood (2.2) with respet to � gives the vetor of estimators b� =(b�0; � � � ; b�p)T . Estimators bg�(x0) for g(�)(x0), � = 0; 1; � � � ; p are then given bybg�(x0) = �!b�� : (2.3)For simpliity, (2.2) is also referred to as the loal likelihood.To illustrate the above onept we onsider the normal regression model Y = g(X) + " with" � N(0;�2), and X and " independent. The onditional loal log-likelihood is� log(p2��) nXi=1Kh(Xi � x0)� 12�2 nXi=1nYi � pXj=0�j(Xi � x0)jo2Kh(Xi � x0); (2.4)whih has to be maximized with respet to �. This is equivalent to minimizingnXi=1nYi � pXj=0�j(Xi � x0)jo2Kh(Xi � x0); (2.5)leading to loal polynomial regression, also referred to as loally weighted least-squares regression.In the above example, the unknown funtion was a mean regression funtion. In other ontexts,g(�) will be another unknown funtion of interest. For example, g(�) an be a transformed ondi-tional mean funtion in generalized linear models, or the risk ontribution funtion of ovariates to4



the onditional hazard funtion in a proportional hazards model enountered in survival analysis,or the logarithm of the density funtion in a density estimation problem.Note that the loal kernel-weighted likelihood method is still appliable when the likelihoodfuntion involves a onstant sale fator suh as � in (2.4). Even when � depends on the loationx0, the loal kernel-weighted likelihood method (2.4) an still be used to estimate g(�) beauseof loal homosedaity: �2(Xi) � �2(x0) for Xi in a neighborhood of x0. To estimate the saleparameter funtion �(�) in the latter situation, we an have two possible methods. The �rst oneis to approximate logf�2(�)g loally by a polynomial funtion with unknown parameters denotedby  and then maximize (2.4) simultaneously with respet to parameters � and . The seondapproah is to estimate � �rst by regarding �2(�) loally as a onstant, and then apply the loalmodeling idea to logf�2(�)g by using a di�erent bandwidth. The seond approah is basially aresidual-based method, whih is similar to that given in Ruppert, Wand, Holst and H�ossjer (1995)who show that the latter method is e�etive. While the above disussions are in the ontext of thenormal models, the idea is expandable to the general likelihood setting.3 Assessing the bias of the estimatorIn this and in the next setion, we fous on how to estimate the bias and variane of the loal max-imum likelihood estimator. The estimated bias and variane will be used to selet the bandwidthand to onstrut on�dene intervals in Setions 6 and 7, respetively.The bias of the estimator b� omes from the approximation error in the Taylor expansion.Let r(Xi) = g(Xi) �Ppj=0 g(j)(x0)(Xi � x0)j=j! denote this approximation error at the point Xi.Suppose that the (p + a + 1)th derivative of the funtion g exists at the point x0 for some a > 0.Then, a further expansion of g(Xi) gives an approximation to the approximation error:r(Xi) � �0p+1(Xi � x0)p+1 + � � � + �0p+a(Xi � x0)p+a � ri; (3.1)where a denotes the order of the approximation. The hoie of a will have some e�et on theperformane of the estimated bias. A disussion on the hoie of a an be found in Fan and Gijbels(1995). Good pratial performane is obtained with a = 2.Suppose for a moment that the quantities ri are known. Then, a more preise loal log-likelihood5



is L�p(�;h; x0) = nXi=1 `(XTi � + ri; Yi)Kh(Xi � x0): (3.2)The maximizer of the loal log-likelihood L�p(�;h; x0) will be denoted by b�� = b��(x0). The bias ofb�(x0) an then be estimated by b�(x0)� b��(x0): However, the omputation of b�� = b��(x0) an beavoided as follows. LetL�p0(�;h; x0) = ���L�p(�;h; x0) and L�p00(�;h; x0) = �2��2L�p(�;h; x0)denote the gradient vetor and the Hessian matrix, respetively, of the loal log-likelihood L�p. Sineb��(x0) is the maximizer of L�p(�;h; x0), a Taylor expansion gives0 = L�p0(b��;h; x0) � L�p0(b�;h;x0) + L�p00(b�;h; x0)fb��(x0)� b�(x0)g;and this leads us to de�ne the estimated bias vetorbbp(x0) = nL�p00(b�;h; x0)o�1 L�p0(b�;h; x0): (3.3)To get better insight into the bias approximation (3.3), let us look at the normal likelihood(2.5). Denote by X, the design matrix of the regression problem, i.e. the n� (p+ 1) matrix whose(i; j)th-element is (Xi�x0)j�1, and letW = diag fKh(Xi � x0)g be the diagonal matrix ontainingthe weights. Then, exept for a onstant fator,L�p(�;h; x0) = (y �X� � r)TW(y �X� � r);where y = (Y1; � � � ; Yn)T and r = (r1; � � � ; rn)T . Further, b� = (XTWX)�1 XTWy, and heneL�p0(b�;h; x0) = 2XTWr and L�p00(b�;h; x0) = 2XTWX: (3.4)Therefore bbp(x0) = (XTWX)�1XTWr;whih is equal to the approximation of the bias, E(b�jXX)��0, obtained in Fan and Gijbels (1995),where XX denotes (X1; � � � ;Xn).Reall that the approximated bias (3.3) depends on the quantities r1; � � � ; rn, whih are unknown.These quantities will be estimated by �tting a polynomial of degree p+ a loally via (2.2), using a6



pilot bandwidth h�. This gives estimates b�(p+a) = (b�0; � � � ; b�p+a)T , whih are then substituted intoexpression (3.1), yielding estimates br1; � � � ; brn of r1; � � � ; rn. These estimates are then substitutedinto (3.2), leading to the estimated bias as in (3.3). Denote the estimated bias of b�� by bBp;�(x0;h),the (� + 1)th element of bbp(x0).The hoie of the pilot bandwidth h� will be disussed in Setion 5.4 Assessing the variane of the estimatorTo get a grip on the variane, �rst note that,0 = L0p(b�;h; x0) � L0p(�0;h; x0) + L00p(�0;h; x0)(b� � �0):This leads to b� � �0 � �nL00p(�0;h; x0)o�1 L0p(�0;h; x0);and an approximation for the onditional variane isVar(b�jXX) � nL00p(�0;h; x0)o�1VarnL0p(�0;h; x0)jXXonL00p(�0;h; x0)o�1 : (4.1)The Hessian matrix L00p(�0;h; x0) an be estimated by L00p(b�;h; x0), and the onditional variane onthe right-hand side of (4.1) an be approximated as follows. From (2.2) we obtainVarnL0p(�0;h; x0)jXXo = nXi=1Var� ��� `(XTi �; Yi)jXX��=�0 K2h(Xi � x0)= nXi=1Varn`0(XTi �0; Yi)jXioXiXTi K2h(Xi � x0):Sine Xi has signi�ant weight only in a neighborhood around x0,Varf`0(XTi �0; Yi)jXig � Var[`0fg(x0); Y gjX = x0℄:Thus, we have VarnL0p(�0;h; x0)jXXo � Var �`0(g(x0); Y )jX = x0	Sn; (4.2)where Sn = Pni=1XiXTi K2h(Xi � x0). Combining (4.1) and (4.2) we obtain the following approxi-mation of the onditional variane of b�:Var(b�jXX) � �(x0) = Var �`0(g(x0); Y )jX = x0	 nL00p(�0;h; x0)o�1 Sn nL00p(�0;h; x0)o�1 : (4.3)7



The unknown loal parameter �0 in (4.3) an be estimated by b�. The �rst fator in (4.3) isalso unknown and has to be estimated. We separate this into two ases. The �rst ase is thatVar f`0(g(x0); Y )jX = x0g = V fg(x0)g for some known funtion V (�) suh as for the Bernoulli,Poisson and Exponential distributions in the ontext of generalized linear models. In this ase, weestimate the onditional variane by V fbg0(x0)g. The seond ase is that in whih we do not havesuh a form. The normal likelihood model is an example. By (2.1), it follows thatVarf`0(g(x0); Y )jX = x0g = E[f`0(g(x0); Y )g2jX = x0℄:This quantity an be estimated byPni=1 n`0(X�Ti b�(p+a); Yi)o2Kh�(Xi � x0)Pni=1Kh�(Xi � x0) ; (4.4)where b�(p+a) = (b�0; � � � ; b�p+a)T is the result of a (p+ a)th-order loal polynomial �t (2.2) using thepilot bandwidth h� and X�i = (1;Xi � x0; � � � ; (Xi � x0)p+a)T .In many pratial situations, it is possible to enounter over-dispersion in the �rst ase above,i.e. Var �`0(g(x0); Y )jX = x0	 = �V fg(x0)g;where � is an unknown parameter. See MCullagh and Nelder (1989) for a more detailed desription.In this ase, we will use (4.4), instead of V fbg0(x0)g to estimate the onditional variane in (4.3).To illustrate the idea, let use onsider again the normal likelihood, in whih `(x; y) = �(y�x)2=2.This implies Var �`0(g(x0); Y )jX = x0	 = Var fY � g(x0)jX = x0g = �2(x0);and (4.3) an be expressed as �(x0) = �2(x0)S�1n SnS�1n ; (4.5)where Sn = XTWX.The right-hand side of (4.5) is exatly the approximation to the onditional variane derived byFan and Gijbels (1995) for the loally weighted least-squares regression problem.What does the estimator (4.4) redue to in this speial ase? Here `0(u; y) = y � u andX�Ti b�(p+a) = bYi, the �tted value from a loal (p+ a)th-order �t. Hene (4.4) redues tob�2(x0) = Pni=1(Yi � bYi)2Kh�(Xi � x0)Pni=1Kh�(Xi � x0) ; (4.6)8



whih is asymptotially the same as the estimator for �2(x0) provided in Fan and Gijbels (1995)(see expression (2.3) in that paper or (5.2) below for a similar expression). Ruppert, Wand, Holstand H�ossjer (1995) give a thorough study on the estimation of �2(x0), inluding the bandwidthseletion and eÆieny.5 Pilot bandwidth seletorThe estimated bias disussed in Setion 3 depends on the pilot estimation of the derivatives,g(p+1)(x0)=(p+ 1)!; � � � ; g(p+a)(x0)=(p+ a)!:This in turn requires a seletion of bandwidth. Also the estimation of the variane, desribed inthe previous setion, requires seletion of a pilot bandwidth.To motivate our seletion proedure, let us onsider the least-squares ase studied in Fan andGijbels (1995). Suppose the goal is to estimate g(�)(�) using a loal polynomial �t of order p.Let hopt(x0) be the asymptoti optimal bandwidth that minimizes the asymptoti optimal MSEof b��(x0). In the least-squares ase, Fan and Gijbels (1995) de�ne the following Residual SquaresCriterion (RSC): RSC(x0;h) = b�2(x0)f1 + (p+ 1)=Ng; (5.1)where b�2(�) is the normalized weighted residual sum of squares after �tting loally a pth-orderpolynomial given by b�2(x0) = Pni=1 �Yi � bYi�2Kh(Xi � x0)tr (W)� trn(XTWX)�1XTW2Xo ; (5.2)and N�1 is the �rst diagonal element of the matrix (XTWX)�1(XTW2X)(XTWX)�1. Note thatN in fat reets the e�etive number of loal data points, sine Varfb�0jXXg � �2(x0)=N by (4.5).The intuition behind (5.1) is as follows. When the bandwidth h is too large, the polynomial doesnot �t well. The bias is large and so is b�2(x0). When the bandwidth h is too small, the varianeof the �t will be large and hene N�1 will be large as well. Both fators, b�2(x0) and N , areinorporated into RSC in suh a way that the quantity beomes large at both extreme hoies ofbandwidth. It is shown in Fan and Gijbels (1995) that the minimizer of (5.1) is only a onstant9



fator away from the targeted optimal bandwidth:hopt(x0) = adjp;�(K)ho(x0); (5.3)where ho(x0) is the asymptoti optimal bandwidth that minimizes the main terms of the expetedvalue of (5.1), and adjp;�(K) is a known onstant that depends only on K, p and � (see de�nitionbelow), and is tabulated in Fan and Gijbels (1995). The exat expression of this onstant is asfollows. Let �j = R tjK(t)dt. De�ne the (p+ 1)� (p+ 1) matrix S with the (i + j � 2)th-moment�i+j�2 of K as its (i; j)th-element. Let K�� (t) = fPpj=0 s�+1;jtjgK(t) be the equivalent kernel,where s�+1;j is the (� + 1; j)th-element of S�1. The onstants adjp;�(K) are de�ned byadjp;�(K) = " (2� + 1)Cp R K�2� (t)dt(p+ 1� �)fR tp+1K�� (t)dtg2 R K�20 (t)dt#1=(2p+3) ; (5.4)where Cp = �2p+2 � (�p+1; � � � ; �2p+1)S�1(�p+1; � � � ; �2p+1)T .The above riterion an also be used when the funtion g(�) is a transform of the mean regressionfuntion: g(�) = Lf�(�)g where L is a link funtion and � is the mean regression funtion. In thisase, bYi = L�1(XTi b�) in equation (5.2). This RSC-riterion orresponds to the approximatelyweighted squared errors in the domain of g using weight [L0f�(x)g℄�2.An extension of the above idea is to regard the loal likelihood problem as iterative loal least-squares problems. Given the urrent value � of �, update � via the loal pth-order polynomialregression of the working variableZi = XTi � � `0(XTi �; Yi)Ef`00(g(x0); Y )jX = x0g (5.5)on Xi, where the onditional expetation is omputed using the parameter �. The justi�ationof this is given in the appendix. Thus, at the last step of the iteration, we an regard the loallikelihood problem as a loal polynomial regression problem, and use the residual squares riterionERSC(x0;h) = ��2(x0)f1 + (p+ 1)=Ng; (5.6)where ��2(x0) is the normalized residual sum of squares using the working variable Zi (ompare with(5.1)). We will refer to the riterion (5.6) as the Extended Residual Squares Criterion (ERSC). Theheuristi justi�ation of this is simple. First of all, the bias of b� omes from the loal polynomial10



approximation of g. Hene, it is the same for the loal likelihood method as for the loal least-squares problem. Using (4.3) together with approximation (A.2),Var(b�jXX) � �2�(x0)S�1n �SnS�1n ;where �2�(x0) = Varf`0(g(x0); Y )jX = x0g[Ef`00(g(x0); Y )jX = x0g℄�2:Comparing (4.3) with (4.5), the asymptoti variane of the loal likelihood problem orresponds tothat of the least-squares problem with � = ��. Treating � in (5.5) as �xed, the working variableZi has the same variane struture, namelyVar(ZijXi) � �2�(x0):We now an selet the pilot bandwidth as follows. Letbh�p;� = argminh Z ERSC(x;h)w(x)dx; (5.7)for some given weight funtion w. Then, de�ne the ERSC-seletor as followsbhERSCp;� = adjp;�(K)bh�p;� : (5.8)ERSC in (5.7) an be replaed by RSC, (5.1), to produe a RSC-seletor. As mentioned above,in the ase that g(�) = Lf�(�)g, the ERSC-seletor with uniform weighting will be approximatelythe same as the RSC-seletor with weight w(x) = [L0f�(x)g℄�2. In the least-squares problem, thisbandwidth seletor was investigated in Fan and Gijbels (1995). It performs reasonably well, butthe rate of onvergene an be improved. For this reason, we only use it in the pilot stage.6 Bandwidth seletionReall that the estimation proedure onsists of maximizing the loal log-likelihood (2.2), leading tothe estimated vetor b�. The omplexity of the model is determined by the bandwidth h. If h!1then (2.2) results in a global �t of a polynomial of degree p. If on the other hand h ! 0 thenwe end up with interpolation of the data. Many interesting models lie between these two extremehoies. In this setion we disuss data-driven hoies of a onstant and loal variable bandwidth.11



The basi idea for bandwidth seletion is very simple. First a pilot bandwidth bh�p+a;p+1 shouldbe seleted. This an be done by either the RSC-riterion (5.1) or the ERSC-riterion (5.6). Asnoted at the end of Setion 5, the di�erene is only a matter of weighting sheme. Given a pilotbandwidth bh�p+a;p+1, we then �rst �t a polynomial of degree p + a loally via maximizing (2.2),resulting in the estimator b�(p+a) = (b�0; � � � ; b�p+a)T . With these estimated parameters we obtainthe estimated bias bBp;�(x0;h) and variane bVp;�(x0;h) of b�� , whih are, respetively, the (� + 1)th-element of (3.3) and the (�+1)th-diagonal element of the estimated expression (4.3). An estimatorfor the Mean Squared Error (MSE) of b�� is then given bydMSEp;�(x0;h) = bB2p;�(x0;h) + bVp;�(x0;h): (6.1)This leads to the following bandwidth seletor:bhp;� = argminh Z dMSEp;�(x;h)w(x)dx; (6.2)where w(�) is a given weight funtion. A ommon hoie of w(�) is the indiator funtion of theinterval where the urve g(�)(�) is to be estimated.The onstant bandwidth bhp;� , whih is independent of the loation x0, suÆes in many applia-tions. However, when the urve g(�)(�) admits various degrees of smoothness at di�erent loations,a variable bandwidth seletor is needed in order to enhane the spatial adaptation. The basi ideasfor seleting suh a variable bandwidth are simple: selet a bandwidth bhp;�(x0) that minimizesthe loally weighted average of dMSEp;�(x;h) around the point x0. This average stabilizes the esti-mated MSE. The implementation is analogous to that disussed in Fan and Gijbels (1995) in theleast-squares regression ontext. We omit details here.7 Con�dene IntervalsA on�dene interval is a very important tool for understanding the sampling variability of anestimator. In the ontext of nonparametri funtion estimation, the task of onstruting suh aninterval is diÆult, due to non-negligible bias. However, with our estimated bias and variane, onean easily onstrut a on�dene interval. 12



De�ne bBAp;�(x0;h) = Z bBp;�(x;h)Kh(x� x0)dx (7.1)bV Ap;�(x0;h) = Z bVp;�(x;h)Kh(x� x0)dx: (7.2)These two quantities are just loal weighted averages of the estimated bias and variane, respe-tively. Note that the estimated bias involves the estimation of higher order derivative urves,whose estimation an be unstable. The purpose of the average is to stabilize the estimated biasand variane funtion, and to prevent them from abrupt hange. The same bandwidth as usedfor (2.2) is used here, but a di�erent bandwidth ould also be employed. This was done primarilyfor simpliity of implementation, but Brokmann, Gasser, and Herrmann (1993) have used thisamount of smoothing for a loal bias estimate, whih produed a loation dependent bandwidth intraditional kernel based regression. This adaptive method has both good asymptoti and pratialperformane.The loal maximum likelihood estimator is usually asymptotially normal. In the ontextof generalized linear models, this has been shown by Fan, Hekman and Wand (1995) and inthe ontext of hazards regression by Fan, Gijbels and King (1997). By invoking the asymptotinormality, we onstrut the pointwise on�dene interval as follows. With approximately 1 � �overage probability, the unknown funtion g(�)(x0) falls in the random intervalbg�(x0)� bBAp;�(x0;h)� ��1(1� �=2) f bV Ap;�(x0;h)g1=2: (7.3)The overage probability of the on�dene interval (7.3) an onverge slowly to the nominallevel 1��. There are two reasons for that. One is that the number of data points used to estimateg(�)(x0) an be muh smaller than n and the other is that the bias an possibly be non-negligible.Nevertheless, Figures 8.1(d), 8.2(d) and 8.3(d) report reasonably satisfatory overage probabilityin our simulation studies.In our implemention, the on�dene interval (7.3) is onstruted based on the estimated optimalbandwidth. Tehnially, the asymptoti normality still holds with suh a data-driven bandwidthowing to the tightness of the stohasti proess indexed by bandwidth h (See M�uller and Stadtm�uller(1987) for tehnial arguments in a simpler setup). With the optimal bandwidth, the estimator13



bg(�)(x0) has smaller asymptoti MISE than any other hoie of bandwidth and hene the on�deneinterval is expeted to be tighter.An alternative approah for onstruting on�dene intervals is to undersmooth the estimatedurve in suh a way that the bias of the estimator is negligible. While this idea is simple and useful,it has a few potential shortomings: It is hard to know how small the bandwidth will need to be tomake the bias negligible; with an undersmoothed estimator, the variane will be larger and henethe on�dene intervals will tend to be wider; the asymptoti normality for the undersmoothedestimator tends to atualize itself more slowly beause there are fewer loal data points.For onstruting simultaneous on�dene bands, one an use the raw materials given in (7.1)and (7.2) and the ideas given in Eubank and Spekman (1993).8 Appliations to logisti regressionWe have illustrated the key idea of this paper in the ontext of the least-squares regression problem.Extensive simulations in Fan and Gijbels (1995) indiate good performane of the resulting proe-dure. We now onsider nonparametri logisti regression to further larify the idea. The methodan readily be applied to other likelihood models suh as those based on the Poisson and Gammadistributions.8.1 IllustrationWe assume that the data, (Xi; Yi), are i.i.d. and that the onditional distribution of Yi given Xi isa Bernoulli distribution:P (Yi = 1jXi = x) = p(x); P (Yi = 0jXi = x) = 1� p(x) � q(x):In this ase, the mean regression funtion is p(x) = E(Y jX = x). The parameter of interest isg(x) = logit(p(x)) = log p(x)1� p(x) :In this nonparametri regression ontext, estimating p(�) is equivalent to estimating g(�). However,we prefer working on the logit domain, sine the log-likelihood is onave, and the logisti linear14



regression model orresponds to our ase with h = 1. See Fan, Hekman and Wand (1995) formore detailed arguments.The log-likelihood is determined via`(g(X); Y ) = logfp(X)Y q(X)1�Y g = Y g(X) � log[1 + expfg(X)g℄:Thus, `0(u; y) = y � eu=(1 + eu) andEf`0(g(X); Y )jXg = 0; Varf`0(g(X); Y )jXg = p(X)q(X): (8.1)For this ase, we haveL�p(�;h; x0) = nXi=1hYi(XTi � + ri)� logf1 + exp(XTi � + ri)giKh(Xi � x0):The loal likelihood Lp orresponds to L�p with ri � 0. De�nep�i = exp(XTi � + ri)1 + exp(XTi � + ri) ; and pi = exp(XTi �)1 + exp(XTi �) : (8.2)Then, simple algebra shows thatL�p0(�;h; x0) = nXi=1(Yi � p�i )XiKh(Xi � x0);L�p00(�;h; x0) = � nXi=1 p�i (1� p�i )XiXTi Kh(Xi � x0):The approximated bias vetor and variane matrix are now easily obtained, and are given bybbp(x0) = nL�p00(b�;h; x0)o�1 L�p0(b�;h; x0)�(x0) = p(x0)q(x0)f nXi=1 piqiXiXTi Kh(Xi � x0)g�1(XTW2X)f nXi=1 piqiXiXTi Kh(Xi � x0)g�1;where qi = 1� pi.It an also be shown thatERSC(x0;h0) = 2f1 + (p+ 1)=Ng nXi=1[Yi log(Yi=bpi) + (1� Yi) logf(1� Yi)=(1 � bpi)g℄Kh(Xi � x0);where bpi is given by (8.2) with � being estimated. Minimizing the average of ERSC gives a pilotbandwidth seletor as disussed in Setion 5. 15



8.2 ImplementationIn the ontext of logisti regression, the two stage bandwidth seletor was tested on simulated datafrom a variety of target urves. The Epanehnikov kernelK(u) = 34 �1� u2� I[�1;1℄(u)and order p = 1 were used for estimating g at a set of equally spaed grid points x1; :::; xnbin. TheRSC-riterion was used to hoose the pilot bandwidth with a p = 3 order �t for estimating theurvature g00. The sum ARSC(hj) = nbin��Xi=� RSC(xi;hj);where � is the largest integer less than (0:05 nbin), was omputed on a multipliative grid ofbandwidths hj = Cjhmin. Restriting the sum helps to redue boundary e�ets. At the boundaries,RSC and estimated derivatives an be too large due to numerial instabilities and sarity of data.The implementation of our idea is somewhat triky sine it involves iterative solution. For smallvalues of h, the solution may not even exist sine loally one may get a set of all zeros or ones. Toavoid suh a diÆulty, we only onsider the bandwidths that are large enough so that the b�0s arede�ned. To this goal, let lruns be the maximum span among lengths of runs of ones or zeros. Forinstane, if X(1); :::;X(n) are the order statistis of the X sample and the bivariate data are sortedaording to the X sample, then X(k) �X(j) is the length of a run of ones providedYj�1 = 0; Yj = 1; Yj+1 = 1; :::; Yk = 1; Yk+1 = 0:The hoie of the minimum value of h was given byhmin = (1:25lruns + 6�g)=2where �g is the grid spaing. The maximum value of the bandwidth was set athmax = maxj nCjhmin : Cjhmin < (xnbin � x1)=2owith C = 1:1.
16
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Y = 1 is given byExample 1. g(x) = 3 sin(2x)Example 2. g(x) = 7[expf�(x+ 1)2g+ expf�(x� 1)2)g℄� 5:5Example 3. g(x) = 2� x2:These urves appear as the thik line in part () of the following �gures. Only 100 simulationswere performed for a given target urve at a given sample size. This was a pratial onstraint dueto the fat that it takes approximately 20 minutes to ompute the two stage bandwidth using aprototype implementation in Matlab on a Spar 10 station. This an be improved upon by at leasta fator of 10, if a lower level language suh as C is used. The asymptotially optimal bandwidthfrom Fan, Hekman and Wand (1995)hopt = (R K(u)2du R Var(Y jX = x)L0(�(x))2w(x)=fX (x)dxn (R u2K(u)du)2 R g00(x)2w(x)dx )1=5 (8.3)with w taken to be the indiator funtion on [�2; 2℄ was used to judge performane.Example 1 Example 2 Example 3n hopt hMedISE hopt hMedISE hopt hMedISE250 0:53 0:64 0:48 0:53 0:83 1:04500 0:46 0:59 0:42 0:47 0:72 0:861000 0:40 0:44 0:36 0:40 0:63 0:78Table 1: Comparison of asymptoti and small sample optimal bandwidths, where the asymptotioptimal bandwidth is denoted by hopt and the median integrated squared error optimal bandwidthis denoted by hMedISE. The MedISE optimal bandwidth is based on the unonditional expetationomputed by simulation.Both the onditional and unonditional Mean Integrated Squared Error (MISE) of the loalmaximum likelihood estimator are not mathematially de�ned. For any �xed bandwidth, thereis positive probability that all the data in the \window" is either one or zero. In this ase, themaximizer of (2.2) is in�nite. Thus, the MISE-based optimal bandwidths are not properly de�ned.In ontrast, the optimal bandwidths based on the Median Integrated Squared Error (MedISE) areproperly de�ned and this avoids the tehnial diÆulty of the MISE. In order to assess the appro-priateness of hopt for judging �nite sample performane, the MedISE was omputed by simulation18
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Observe that the relative errors beome more and more onentrated near zero as n inreases.There are a few bandwidths that appear to have quite large relative errors but the number of largeerrors dereases with n. From part (b), the MISE beomes loser to the asymptotially optimalMISE as n inreases. Part () indiates the diÆulty in estimating these urves by the spread ofthe sample logits based on �ve observations. The values of these logits were trunated at �5 andsome were atually in�nite. These large sample logits are indiated by the plus marks along theaxes. Details of omputing sample logits are as follows: Group the data points aording to theirovariate values so that eah group onsists of 5 data points. For eah group, ompute the sampleproportion of ones and do a logit transform of it. This sample logit is then plotted against meanovariate values of its orresponding group. The sample urve estimates indiate that the estimatorperforms quite well. The pointwise on�dene intervals also have good performane. Figures 8.1and 8.2 indiate some diÆulty near the peaks but this diÆulty is expeted beause the bias anbe quite large near sharp peaks. The urve estimate in the on�dene interval is the bias orretedurve estimate bg0(x)� bBA1;0(x;h) (see (7.3)).9 Conluding RemarksWe have laid out a versatile approah for nonparametri smoothing, bandwidth seletion and on-�dene interval onstrution. The purpose of this artile is to indiate that there is a uni�edapproah to nonparametri smoothing. We have only extensively tested the idea in the ontext ofleast-squares and in a few other ases. Further studies are needed to test the approah in otherontexts. We hope this artile will stimulate future researh on this topi.Aknowledgement. Jianqing Fan was supported by NSF Grant DMS9504414 and NSA grant 96-1-0015. Ir�ene Gijbels was supported by `Projet d'Ations de Reherhe Conert�ees' (No. 93/98 -164), an FNRS-grant (No. 1.5.001.95F) and the European Human Capital and Mobility Programme(CHRX-CT94-0693). The authors thank an assoiate editor and a referee for their insightful om-ments that led to improving the presentation.
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