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Local Minima and Convergence in

Low-Rank Semidefinite Programming

Samuel Burer∗ Renato D.C. Monteiro†

September 29, 2003

Abstract

The low-rank semidefinite programming problem (LRSDPr) is a restriction of the
semidefinite programming problem (SDP) in which a bound r is imposed on the rank
of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In
this paper, we classify the local minima of LRSDPr and prove the optimal convergence
of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro
[6], which handles LRSDPr via the nonconvex change of variables X = RR

T . In
addition, for particular problem classes, we describe a practical technique for obtaining
lower bounds on the optimal solution value during the execution of the algorithm.
Computational results are presented on a set of combinatorial optimization relaxations,
including some of the largest quadratic assignment SDPs solved to date.

Keywords: Semidefinite programming, low-rank matrices, vector programming,
combinatorial optimization, nonlinear programming, augmented Lagrangian, numerical
experiments.

1 Introduction

We study the standard-form semidefinite programming problem

SDP min C •X

s.t. Ai •X = bi, i = 1, . . . , m

X º 0
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and its dual

DSDP max bT y

s.t.
m

∑

i=1

yiAi + S = C

S º 0,

where the matrices C, A1, . . . , Am and the vector b are the data and the matrices X, S and
the vector y are the variables. Each matrix is n × n symmetric (i.e., an element of Sn);
M • N = trace(MN); and M º 0 (or M ∈ Sn

+) indicates that M is positive semidefinite.
We assume that SDP has an interior feasible solution, but note that we do not assume the
same of DSDP. In addition, we make the assumption that both problems attain their optimal
value with zero duality gap, i.e., there exist feasible X and (S, y) such that X • S = 0.

There are many varied algorithms for solving SDP and DSDP, and it is convenient to
divide the methods into three groups according to their methodology and their effectiveness
on problems of different size. The first group is the second-order primal-dual interior-point
methods which use Newton’s method to solve SDP and DSDP simultaneously (for example,
see [1, 11, 13, 15, 17, 27]). These methods are capable of solving small- to medium-sized
problems very accurately but have difficulty on large, sparse problems because of their in-
herent high demand for storage and computation. The second group is similar to the first,
but instead of solving for the Newton direction directly in each iteration, an iterative solver
is used to find the direction instead (for example, see [5, 14, 18, 24, 25]). This approach
allows large-scale problems to be solved to a medium amount of accuracy. The final group
consists of the first-order nonlinear programming algorithms (for example, see [6, 7, 10]),
which use fast, gradient-based techniques to solve a nonlinear reformulation of either SDP
or DSDP. Strong computational results, obtaining medium accuracy on large problems, have
been reported for these algorithms, especially on the class of semidefinite relaxations of com-
binatorial problems. A comprehensive survey of all three of these groups of algorithms can
be found in [16].

This paper investigates the first-order nonlinear programming algorithm introduced by
Burer and Monteiro in [6]. The algorithm is motivated by the following results, which
establish the existence of extreme points for SDP (e.g., see Rockafellar [22]) and a bound on
the rank of each such feasible solution (Barvinok [4] and Pataki [19]).

Theorem 1.1 A nonempty closed convex set with no lines has an extreme point.

Theorem 1.2 If X̄ is an extreme point of SDP, then r̄ = rank(X̄) satisfies r̄(r̄ +1)/2 ≤ m.

Since the optimal value of SDP is attained at an extreme point, the following low-rank
semidefinite programming problem is equivalent to SDP for any integer r satisfying r(r +
1)/2 ≥ m.

LRSDPr min C •X

s.t. Ai •X = bi, i = 1, . . . , m

X º 0, rank(X) ≤ r
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Unless otherwise stated, we assume throughout that the integer r has been chosen large
enough so that the two problems are indeed equivalent.

Since the constraint rank(X) ≤ r is difficult to handle directly, Burer and Monteiro
propose to use the fact that any X º 0 with rank(X) ≤ r may be written as X = RRT for
some R ∈ ℜn×r to reformulate LRSDPr as the nonlinear program

NSDPr min C •RRT

s.t. Ai •RRT = bi, i = 1, . . . , m.

An immediate benefit of NSDPr is the reduced number of variables and constraints as com-
pared with LRSDPr. Burer and Monteiro then use a first-order augmented Lagrangian
algorithm to solve NSDPr on the relaxations of some large-scale combinatorial optimization
problems such as maximum cut and maximum stable set. They report strong computational
results, including speed-up factors of nearly 500 over the second fastest algorithm on some
problems, based on the fact that: (i) the function and gradient evaluations of the augmented
Lagrangian function are extremely quick, especially when the Ai’s are sparse or low-rank
and m and r are small; and (ii) even though NSDPr is nonconvex, an optimal solution to
NSDPr, and hence SDP, is always achieved experimentally. Although Burer and Monteiro
provide some insight as to why (ii) occurs, a formal convergence proof for their method is
not established.

In this paper, we study LRSDPr and NSDPr in an effort to shed some theoretical light on
the intriguing practical behavior (ii) observed in [6]. In Section 2, we show some basic facts
relating LRSDPr and NSDPr, including an explicit correspondence between the local minima
of the two problems. In particular, we show that the change of variables does not introduce
any extraneous local minima. Then, in Section 3, we provide the following classification of
the local minima of LRSDPr: if X is a local minimum, then either X is an optimal extreme
point for SDP, or X is contained in the relative interior of a face of the feasible set of SDP
which is constant with respect to the objective function.

In Section 4, we study the theoretical properties of sequences {Rk} produced by aug-
mented Lagrangian algorithms applied to NSDPr. Then in Section 5 we use these properties
to investigate a slight variant of the augmented Lagrangian algorithm proposed by Burer and
Monteiro for solving NSDPr, which differs only in the addition of the term µ det(RT R) to
the augmented Lagrangian function, where µ > 0 is a scaling parameter of arbitrarily small
magnitude which is simply required to go to zero as the algorithm progresses. Assuming that
a local minimum is obtained at each stage of the algorithm, we show that any accumulation
point R̄ of the resulting sequence is an optimal solution of NSDPr, and hence X̄ = R̄R̄T

is an optimal solution of SDP. Moreover, we show that the algorithm produces an optimal
dual S̄ as well.

Finally in Section 6, we discuss some computational issues, including how, for special
problem classes, one can exploit the results of Section 5 to calculate lower bounds on the
optimal value of SDP during the execution of the algorithm. From a practical point of view,
this addresses a key drawback of the algorithm of Burer and Monteiro in which lower bounds
were not available. We then provide computational results on the SDP relaxations of some
large-scale maximum cut, maximum stable set, and quadratic assignment problems. The
first two classes of problems are also considered in [6], while for the third class, we report
here some of the largest quadratic assignment SDP relaxations solved to date.
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2 Some Facts Concerning the Change of Variables

In this section, we establish some basic facts concerning the change of variables X = RRT .
Note that each of these results is valid for any r.

At first glance, it is unclear how the local minima of LRSDPr relate to the local minima
of NSDPr. By continuity, we know that if X is a local minimum then each R satisfying
X = RRT is a local minimum, though it may be the case that X is not a local minimum
when R is. In other words, the change of variables may introduce extraneous local minima.
In actuality, however, the results below show that this cannot happen.

The following lemma establishes a simple correspondence between any R and S such that
RRT = SST .

Lemma 2.1 Suppose R, S ∈ ℜn×r satisfy RRT = SST . Then S = RQ for some orthogonal
Q ∈ ℜr×r.

Proof. Let q = rank(RRT ), and choose U ∈ ℜn×r such that U satisfies RRT = UUT and
such that the last r−q columns of U are zero. To prove the lemma, we exhibit an orthogonal
Q1 such that R = UQ1, which similarly implies the existence of Q2 such that S = UQ2.
Hence, Q = QT

1 Q2 satisfies S = RQ.
Using that UUT = RRT is positive semidefinite, it is straightforward to argue Null(UT ) =

Null(RT ), which implies Range(U) = Range(R). Hence, if we write

U =
(

Ũ 0
)

,

so that Ũ ∈ ℜn×q denotes the nonzero part of U , there exists a unique H̃ ∈ ℜq×r such that
ŨH̃ = R. Hence,

Ũ(Iq − H̃H̃T )ŨT = 0.

Since Ũ is full rank, this implies H̃H̃T = Iq, i.e., the rows of H̃ are orthonormal. Extending
H̃ to an orthogonal matrix Q1 ∈ ℜr×r, we have UQ1 = R, as desired.

The next lemma is a fundamental observation about the local minima of NSDPr — namely
that the local minima occur as sets parameterized by multiplication by an orthogonal matrix.
The proof is straightforward based on the fact that RRT = RQQT RT for all R and all
orthogonal Q.

Lemma 2.2 R̄ is a local minimum of NSDPr if and only if R̄Q is a local minimum for all
orthogonal Q ∈ ℜn×r.

By combining Lemmas 2.1 and 2.2, we now show that the change of variables X = RRT

does not introduce any extraneous local minima.

Proposition 2.3 Suppose X̄ = R̄R̄T , where X̄ is feasible for LRSDPr and hence R̄ is
feasible for NSDPr. Then X̄ is a local minimum of LRSDPr if and only if R̄ is a local
minimum of NSDPr.
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Proof. As discussed above, continuity of the map R 7→ RRT implies that if X̄ is a local
minimum, then so is R̄. In fact, any R such that X̄ = RRT is a local minimum.

Now suppose that X̄ is not a local minimum of LRSDPr. Then there exists a sequence of
feasible solutions {Xk} of LRSDPr converging to X̄ such that C •Xk < C • X̄ for all k. For
each k, choose Rk such that Xk = Rk(Rk)T . Since {Xk} is bounded, it follows that {Rk} is
bounded and hence has a subsequence {Rk}k∈K converging to some R such that X̄ = RRT .
Since C • Rk(Rk)T = C • Xk < C • X̄ = C • RRT , we see that R is not a local minimum
of NSDPr. Using the fact that X̄ = R̄R̄T = RRT together with Lemmas 2.1 and 2.2, we
conclude that R̄ is not a local minimum of NSDPr.

We remark that arguments similar to those in this section can be used to show that the
local minima of any continuous optimization problem over the set {X : X º 0, rank(X) ≤ r}
and the local minima of its corresponding reformulation by the change of variables X = RRT

are related according to Proposition 2.3.

3 Local Minima Classification

In this section, we provide a classification of the local minima of LRSDPr. By Proposition
2.3, this also serves to classify the local minima of NSDPr.

We first introduce an idea that will be used several times in this section and in Section
4. Given any R ∈ ℜn×r, we define the system of equations

φ(R) C • R∆RT = 0

Ai • R∆RT = 0, ∀ i = 1, . . . ,m,

where ∆ ∈ Sr is the unknown. We will often use the phrase “∆ is a solution of φ(R)” to
refer to a solution of the above system, and the key observation that we will use is that φ(R)
has a nontrivial solution if r(r + 1)/2 > m + 1.

The following lemma is the key result which serves to classify the local minima of LRSDPr.
The basic idea is based on a “rank-reduction” technique proposed by Barvinok [4] and Pataki
[26] (also easily derived from [19]), in which, if the rank of X is large enough, then X may
be moved to a matrix of lower rank without changing its inner product with C, A1, . . . , Am.
The lemma can be seen as an application of this rank-reduction technique to a sequence of
points.

Lemma 3.1 Let X̄ be an extreme point of the feasible region of SDP, and suppose {Xk} ⊂
Sn

+ has a subsequence converging to X̄. Then there exists {Y k} ⊂ Sn
+ having the following

properties:

(a) {Y k} also has a subsequence converging to X̄;

(b) M • Y k = M • Xk for each k and each M ∈ {C,A1, . . . , Am};

(c) s := maxk{rank(Y k)} satisfies s(s + 1)/2 ≤ m + 1.
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Proof. Define r := maxk{rank(Xk)}. If r satisfies r(r + 1)/2 ≤ m + 1, then we may clearly
take Y k = Xk as the desired sequence.

On the other hand, if r(r + 1)/2 > m + 1, then we prove the following: there exists a
sequence {Y k} satisfying (a), (b), and s < r. This result, though weaker than what we wish
to prove, is sufficient since we can iteratively apply the result to reduce the maximum rank
of each resulting sequence by at least one in each application.

To prove the above claim, we factor each Xk as Xk = Rk(Rk)T for some Rk ∈ ℜn×r.
Since, by assumption, {Xk} has a subsequence converging to X̄, it is easy to see {Rk} has
a subsequence {Rk}k∈K converging to some R̄ ∈ ℜn×r such that X̄ = R̄R̄T .

We next build the sequence {Y k} as follows. If Xk satisfies rank(Xk) < r, then we define
Y k := Xk. Now suppose Xk satisfies rank(Xk) = r. Because r(r +1)/2 > m+1, the system
of equations φ(Rk) has a nontrivial solution ∆k ∈ Sr. We assume without loss of generality
that ‖∆k‖ = λmax(∆

k) = 1; otherwise, we can scale ∆k and/or take −∆k. We then define

Y k = Xk − Rk∆k(Rk)T = Rk(I − ∆k)(Rk)T ,

Zk = Xk + Rk∆k(Rk)T = Rk(I + ∆k)(Rk)T .

Clearly, {Y k} and {Zk} are sequences of positive semidefinite matrices satisfying (b), and we
also have s < r. It remains to show that some subsequence of {Y k} converges to X̄. Since
{∆k} is bounded, by passing to a subsequence if necessary, we may assume that {∆k}k∈K

converges to a solution ∆̄ of φ(R̄). Hence, {Y k}∈K and {Zk}k∈K converge to Ȳ = X̄−R̄∆̄R̄T

and Z̄ = X̄ + R̄∆̄R̄T , respectively. Clearly, both Ȳ and Z̄ are feasible points of SDP. Since
X̄ is an extreme point of the feasible region of SDP, we must have Ȳ = Z̄ = X̄. We have
thus shown that {Y k}k∈K converges to X̄.

We now are able to provide a classification of the local minima of LRSDPr for r sufficiently
large.

Theorem 3.2 Suppose X̄ is a local minimum of LRSDPr, where r(r+1)/2 ≥ m+1. If X̄ is
an extreme point of SDP, then X̄ is an optimal solution of SDP. Otherwise, X̄ is contained
in the relative interior of a positive-dimension face of SDP which is constant with respect to
the objective function.

Proof. Let F̄ be the minimal face of SDP containing X̄. It is well-known (see [3, 20]) that

F̄ = {X º 0 : Range(X) ⊆ Range(X̄)} ∩ {X ∈ Sn : Ai • X = b, i = 1, . . . ,m}

and
ri F̄ = {X ∈ F̄ : Range(X) = Range(X̄)}.

¿From these two facts, it is easy to see that each X ∈ F̄ is feasible for LRSDPr and that
X̄ ∈ ri F̄ . Thus, since X̄ is a local minimum of LRSDPr, the objective value on F̄ is constant.
If the dimension of F̄ is positive, then the final statement of the theorem follows.

On the other hand, if the dimension of F̄ is zero, then X̄ is an extreme point of SDP.
Suppose that X̄ is not an optimal solution of SDP so that there exists a sequence {Xk}
of SDP-feasible points converging to X̄ such that C • Xk < C • X̄ for all k. Then, by
Lemma 3.1, there exists a sequence {Y k} such that, for each k, Y k is feasible for LRSDPr
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and C • Y k < C • X̄ and moreover {Y k} has a subsequence converging to X̄. This implies
that X̄ is not a local minimum of LRSDPr, which is a contradiction. Thus, X̄ is in fact an
optimal solution of SDP.

4 Analysis of Augmented-Lagrangian Sequences

In this section we analyze some properties of the augmented Lagrangian method in connec-
tion with problem NSDPr.

For notational convenience, we define A : Sn → ℜm to be the linear operator defined by
[A(X)]i = Ai •X for all X ∈ Sn and i = 1, . . . , m, so that the linear constraints of SDP can
be stated compactly as A(X) = b. It turns out that the adjoint operator A∗ : ℜm → Sn is
given by A∗(y) =

∑m
i=1

yiAi for all y ∈ ℜm, and hence the linear constraints of DSDP can
be compactly written as S ∈ C + ImA∗.

Given sequences {yk} ⊂ ℜm and {σk} ⊂ ℜ++, the general augmented Lagrangian ap-
proach applied to NSDPr consists of finding approximate stationary points Rk of the sequence
of subproblems

min
R∈ℜn×r

Lk(R) := Ck • RRT +
σk

2
‖A(RRT ) − b‖2, (1)

where Ck := C + A∗yk. Clearly, if we take yk = 0 and allow σk → ∞, then the method
becomes a standard penalty method. More typically, yk and σk are chosen dynamically. Of
course, one natural requirement of any variation of the method is that any accumulation
point R̄ of the sequence of approximate solutions {Rk} is feasible for NSDPr.

It can be easily seen that

∇Lk(R
k) = 2 SkRk (2)

L′′
k(R

k)(H, H) = 2 Sk • HHT + 4 σk

∥

∥A
(

RkHT
)
∥

∥

2
, ∀ H ∈ ℜn×r, (3)

where

Sk := Ck + σk A
∗
(

A
(

Rk(Rk)T
)

− b
)

= C + A∗
(

yk + σk

(

A
(

Rk(Rk)T
)

− b
))

. (4)

It is well-known that necessary conditions for Rk to be a local minimum of Lk(R) are that
∇Lk(R

k) = 0 and L′′
k(R

k)(H, H) ≥ 0 for all H ∈ ℜn×r.
We now state our first result concerning sequences of points Rk arising as approximate

stationary points of the sequence of subproblems (1).

Theorem 4.1 Let {Rk} ⊂ ℜn×r be a bounded sequence satisfying the following conditions:

(a) limk→∞A
(

Rk(Rk)T
)

= b;

(b) limk→∞∇Lk(R
k) = 0;

(c) lim infk→∞ L′′
k(R

k)(Hk, Hk) ≥ 0 for all bounded sequences {Hk} ⊂ ℜn×r;

(d) rank (Rk) < r for all k.

Then the following statements hold:
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(i) every accumulation point of {Rk(Rk)T} is an optimal solution of SDP;

(ii) the sequence {Sk} is bounded and any of its accumulation points is an optimal dual
slack for DSDP.

Proof. Let Xk := Rk(Rk)T for all k. Clearly, (2) and condition (b) together imply that

lim
k→∞

SkXk = 0. (5)

Also, condition (d) implies that for each k there exists an orthogonal matrix Qk ∈ ℜr×r such
that the last column of RkQk is zero. Now, let h ∈ ℜn be given and define

Hk := [0, . . . , 0, h](Qk)T ∈ ℜn×r.

Using (3) together with the equalities Hk(Hk)T = hhT and Rk(Hk)T = 0, we conclude from
condition (c) that

lim inf
k→∞

Sk • hhT ≥ 0. (6)

We will now show that {Sk} is bounded. Indeed, assume for contradiction that, for some
subsequence {Sk}k∈K, we have limk∈K→∞ ‖Sk‖ = ∞, and let (X̄, S̄) be an accumulation
point of {(Xk, Sk/‖Sk‖)}k∈K. Using condition (a), relations (4), (5) and (6) and the fact
that limk∈K→∞ ‖Sk‖ = ∞, we easily see that A(X̄) = b, 0 6= S̄ ∈ Im (A∗), S̄ º 0, and
S̄ • X̄ = 0. It is now easy to see that these conclusions imply that S̄ is a nontrivial direction
of recession for the set of feasible dual slacks of DSDP. This violates the assumption that
SDP has an interior feasible solution, however, yielding the desired contradiction. Hence
{Sk} must be bounded.

Again, using (4), (5) and (6), it is straightforward to verify (i) and the remaining part of
(ii).

Observe that if Rk is a local minimum of Lk(R), then the sequence {Rk} obviously satisfies
conditions (b) and (c) of Theorem 4.1. However, there is no reason for this sequence to satisfy
condition (d). In the next section, we show how to obtain a sequence {Rk} satisfying all
conditions simultaneously, simply by taking Rk to be a local minimizer of a function obtained
by adding an extra term to the augmented Lagrangian function Lk.

A disadvantage of Theorem 4.1 is that the boundedness of the sequence {Rk} must be
assumed. We will now study some properties of approximate stationary points Rk for the
sequence of subproblems obtained by adding the constraint ‖R‖2

F ≤ M to the subproblems
(1), where M > 0 is some large constant. This approach has the advantage that {Rk} will
be automatically bounded.

We assume that M > 0 is such that I • X∗ < M for some optimal solution X∗ of SDP.
Then we may add the constraint I • X ≤ M to SDP, obtaining the equivalent semidefinite
programming problem

SDP′ min C • X

s.t. A(X) = b

I • X ≤ M

X º 0,
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whose dual can be written in nonstandard format as

DSDP′ max bT y − Mθ

s.t. A∗(y) + S = C

θ ≥ 0, S + θI º 0.

Note that any optimal solution of DSDP′ must have θ = 0 so that S is an optimal dual
slack for DSDP. Applying the low-rank change of variables X = RRT to SDP′, we obtain
the nonlinear programming formulation

NSDP′
r min C •RRT

s.t. A(RRT ) = b

‖R‖2

F ≤ M

A partial augmented Lagrangian approach applied to this problem consists of finding ap-
proximate stationary points Rk for the sequence of subproblems

min
R∈ℜn×r

Lk(R) (7)

s.t. ‖R‖2

F ≤ M

A necessary condition for Rk to be a local minimum of the k-th subproblem of (7) is the
existence of θk ≥ 0 such that

∇Lk(R
k) + θkR = 0, θk(M − ‖Rk‖2

F ) = 0, (8)

L′′
k(R

k)(H,H) + θk I • HHT ≥ 0, ∀ H ∈ ℜn×r such that Rk • H = 0. (9)

We now state our second result regarding approximate stationary points Rk of the se-
quence of subproblems (7). The proof, which is an extension of the proof of Theorem 4.1, is
left to the reader.

Theorem 4.2 Let M > 0 be a constant large enough so that I • X∗ < M for some optimal
solution X∗ of SDP. In addition, let {Rk} ⊂ ℜn×r and {θk} ⊂ ℜ+ be sequences such that
‖Rk‖2

F ≤ M and which also satisfy the following conditions:

(a) limk→∞A
(

Rk(Rk)T
)

= b;

(b) limk→∞∇Lk(R
k) + θkR

k = 0 and limk→∞ θk(M − ‖Rk‖2
F ) = 0;

(c) lim infk→∞ L′′
k(R

k)(H, H) + θk I • HHT ≥ 0 for all bounded sequences {Hk} ⊂ ℜn×r

such that Rk • Hk = 0 for all k;

(d) rank (Rk) < r for all k.

Then the following statements hold:

(i) every accumulation point of {Rk(Rk)T} is an optimal solution of SDP;

(ii) the sequence {Sk} defined by (4) is bounded and any of its accumulation points is an
optimal dual slack for DSDP, in which case limk→∞ θk = 0.

9



5 A Perturbed Augmented Lagrangian Algorithm

We now consider a perturbed version of the augmented Lagrangian algorithm considered in
Section 4. For eack k, the method consists of finding a stationary point Rk of the following
subproblem:

min
R∈ℜn×r

fk(R) := Lk(R) + µk det(RT R), (10)

where Lk is the function defined in (1) and {µk} ⊂ ℜ++ is a sequence converging to 0. Under
mild conditions, we will show below that any accumulation point of the sequence {Rk(Rk)T}
is an optimal solution of SDP. Our strategy will be to show that {Rk} satisfies the conditions
of Theorem 4.1.

The following two lemmas essentially show that {Rk} satisfies condition (d) of Theorem
4.1.

Lemma 5.1 Let 0 6= ∆ ∈ Sr be given and define d(δ) = det(Ir + δ ∆) for all δ ∈ ℜ. Then
δ = 0 is not a local minimum of d(δ).

Proof. Let λ = (λj) 6= 0 denote the vector of eigenvalues of ∆, in which case d(δ) =
Πr

j=1(1 + δ λj). It is not difficult to see that

d′(0) = eT λ

d′′(0) =
(

eT λ
)2

− eT (λ2),

where e is the vector of all ones and λ2 = (λ2
j). If d′(0) 6= 0, then the result follows. On the

other hand, if d′(0) = 0, then d′′(0) < 0, showing that δ = 0 is a strict local maximum, from
which the result follows.

Lemma 5.2 Assume that r(r + 1)/2 > m + 1. If Rk is a local minimum of fk(R), then
rank(Rk) < r.

Proof. Suppose for contradiction that rank(Rk) = r, and for notational convenience let
R = Rk. Note that det(RT R) > 0. Because r(r + 1)/2 > m + 1, there exists a nontrivial
solution ∆ of system φ(R) with C = Ck. For any δ such that I + δ ∆ ≻ 0, define

Rδ = R chol(Ir + δ ∆),

where chol(·) denotes the lower Cholesky factor of (·). Note that Rδ is well-defined on an
open interval of δ containing 0 and that M •RδR

T
δ = M •RRT for all M ∈ {Ck, A1, . . . , Am}.

This implies that Lk(Rδ) = Lk(R), and hence

fk(R) − fk(Rδ) = µk

(

det(RT R) − det(RT
δ Rδ)

)

= µk det(RT R) (1 − det(Ir + δ ∆)) ,

where the second equality follows from standard properties of the determinant. By Lemma
5.1, δ = 0 is not a local minimum of det(Ir + δ ∆), i.e., there exists arbitrarily small δ 6= 0
such that det(Ir + δ ∆) < 1, which when combined with the above equality and the fact that
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µk det(RT R) > 0 imply that R is not a local minimum of fk(R). Since this contradicts the
definition of R, we must have rank (R) < r.

We remark that the main point of Lemma 5.2 can also be achieved by analyzing the
behavior of det(RT R)1/r. The key observation is that det(·)1/r is a concave function over
the set of r × r positive definite matrices and is actually strictly concave over line segments
between linearly independent matrices (see section 7.8 of Horn and Johnson [12]).

Theorem 5.3 Assume that r(r+1)/2 > m+1 and that {µk} ⊂ ℜ++ is a sequence converging
to 0. For each k, let Rk be a local minimum of fk(R) and let Sk be given by (4). Moreover,
assume that:

(a) limk→∞A
(

Rk(Rk)T
)

= b;

(b) the sequence {Rk} ⊂ ℜn×r is bounded.

Then the following statements hold:

(i) every accumulation point of {Rk(Rk)T} is an optimal solution of SDP;

(ii) the sequence {Sk} defined by (4) is bounded and any of its accumulation points is an
optimal dual slack for DSDP.

Proof. The result follows immediately by verifying that {Rk} satisfies conditions (b) to (d)
of Theorem 4.1. Condition (d) of Theorem 4.1 follows from Lemma 5.2. To verify (b) and
(c) of Theorem 4.1, define d(R) = det(RT R) for all R ∈ ℜn×r. Since Rk is a local minimum
of fk(R), we must have

∇fk(R
k) = ∇Lk(R

k) + µk∇d(Rk) = 0,

f ′′
k (Rk)(H,H) = L′′

k(R
k)(H, H) + µk d′′(Rk)(H,H) ≥ 0, ∀ H ∈ ℜn×r.

Since {µk} converges to 0 and the derivatives of d are uniformly bounded over compact sets,
it follows that limk→∞∇Lk(R

k) = 0 and lim infk→∞ L′′
k(R

k)(Hk, Hk) ≥ 0 for all bounded
sequences {Hk} ⊂ ℜn×r, showing that {Rk} also satisfies conditions (b) and (c) of Theorem
4.1.

Similarly to Theorem 4.1, one drawback of the above theorem is that the boundedness of
{Rk} must be assumed, and similarly to Theorem 4.2, the next theorem addresses this issue
by considering the sequence of stationary points {Rk} of the sequence of subproblems

min
R∈ℜn×r

fk(R)

s.t. ‖R‖2

F ≤ M,

which automatically enforce that the sequence {Rk} is bounded. Its proof, which is based
on Theorem 4.2, is quite similar to the one of Theorem 5.3.

Theorem 5.4 Let M > 0 be a constant large enough so that I • X∗ < M for some optimal
solution X∗ of SDP. Assume that r(r + 1)/2 > m + 2 and that {µk} ⊂ ℜ++ is a sequence
converging to 0. For each k, let Rk be a local minimum of the subproblem min{fk(R) :
‖R‖2

F ≤ M} and let Sk be given by (4). Then, the following statements hold:

11



(i) if limk→∞A(Rk(Rk)T ) = b then any accumulation point of {Rk(Rk)T} is an optimal
solution of SDP, the sequence {Sk} is bounded and any accumulation point of {Sk} is
an optimal dual slack of SDP;

(ii) if limk→∞ σk = ∞ and the sequences {yk} and {Sk} are bounded then limk→∞A(Rk(Rk)T ) =
b.

Proof. To prove (i), assume that limk→∞A(Rk(Rk)T ) = b. Let θk ∈ ℜ+ denote the Lagrange
multiplier corresponding to the constraint ‖R‖2

F ≤ M of the k-th subproblem. Using the
fact that (Rk, θk) satisfies limk∈→∞A(Rk(Rk)T ) = b and relations (8) and (9), it is possible
to show that the sequences {Rk} and {θk} satisfy all the conditions of Theorem 4.2, from
which (i) immediately follows. (We remark that a variation of Lemma 5.2 is needed in
order to guarantee that rank (Rk) < r. In this variation, it is necessary to assume that
r(r + 1)/2 > m + 2, which allows the matrix ∆ in the proof of Lemma 5.2 to be chosen so
as to ensure that ‖Rδ‖

2
F = I • RδR

T
δ is a constant function of δ.)

We now prove (ii). Using (4), the assumption that {yk} and {Sk} are bounded and A∗

is one-to-one, we easily see that {σk(A(Rk(Rk)T ) − b)} is bounded. Since limk→∞ σk = ∞,
this implies that limk→∞A(Rk(Rk)T ) = b.

Observe that Theorem 5.4 establishes, under the assumption that limk→∞ σk = ∞ and
{yk} is bounded, that the condition limk→∞A(Rk(Rk)T ) = b is equivalent to the boundedness
of {Sk}. Unfortunately, we do not know whether one of these two conditions will always
hold, even though they are always observed in our practical experiments.

6 Computational Results

The algorithm of the previous section, whose convergence is proven in Theorems 5.3 and 5.4,
differs only slightly from the practical algorithm of [6] in that the extra term µk det(RT R) is
added to the augmented Lagrangian function. While it seems that the extra term is necessary
for theoretical convergence, it does not appear to be necessary for practical convergence.
Indeed, the practical convergence observed in [6] has served as the main motivation for
the theoretical investigations of the current paper. Informally, one can also see that the
theoretical and practical versions are not extremely different since one may theoretically
choose µk > 0 as small as one wishes, with the only requirement being that µk → 0.

Another reason for favoring the practical algorithm is the difficulty of calculating the
derivative of d(R) = det(RT R), which in particular would need to be calculated for any R
such that rank(R) < r. It is not difficult to see that

∇d(R) = R cofactor(RT R),

where cofactor(RT R) denotes the matrix of cofactors of (RT R)ij in RT R. The authors are not
aware of any quick, numerically stable way of calculating cofactor(RT R). For these reasons,
the numerical results that we present are based on the same algorithm as introduced in [6].

These things being said, however, it is reasonable to expect the practical algorithm to
deliver a certificate of optimality, at least asymptotically. Letting {Rk} and {Sk} be the
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sequences generated by the algorithm, the relevant measurements are

(

m
∑

i=1

(Ai • Rk(Rk)T − bi)
2

)1/2

, ‖SkRk‖F , λmin(S
k),

which monitor primal feasibility, complementarity (which also corresponds to the norm of
the gradient of the augmented Lagrangian function), and dual feasibility, respectively. In
expectation that each of these quantities will go to zero during the execution of the algorithm,
we implement the following strategy. Given parameters ρf , ρc > 0:

• the k-th subproblem is terminated with Rk and Sk once

‖SkRk‖F

‖C‖F + 1
<

ρc

σk

;

• the entire algorithm is terminated with R̄ = Rk and S̄ = Sk once Rk is obtained such
that

(
∑m

i=1
(Ai • Rk(Rk)T − bi)

2
)1/2

‖b‖ + 1
< ρf .

On all test problems, these termination criteria were realized (see below). In addition,
although we cannot exercise as much control over λmin(S

k), we have found that λmin(S̄) is
typically slightly negative, which matches the theoretical prediction of Section 4.

In the following two subsections, we demonstrate the performance of the low-rank al-
gorithm on three classes of SDP relaxations of combinatorial optimization problems. We
remark that a common feature of the three classes of problems we solve is that the con-
straints Ai • X = bi, i = 1, . . . ,m, impose an upper bound on the trace of X and hence
a bound on the norm of any feasible R. Hence, in accordance with Theorem 5.3, we can
expect the sequences generated by the algorithm to be bounded.

The implementation of the low-rank algorithm was written in ANSI C, and all computa-
tional results were performed on a Pentium 2.4 GHz having 1 Gb of RAM.

6.1 Maximum cut and maximum stable set relaxations

We consider ten test problems which were used in [6]; see [6] for a careful description. In
particular, we have chosen five of the largest maximum cut SDP relaxations and five of
the largest maximum stable set SDP relaxations, whose results are shown in Table 1. The
parameters chosen for the test runs were ρf = 10−5 for primal feasibility and ρc = 10−1

for complementarity. The first three columns of Table 1 give basic problem information;
the fourth gives the final objective value achieved by the algorithm; the fifth gives a lower
bound on the optimal value of SDP; the sixth gives the minimum eigenvalue of the final dual
matrix; and the last gives the total time required in seconds.

The lower bounds given in Table 1 were computed by perturbing the final dual matrix S̄ in
order to achieve dual feasibility and then reporting the corresponding dual objective value.
In particular, both the maximum cut and maximum stable set SDPs share the property
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problem n m C • R̄R̄T lower bd λmin(S̄) time
G67 10000 10000 -7.744e+03 -7.745e+03 -1.8e−04 595
G70 10000 10000 -9.861e+03 -9.863e+03 -1.4e−04 517
G72 10000 10000 -7.808e+03 -7.809e+03 -4.7e−05 787
G77 14000 14000 -1.104e+04 -1.105e+04 -1.6e−04 865
G81 20000 20000 -1.565e+04 -1.567e+04 -6.7e−04 2433
G43 5000 9991 -2.806e+02 -2.833e+02 -2.7e+00 1709
G51 3000 6001 -3.490e+02 -3.503e+02 -1.3e+00 3265
brock400-4.co 400 20078 -3.970e+01 -4.066e+01 -9.7e−01 768
c-fat200-1.co 200 18367 -1.200e+01 -1.229e+01 -2.9e−01 260
p-hat300-1.co 300 33918 -1.007e+01 -1.199e+01 -1.9e+00 4948

Table 1: Results of the low-rank algorithm on five maximum-cut and five maximum-stable-
set SDP relaxations (see [6]). Parameters are ρf = 10−5 and ρc = 10−1, and lower bounds
are calculated by shifting S̄ to dual feasibility. Times are given in seconds.

that the identity matrix I can be written as a known linear combination of the matrices
A1, . . . , Am, which makes it straightforward to perturb S̄ as long as λmin(S̄) is available. The
minimum eigenvalue of S̄ was computed with the Lanczos-based package LASO available
from the Netlib Repository.

The computational results demonstrate that the low-rank algorithm with the described
parameters is able to solve the the maximum cut problems to several digits of accuracy in
a small amount of time. In particular, approximate primal and dual optimal solutions are
produced by the algorithm as indicated by the achieved feasibility tolerance ρf , the small
minimum eigenvalues of S̄, and the associated duality gap.

The results for the maximum stable set relaxations do not appear as strong, however,
since the minimum eigenvalues and lower bounds are not quite as accurate. Upon further
investigation, we found that by tightening the complementarity parameter ρc to values such
as 10−2 or 10−3, we could significantly improve these metrics, but a fair amount of additional
computation time was required. Moreover, the primal matrix R̄ improved only incrementally
under these scenarios. Hence, with regard to the maximum stable set SDP, the results of
Table 1 present a balance between good progress in the primal with the time required to
achieve good progress in the dual.

6.2 Quadratic assignment relaxations

The results of the previous subsection highlight a capability of the low-rank algorithm —
namely that it can be used to obtain lower bounds on the optimal value of SDP whenever I is
in the subspace generated by A1, . . . , Am or, equivalently, when the constraints of SDP imply
a constant trace over all feasible X. This class of SDPs includes the relaxations of many
combinatorial optimization problems (e.g., maximum cut and maximum stable set) and has
been studied extensively in [10]. In such cases, since the optimal value of the SDP relaxation
is itself a lower bound on the optimal value of the underlying combinatorial problem, the
low-rank algorithm can be used as a tool to obtain bounds for combinatorial optimization
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n m linear inequalities
QAPR0

ℓ2 + 1 ℓ2 + 3 0
QAPR1

(ℓ − 1)2 − 1 2ℓ2 + ℓ + 1 0
QAPR2

(ℓ − 1)2 − 1 ℓ3 − 2ℓ2 + 1 0
QAPR3

(ℓ − 1)2 − 1 ℓ3 − 2ℓ2 + 1 ≤ 1

2
ℓ4 − ℓ3 + 5

2
ℓ2 + 1

Table 2: Size comparison of four SDP relaxations of QAP. Here, ℓ is the basic dimension of
the QAP; n gives the size of the semidefinite matrix; and m gives the number of equality
constraints.

problems also.
Given a general 0-1 quadratic program, its standard SDP relaxation does not satisfy the

condition of the previous paragraph, i.e., I is not in the subspace generated by A1, . . . , Am.
There is, however, a simple, easily computable scaling PAiP

T of the matrices Ai such that
I is generated by PA1P

T , . . . , PAmP T (see [23, 9]). Hence, this scaling can be used in
conjunction with the low-rank algorithm to compute lower bounds on the optimal value of
0-1 quadratic programs.

The quadratic assignment problem (QAP) is a 0-1 quadratic program arising in location
theory that has proven to be extremely difficult to solve to optimality, due in no small part
to its large size even for moderate numbers of decision variables. In particular, a QAP
with ℓ facilities and ℓ locations yields a quadratic program with ℓ2 binary variables and
2ℓ linear constraints. In terms of optimizing QAP using an implicit enumeration scheme
such as branch-and-bound, a key ingredient in any such scheme is the bounding technique
used to obtain lower bounds on the optimal value of QAP, and for this, many bounds based
on convex optimization have been proposed, including ones based on linear programming,
convex quadratic programming, and semidefinite programming. A recent survey on progress
made towards solving QAP is given by Anstreicher [2].

SDP relaxations of QAP have been studied in [14, 21, 28] and are most notable for the
fact that, even though the quality of bounds is usually quite good, the huge size of the SDPs
makes the calculation of these bounds very difficult. In [14, 28], four successively larger SDP
relaxations are introduced, and generally speaking, the bound is improved as the size of the
relaxation is increased. Table 2 gives basic information on the size of these relaxations in
terms of the number ℓ of facilities and locations; we refer the reader to [14, 28] for a full
description.

Lin and Saigal [14] give computational results on solving the relaxation QAPR0
of Table

2 for several problems of size up to ℓ = 30. Likewise, Zhao et al. [28] investigate QAPR1
and

QAPR2
for problems up to size ℓ = 30 and QAPR3

for problems up to size ℓ = 22 with at
most 2,000 linear inequalities. Most recently, Rendl and Sotirov [21] have used the bundle
method to compute bounds provided by QAPR2

and QAPR3
(with all inequality constraints

included) for instances up to ℓ = 30.
For the algorithm of this paper, we provide computational results for computing bounds

provided by QAPR1
and QAPR2

for instances of size up to ℓ = 40. In particular, we do not
include any problems with ℓ < 30 since we wish to concentrate on problems of larger size.
Also, we do not test QAPR3

for two primary reasons. First, it is not clear at this moment the
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problem feasible val n{1,2} m1 m2 lower bd1 lower bd2 time1 time2

esc32a 130 960 2081 30721 −326 −144 103 480
esc32h 438 960 2081 30721 176 225 111 527
kra30a ∗88900 840 1831 25201 69509 78255 3274 58359
kra30b ∗91420 840 1831 25201 70096 79165 2602 48846
kra32 ∗88700 960 2081 30721 65605 76669 2894 58103
lipa30a ∗13178 840 1831 25201 12765 12934 439 2294
lipa30b ∗151426 840 1831 25201 151133 151357 582 14862
lipa40a ∗31538 1520 3241 60801 30575 30560 889 8753
lipa40b ∗476581 1520 3241 60801 474875 476417 4747 93621
nug30 ∗6124 840 1831 25201 5311 5629 359 2161
ste36a ∗9526 1224 2629 44065 −9452 7156 2963 25703
ste36b ∗15852 1224 2629 44065 −115816 10350 7464 552860
tai30a 1818146 840 1831 25201 1528834 1577013 3216 72911
tai35a 2422002 1155 2486 40426 1970071 2029376 6775 155143
tai40a 3139370 1520 3241 60801 2519257 2592756 11938 421348
tho30 ∗149936 840 1831 25201 125846 135535 1921 81454
tho40 240516 1520 3241 60801 199680 214593 7384 219336

Table 3: Results of the low-rank algorithm for QAPR1
and QAPR2

on seventeen problems
from QAPLIB; subscripts indicate the relevant relaxation. Parameters are ρf = 10−3 and
ρc = 102, and lower bounds are rounded up to nearest integer due to integral data for
underlying QAP. Times are in seconds.

best way to incorporate linear inequality constraints into the low-rank algorithm. Second,
since it makes sense to solve QAPR3

with only a few important inequalities and since choosing
such inequalities is itself a difficult task, we would like instead to study the performance of
the low-rank algorithm on the well-defined problem classes QAPR1

and QAPR2
.

Our test problems come from QAPLIB [8], and we have selected a representative sample
of all problems in QAPLIB with 30 ≤ ℓ ≤ 40. The results of the problems are shown in
Table 3. The feasibility and centrality parameters are taken to be ρf = 10−3 and ρc = 102,
respectively. In contrast with Table 1, we do not report any information concerning the
primal objective value or the minimum eigenvalue of S̄, since primal and dual solutions of
high accuracy are not necessarily of interest here. Instead, we wish to demonstrate that
reasonably good bounds for QAP can be computed using the low-rank algorithm. To judge
the quality of the bounds, we also include the objective value of the best known integer
feasible solution of QAP as well. In particular, those problems for which the best known
integer feasible value is also optimal are indicated by a prefixed asterisk (∗). We remark
that, if the reader is further interested in the quality of the bounds, the papers [2, 21, 28]
discuss such issues in detail.

A few comments regarding the results presented in Table 3 are in order. First of all,
the low-rank algorithm was able to successfully solve all instances to the desired accuracy,
delivering bounds of roughly the same quality as documented in other investigations of SDP
bounds for QAP; see [21, 28].
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In terms of computation times, it is clear that the low-rank algorithm can take a signifi-
cant amount of time on some problems (for example, the maximum time was approximately
6.4 days for ste36b). However, we stress that these times, although large in some cases,
compare very favorably to other investigations. Moreover, to our knowledge, no computa-
tional results for SDP relaxations having ℓ > 30 have been reported in the literature. As an
example, Rendl and Sotirov [21] report that their bundle method requires approximately 10
hours to deliver a bound of 5651 on nug30 via QAPR2

on an Athlon XP running at 1.8 GHz.
As shown in Table 3, we were able to achieve a comparable bound of 5629 in approximately
36 minutes.

In addition, the computational results demonstrate that solving QAPR2
requires much

more time than QAPR1
. Moreover, it seems difficult to predict an expected increase of time

between QAPR1
and QAPR2

, as the factors of increase range from a low of 4.7 for esc32a
to a high of 74.1 for ste36b. For classes of problems for which the bound does not improve
dramatically from QAPR1

to QAPR2
, it thus may be reasonable to solve only QAPR1

.
Finally, Table 3 illustrates a phenomenon that many authors have recognized in working

with QAP, namely that problems of similar size have varying degrees of difficulty. In other
words, the data of the QAP can greatly affect the difficulty of the instance. This is evidenced
in the table, for example, by lipa30a and tho30. Although each is of the same size, tho30
takes about 4 times longer to solve for QAPR1

and about 36 times longer to solve for QAPR2
.
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