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Local-measurement-based quantum state tomography
via neural networks
Tao Xin1,2,8, Sirui Lu 2,8, Ningping Cao3,4,8, Galit Anikeeva4, Dawei Lu1, Jun Li 1*, Guilu Long2,5,6 and Bei Zeng3,4,7*

Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way
to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the
full state thereafter is hard. Here, we present a machine-learning method to recover the ground states of k-local Hamiltonians from
just the local information, where a fully connected neural network is built to fulfill the task with up to seven qubits. In particular, we
test the neural network model with a practical dataset, that in a 4-qubit nuclear magnetic resonance system our method yields
global states via the 2-local information with high accuracy. Our work paves the way towards scalable state tomography in large
quantum systems.

npj Quantum Information           (2019) 5:109 ; https://doi.org/10.1038/s41534-019-0222-3

INTRODUCTION
Quantum state tomography (QST) plays a vital role in validating
and benchmarking quantum devices,1–5 because it can completely
capture properties of an arbitrary quantum state. However, QST is
not feasible for large systems because of its need for exponential
resources. In recent years, there has been extensive research on
methods for boosting the efficiency of QST.6–12 One of the
promising candidates among these methods is QST via reduced
density matrices (RDMs);13–19 because local measurements are
convenient and accurate on many experimental platforms.
QST via RDMs is also a useful tool for characterizing ground

states of local Hamiltonians. A many-body Hamiltonian H is k-local
if H ¼ P

iH
ðkÞ
i , where each term HðkÞ

i acts non-trivially on at most k
particles. For k-local Hamiltonians, only polynomial number of
parameters are needed to characterize the whole system. More-
over, generally, a single eigenstate of such k-local Hamiltonian can
encode the information of the system.18,20,21 Therefore, for these
ground states, one only needs k-local measurements for state
tomography. Although local measurements are efficient and even
if ψj i is uniquely determined by its k-local measurements,
reconstructing ψj i from its k-local measurements is computation-
ally hard.22 We remark that this is not due to the problem that ψj i
needs to be described by exponentially many parameters. In fact,
in many cases, ground states of k-local Hamiltonians can be
effectively represented by tensor product states.18,23

The state reconstruction problem naturally connects to the
regression problem in supervised learning. Regression analysis, in
general, seeks to discover the relation between inputs and
outputs, i.e., to recover the underlying mathematical model.
Unsupervised learning techniques have been applied to QST in
various cases, such as in refs. 24,25 In our case, as shown in Fig. 1,
by knowing the Hamiltonian H, it is relatively easy to get the
ground state ψHj i since the ground state is nothing but the
eigenvector corresponding to the smallest eigenvalue. And then
we could naturally achieve the k-local measurements M of ψHj i.

Therefore, the data for tuning our reverse engineering model is
accessible, which allows us to realize QST through supervised
learning practically. Additionally, artificial neural networks are
often noise tolerable,26–28 so they are favorable for working with
experimental data.
In this work, we propose a local-measurement-based QST by

fully connected feedforward neural network, in which every
neuron connects to every neuron in the next layer and
information only passes forward (i.e., there is no loop in the
network). We first build a fully connected feedforward neural
network for 4-qubit ground states of fully connected 2-local
Hamiltonians. Our trained 4-qubit network not only analyzes the
test dataset with high fidelity but also reconstruct 4-qubit nuclear
magnetic resonance (NMR) experimental states accurately. We use
the 4-qubit case to demonstrate the potential of using neural
networks to realize QST via k-local measurements. The versatile
framework of neural networks for recovering ground states of
k-local Hamiltonians could be extended to more qubits and
various interaction structures; we then apply our methods to the
ground states of seven-qubit 2-local Hamiltonians with nearest-
neighbor couplings. In both cases, neural networks give accurate
estimates with high fidelities. We observe our framework yields
higher efficiency and better noise tolerance compared with the
least-squares tomography (the approximated maximum likelihood
estimation (MLE)) when the added noise is >5%.

RESULTS
Theory
The universal approximation theorem29 states that every contin-
uous function on the compact subsets ofRn can be approximated
by a multi-layer feedforward neural network with a finite number
of neurons, i.e., computational units. And by observing the relation
between k-local Hamiltonian and local measurements of its
ground state, as shown in Fig. 1, we are empowered to turn the
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tomography problem to a regression problem which fits perfectly
into the neural network framework.
In particular, we first construct a deep neural network for

4-qubit ground states of full 2-local Hamiltonians as follows:

H ¼
X4
i¼1

X
1�k�3

ω
ðiÞ
k σ

ðiÞ
k þ

X
1�i<j�4

X
1�n;m�3

JðijÞnmσ
ðiÞ
n � σðjÞm ; (1)

where σk ; σn; σm 2 Δ, and Δ ¼ fσ1 ¼ σx ; σ2 ¼ σy; σ3 ¼ σz; σ4 ¼ Ig.
We denote the set of Hamiltonian coefficients as

h
!¼ fωðiÞ

k ; JðijÞnmg. The coefficient vector h
!

is the vector representa-
tion of H according to the basis set
B ¼ fσm � σn : nþm≠ 8; σm; σn 2 Δg. The configuration of the
ground states is illustrated in Fig. 2a.
The number of parameters of the local observables of ground

states determines the amount of input units of the neural network.
Concretely, M ¼ fsði;jÞm;n : s

ði;jÞ
m;n ¼ TrðTrði;jÞρ � Bðm;nÞÞ; Bðm;nÞ 2 B; 1 �

i < j � 4; 1 � n;m � 4g, where σn; σm 2 Δ and ρ is the density
matrix of the ground state. M is a set of true expectation values
sði;jÞm;n of the local observables Bðm;nÞ in the ground states ρ. Notice
that we are using the true values of expectation values instead of
their estimations (which contain statistical fluctuations), since we
are theoretically generating all the training and testing data. The
input layer has 66 neurons since the cardinality of the set of
measurement results is 66. Our network then contains two fully
connected hidden layers, in which every neuron in the previous
layer is connected to every neuron in the next layer. The number
of output units equals to the number of parameters of our 2-local
Hamiltonian, which is 66 in our 4-qubit case. More details of our
neural network can be found in “Methods” section.
Our training data consist of the 120,000 randomly generated

2-local Hamiltonians as output and the local measurements of
their corresponding ground states. The test data include 5000
pairs of Hamiltonians and local measurement results ðHi;MiÞ.
We train the network by a popular optimizer in the machine-

learning community called Adam (adaptive moment estima-
tion).30,31 For loss function, we choose cosine proximity

cosðθÞ ¼ ð h!pred � h!Þ=ðk h
!

pred k � k h
! kÞ, where h

!
pred is the

estimate of the neural network and h
!

is the desired output.
Generally speaking, the role of loss functions in supervised
learning is to efficiently measure the distance between the true
value and the estimated outcome. (In our case, it is the distance
between h

!
and h

!
pred). And the training procedure seeks to

minimize this distance. We find the cosine proximity function fits
our scenario better than the more commonly chosen loss
functions, such as mean square error or mean absolute error.32

The reason can be understood as follows. Because the parameter
vector h

!
is a representation of the corresponding Hamiltonian in

the Hilbert space expanded by the local operators B, the angle θ
between the two vectors h

!
and h

!
pred is a “directional distance

measure” between two corresponding Hamiltonians.20 Notice that
the Hamiltonian corresponding to the parameter h

!
has the same

eigenvectors as those of the Hamiltonian of c � h!, where c 2 R is
a constant. In other words, we only care about the “directional
distance”. Instead of forcing every single element close to its true
value (as mean squared error or mean absolute error does), the
cosine loss function tends to train the angle θ towards zero, which
is more adapted to our situation.
As illustrated in Fig. 1, after getting estimated Hamiltonian from

the neural network, we calculate the ground state ρnn of the
estimated Hamiltonian and take the result as the estimate of the
ground state that we attempt to recover. We remark that our
estimated Hamiltonian is not necessarily exactly the same as the
original Hamiltonian; Even if that happens, our numeric results
suggest their ground states are still close.
There are two different fidelity functions that we can use to

measure the distance between the randomly generated states ρrd
and our neural network estimated states ρnn, namley:

f ðρ1; ρ2Þ � Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq
; (2)

Cðρ1; ρ2Þ �
Trðρ1ρ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

Trðρ21Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ22Þ

p : (3)

The fidelity measure f defined in Eq. (2) is standard,33 which
requires the matrix ρ1 and ρ2 to be positive semi-definite.
Considering that the density matrix obtained directly from the raw
data of a state tomography experiment may possibly not be
positive definite, we usually adopt the definition of C for
processing the raw data in NMR.34 In this work, there are not
negative matrices after constraining the raw density matrices to
be positive semi-definite. The values of the fidelities are calculated
by f if there is no additional explanation in the following.
After supervised learning on the training data, our neural

network is capable of estimating the 4-qubit output of the test set
with high performance. The fidelity averaged over the whole test
set is 98.7%. The maximum, minimum, standard deviations of
fidelities for the test set are shown in Table 1. Figure 2c illustrates
the fidelities between 100 random states ρrd and our neural
network estimates ρnn.
Our framework generalizes directly to more qubits and different

interaction patterns. We apply our framework to recover 7-qubit
ground states of 2-local Hamiltonians with nearest-neighbor
interaction. The configuration of our 7-qubit states is shown in
Fig. 2b. The Hamiltonian of this 7-qubit case is

H ¼
X7
i¼1

X
1�k�3

ω
ðiÞ
k σ

ðiÞ
k þ

X6
i¼1

X
1�n;m�3

JðiÞnmσ
ðiÞ
n � σðiþ1Þ

m ; (4)

where σk ; σn; σm 2 Δ, ωðiÞ
k and JðiÞnm are coefficients. We trained a

similar neural network with 250,000 pairs of randomly generated
Hamiltonians and 2-local measurements of the corresponding
ground states. For the 5000 randomly generated test sets, the
network estimates have an average fidelity of 97.9%. More
statistical performance are shown in Table 1 and fidelity results
of 100 random generated states are shown in Fig. 2d.
Due to the variance inherent to this method, it is natural to ask

how to determine whether a neural network estimate ρnn is
acceptable without knowing the true state ρrd. This problem can
be easily solved by calculating the measurement estimate Mpred,
i.e., using the estimate ρnn to measure the set of local operators B.

Fig. 1 Procedure of our neural network based local quantum state
tomography method. As shown by the dashed arrows, we first
construct training and test dataset by generating random k-local
Hamiltonians H, calculate their ground states ψHj i, and obtain local
measurement results M. We then train the neural network with the
generated training dataset. After training, as represented by the
black arrows, we first obtain the Hamiltonian H through local
measurement results M from the neural network, then recover the
ground states from the obtained Hamiltonian. In contrast, the red
arrow represents the direction of the normal QST process, which is
computationally hard.

T. Xin et al.

2

npj Quantum Information (2019)   109 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



By setting an acceptable error bound and comparing Mpred with
the true measurements M, one can decide whether to accept ρnn
or not. Please see the “Methods” section for details.
Our neural-network-based framework is also significantly faster

than the approximated MLE method. Once the network is trained
sufficiently well, it can be used to deal with thousands of datasets
without much effort on a regular computer. Calculating ρnn from
h
!

pred, which is essentially the computation of the eigenvector
corresponding to the smallest eigenvalue, is the only part that
may take some time. Detailed discussions could be found in the
“Methods” section.

Experiment
So far, our theoretical model is noise-free. To demonstrate that our
trained machine-learning model is resilient to experimental noises,
we experimentally prepare the ground states of the random
Hamiltonians and then try to reconstruct the final quantum states
from 2-local measurements using a four-qubit NMR platform.35–38

The four-qubit sample is 13C-labeled trans-crotonic acid dissolved
in d6-acetone, where C1–C4 are encoded as the four work qubits,
and the rest spin-half-nuclei are decoupled throughout all
experiments. Figure 3 describes the parameters and structure of
this molecule. Under the weak-coupling approximation, the

Hamiltonian of the system writes

Hint ¼
X4
j¼1

πðνj � ν0Þσj
z þ

X4

j<k¼1

π

2
Jjkσ

j
zσ

k
z ; (5)

where νj are the chemical shifts, Jjk are the J-coupling strengths,
and ν0 is the reference frequency of 13C channel in the NMR
platform. All experiments were carried out on a Bruker AVANCE
400MHz spectrometer at room temperature. We briefly describe
our three experimental steps here and leave the details in the
“Methods” section: (i) Initialization: The pseudo-pure state39–41 for
being the input of quantum computation 0000j i is prepared.
(More details are provided in the “Methods” section). (ii) Evolution:
Starting from the state 0000j i, we create the ground state of the
random two-body Hamiltonian by applying the optimized shaped
pulses. (iii) Measurement: In NMR experiments, the expectation
values of all 2-qubit Pauli products can be measured by the
ensemble measurement. From them, we can directly obtain all 2-
local measurements, and perform four-qubit QST to estimate the

(a) (b)

(c) (d)
Fig. 2 Theoretical results for 4 qubits and 7 qubits. a The configuration of our 4-qubit states. Each dot presents a qubit, and every qubit
interacts with each other. b The configuration of our 7-qubit states: only nearest qubits have interactions. c The fidelities of 100 random 4-
qubit states ρrd and our neural network estimates ρnn . Notice that the x-coordinate does not have physical meaning, we randomly pick
100 states and label them from 0 to 99. It is the same for the 7-qubit case. The average fidelity (Eq. (2)) is 98:7%. d The fidelities of 100 random
7-qubit states ρrd and our neural network estimates ρnn. The average fidelity (Eq. (2)) of the whole test data set is 97:9%.

Table 1. The statistical performance of our neural networks for 4-
qubit and 7-qubit cases.

Max (%) Min (%) Standard deviation Average fidelity (%)

4-qubit 99.8 91.4 5.93e−3 98.7

7-qubit 99.6 85.2 10.4e−3 97.9

C1 C2 C3 C4

C1 -1705.5

C2 41.64 -14558.1

C3 1.48 69.78 -12330.5

C4 7.06 1.18 72.36 -16764.1

T2 1.02 0.92 0.87 0.94

Fig. 3 The molecular structure and Hamiltonian parameters of the
13C-labeled trans-crotonic acid. The atoms C1–C4 are used as the four
qubits in the experiment, and the atoms M, H1 and H2 are
decoupled throughout the experiment. In the table, the chemical
shifts with respect to the Larmor frequency and J-coupling
constants (in Hz) are listed by the diagonal and off-diagonal
numbers, respectively. The relaxation timescales T2 (in seconds) are
shown at the bottom.
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quality of our implementations, which is accomplished by the
least-squares tomography from the experimental data. More
details about the least-squares tomography can be found in
“Methods” section.
In experiments, we created the ground states of 20 random

Hamiltonians of the form in Eq. (1) and performed 4-qubit QST for
them after the state preparations. It is worth emphasizing that the
experimental raw density matrices obtained from ensemble
measurements on NMR are usually negative. First, we further
performed the least-squares QST from the raw density matrices in
experiments as ρexp, and estimated that the fidelities between the
experimental states ρexp and the target ground state ρth are over
99:2%. It is noted that the purpose of reconstructing the states
ρexp is to use them to compare with the results estimated by our
neural network. We collected the expectation values of all 2-qubit
Pauli product operators, such as σx � I � I � Ih i and
σx � σy � I � I
� �

, which were directly obtained by measuring
the expectation values of these Pauli strings in NMR. Then we fed
them into our neural-network-based framework to reconstruct the
4-qubit states, obtaining an average fidelity of 98.8% between ρexp
and ρnn, where ρnn is the neural network estimated state. Figure 4
shows the fidelity details of these density matrices. The results
indicate that the original 4-qubit state can be efficiently
reconstructed by our trained neural network using only 2-local
measurements, instead of the traditional full QST.

DISCUSSION
As a famous double-edged sword in experimental quantum
computing, QST captures full information of quantum states on
the one hand, while on the other hand, its implementation
consumes a tremendous amount of resources. Unlike traditional
QST that requires exponentially many experiments with the
growth of system size, the recent approach by measuring RDMs
and reconstructing the full state thereafter opens up a new
avenue to efficiently realize experimental QST. However, there is
still an obstacle in this approach, that it is in general
computationally hard to construct the full quantum state from
its local information.
This is a typical problem empowered by machine learning. In

this work, we apply the neural network model to solve this
problem and demonstrate the feasibility of our method with up to
seven qubits in the simulation. It should be noticed that 7-qubit
QST in experiments is already a significant challenge in many
platforms—the largest QST to date is of 10 qubits in super-
conducting circuits, where the theoretical state is a GHZ state with
rather simple mathematical form.61 We further demonstrate that

our method works well in a 4-qubit NMR experiment, thus
validating its usefulness in practice. We anticipate this method to
be a powerful tool in future QST tasks of many qubits due to its
accuracy and convenience. Comparing with the MLE, our method
has acceptable fidelities, better noise tolerance and also has a
significant advantage in terms of speed.
Our framework can be extended in several ways. First, we can

consider excited states. As stated in the “Results” section, the
Hamiltonian recovered by our neural network is not necessarily
the original Hamiltonian, but their ground states are fairly close.
We preliminarily examined the eigenstates of estimated Hamilto-
nians. Although the ground states have considerable overlap, the
excited states are not close to each other. It means, in this reverse
engineering problem, ground states are numerically more stable
than excited states. To recover excited states using our method,
one may need to use more sophisticated neural networks, such as
convolutional neural network62 (CNN) or residual neural network63

(ResNet). Second, although we have not included noise in the
training and test data, our network estimates the experimental 4-
qubit fully connected 2-local states with high fidelities. This
indicates our method has certain error tolerant ability. For future
study, one can add different noise to the training and test data.
Third, one can also study how to incorporate the current method
into the existing quantum tomography methods, such as
compressive sensing techniques.9,64,65

METHODS
Machine learning
In this subsection, we discuss our training/test dataset generation
procedure, the structure, and hyperparameters of our neural network,
and the required number of training data during training. And we also
provide a criterion for determining whether the neural network estimate is
acceptable without knowing the true states.
The training and test data sets are formed by random k-local

Hamiltonians and k-local measurements of corresponding ground states.
For our 4-qubit case, the 2-local Hamiltonians are defined in Eq. (1). The
parameter vector h

!
of random Hamiltonians are uniformly drawn from

random normal distributions without uniform mean values and standard
deviations. It is realized by applying function np.random.normal in
Python. Similarly, for the 7-qubit case, Hamiltonian is defined in Eq. (4), and
the corresponding parameter vector h

!
is generated by the same method.

As the dashed lines in Fig. 1 shows, after getting random Hamiltonians H,
we calculate the ground states ψHj i (the eigenvector corresponds to the
smallest eigenvalue of H) and then get the 2-local measurements M.
In this work, we use a fully connected feedforward neural network,

which is famous as the first and most simple type of neural network.42 By
fully connected, it means every neuron is connected to every other neuron

Fig. 4 The predication results with experimental data. Here we list three different fidelities for 20 experimental instances. The horizontal axis is
the dummy label of the 20 experimental states. The cyan bars, f exp�th, are the fidelities between the theoretical states ρth and the experimental
states ρexp. The blue triangles, f exp�nn, are fidelities between our neural network estimates ρnn and the experimental states ρexp with the
average fidelity over 98.8%. And the green dots, f nn�th, are the fidelities between our neural network estimates and the theoretical states.
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in the next layer. Feedforward or acyclic, as the word indicated, means
information only passes forward; the network has no cycle. Our machine-
learning process is implemented using Keras,43 which is a high-level deep
learning library running on top of the popular machine-learning frame-
work: Tensorflow.44

As mentioned in the “Results” section, the true value of local measure-
ments have been used as input to our neural network. The input is
M ¼ fsði;jÞm;n : s

ði;jÞ
m;n ¼ TrðTrði;jÞρ � Bðm;nÞÞ; Bðm;nÞ 2 B; 1 � i<j � 4; 1 � n;m � 4g.

For the 4-qubit case, it is easy to see that M has 3 ´ 4 ¼ 12 single body
terms and C2

4 ´ 9 ¼ 54 2-body terms. By arranging these 66 elements in M
into a row, we set it as the input of our neural network.
The output set to be the vector representation of the Hamiltonian h

!
,

which also has 66 entries. For the 7-qubit 2-local case, where 2-body terms
only appear on nearest qubits, the network takes 2-local measurements as
input, and the number of neurons in the input layer is
7 ´ 3þ 6 ´ 3 ´ 3 ¼ 75. The number of neurons in the output layer is
also 75.
The physical aspect of our problem fixes the input and output layers.

The principle for choosing the number of hidden layers is efficiency. While
training networks, inspired by Occam’s Razor principle, we choose fewer
layers and neurons when increasing them do not significantly increase the
performance but increases the required training epochs. In our 4-qubit
case, two hidden layers of 300 neurons have been inserted between the
input layer and the output layer. In the 7-qubit case, we use four fully
connected hidden layers with the following number of hidden neurons:
150-300-300-150. The activate function for each layer is rectified linear unit
(ReLU),45 which is a widely used non-linear activation function. We also
choose the optimizer having the best performance in our problem over
almost all the built-in optimizers in Tensorflow: AdamOptimizer (adaptive
moment estimation).30 The learning rate is set to be 0.001.
The whole training dataset has been split into two parts, 80% used for

training, and 20% used for validation after each epoch. A new data set of

5000 data was used as the test set after training. The initial batch size was
chosen as 512. As the amount of training data increases, the average
fidelity of estimated states and the true test states goes up. The neural
network reaches a certain performance after we fed sufficient training
data. More training data requires more training epochs; however, replete
epochs ebb the neural network performance due to over-fitting. Table 2
shows the average fidelities of using different training data and epochs.
The first round of training locks down the optimal amount of training data,
then we change the batch size and find the optimal epoch. We report the
results for the second round training in Table 3. For the 4-qubit case,
appropriate increase in the batch size can benefit the stability of training
process, thus improves the performance of the neural network. Though, by
choosing the batch size as 512 and 2048, the network can also reach the
same performance with larger epochs, we chose the batch size as 1028,
since more epochs require more training time. After the same attempting
for the 7-qubit case, we find 512 a promising batch size.
The time cost for preparing the network involves two parts—generating

training and testing data, and training the networks. Most of the time
spending on data generating is to solve the ground states (eigenvector
corresponding to the smallest eigenvalue) of randomly generated
Hamiltonians. It takes roughly 5 min (2.2 h) to generate the whole data
set for 4-qubit (7-qubit) by implementing eigs in MATLAB. With sufficient
data in hand, the network-training procedure takes about 12min (49 min)
for 4-qubit (7-qubit).
As reported in the “Results” section, the fidelities of neural network

estimates have a slight variation, for example, the fidelity of the 4-qubit
case is range from 91.4% to 99.8%. One who uses this framework might
wonder how precise the neural network outcome is compared to the true
state. In contrast of the scenario when we are testing our framework
theoretically, we do not have the true state in hand. Now it is natural to ask
that how to determine whether the estimate is precise enough.
Providentially, we could solve this question in a straightforward way.
Based on ρnn, we compute Mpred ¼ fsði;jÞm;n : s

ði;jÞ
m;n ¼ TrðTrði;jÞρnn �

Bðm;nÞÞ; Bðm;nÞ 2 B; 1 � i<j � 4; 1 � n;m � 4g and compare with the origi-
nal M. Root-mean-square-error (RMSE) between two variables x! and y!,

defined as rmseð x!; y!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1ðxi � yiÞ2

q
, is a frequently used quantity

to measure the closeness of x! and y!. In reality, how bad an error is also
depends on the magnitude of the true value. That means, with the same
RMSE, the larger the magnitude of the true value is the better the accuracy. A
measure referring to the real value reveals more about how precise between
an estimation and a expected outcome. We, therefore, define a quantity

called relative RMSE, namely rrmseð x!; y!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1ðxi � yiÞ2

q
=jj y!jj ¼

rmseð x!; y!Þ=jj y!jj, where y is the true value and jj y!jj is its l2-norm. The
relative RMSE between Mpred and M is rmseðMpred;MÞ=jjMjj. By bounding
the relative RMSE <0.2%, 4692 out of 5000 (93.8%) estimations of our 4-qubit
network are acceptable, and the probability of these estimations having
fidelities higher than 97% is 99.8%.

Comparison with the approximated MLE
The standard MLE46–49 is usually adopted to reconstruct a legal and full
quantum state whose local information is closest to the measured results.
It technically maximizes the likelihood of the estimate by the given data.
When we make the Gaussian distribution and assume that all

Table 2. Average fidelities on the test set by using different numbers of training data and epochs.

4-qubit (66-300-300-66) 7-qubit (75-150-300-300-150-75)

Training data Epoch: 100 (%) Epoch: 300 (%) Epoch: 600 (%) Training data Epoch: 100 (%) Epoch: 300 (%) Epoch: 600 (%)

500 69.1 56.2 56.9 1000 22.2 31.2 31.3

1000 78.1 66.8 58.7 10,000 93.8 91.5 88.7

5000 94.7 94.1 93.6 50,000 96.5 96.6 96.9

10,000 96.6 96.5 96.5 100,000 96.9 97.3 97.5

50,000 98.0 98.4 98.1 200,000 97.3 97.7 97.8

120,000 98.5 98.6 98.6 250,000 97.6 97.8 97.8

The batch size is 512, and the size of the test dataset is 5000. As the amount of training data increases, we find the average fidelity of estimated states and the
true test states goes up, and the neural network reaches a certain performance after we fed sufficient training data. We also observe more training data
requires more training epochs

Table 3. Average fidelities on the test set by using different
batch sizes.

4-qubit (training data: 120,000)

Batch size Epoch: 300 (%) Epoch: 600 (%) Epoch: 900 (%)

512 98.6 98.6 98.7

1028 98.7 98.7 98.7

2048 98.5 98.7 98.7

7-qubit (training data: 250,000)

Batch size Epoch: 300 (%) Epoch: 600 (%) Epoch: 900 (%)

512 97.8 97.8 97.9

1028 97.6 97.8 97.8

The size of test dataset is 5000. The optimal batch size for the 4-qubit case
is 1024 and for the 7-qubit case is 512
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measurements have the same standard deviation, the MLE is approxi-
mately the least-squares tomography which minimizes the distance
between the searched results and the measurement outcomes.50 In this
section, we make a comparison of efficiency, accuracy, and noise tolerance
between the approximated MLE and our method.
With a personal computer,51 every single 4-qubit state takes about 1min

to compute for the approximated MLE. The estimating procedure of our
method analyzed 5000 data in 2min (about 0.024 s per data set) using the
same computer. For the 7-qubit case, the approximated MLE requires
about 168min to converge for each single data point. Remarkably, our
method can process 5000 data sets within <6min (about 0.070 s per data
set). This suggests that our method is substantially faster than the
approximated MLE. We can reasonably expect that when the system size
gets even larger, our computation time advantage will become more
impressive.
In the 4-qubit cases, the approximated MLE can yield estimates with an

average fidelity of 99.9%. In the 7-qubit cases, it can still achieve an
average fidelity of 99.9%. Therefore in terms of accuracy, the approximated
MLE slightly outperforms our method.
We also analyze the noise tolerance of the two methods by adding noise

to the input measurements. The set of unbiased noise n! was generated
according to the normal distribution with mean value 0 and standard
deviation 1. The percentile noise vector α n! is formed by multiplying the
factor α 2 f5%; 10%; 15%; 20%; 25%; 30%g to the unbiased noise n!. By
adding α n! to the true measurements M, we formed the noisy input
Mþ α n!. Suppose the approximated MLE or our neural network estimates
the noisy output ρnoise. We calculate the fidelities of the estimate ρnoise with
the true state ρ for 100 pairs of 4-qubit data. As depicted in Fig. 5, our
method has better noise tolerance than the approximated MLE with the
pure state constraint when noise >5% is added to the measurements of a
pure state.

NMR states preparation
Our experimental procedure consists of three steps: initialization,
evolution, and measurement. In this subsection, we discuss these three
steps in details.

(i) Initialization: The computational basis state 0j i�n is usually chosen
as the input state for quantum computation. Most of the quantum
systems do not start from such an input state, so a proper
initialization processing is necessary before applying quantum
circuits. In NMR, the sample initially stays in the Boltzmann
distribution at room temperature,

ρthermal ¼ I=16þ ϵðσ1z þ σ2z þ σ3z þ σ4z Þ;
where I is the 16 ´ 16 identity matrix and ϵ � 10�5 is the
polarization. We cannot directly use it as the input state for

quantum computation, because such a thermal state is a highly
mixed state.39,52 We instead create a so-called pseudo-pure state
(PPS) from this thermal state by using the spatial averaging
technique,39–41 which consists of applying local unitary rotations
and using z-gradient fields to destroy the unwanted coherence. The
form of the 4-qubit PPS can be written as

ρ0000 ¼ ð1� ϵ0ÞI=16þ ϵ0 0000j i 0000h j:
Here, although the PPS ρ0000 is also a highly mixed state, the identity
part I neither changes under any unitary operations nor contributes
to observable NMR signal. It means that we can focus on the
deviated part 0000j i 0000h j and consider 0000j i 0000h j as the initial
state of our quantum system. Finally, 4-qubit QST was performed to
evaluate the quality of our PPS. We found that the fidelity between
the perfect pure state 0000j i and the experimentally measured PPS
is about 98.7% by the definition of C in Eq. (3), where the raw PPS
density matrix obtained directly from the experiment is negative.
This sets a solid ground for the subsequent experiments.

(ii) Evolution: In this step, we prepared the ground states of the given
Hamiltonians using optimized pulses. The form of the considered
Hamiltonian is chosen as Eq. (1).
Here, the parameters ωðiÞ

k and JðijÞnm mean the chemical shift and the J-
coupling strength, respectively. In experiments, we create the
ground states of different Hamiltonians by randomly changing the
parameter set ðωðiÞ

k ; JðijÞnmÞ. For the given Hamiltonian, the gradient
ascent pulse engineering (GRAPE) algorithm53–56 is adapted to
optimize a radio-frequency (RF) pulse to realize the dynamical
evolution from the initial state 0000j i to the target ground state. The
GRAPE pulses are designed to be robust to the static field
distributions and RF inhomogeneity, and the simulated fidelity is
over 0:99 for each dynamical evolution.

(iii) Measurement: In principle, we only need to measure the 2-local
measurements to determine the original 4-qubit Hamiltonian through
our trained network. Experimentally, we performed 4-qubit QST, which
naturally includes the 2-local measurements after preparing these
states,57–59 to evaluate the performance of our implementations.
Hence, we can estimate the quality of the experimental implementa-
tions by computing the fidelity between the target ground state ρth ¼
ψthj i ψthh j and the experimentally reconstructed density matrix ρexp.

60

By reconstructing states ρnn merely based on the experimental 2-local
measurements, the performance of our trained neural network can
be evaluated by comparing the experimental states ρexp with the
states ρnn.

Finally, we attempt to evaluate the confidence of the expected results by
analyzing the potential error sources in experiments. The infidelity of the
experimental density matrix is mainly caused by some unavoidable factors
in experiments, including decoherence effects, imperfections of the PPS
preparation, and imprecision of the optimized pulses. From a theoretical
perspective, we numerically simulate the influence of the optimized pulses
and the decoherence effect of our qubits. Then we compare the fidelity
computed in this manner with the ideal case to evaluate the quality of the
final density matrix. As a numerical result, about 0.2% infidelity was created
on average and the 1.2% error is related to the infidelity of the initial state
preparation. Additionally, other errors can also contribute to the infidelity,
such as imperfections in the readout pulses and spectral fitting.

The approximated MLE
We briefly describe the approximated MLE we used in the numerical
simulation. The standard MLE48,49 is also a method to produce satisfactory
results in recovering the full states from the experimental measurements.
In general, the standard MLE can be divided into three steps.

(i) Parameterize a density matrix in a legal way. Here, we describe a
pure density matrix by

ρð x!Þ ¼ Vð x!ÞVyð x!Þ=TrðVð x!ÞVyð x!ÞÞ:
V is a 2N-dimensional vector with the parameters x! and the number
of qubits N. ρð x!Þ is a normalized and non-negative definite
Hermitian density matrix under such a parameterization.

(ii) Construct a likelihood function to be maximized. The measurements
calculated from the parameterized density matrix ρð x!Þ are
TrðTrði;jÞρð x!Þ � Bðm;nÞÞ with Bðm;nÞ 2 B; 1 � i<j � 4 and 1 � n;m � 4,
and the total probability of ρð x!Þ yielding the results closely to the

Fig. 5 Performances of the approximated MLE and our neural
network framework under noisy inputs. The dots in the figure are
the average fidelities f between the true state ρ and the noisy
estimates ρnoise corresponding to various percentage of noise. The
red circles are estimated by the neural network, and the blue
triangles are from the approximated MLE.
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true measurements M can be written as

Pð x!Þ ¼ 1
N

Y
i;j;m;n

exp �fTrðTrði;jÞρð x!Þ � Bðm;nÞÞ � sði;jÞm;ng
2

2ðχði;jÞm;nÞ
2

2
4

3
5;

where χ
ði;jÞ
m;n is the standard deviation of each measurement sði;jÞm;n and

N is the normalization (Gaussian model). Pð x!Þ is the likelihood
function we need to maximize. If we assume the standard deviation
is the same, the standard MLE is approximately least-squares
tomography.50 It is equivalent to minimize the following function:

Fð x!Þ ¼
X
i;j;m;n

TrðTrði;jÞρð x!Þ � Bðm;nÞÞ � sði;jÞm;n

h i2
:

Here, we ignore some constants which do not influence the
optimization, e.g., the normalization factor N . Fð x!Þ is the cost
function that we minimize with the least-squares tomography.

(iii) Minimize the cost function using some techniques. We use the
function lsqnonlin of MATLAB with an initial guess and a default
setting. It takes a while to optimize a sum of squares like Fð x!Þ.
Finally, quantum state ρð x!Þ can be recovered from the parameters
x! when the optimization is finished.
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