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Abstract Interfacial energy is often incorporated into variational solid-solid phase
transition models via a perturbation of the elastic energy functional involving second gra-
dients of the deformation. We study consequences of such higher-gradient terms for local
minimizers and for interfaces. First it is shown that at slightly sub-critical temperatures, a
phase which globally minimizes the elastic energy density at super-critical temperatures is
an L1-local minimizer of the functional including interfacial energy, whereas it is typically
only a W 1,∞-local minimizer of the purely elastic functional. The second part deals with
the existence and uniqueness of smooth interfaces between different wells of the multi-well
elastic energy density. Attention is focussed on so-called planar interfaces, for which the
deformation depends on a single direction x · N and the deformation gradient then satisfies
a rank-one ansatz of the form Dy(x) = A + u(x · N )⊗ N , where A and B = A + a ⊗ N
are the gradients connected by the interface.

Mathematics Subject Classification (2000) 74A50 · 49J45 · 74B20 · 74G25

1 Introduction

Multi-well energy functionals with higher-gradient dependence of form

I (y) =
∫

Ω

ψ(Dy(x))+ ε2|D2 y(x)|2 dx (1.1)
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502 J. M. Ball, E. C. M. Crooks

arise in models for crystallographic phase transitions including both elastic and interfacial
energy. The function ψ : R

n×n+ → R denotes the elastic energy density, where R
n×n+ is the

set of n × n real matrices with strictly positive determinant, and ψ is assumed to satisfy

(f) (frame indifference)
ψ(F) = ψ(RF) for all F ∈ R

n×n+ and all R ∈ SO(n);
(m) (multi-well structure )

there exist matrices U1, U2, . . .Uk ∈ R
n×n+ with U j �∈ SO(n)Ui , i �= j , such that

ψ(F) ≥ 0 for all F ∈ R
n×n+ , and ψ(F) = 0 ⇔ F ∈ ∪1≤i≤kSO(n)Ui ;

(n) (non-interpenetration)
ψ(F) → ∞ as det F → 0+.

We have in mind the elastic energy of a crystalline solid that has been cooled to a fixed
temperature θ below a critical value θc at which the lattice structure minimizing the energy
density ψ changes from a single high-symmetry phase (austenite) to several variants of a
low-symmetry phase (martensite) (see Ball and James [7,8]). These low-symmetry energy-
minimizing variants correspond to the matrices U1, . . .Uk in (m).

The higher-gradient term ε2|D2 y|2 penalizes transitions between gradients Dy and is a
simple candidate interfacial energy density (see Müller [24] and Conti and Schweizer [16],
for example). A key benefit of the inclusion of this term in (1.1) is that the infimum of (1.1)
over a given set of deformations y is typically attained, due to the compactness properties
of minimizing sequences {yn}∞n=1 that result from the boundedness of

∫
Ω

|D2 yn |2 dx . This
is in contrast to minimization of the purely elastic energy, when ε = 0, which often pre-
dicts infinitely fine oscillations between gradients because the infimum is not attained, but is
better and better approximated by highly oscillatory gradients; see Ball and Carstensen [5].
Observed microstructures have a lengthscale and are thus not consistent with arbitrarily fine
oscillations.

Here we study two additional consequences of inclusion of the higher-gradient term in
(1.1). The first concerns the fate of the high-symmetry austenite phase, that globally mini-
mizes ψ at super-critical temperatures, when the temperature is slightly sub-critical. Taking
the reference configuration to be undistorted austenite at the critical temperature θc, the defor-
mation corresponding to austenite at temperature θ is y(x) = α(θ)x + a for some a ∈ R

n

and α(θ) ∈ (0,∞), with deformation gradient α(θ)I . When θ < θc, the matrix α(θ)I is no
longer a global minimizer ofψ . But it is reasonable to assume thatψ is a continuous function
of temperature θ , and thus that given θ close to θc, Dψ(α(θ)I ) = 0 and there exists ν > 0
such that

D2ψ(α(θ)I )(G,G) ≥ ν|G|2 for all G = GT ; (1.2)

(recall that the frame-indifference of ψ implies that d2ψ(et Kα(θ)I )/dt2 = 0 when t = 0,
so

D2ψ(α(θ)I )(K , K ) = 0 for all K = −K T , (1.3)

and hence (1.2) is the natural quadratic non-degeneracy condition onψ at α(θ)I ). See Fig. 1.
In Sect. 2, we address the question of whether (1.2) implies that y is a local minimizer of

I with respect to a given norm ‖ · ‖X ; that is, whether or not

I (y) ≥ I (y) if ‖y − y‖X is sufficiently small. (1.4)

When ε = 0, with no interfacial energy, the answer depends on the choice of norm ‖ · ‖X .
If X = W 1,∞(Ω), the answer is yes; but the answer is no if X = W 1,p(Ω) or L p(Ω) for
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Local minimizers and planar interfaces 503

Fig. 1 One-dimensional cartoon of the dependence of ψ on θ when k = 2

any 1 ≤ p < ∞ (see Theorem 2.1). By contrast, when ε > 0, the presence of the interfacial
energy allows us to show in Theorem 2.2 that y is a local minimizer of I in L1(Ω). Note
the comparison between this result and that in Ball et al. [6] on incompatibility-induced hys-
teresis, where similar local stability is proved in the absence of interfacial energy when the
product phase is incompatible with the parent phase, provided the energy difference between
the phases is small.

The second part of this article concerns interfaces between gradients lying in two energy
wells SO(n)Ui0 and SO(n)U j0 , j0 �= i0. Such interfaces are physically important and mathe-
matically interesting. Their nature differs depending on the presence or absence of interfacial
energy. When ε = 0, energy minimizing sequences typically involve surfaces across which
the gradient Dy has jump discontinuities, giving sharp interfaces. In the simplest case, these
sequences are comprised entirely of piecewise constant gradients, where each constant gra-
dient lies in one of the energy wells SO(n)Ui0 ∪ SO(n)U j0 . When ε > 0, the surface-energy
term ε2|D2 y|2 prohibits such jumps, and interfaces between wells must have some smooth-
ness and thus non-zero width. Experiments show that in some materials, interfaces are not
sharp but rather curve gradually through several atomic layers; see, for example, Manolikas,
van Tendeloo and Amelinckx [22] and Salje [27]. Chrosch and Salje [14] and Salje et al. [28]
give tables listing a measure of interface thickness for a variety of materials.

In Sects. 3–6, we investigate the structure, existence, and uniqueness of interfaces between
wells in the presence of interfacial energy. The simplest form of an interface is planar and
attention is focussed on such interfaces in this article. A deformation y corresponds to a
planar interface if there exist a constant unit vector N ∈ R

n , a function F : R → R
n×n and

matrices A ∈ SO(n)Ui0 and B ∈ SO(n)U j0 such that

Dy(x) = F (x · N ), (1.5)

and

F (x · N ) → A, B (1.6)

as x · N → −∞,+∞. It is shown in Lemma 3.1 in Sect. 3 that conditions (1.5) and (1.6) in
fact imply that the deformation gradient Dy has a rank-one structure,

Dy(x) = A + u(x · N )⊗ N , (1.7)

where B = A + a ⊗ N and u is a vector-valued function such that u(s) → 0, a
as s → −∞,∞. Note that (1.7) implies in particular that B must be rank-one connected to A
if they are linked by a planar interface (and indeed, by certain more general interfaces—see
also Lemma 3.2). The existence of planar-interface solutions y0 to the Euler–Lagrange equa-
tions for the functional (1.1) is proved in Sect. 4 using minimization of a reduced functional
formed by substituting the ansatz (1.7) into (1.1) together with a recent result of Alikakos and
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504 J. M. Ball, E. C. M. Crooks

Fusco [3]. Extra conditions on the elastic energy densityψ are needed to ensure that existence
of such a planar interface between A and B is not prevented by the presence of additional
equilibria; see Lemma 4.3, and also the following remark for a discussion of this requirement
in cases of physical interest. The planar interface y0 is shown to satisfy the full n-dimensional
Euler–Lagrange equations for (1.1). We also give an example to illustrate that in general, the
vector u arising in the gradient (1.7) of such a solution y0 is not necessarily of the special
form u(x · N ) = λ(x · N )a with λ a scalar-valued function, as is sometimes assumed; see,
for example, Salje, Hayward and Lee [28]. A physical example of non-uniqueness (up to
translation) within the class of planar interfaces is discussed in Sect. 5, based on the two
martensite variants that minimize sub-critical temperature energy densities in orthorhombic
to monoclinic phase transformations. Such non-uniqueness may be of interest in light of
experimental observations that measurement of the thickness of an interface between two
given lattice structures can vary between different regions of a material sample; see Shilo,
Ravichandran and Bhattacharya [30], for example, where other possible mechanisms for the
variation over a sample of interface width are discussed. Section 6 is devoted to deducing the
existence of planar interfaces with additional symmetry under the assumption that the elastic
energy density ψ satisfies material symmetry properties.

There is a lack of rigorous results on interfaces between wells for models described by
(1.1). This article contains an initial study of some aspects of such interfaces, and it is clear
that all sorts of questions remain. Foremost among these is a more complete understanding
of the issue of uniqueness of interfaces, both within the class of planar interfaces, as in our
discussion in Sect. 5, and within a class comprising some wider notion of interface not neces-
sarily satisfying the ansatz (1.7). An example of a non-planar interface with profile periodic
along the interface and energy strictly lower than the minimum energy of planar interfaces is
presented in a similar setting, though without the frame-indifference assumption (f), in Conti,
Fonseca and Leoni [15]; see also Jin and Kohn [20]. Curved interface solutions to certain
elliptic equations and systems are constructed using variational methods by Rabinowitz and
Stredulinsky [25,26] and by Schatzman [29], and it would be of interest to try to extend their
ideas to the functional (1.1). Note that some of the proofs in [25,26,29] assume the existence
of at least two “separated” planar interface solutions and so modification of these ideas to
our setting would require an assumption of non-uniqueness of planar interfaces for (1.1).

We end the introduction with some brief remarks on the choice of interfacial energy
dependence in (1.1). The term ε2|D2 y(x)|2 is simple, widely used, and yields lengthscales
for microstructures, as mentioned above. Nevertheless, there are issues with how best to model
interfacial energy and thus whether this is the most appropriate choice. Our assumption here
is that the second-gradient term should penalize transitions and the coefficient of |D2 y(x)|2
should therefore be positive. However, microscopic to macroscopic limit arguments using the
Taylor expansion of the atomistic energy about a smooth deformation can yield higher-order
gradient terms in which the coefficient of |D2 y(x)|2 is either positive or negative, depend-
ing on the choice of atomic lattice and interaction potential in the microscopic model. This
was observed explicitly in Bardenhagen and Triantafyllidis [10], who gave two-dimensional
examples that illustrated both possibilities, and implicitly in Triantafyllidis and Bardenhagen
[34], where conditions were imposed on parameters in a one-dimensional atomic interaction
potential to ensure positivity of the coefficient of |D2 y(x)|2 in the macroscopic limit. In a
detailed study of such limiting processes, Blanc et al. [12] also discuss this sign question
and give examples showing that both signs can arise in the one-dimensional case. A further
issue is that only smooth interfaces are admissible for our energy. Ball and Mora-Corral [9]
study a variety of models in which both smooth and sharp interfaces are allowed, motivated
by experimental observations that interfaces in some materials are atomistically sharp, while
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in others the interface thickness extends over a number of atomic spacings. Another possible
drawback of the term ε2|D2 y(x)|2 is that it is isotropic, and in some materials, an anisotropic
interfacial energy might be more appropriate. The techniques used here should also yield
results in the anisotropic case (see also Stefanopolous [31] for an extension of the work of
Alikakos and Fusco [3] on the existence of interfaces to include a certain type of anisotropy.)

2 Local minimizers

For simplicity of notation, we take the reference configuration in this section to be undistorted
austenite at a fixed sub-critical temperature θ < θc, instead of at θc itself. Thus in the notation
of the Introduction, α(θ) = 1. We assume that U1, . . . ,Uk in the multi-well condition (m)
are such that I �∈ ∪1≤i≤kSO(n)Ui , so that

ψ(I ) =: k > 0, (2.1)

and that in addition to (m), the frame-indifference condition (f), and the non-interpenetration
condition (n), ψ satisfies

Dψ(I ) = 0, (2.2)

and there exists ν > 0 such that

D2ψ(I )(G,G) ≥ ν|G|2 for all G ∈ Sn×n . (2.3)

Here Sn×n = {F ∈ R
n×n : F = FT } and Sn×n+ = {F ∈ Sn×n : F ∈ R

n×n+ }. The function ψ
is defined only on R

n×n+ to try to avoid interpenetration of matter and to prevent orientation
reversal, and the non-interpenetration condition (n) , that

ψ(F) → ∞ as det F → 0+,

ensures that det Dy(x) > 0 for almost every x ∈ Ω if I (y) < ∞. Suppose also that

ψ ∈ C2(Rn×n+ ,R). (2.4)

Recall from the polar decomposition theorem that each F ∈ R
n×n+ can be written in a unique

way as F = RU , where R ∈ SO(n) and U =: √
FT F is positive-definite and symmetric,

and that

|U − I | ≤ |F − S| for all S ∈ SO(n), (2.5)

where |F |2 := tr(FT F).
We begin with the case ε = 0, when there is no interfacial energy in (1.1).

Theorem 2.1 Let Ω ⊂ R
n be bounded and open and y : Ω → R

n be defined by y(x) =
Rx +a for some constant R ∈ SO(n) and a ∈ R

n. Suppose that ε = 0 andψ in (1.1) satisfies
(f), (m), (n) and (2.1)–(2.4). Then

(a) y is a local minimizer of I in W 1,∞(Ω,Rn);
(b) if there exist a, N , b,m ∈ R

n, with N ,m non-parallel unit vectors, λ ∈ (0, 1) and
A ∈ SO(n)U1, B ∈ SO(n)U2 such that

B = A + a ⊗ N (2.6)

and

R − A = −b ⊗ m + λa ⊗ N , (2.7)
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then y is not a local minimizer of I in W 1,p(Ω,Rn), 1 ≤ p < ∞.

Proof

(a) Let U ∈ Sn×n+ be close enough to I so that det(I + t (U − I )) > 0, and so ψ(I +
t (U − I )) < ∞, for all t ∈ (−1/2, 3/2). Then it follows from (2.2), (2.3) and Taylor’s
Theorem applied to t �→ ψ(I + t (U − I )) that there exist δ, σ > 0 such that

ψ(U ) ≥ ψ(I )+ σ |U − I |2 whenever |U − I | < δ. (2.8)

This, together with (2.5), yields that

I (y) ≥ I (y)+ σ

∫

Ω

∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

dx, (2.9)

provided y ∈ W 2,2(Ω) and ‖y−y‖W 1,∞(Ω) < δ, since |√DyT Dy−I | ≤ |Dy−R| < δ

for such y, and ψ(Dy) = ψ(
√

DyT Dy).
(b) Since Ω is bounded, there exists x0 ∈ ∂Ω such that x · m < x0 · m for all x ∈ Ω . Let

Γγ = Ω ∩ {x : x0 · m − γ < x · m < x0 · m} with x0 ∈ ∂Γγ . Since Ω is open, there
exists γ j such that

|Γγ j | = 1

j
(2.10)

whenever j is sufficiently large, where | · | here denotes n-dimensional Lebesgue mea-
sure. Then for such j , define y j : Ω → R

n by

y j (x) =
{

y(x), x ∈ Ω \ Γγ j ,

z j (x), x ∈ Γγ j ,
(2.11)

where z j is such that

(i) y j ∈ C(Ω,Rn) ∩ W 1,∞(Ω,Rn);
(ii) there exist constant matrices D± such that Dz j ∈ {A, B, D±} a.e. for every j ;

(iii) |{x : Dz j �= A, B}| ≤ 1/j2;
(iv) det Dz j > 0 a.e..

That such z j exist is a consequence of conditions (2.6) and (2.7), which ensure that
the laminate construction in the proof of Theorem 3 in Ball and James [7] can be used.
Note that property (ii) implies the existence of M,C > 0 such that ψ(Dz j ) ≤ M for
every j , and

‖y − y j‖W 1,p(Ω) ≤ C |Γγ j | = C

j
→ 0 as j → ∞.

Now since ψ(A) = ψ(B) = 0,
∫

Γγ j

ψ(Dz j )dx =
∫

{x :Dz j (x)�=A,B}
ψ(Dz j )dx ≤ M

j2 ,

and hence, using (2.1) and (2.10), we have
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I (y)− I (y j ) =
∫

Γγ j

ψ(Dy)− ψ(Dy j )dx

=
∫

Γγ j

kdx −
∫

{x :Dz j (x)�=A,B}
ψ(Dz j )dx

≥ k

j
− M

j2 ,

which is positive for j sufficiently large. ��
Remark (2.6) and (2.7) are compatibility conditions for the existence of a classical interface
between austenite and finely-twinned martensite. Such an interface enables the energy of
austenite, y, to be reduced by introducing a small martensitic plate. This is the idea behind
the construction of y j in the proof of Theorem 2.1. These conditions are known to hold in
cases of physical interest (see, for example, Bhattacharya [11]). For example, for a cubic-
tetragonal transition with n = 3, the matrices U1 and U2 can be taken to be diag(η2, η1, η1)

and diag (η1, η2, η1) for some η1, η2 > 0 and Ball and James [7, Figure 5] give conditions
on η1, η2 under which such an austenite-martensite interface is possible.

When ε > 0 and interfacial energy is present, the following, much stronger, local stability
result holds.

Theorem 2.2 Let Ω ⊂ R
n be bounded, open and connected with Lipschitz boundary ∂Ω ,

and y : Ω → R
n be defined by y(x) = Rx + a for some constant R ∈ SO(n) and a ∈ R

n.
Suppose that ε > 0 and ψ in (1.1) satisfies (f), (m), (n) and (2.1)–(2.4). Then there exist
δ > 0, σ > 0 such that

I (y) ≥ I (y)+ σ

∫

Ω

(∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

+ |D2 y|2
)

dx, (2.12)

for any y ∈ W 2,2(Ω,Rn) with I (y) < ∞ and ‖y − y‖L1(Ω,Rn) < δ. In particular, y is a
local minimizer in L1(Ω).

Proof Assume throughout that y ∈ W 2,2(Ω,Rn) and I (y) < ∞, so that det Dy > 0
and

√
DyT Dy is well-defined almost everywhere. We establish (2.12) via two arguments,

depending on the value of
∫
Ω

|D2 y|2. A standard contradiction proof, such as in Morrey [23]
or Evans [17, §5.8.1], gives the following Poincaré-type inequality that is exploited in both
cases: for every η > 0, there exists cη such that for every y ∈ W 2,2(Ω,Rn),

∫

Ω

|Dy|2 dx ≤ η

∫

Ω

|D2 y|2 dx + cη

⎛
⎝

∫

Ω

∣∣∣∣y − −
∫

y

∣∣∣∣ dx

⎞
⎠

2

, (2.13)

where −∫ y := 1
|Ω|

∫
Ω

y. Since
∫
Ω

∣∣y − −∫ y
∣∣ dx ≤ 2

∫
Ω

|y| dx , it is then immediate that there
exists c̃η such that

∫

Ω

|Dy|2 dx ≤ η

∫

Ω

|D2 y|2 dx + c̃η

⎛
⎝

∫

Ω

|y| dx

⎞
⎠

2

. (2.14)
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We first treat the case when
∫
Ω

|D2 y|2 is larger than a critical value L (to be specified in
(2.24) below). Let the constant c1 > 0, the existence of which is guaranteed by (2.14), be
such that

∫

Ω

|Dy|2 dx ≤ c1

⎡
⎢⎣
∫

Ω

|D2 y|2 dx +
⎛
⎝

∫

Ω

|y| dx

⎞
⎠

2
⎤
⎥⎦ for all y, (2.15)

and the constant d1 > 0 be such that

⎛
⎝

∫

Ω

|y| dx

⎞
⎠

2

≤ d1, (2.16)

whenever ‖y − y‖L1(Ω) < 1. Then (2.15) and (2.16) give that for such y,

∫

Ω

|Dy|2 dx ≤ c1

⎛
⎝d1 +

∫

Ω

|D2 y|2 dx

⎞
⎠, (2.17)

and since
∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

= |Dy|2 − 2tr
√

DyT Dy + n ≤ |Dy|2 + n, (2.18)

because
√

DyT Dy is positive-definite and so tr
√

DyT Dy > 0, it follows that for every
σ > 0,

σ

( ∫

Ω

∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

+ |D2 y|2 dx

)
≤ σ

(
c1d1 + n |Ω| + (1 + c1)

∫

Ω

|D2 y|2 dx

)
.

(2.19)

Now

I (y) ≥ ε2
∫

Ω

|D2 y|2 dx, (2.20)

since ψ ≥ 0 by (m), and (2.1) gives that

I (y) = k|Ω|. (2.21)

Hence

ε2
∫

Ω

|D2 y|2 dx ≥ k|Ω| + σ

⎛
⎝c1d1 + n|Ω| + (1 + c1)

∫

Ω

|D2 y|2 dx

⎞
⎠, (2.22)

implies that

I (y) ≥ I (y)+ σ

⎛
⎝

∫

Ω

∣∣√DyT Dy − I |2 + ∣∣D2 y|2 dx

⎞
⎠, (2.23)
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by (2.19), (2.20) and (2.21). So now fix σ > 0 sufficiently small that ε2 − σ(1 + c1) > 0
and define the critical value

L = k|Ω| + σ(c1d1 + n|Ω|)
ε2 − σ(1 + c1)

. (2.24)

Then (2.22), and thus (2.23), hold for this choice of σ provided that y satisfies ‖y−y‖L1(Ω) ≤
1 and ∫

Ω

|D2 y|2 dx ≥ L . (2.25)

Now suppose y is such that
∫
Ω

|D2 y|2 dx ≤ L , where L is defined by (2.24). Let δ1 > 0.
Then (2.14) with η = δ2

1/2L , applied to y − y, gives that

∫

Ω

|Dy − R|2 dx ≤ δ2
1

2L

∫

Ω

|D2 y|2 dx + c(δ1)

⎛
⎝

∫

Ω

|y − y| dx

⎞
⎠

2

(2.26)

for a constant c(δ1) > 0 independent of y. So ‖y − y‖L1(Ω) < δ1/
√

2c(δ1) implies
∫

Ω

|Dy − R|2 dx ≤ δ2
1, (2.27)

and hence, since |√DyT Dy − I | ≤ |Dy − R| by (2.5), it follows that

∫

Ω

∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

dx ≤ δ2
1 . (2.28)

So in this case, y being close to y in L1(Ω) implies that
√

DyT Dy is close to I in L2(Ω).
This will allow us to reduce the problem to one of local minimizers in Sn×n , and then to use
conditions (2.2) and (2.3), together with Theorem 2.1 in Taheri [33], to establish (2.12). In
order to appeal to [33], we will introduce below a suitable auxiliary function ψ̄ , defined on
all of R

n×n instead of only on R
n×n+ , that agrees with ψ on a neighbourhood of I in R

n×n .

First note that denoting
√

Dy(x)T Dy(x) by U (x), (2.28) can be rewritten as

‖U − I‖L2(Ω) < δ1. (2.29)

Identify Sn×n with R
n(n+1)/2. Then note that it follows from, for example, the proof of

Lemma 6.1 in Ball [4], that there exists ρ > 0 such that the derivative DFÛ of the mapping
Û (F) = √

FT F from R
n×n+ to Sn×n+ satisfies

|DFÛ (F) · G| ≤ ρ|G| for every F ∈ R
n×n+ and G ∈ R

n×n . (2.30)

Hence the derivative DU (x) of the mapping x �→ U (x) = Û (Dy(x)) satisfies

|DU (x)|2 = |DFÛ (Dy(x)) · D2 y(x)|2
≤ ρ2|D2 y(x)|2. (2.31)

Now by (n), we can choose μ > 0 such that, with k as in (2.1),

ψ(M) ≥ max{1, k + 1
2 } if det M ≤ μ. (2.32)
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Let η ∈ C∞(R,R) be a non-decreasing function such that

η(s) =
{

0 if s ≤ μ/2;
1 if s ≥ μ,

(2.33)

and for F ∈ R
n×n , define

ψ̄(F) =
{
η(det F)ψ(F) if det F ≥ μ/2;
0 if det F ≤ μ/2.

(2.34)

Then

(i) ψ̄ ∈ C2(Rn×n,R), since ψ ∈ C2(Rn×n+ ,R);
(ii) ψ̄(F) ≤ ψ(F) for all F ∈ R

n×n , which is immediate from (2.34) since ψ ≥ 0;
(iii) for F in a sufficiently small neighbourhood of I , ψ̄(F) = ψ(F), since det F is then

close to det I = 1, and hence

ψ̄(I ) = ψ(I ), Dψ̄(I ) = Dψ(I ), D2ψ̄(I ) = D2ψ(I ). (2.35)

Properties (i) and (ii) of ψ̄ , together with (2.31), then ensure that

I (y) ≥ Î (U )+ ε2

2

∫

Ω

|D2 y|2 dx, (2.36)

where Î : W 1,2(Ω, Sn×n) → R is defined by

Î (U ) =
∫

Ω

ψ̄(U )+ ε2

2ρ2 |DU |2 dx . (2.37)

We will deduce the required estimate (2.12) from (2.36) by applying [33, Theorem 2.1] to
Î . First note that (2.2), (2.3) and (2.35) give that I is a local minimum of ψ̄ with

D2ψ̄(I )(G,G) ≥ ν|G|2 for all G ∈ Sn×n,

and hence for G ∈ W 1,2(Ω; Sn×n),
∫

Ω

Dψ̄(I )G dx = 0, (2.38)

and
∫

Ω

D2ψ̄(I )(G,G)+ ε2

ρ2 |DG|2 dx ≥
∫

Ω

ν|G|2 + ε2

ρ2 |DG|2 dx

≥ ν̂‖G‖2
W 1,2 , (2.39)

for some ν̂ > 0. It thus follows immediately from [33, Theorem 2.1] that there exist σ1 > 0
and δ1 > 0 such that

Î (U )− Î (I ) ≥ σ1‖U − I‖2
W 1,2

= σ1

∫

Ω

|U − I |2 + |DU |2 dx, (2.40)
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whenever ‖U − I‖L2 < δ1. Take δ1, σ1 > 0 as in (2.40) and let δ = δ1/
√

2c(δ1), with c(δ1)

as in (2.26). Estimates (2.29), (2.40) and (2.36) then yield that

I (y) ≥ I (y)+ σ1

∫

Ω

∣∣∣∣
√

DyT Dy − I

∣∣∣∣
2

dx + ε2

2

∫

Ω

|D2 y|2 dx, (2.41)

whenever ‖y − y‖L1(Ω) < δ and
∫
Ω

|D2 y|2 dx ≤ L . The result (2.12) is now a consequence
of (2.23) and (2.41). ��

3 Structure of interfaces

The planar interface conditions (1.5) and (1.6) imply that Dy has a rank-one structure.

Lemma 3.1 Let F ∈ W 1,1
loc (R; R

n×n) satisfy (1.5) and (1.6). Then there exist a constant
vector a ∈ R

n and a function u : R → R
n such that

u(s) → 0, a as s → −∞,∞, (3.1)

and for all x ∈ R
n,

F (x · N ) = A + u(x · N )⊗ N ; (3.2)

in particular,

B = A + a ⊗ N , (3.3)

and so B is rank-one connected to A.

Proof Assume without loss of generality that N = e1, so that x · N = e1, and define
φ ∈ C∞

0 (R
n) by

φ(x) =
n∏

p=1

φ p(x p), x = (x1, . . . , xn) ∈ R
n,

where φ p ∈ C∞
0 (R) for each 1 ≤ p ≤ n, and

∫
R
φ p = 1 for each 2 ≤ p ≤ n. Now

Dy(x) = F (x1) is a gradient, so for each 1 ≤ i, j, k ≤ n we have
∫

Rn

Fi j (x1)φ,k(x) dx =
∫

Rn

Fik(x1)φ, j (x) dx, (3.4)

and hence

∫

Rn

Fi j (x1)(φ
k)′(xk)

⎛
⎝∏

p �=k

φ p(x p)

⎞
⎠ dx =

∫

Rn

Fik(x1)(φ
j )′(x j )

⎛
⎝∏

p �= j

φ p(x p)

⎞
⎠ dx,

so that ∫

R

δ1kFi j (x1)(φ
1)′(x1) dx1 =

∫

R

δ1 j Fik(x1)(φ
1)′(x1) dx1,
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since
∫

R
φ p = 1 for p ≥ 2, and hence∫

R

[
δ1kFi j (x1)− δ1 j Fik(x1)

]
(φ1)′(x1) dx1 = 0.

It then follows, by the du Bois–Reymond lemma, that there exist constants Ci jk such that

δ1kFi j (x1)− δ1 j Fik(x1) = Ci jk for all x1 ∈ R, (3.5)

which when k = 1 gives

Fi j (x1) = Ci j1 + Fi1(x1)δ1 j , x1 ∈ R. (3.6)

Now (3.6) and (1.6) give that

Ai j = Ci j1 + Ai1δ1 j , Bi j = Ci j1 + Bi1δ1 j , for 1 ≤ i, j ≤ n, (3.7)

and hence

Bi j = Ai j + (Bi1 − Ai1)δ1 j ,

so that

B = A + a ⊗ e1,

where

a = (B − A)e1 ∈ R
n . (3.8)

Equation (3.6) and the first equation in (3.7) also yield that

Fi j (x1) = Ai j + (Fi1(x1)− Ai1)δ1 j ,

and so

F (x1) = A + u(x1)⊗ e1,

where u : R → R
n is given by u(s) = (F (s) − A)e1. It follows from (1.6) and (3.8) that

u(s) → 0, a as s → −∞,∞. ��
A deformation y : R

n → R
n having gradient satisfying (1.5) and (1.6) must be of form

y(x) = Ax + U (x · N ), (3.9)

where U : R → R
n and U ′ = u, since (3.2) yields that D(y(x)− Ax − U (x · N )) = 0 for

such y.
It is in fact not necessary to assume the one-dimensional form (1.5) to obtain that B must

be rank-one connected to A. The next lemma can be proved by a rescaling argument, the
details of which we omit, and was first established in an unpublished manuscript of K. Huang.

Lemma 3.2 Suppose that y ∈ L1
loc(R

n,Rn) and there exist A, B ∈ R
n×n and a unit vector

N ∈ R
n such that

(i) Dy ∈ L∞(Rn,Rn×n);

(ii) Dy( j x) →
{

A if x · N < 0,
B if x · N > 0,

as j → ∞ for a.e. x ∈ R
n.

Then there exists a ∈ R
n such that

B = A + a ⊗ N .
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Note that condition (i) in Lemma 3.2 is necessary; the function y : R
2 → R

2 given by

y(x1, x2) =
(

ln(cosh x1)− x1
2

x2 (tanh x1 + 1
2 )

)
,

satisfies

Dy( j x1, j x2) =
(

tanh j x1 − 1
2 0

j x2 sech2 j x1 tanh j x1 + 1
2

)

→
(− 3

2 0
0 − 1

2

)
or

( 1
2 0
0 3

2

)
as j → ∞,

depending on whether x1 < 0 or x1 > 0.

4 Existence of planar interfaces

Substitution of the ansatz (3.2) into the energy (1.1) leads naturally to a reduced energy
functional of form

J (u) =
∫

R

ψ(A + u(s)⊗ N )+ ε2|u′(s)|2 ds, (4.1)

since N is a unit vector, and so

|D2 y(x)|2 = yi,αβ yi,αβ = u′
i (x · N )u′

i (x · N )NαNαNβNβ = |u′(x · N )|2.
We will seek a planar interface solution y to the Euler–Lagrange equations for the original
functional (1.1) by minimizing the reduced functional (4.1) among a class of u : R → R

n

satisfying (3.1). There are two main steps: first, to obtain a solution to the Euler–Lagrange
equations for the reduced problem (4.1), and second, to show that, via (3.2), this in fact yields
a solution of the Euler–Lagrange equations of the original problem (1.1).

The problem of minimizing functionals of the form

E (u) =
∫

R

W (u(s))+ ε2|u′(s)|2 ds (4.2)

among vector-valued u : R → R
n connecting two minima of the potential W was first

addressed as a side-issue by Sternberg [32], where critical points of (4.2) are obtained via
minimization of the related functional

inf
γ (−1)=α,γ (1)=β

1∫

−1

√
W (γ (t))|γ ′(t)| dt (4.3)

among suitable parametrised curves γ : [−1, 1] → R
n connecting minima a and b of W .

There are also a number of later articles [1,3,13,29] in which the existence of a minimizer
for (4.2) in some class of u is addressed directly via minimization of (4.2) under various
hypotheses on the potential W . In particular, conditions are needed on the form of W close
to the minima a and b in order to obtain compactness properties of minimizing sequences. A
recent paper of Alikakos and Fusco [3] uses a constrained minimization argument to establish
the existence of a minimizing connection under non-degeneracy conditions on the minima of
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W that are notably weaker than those in previous work, which typically required quadratic
behaviour of W close to the minima a and b.

We exploit [3] to obtain an existence result for our reduced functional (4.1). The follow-
ing theorem is proved in [3, Theorems 3.1, 3.2]. Assumption (ii) is a mild non-degeneracy
condition on the behaviour of W near the minima of W . Here and in the following, we use
the usual notation Sn−1 := {u ∈ R

n : |u| = 1}.
Theorem 4.1 (Alikakos and Fusco [3]) Suppose W : R

n → R is a C2-function such that

(i) there exist a− �= a+ such that W (a±) = 0 and W (u) > 0 for all u ∈ R
n, u �= a±;

(ii) there exists r0 ∈ (0, |a+ − a−|) such that each of the maps r �→ W (a+ + rξ),
r �→ W (a− + rξ) has a strictly positive derivative for every r ∈ (0, r0) and for each
ξ ∈ Sn−1;

(iii) lim inf |u|→∞ W (u) > 0.

Let C be the set

C :=
{

u ∈ W 1,2
loc (R,R

n) : lim
s→−∞ u(s) = a−, lim

s→∞ u(s) = a+
}
. (4.4)

Then there exists u0 ∈ C such that

E (u0) = inf
u∈C

E (u), (4.5)

where E is as defined in (4.2).

To use Theorem 4.1 to obtain an existence result for the reduced problem (4.1), we need some
preliminary lemmas. The first concerns the fact that, since the stored energy function ψ is
defined on R

n×n+ , we are interested in vectors u : R → R
n for which det(A + u(s)⊗ N ) > 0

for all s ∈ R.

Lemma 4.2 Let ψ : R
n×n+ → R satisfy the conditions (f), (m) and (n) on frame indiffer-

ence, multi-well structure and non-interpenetration given in the Introduction. Suppose that
A ∈ SO(n)Ui0 and B ∈ SO(n)U j0 , i0 �= j0 are such that B = A+a⊗ N for some a, N ∈ R

n

with a �= 0 and |N | = 1. Define the open half-space

H := {u ∈ R
n : 1 + u · A−T N > 0} ⊂ R

n . (4.6)

Then

(i) det(A + u ⊗ N ) > 0 ⇔ u ∈ H ,
det(A + u ⊗ N ) = 0 ⇔ u ∈ ∂H ;

(ii) ψ(A + u ⊗ N ) → ∞ as u → ∂H .

Proof The fact that

det(A + u ⊗ N ) = det A det(I + u ⊗ A−T N ) = det A(1 + u · A−T N ),

yields (i), and (ii) is then an immediate consequence of condition (n). ��
With H as in Lemma 4.2, we now define W : H → [0,∞) by

W (u) = ψ(A + u ⊗ N ); (4.7)

by Lemma 4.2(ii),

W (u) → ∞ as u → ∂H . (4.8)

The next lemma concerns the minima of W (u). It involves an interplay between the rank-one
structure (3.2) and the frame-indifference of the function ψ in (4.1).
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Lemma 4.3 Let ψ, A, B, a, N and H be as in the statement of Lemma 4.2. Suppose in
addition that A, N and the Ui , 1 ≤ i ≤ k, in (m) are such that

A + b ⊗ N �∈ ∪ 1≤i≤k,
i �=i0, j0

SO(n)Ui for all b ∈ H . (4.9)

Then

W (0) = W (a) = 0 and W (u) > 0 for all u ∈ H with u �∈ {0, a}.
Proof Note first that W (u) = ψ(A + u ⊗ N ) ≥ 0 for all u ∈ H , and W (u) = 0 if and only
if A + u ⊗ N ∈ ∪1≤i≤kSO(n)Ui . By condition (4.9), A + u ⊗ N �∈ ∪ 1≤i≤k,

i �=i0, j0
SO(n)Ui for any

u ∈ H . If A+u ⊗ N ∈ SO(n)Ui0 = SO(n)A, then u = 0, since A is not rank-one connected
to any element of SO(n)A. Likewise, if A+u⊗N = B+(u−a)⊗N ∈ SO(n)U j0 = SO(n)B,
then u − a = 0, since B is not rank-one connected to any element of SO(n)B. Hence
W (u) = 0 ⇔ u ∈ {0, a}, as required. ��
Remark Condition (4.9) ensures that even if ψ has more than two energy-minimizing wells,
the function W has only two zeroes. This is important because, in general, the existence of
more than two zeroes of W can result in the non-existence of connections between a given
pair of zeroes. See, for example, Alama et al. [1], Alikakos et al. [2], Alikakos and Fusco [3],
Stefanopolous [31], and also Fife and McLeod [18] and Volpert et al. [35]. The condition
(4.9) holds in particular for the martensite wells in a cubic to tetragonal transition, when
k = 3 and U1 = diag(η2, η1, η1), U2 = diag(η1, η2, η1) and U3 = diag(η1, η1, η2). For
each k ∈ {2, 3}, U1 + a ⊗ N ∈ SO(3)Uk if and only if either

a =
√

2(η2
k − η2

1)

η2
1 + η2

k

(−ηke1 + η1ek), N = 1√
2
(e1 + ek), (4.10)

or

a =
√

2(η2
k − η2

1)

η2
1 + η2

k

(−ηke1 − η1ek), N = 1√
2
(e1 − ek), (4.11)

where ei , i ∈ {1, 2, 3}, denotes the standard unit vector in direction xi . It clearly follows
from (4.10) and (4.11) that if N is such that U1 + a ⊗ N ∈ SO(3)U2 for some a ∈ R

3, then
U1 + u ⊗ N �∈ SO(3)U3 for any u ∈ R

3.

But (4.9) does not, alas, hold in general. A counterexample, which was pointed out to us
by Bhattacharya, is given by a special choice of lattice parameters in the martensite wells in
a cubic to orthorhombic transition, when k = 6. With the first three variants U1,U2 and U3

of the six variants U1, . . . ,U6 taken to be

U1 =
⎛
⎝β 0 0

0 α+γ
2

α−γ
2

0 α−γ
2

α+γ
2

⎞
⎠, U2 =

⎛
⎝β 0 0

0 α+γ
2

γ−α
2

0 γ−α
2

α+γ
2

⎞
⎠, U3 =

⎛
⎝

α+γ
2 0 α−γ

2
0 β 0
α−γ

2 0 α+γ
2

⎞
⎠,

where α, β, γ > 0 and γ > α, it is shown in Hane [19] that there exists a rank-one connection
between U1 and SO(3)U2 with N = e3, and also a rank-one connection between U1 and
SO(3)U3 with

N = (2β2 − α2 − γ 2)(e1 + e2)+ 2(γ 2 − α2)e3√
8β2(β2 − α2 − γ 2)+ 6α4 − 4α2γ 2 + 6γ 4

.
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Hence if

2β2 − α2 − γ 2 = 0, (4.12)

the normal N = e3 arises in rank-one connections both between U1 and SO(3)U2 and
between U1 and SO(3)U3. Note, however, that experimental values of α, β and γ typically
satisfy α, γ ≥ 1 and β < 1 (see Bhattacharya [11, Table 4.2]), for which (4.12) is impossible.

It is of interest to establish whether or not (4.9) is in some sense generic. The following
lemma gives a sufficient condition for the non-degeneracy (4.9) to hold in the case when
n = 3 and the matrices {Ui }k

i=1 in (m) satisfy additional conditions that are implied by
imposing cubic material symmetry (see Sect. 6) on ψ .

Lemma 4.4 Suppose that the matrices U1, U2, . . .Uk ∈ R
3×3+ in the multi-well structure

(m) are symmetric, |U1|2 = |U2|2 = · · · = |Uk |2, and

cof(U 2
j0 − U 2

i0
) · (U 2

l − U 2
i0
) �= 0 (4.13)

for some i0, j0 ∈ {1, . . . , k}, i0 �= j0, and all l ∈ {1, . . . , k} \ {i0, j0}. Then condition (4.9)
is satisfied with A = Ui0 and N ∈ R

3 such that A + a ⊗ N ∈ SO(3)U j0 for some a ∈ R
3.

Proof Suppose not. Then there exist j0, l ∈ {1, . . . , k} \ {i0}, j0 �= l, N ∈ R
3 with |N | = 1,

and a, b ∈ R
3 such that

Ui0 + a ⊗ N ∈ SO(3)U j0 and Ui0 + b ⊗ N ∈ SO(3)Ul .

Since U j0 and Ul are symmetric, there exist vectors c, d ∈ R
3 such that

U 2
j0 − U 2

i0
= c ⊗ N + N ⊗ c,

U 2
l − U 2

i0
= d ⊗ N + N ⊗ d,

and as |U j0 | = |Ul | = |Ui0 |, taking the trace of these equalities implies that

c · N = 0, d · N = 0. (4.14)

Now for each μ ∈ R, the matrix

μ(U 2
l − U 2

i0
)+ (U 2

j0 − U 2
i0
) = (μd + c)⊗ N + N ⊗ (μd + c)

has rank two, since μd + c and N are orthogonal for every μ, and thus

det[μ(U 2
l − U 2

i0
)+ (U 2

j0 − U 2
i0
)] = 0 for all μ ∈ R. (4.15)

The left-hand side of (4.15) is a polynomial in μ, and the coefficient of μ, given by the
derivative of the left-hand side evaluated when μ = 0, must be zero. Hence

cof(U 2
j0 − U 2

i0
) · (U 2

l − U 2
i0
) = 0,

which contradicts (4.13). ��
Note that in the cubic to orthorhombic transition, (4.13) holds for i0 = 1, j0 = 2 and l = 3
if and only if the lattice parameters α, β and γ do not satisfy equation (4.12), because

cof(U 2
2 − U 2

1 ) =
⎛
⎝−(α2 − γ 2)2 0 0

0 0 0
0 0 0

⎞
⎠ ,
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and

U 2
3 − U 2

1 = 1

2

⎛
⎝−(2β2 − α2 − γ 2) 0 α2 − γ 2

0 2β2 − α2 − γ 2 −(α2 − γ 2)

α2 − γ 2 −(α2 − γ 2) 0

⎞
⎠ ,

so that

cof(U 2
2 − U 2

1 ) · (U 2
3 − U 2

1 ) = (α2 − γ 2)2(2β2 − α2 − γ 2)

2
= 0 ⇔ 2β2 − α2 − γ 2 = 0,

since α �= γ .
We conclude this remark on condition (4.9) by noting that Alama et al. [1] and Alikakos

and Fusco [3] (see also [31]) show that a sufficient condition for the existence of a connection
between two given zeroes a1 and a2 of W in the presence of a third zero a3 is that

e12 < e13 + e32, (4.16)

where ei j denotes the minimal energy of a connection between ai and a j . Symmetry condi-
tions on the function W can ensure that (4.16) is satisfied; see, for example, Stefanopolous
[31], and also Bronsard et al. [13]. However, in spite of physically realistic ψ having mate-
rial-symmetry properties in addition to frame-indifference (f), it is not clear that for such
ψ , the function W (·) = ψ(A + · ⊗ N ) satisfies sufficient symmetry to ensure that (4.16) is
typically satisfied if (4.9) fails, essentially because imposing the ansatz A + u ⊗ N partially
breaks the symmetry of ψ . An illustration of this is given by the fact that in the cubic to
orthorhombic example given above, the vectors a and b in the two rank-one connections
U1 + a ⊗ e3 ∈ SO(3)U2 and U1 + b ⊗ e3 ∈ SO(3)U3 do not have the same length and thus
cannot be related by a rotation (see Hane [19] for details).

The next lemma addresses the fact that Theorem 4.1 cannot be applied directly using W
defined in (4.7); W is only defined on a half-space H and blows-up at the boundary ∂H .
To overcome this difficulty, we will show, under an additional condition on the behaviour of
ψ(A + u ⊗ N ) when A + u ⊗ N is close to ∂H , that minimizing sequences for (4.1) stay
away from ∂H , and then construct a modified function Ŵ which will be used to prove an
existence result for (4.1).

Lemma 4.5 Let A, B, a, N and H be as in Lemma 4.2 and a convex open set Ω ⊂ R
n be

such that

H ⊂ Ω ⊂ R
n, (4.17)

(with non-strict inclusion, i.e. Ω = H or R
n permitted). Suppose that W̃ : Ω → [0,∞)

has the property that there exists ν0 > 0 such that det A > ν0, det(A + a ⊗ N ) > ν0, and

d

dt
W̃ (u + t A−T N )

∣∣∣∣
t=0

< 0 (4.18)

whenever u ∈ Ω and det(A + u ⊗ N ) < ν0. Define

C̃ := {u ∈ W 1,2
loc (R,Ω) : lim

s→−∞ u(s) = 0, lim
s→∞ u(s) = a}, (4.19)

C̃ν0 := {u ∈ C̃ : det(A + u(s)⊗ N ) ≥ ν0 for all s ∈ R}, (4.20)
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and

Ẽ (u) :=
∫

R

W̃ (u(s))+ ε2|u′(s)|2 ds, u ∈ C̃ . (4.21)

Then

(i)

inf
u∈C̃

Ẽ (u) = inf
u∈C̃ν0

Ẽ (u); (4.22)

(ii) if u0 ∈ C̃ is such that

Ẽ (u0) = inf
C̃

Ẽ (u), (4.23)

then u0 ∈ C̃ν0 .

Proof Let u ∈ C̃ with det(A + u(s) ⊗ N ) < ν0 for some s ∈ R. We will show that there
exists û ∈ C̃ν0 with Ẽ (û) < Ẽ (u), from which both (i) and (ii) follow immediately.

Note that

det(A + u ⊗ N ) = ν0 ⇔ 1 + u · A−T N = ν0

det A
=: ν̃0.

Define û ∈ C̃ν0 by

û(s) =
⎧⎨
⎩

u(s) if det(A + u(s)⊗ N ) ≥ ν0;
u(s)+

(−1 + ν̃0 − u(s) · (A−T N )

|A−T N |2
)

A−T N if det(A + u(s)⊗ N ) < ν0.

(4.24)

If det(A+u(s)⊗N ) < ν0 then det(A+û(s)⊗N ) = ν0, and since u(s)· A−T N < −1+ ν̃0 =
û(s) · A−T N it thus follows that

W̃ (û(s)) < W̃ (u(s)).

Also

|û′(s)|2 = |u′(s)|2 + (u′(s) · A−T N )2

|A−T N |2 − 2
(u′(s) · A−T N )2

|A−T N |2

= |u′(s)|2 − (u′(s) · A−T N )2

|A−T N |2
≤ |u′(s)|2.

Hence

Ẽ (û) < Ẽ (u),

as required. ��
Our main existence theorem is the following.

Theorem 4.6 Let ψ, A, B, a, N and H be as in the statement of Lemma 4.3. Suppose that
ψ also satisfies
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(i) ψ ∈ C2(Rn×n+ ,R);
(ii) there exists r0 ∈ (0, |a|) such that each of the maps r �→ ψ(A + rξ ⊗ N ) and

r �→ ψ(B + rξ ⊗ N ) has a strictly positive derivative for every r ∈ (0, r0) and for
each ξ ∈ Sn−1;

(iii) lim inf |u|→∞ ψ(A + u ⊗ N ) > 0;
(iv) there exists ν0 ∈ (0,min{det A, det B}) such that

d

dt
ψ(A + u ⊗ N + t A−T N ⊗ N )

∣∣∣∣
t=0

< 0

whenever u ∈ H and det(A + u ⊗ N ) < ν0.

Let C = {u ∈ W 1,2
loc (R,H ) : lims→−∞ u(s) = 0, lims→∞ u(s) = a}. Then there exists

u0 ∈ C such that

J (u0) = inf
u∈C

J (u), (4.25)

where J is as defined in (4.1).

Proof Let W : H → R be defined as in (4.7), E be defined as in (4.2) with this choice of
W , and ν̃0 = ν0/ det A. We will extend W to a function Ŵ : R

n → R by “stretching” the
part of W close to ∂H . First let f : R → (−1,∞) be such that

(i) f ∈ C2(R, (−1,∞));
(ii) f (s) = s for all s ≥ −1 + ν̃0;

(iii) f (s) → −1 as s → −∞;
(iv) f ′(s) > 0 for all s ∈ R.

Then for all u ∈ R
N ,

det

(
A +

(
u + f (u · A−T N )− u · A−T N

|A−T N |2 A−T N

)
⊗ N

)
= det A(1 + f (u · A−T N )),

and hence

det

(
A +

(
u + f (u · A−T N )− u · A−T N

|A−T N |2 A−T N

)
⊗ N

)
> 0, (4.26)

and

det

(
A +

(
u + f (u · A−T N )− u · A−T N

|A−T N |2 A−T N

)
⊗ N

)
< ν0

⇔ det(A + u ⊗ N ) < ν0. (4.27)

From (4.26), we can define Ŵ : R
n → R as

Ŵ (u) := W

(
u +

(
f (u · A−T N )− u · A−T N

|A−T N |2
)

A−T N

)
, u ∈ R

n .

Then Ŵ ∈ C2(Rn,R) and satisfies

(i) Ŵ (u) = W (u) whenever det(A + u ⊗ N ) ≥ ν0;
(ii) Ŵ (u) ≥ 0 for all u ∈ R

n ;
(iii) Ŵ (u) = 0 if and only if u ∈ {0, a}, by Lemma 4.3 and (4.27);
(iv) lim inf |u|→∞ Ŵ (u) > 0.
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It thus follows from Theorem 4.1 that there exists u0 ∈ Ĉ := {u ∈ W 1,2
loc (R,R

n) :
lims→−∞ u(s) = 0, lims→∞ u(s) = a} such that

Ê (u0) = inf
u∈Ĉ

Ê (u),

where

Ê (u) :=
∫

R

Ŵ (u(s))+ ε2|u′(s)|2 ds, u ∈ Ĉ .

Now let u ∈ R
n be such that det(A + u ⊗ N ) < ν0 and define

z∗(t) := f (u · A−T N + t |A−T N |2)− u · A−T N

|A−T N |2 , t ∈ R.

Then Ŵ (u + t A−T N ) = W
(
u + z∗(t)A−T N

)
, and by (4.27), det(A + (u + z∗(0)A−T N )⊗

N ) < ν0. So

d

dt
Ŵ (u + t A−T N )

∣∣∣∣
t=0

= d

dz
W (u + z A−T N )

∣∣∣∣
z=z∗(0)

dz∗

dt

∣∣∣∣
t=0

= d

dz
W (u + z A−T N )

∣∣∣∣
z=z∗(0)

f ′(u · A−T N + t |A−T N |2)
∣∣∣
t=0

= f ′(u · A−T N )
d

dz
W (u + z A−T N )

∣∣∣∣
z=z∗(0)

< 0,

by condition (iv) on ψ(A + u ⊗ N + t A−T N ⊗ N ) = W (u + t A−T N ) in the statement
of the theorem. Hence it follows from Lemma 4.5 applied with Ω = R

n , W̃ = Ŵ and
C̃ν0 = Ĉν0 := {u ∈ Ĉ : det(A + u ⊗ N ) ≥ ν0} that

inf
u∈Ĉ

Ê (u) = inf
u∈Ĉν0

Ê (u),

and that

u0 ∈ Ĉν0 .

On the other hand, Lemma 4.5 applied with Ω = H yields that

inf
u∈C

E (u) = inf
u∈Cν0

E (u),

where Cν0 := {u ∈ C : det(A + u(s)⊗ N ) ≥ ν0 for all s ∈ R}, again using condition (iv)
in the statement of the theorem. Since W (u) = Ŵ (u) for all u with det(A + u ⊗ N ) ≥ ν0, it
follows that

inf
u∈Ĉ

Ê (u) = inf
u∈Ĉν0

Ê (u) = inf
u∈Cν0

E (u) = inf
u∈C

E (u),

and hence

E (u0) = inf
u∈C

E (u). ��

The next two lemmas show that conditions (ii) and (iv) in Theorem 4.6 hold for a reasonably
large class of ψ .
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Lemma 4.7 Define ψ : R
n×n+ → R by

ψ(F) := h(det F)+ g(F),

where

(i) h ∈ C2((0,∞),R) and h′(z) → −∞ as z → 0+;
(ii) g ∈ C2(Rn×n+ ,R) and Dg(F) is bounded on {F ∈ R

n×n+ : det F < ν} for some ν > 0.

Then there exists ν0 > 0 such that

d

dt
ψ(A + (u + t A−T N )⊗ N )

∣∣∣∣
t=0

< 0

whenever 0 < det(A + u ⊗ N ) < ν0; that is, ψ satisfies condition (iv) in Theorem 4.6.

Proof First note that det(A + (u + t A−T N )⊗ N ) = det A(1 + (u + t A−T N ) · A−T N ), and
hence

d

dt
det(A + (u + t A−T N )⊗ N ) = det A|A−T N |2.

So

d

dt
ψ(A + (u + t A−T N )⊗ N )

∣∣∣∣
t=0

= h′(det(A + u ⊗ N )) det A|A−T N |2 + Dg(A + u ⊗ N )N · A−T N < 0

if det(A + u ⊗ N ) is sufficiently small, since Dg(A + u ⊗ N ) is bounded and h′(det(A +
u ⊗ N )) → −∞ as det(A + u ⊗ N ) → 0. ��
Lemma 4.8 Let A ∈ R

n×n+ and ψ ∈ C2(Rn×n+ ,R) be such that ψ(M) ≥ ψ(A) whenever
|M − A| ≤ δ for some δ > 0, let the frame-indifference condition (f) hold, and suppose there
exists γ > 0 such that

D2ψ(A)(G A,G A) ≥ γ |G|2 for all G ∈ Sn×n . (4.28)

Then given N ∈ R
n, there exists r0 > 0 such that for each ξ ∈ Sn−1, the map r �→

ψ(A + rξ ⊗ N ) has a strictly positive derivative for every r ∈ (0, r0); that is, condition (ii)
in Theorem 4.6 is satisfied at A.

Proof Note first that for each t ∈ R and K ∈ R
n×n with K T = −K ,

∂ψ

∂Fiα
(eK t A) = 0, (4.29)

since Dψ(R A) = 0 for all R ∈ SO(n)A. Then differentiating (4.29) with respect to t and
setting t = 0 yields that

∂2ψ

∂FjβFiα
(A)K jl Alβ = 0, (4.30)

and hence for any G, K ∈ R
n×n with GT = G and K T = −K ,

D2ψ(A)((G + K )A, (G + K )A)

= D2ψ(A)(K A, K A)+ 2D2ψ(A)(K A,G A)+ D2ψ(A)(G A,G A)

= D2ψ(A)(G A,G A)

≥ γ |G|2. (4.31)
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In particular, given N ∈ R
n and ξ ∈ Sn−1, taking G = 1

2 [ξ ⊗ A−T N + A−T N ⊗ ξ ] and
K = 1

2 [ξ ⊗ A−T N − A−T N ⊗ ξ ] gives G + K = ξ ⊗ A−T N and (G + K )A = ξ ⊗ N .
Since

|G|2 = 1

2
[|ξ |2|A−T N |2 + (ξ · (A−T N ))2]

≥ 1

2
|A−T N |2,

it follows from (4.31) that

D2ψ(A)(ξ ⊗ N , ξ ⊗ N ) ≥ γ

2
|A−T N |2 for all ξ ∈ R

n, |ξ | = 1. (4.32)

Now since u = 0 is a local minimum of ψ(A + u ⊗ N ),

d

dt
ψ(A + tξ ⊗ N )

∣∣∣∣
t=t0

= d

dt
ψ(A + tξ ⊗ N )

∣∣∣∣
t=t0

− d

dt
ψ(A + tξ ⊗ N )

∣∣∣∣
t=0

= t0 D2ψ(A + τ(ξ)ξ ⊗ N )(ξ ⊗ N , ξ ⊗ N ) for some τ(ξ) ∈ (0, t0)

= t0[D2ψ(A)(ξ ⊗ N , ξ ⊗ N )

+{D2ψ(A + τ(ξ)ξ ⊗ N )− D2ψ(A)}(ξ ⊗ N , ξ ⊗ N )]
≥ t0

[γ
2

|A−T N |2 + {D2ψ(A + τ(ξ)ξ ⊗ N )− D2ψ(A)}(ξ ⊗ N , ξ ⊗ N )
]

≥ t0
γ

4
|A−T N |2

when t0 ≤ r0 for some r0 > 0 independent of ξ , by (4.32) and the continuity of D2ψ

at A. ��
Remark Condition (ii) in Theorem 4.6 is a very mild growth condition at the minima
and allows the wells to be much “flatter” than the condition in Lemma 4.8. Lemma 4.10
below shows that (ii) is also satisfied under natural growth conditions on ψ(F) in terms
of dist(F,SO(n)A) and dist(F,SO(n)B) when F is close to SO(n)A and SO(n)B, respec-
tively. The key is the following lemma, which shows that the degeneracy from the frame-
indifference condition (f) is counteracted by the rank-one ansatz (3.2). Underlying the proof
is the fact that the rank-one cone {I + u ⊗ N : u ∈ R

n} is transversal to the tangent space to
SO(n) at the identity I , which consists of all skew-symmetric perturbations of I .

Lemma 4.9 Let N ∈ R
n be a unit vector and G ∈ R

n×n be invertible. Then there exists
κ > 1 such that for all u ∈ R

n,

|u| ≤ κ dist (G + u ⊗ N , SO(n)G) ≤ κ|u|. (4.33)

Proof The second inequality in (4.33) is immediate. Suppose, for contradiction, that for each
j ∈ N there exists u( j) ∈ R

n such that

|u( j)| ≥ j dist(G + u( j) ⊗ N ,SO(n)G). (4.34)

Let R( j) ∈ SO(n) be such that

dist(G + u( j) ⊗ N ,SO(n)G) = |G + u( j) ⊗ N − R( j)N |,
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and choose c > 0 so that |FG| ≥ c|F | for all F ∈ R
n×n . Then (4.34) implies that

|u( j)| ≥ j |G + u( j) ⊗ N − R( j)N |
= j |(I − R( j) + u( j) ⊗ G−T N )G|
≥ jc|I − R( j) + u( j) ⊗ G−T N |, (4.35)

and hence

|u( j)|
j

≥ c
∣∣∣|u( j)||G−T N | − |I − R( j)|

∣∣∣ , (4.36)

from which it follows that u( j) is bounded independently of j . There thus exist u ∈ R
n ,

R ∈ SO(n) and subsequences of {u( j)}∞j=1 and {R( j)}∞j=1, not relabelled, such that

u( j) → u and R( j) → R as j → ∞.

Moreover,

I − R + u ⊗ G−T N = 0, (4.37)

by (4.35), and hence u = 0 and R = I , since the only matrix in SO(n) to which I is rank-one
connected is I itself. It also follows from (4.35) that

1

jc
≥

∣∣∣∣∣
I − R( j)

|u( j)| + u( j)

|u( j)| ⊗ N

∣∣∣∣∣, (4.38)

and hence
I − R( j)

|u( j)| is bounded independently of j . So there exist K ∈ R
n×n , y ∈ R

n with

|y| = 1, and further subsequences of {u( j)}∞j=1 and {R( j)}∞j=1, again not relabelled, such that

I − R( j)

|u( j)| → K and
u( j)

|u( j)| → y as j → ∞, (4.39)

and, by (4.38), y and K satisfy

− y ⊗ N = K . (4.40)

Now it follows from (4.39) and the fact that R( j) → I as j → ∞ that

(R( j))T (I − R( j))

|u( j)| → K as j → ∞, (4.41)

whereas (4.39) also yields that

(R( j))T (I − R( j))

|u( j)| = −(I − R( j))T

|u( j)| → −K T as j → ∞. (4.42)

So K = −K T , by (4.41) and (4.42); that is, K is a skew-symmetric matrix. But
this contradicts (4.40), since |y| = 1 and a non-zero rank-one matrix cannot be skew-
symmetric. ��
Lemma 4.10 Let ψ , a, N , A and B be as in Lemma 4.2. Suppose further that there exist
μ > 0, 0 < α < β and p ∈ N with p ≥ 2 such that ψ is a C p-function, and for each
G ∈ {A, B},

α distp(F, SO(n)G) ≤ ψ(F) ≤ β distp(F, SO(n)G), (4.43)
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if F ∈ R
n×n+ is such that dist(F, SO(n)G) ≤ μ. Then condition (ii) in Theorem 4.6 is satisfied

for this choice of ψ .

Proof Fix G ∈ {A, B} and define a mapping f : Sn−1 × [0,∞) → R by

f (ξ, r) := ψ(G + rξ ⊗ N ).

Then it follows from (4.43) and Lemma 4.9 that there exists κ > 1 such that for all ξ ∈ Sn−1

and r ∈ [0, μ),
α

κ p
r p ≤ f (ξ, r) ≤ βr p. (4.44)

Since Taylor’s theorem gives that for all r ∈ [0, μ) and ξ ∈ Sn−1,

f (ξ, r) =
p−1∑
k=0

∂k f

∂rk
(ξ, 0)

rk

k! + ∂ p f

∂r p
(ξ, θr,ξ )

r p

p! , θr,ξ ∈ (0, r), (4.45)

it follows from (4.44) that for each ξ ∈ Sn−1,

∂k f

∂rk
(ξ, 0) = 0, 0 ≤ k ≤ p − 1, and

∂ p f

∂r p
(ξ, 0) ≥ αp!

κ p
. (4.46)

Now
∂ p f

∂r p
(·, ·) is uniformly continuous on Sn−1 × [0, μ], so there exists r0 ∈ (0, μ) such

that ∣∣∣∣∂
p f

∂r p
(ξ, r)− ∂ p f

∂r p
(ξ, 0)

∣∣∣∣ ≤ αp!
2κ p

for all (ξ, r) ∈ Sn−1 × [0, r0]. (4.47)

Then application of Taylor’s Theorem with integral form of the remainder to
∂ f

∂r
(ξ, r) gives

that for each ξ ∈ Sn−1,

∂ f

∂r
(ξ, r) =

p−2∑
k=0

∂k+1 f

∂rk+1 (ξ, 0)
rk

k! +
r∫

0

(r − t)p−2

(p − 2)!
∂ p f

∂r p
(ξ, t) dt

=
r∫

0

(r − t)p−2

(p − 2)!
∂ p f

∂r p
(ξ, t) dt, by (4.46),

=
r∫

0

(r − t)p−2

(p − 2)!
[
∂ p f

∂r p
(ξ, 0)+ ∂ p f

∂r p
(ξ, t)− ∂ p f

∂r p
(ξ, 0)

]
dt

≥
r∫

0

(r − t)p−2

(p − 2)!
[
αp!
κ p

− αp!
2κ p

]
dt if r ∈ [0, r0], by (4.46) and (4.47),

= αp!
2(p − 2)!κ p

r p−1

p − 1
> 0. ��

It remains to establish that the function u0 given by (4.25) yields a solution of the Euler–
Lagrange equations of the original functional (1.1).
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Proposition 4.11 Let u0 be given by (4.25). Then

(a) u0 ∈ C3(R,Rn) and satisfies the Euler–Lagrange equations for (4.1),

− 2ε2u′′
0(s)+ ∇W (u0(s)) = 0, s ∈ R, (4.48)

where W (u) := ψ(A + u ⊗ N );
(b) if y0(x) = Ax + U0(x · N ), x ∈ R

n, where U ′
0(s) = u0(s), s ∈ R, then

Dy0(x) := A + u0(x · N )⊗ N

and y0 satisfies the Euler–Lagrange equations of (1.1),

− divDFψ(Dy)+ 2ε2Δ2 y = 0. (4.49)

(The system (4.49) can be written in component form using the summation convention as

−
(
∂ψ

∂Fiα
(Dy)

)
,α

+ 2ε2 yi,ααββ = 0, 1 ≤ i ≤ n,

where ,α denotes differentiation with respect to xα , the αth component of x ∈ R
n . Note that

these are the Euler–Lagrange equations for (1.1) if allowed smooth variations φ of y are such
that both φ and Dφ vanish on the boundary of the domain.)

Proof (a) This is standard. (b) Note first that

∇W (u) = DFψ(A + u ⊗ N ) · N , (4.50)

and so (4.48) gives that

− 2ε2u′′
0(s)+ DFψ(A + u0(s)⊗ N ) · N = 0, s ∈ R, (4.51)

which can be written in component form as

− 2ε2u0
′′
i (s)+ ∂ψ

∂Fiα
(A + u0(s)⊗ N )Nα = 0, s ∈ R, (4.52)

where 1 ≤ i ≤ n. Since u0 ∈ C3(R,Rn), we can then differentiate (4.52) once with respect
to s to get that for each 1 ≤ i ≤ n,

− 2ε2u0
′′′
i (s)+ ∂

∂Fjβ

(
∂ψ

∂Fiα
(A + u0(s)⊗ N )

)
u0

′
j (s)NβNα = 0, s ∈ R. (4.53)

Now if y0 is such that Dy0 = A + u0(x · N )⊗ N , then y0i,α = Aiα + u0i (x · N )Nα . So

y0i,ααββ = u0
′′′
i (x · N )NαNαNβNβ

= u0
′′′
i (x · N ), (4.54)

since |N | = 1, and
(
∂ψ

∂Fiα
(Dy0)

)
,α

= ∂

∂Fjβ

(
∂ψ

∂Fiα
(A + u0(x · N )⊗ N )

)
u0

′
j (x · N )NαNβ. (4.55)

It thus follows from (4.54), (4.55), and (4.53) applied with s = x · N , that (4.49) holds for
such y0, as required. ��
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We finish this section by remarking that one might attempt to obtain a solution to the Euler–
Lagrange equations (4.49) using the alternative, simpler ansatz

Dy(x) = A + λ(x · N )a ⊗ N , (4.56)

where B := A+a⊗N and λ : R → R is such that λ(s) → 0, 1 as s → −∞,∞. Substitution
of the ansatz (4.56) into (1.1) leads to an energy of the form

K (λ) :=
∫

R

ψ(A + λ(s)a ⊗ N )+ ε2|a|2λ′(s)2 ds, (4.57)

since |N | is a unit vector, and so

|D2 y(x · N )|2 = yi,αβ yi,αβ = λ′(x · N )2ai ai NαNαNβNβ = λ′(x · N )2|a|2.
Suppose, for simplicity, that ψ(F) = 0 if and only if F ∈ SO(n)A ∪ SO(n)B. It is straight-
forward to show that ψ(A + λa ⊗ N ) ∈ SO(n)A ∪ SO(n)B if and only if λ ∈ {0, 1}. So
under suitable conditions onψ , to ensure that conditions (ii) and (iii) hold, Theorem 4.1 with
n = 1 and W (y) := ψ(A + ya ⊗ N ) yields the existence of a function λ0 ∈ D = {λ ∈
W 1,2

loc (R,R) : λ(s) → 0, 1 as s → −∞,∞} such that

K (λ0) = inf
λ∈D

K (λ).

Arguments analogous to those in the proof of Proposition 4.11 (a) yield that λ0 ∈ C3(R,R)

and satisfies the (single) Euler–Lagrange equation for (4.57), namely

− 2ε2|a|2λ′′
0(s)+ ∂ψ

∂Fiα
(A + λ0(s)a ⊗ N )ai Nα = 0, s ∈ R. (4.58)

This, however, is not enough to ensure that Dy0(x) := A + λ0(x · N )a ⊗ N satisfies the
system of Euler–Lagrange equations (4.49). Differentiation of (4.58) with respect to s and
substitution of s = x · N gives that

−2ε2|a|2λ′′′
0 (x · N )

+ ∂

∂Fjβ

(
∂ψ

∂Fiα
(A + λ0(x · N )a ⊗ N )

)
ai Nαa j Nβλ

′
0(x · N ) = 0, x · N ∈ R. (4.59)

But for Dy0(x) := A + λ0(x · N )a ⊗ N to satisfy the system of Euler–Lagrange equa-
tions (4.49), we need that for each 1 ≤ i ≤ n,

−2ε2aiλ
′′′
0 (x · N )+ ∂

∂Fjβ

(
∂ψ

∂Fiα
(A + λ0(x · N )a ⊗ N )

)
a j NβNαλ

′
0(x · N ) = 0

for all x · N ∈ R, which does not follow from (4.59) in general.
Of course, supplementary conditions can be imposed on ψ to ensure that the full system

of Euler–Lagrange equations is satisfied. For instance, let {ea, ξ
1, . . . , ξn−1} ⊂ Sn−1 be an

orthonormal basis for R
n with ea = a/|a|, and given u ∈ R

n , write u = uaea +∑n−1
j=1 μ j ξ

j ,
ua, μ1, . . . , μn−1 ∈ R. In these co-ordinates, the Euler–Lagrange equations (4.48) become

− 2ε2u′′
a + ∂

∂ua
ψ(A + u ⊗ N ) = 0, (4.60)

and

− 2ε2μ′′
j + ∂

∂μ j
ψ(A + u ⊗ N ) = 0, j ∈ 1, . . . , n − 1. (4.61)
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Now suppose that, for each u ∈ R
n ,

ψ(A + u ⊗ N ) ≥ ψ(A + uaea ⊗ N ). (4.62)

Then d
dtψ(A+(u+tξ)⊗N )|t=0 = 0 whenever u = λa, λ ∈ R and ξ ∈ {ξ1, . . . , ξn−1}. Thus

Eq. (4.61) automatically hold for any smooth function u : R → R
n of form u(s) = λ(s)a,

s ∈ R, λ(s) ∈ R, and so in particular, for u0(s) = λ0(s)a, s ∈ R, where λ0 satisfies (4.58).
Since (4.58) also implies (4.60), condition (4.62) therefore guarantees that the full system
of Euler–Lagrange equations is satisfied. An example of a function ψ for which (4.62), (f),
(m), (n) and material symmetry all hold is given by modifying the construction in (5.7) and
(5.15) in Sect. 5 by replacing the function h illustrated in Fig. 3 by any h ∈ C∞(R,R) with
h(0) = 1 and h(s) ≥ 1 for all s ∈ R, such as h ≡ 1, for instance. But (4.62) is rather
restrictive in general, and may not hold for physically realistic choices of ψ .

We give an example of a simple stored energy function ψ , inspired by a toy model of
Kružík [21], for which there are no solutions of (4.48) with u(s) = λ(s)a for all s ∈ R. Let
δ > 0 and

A = I − δe3 ⊗ e1, B = I + δe3 ⊗ e1

so that

B = A + a ⊗ N with a = 2δe3, N = e1.

Note that the set SO(3)A∪SO(3)B corresponds precisely to the two variants of martensite that
minimize an energy density ψ at sub-critical temperature in an orthorhombic to monoclinic
phase transformation; see Ball and James [8]. Define ψ : R

n×n+ → R so that

ψ(F) =
∣∣∣FT F − AT A

∣∣∣2
∣∣∣FT F − BT B

∣∣∣2

for F in a neighbourhood of the set {F ∈ R
n×n : F = A + λa ⊗ N , λ ∈ [0, 1]}. Then the

ansatz

F = A + u ⊗ N =
⎛
⎝ 1 + u1 0 0

u2 1 0
u3 − δ 0 1

⎞
⎠ ⇒ FT F

=
⎛
⎝ (u1 + 1)2 + u2

2 + (u3 − δ)2 u2 u3 − δ

u2 1 0
u3 − δ 0 1

⎞
⎠ ,

and routine calculation yields that

ψ(A + u ⊗ N ) = (
2u2

2 + 2u2
3 + [u2

1 + u2
2 + u2

3 + 2(u1 − δu3)]2)
× (

2u2
2 + 2(u3 − 2δ)2 + [u2

1 + u2
2 + u2

3 + 2(u1 − δu3)]2),
from which it follows that

∂

∂u1
ψ(A + u ⊗ N )

∣∣∣∣
u1=0,u2=0

= 8u3(u3 − 2δ)
(
u2

3 + (u3 − 2δ)2 + (u2
3 − 2δu3)

2).
This expression is a non-trivial polynomial in u3, so only vanishes for a discrete set of values
of u3 and cannot equal zero for all u3 ∈ (0, 2δ). Hence the Euler–Lagrange equations of
(4.1), namely

−2ε2u′′
i + ∂

∂ui
ψ(A + u ⊗ N ) = 0, i = 1, 2, 3,
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are not satisfied for any u : R → R
3 with u1 ≡ 0, u2 ≡ 0 and u3(ξ) → 0, 2δ as ξ → −∞,∞.

There is thus no solution of the Euler–Lagrange equations for u of the form u(s) = λ(s)a =
λ(s)2δe3, and so no interface between A and B with Dy(x) = A + λ(x · N )a ⊗ N .

Remark Salje [27] has studied the thickness of a twin boundary in NdGaO3 by rotating
the sample linearly between extreme positions in which the two variants are in focus (i.e.
along the arc of the great circle joining the two extreme positions). In intermediate positions
the two variants are out of focus and the interface is in focus, thus enabling its thickness
to be estimated. Our results imply that in general u might not be a multiple of a, so that
intermediate rotations not on the great circle might lead to different in-focus areas in the
twin boundary. Chrosch and Salje [14] and Salje et al. [28] estimate interface thickness by
fitting to experimental data obtained by diffraction methods a theoretical interface profile,
derived under the assumption that the gradient has the one-dimensional form (4.56). Again,
since (4.56) may not hold in general, it would be interesting to explore alternative methods
of analysing the data.

5 Uniqueness and non-uniqueness of planar interfaces

Assume throughout this section that A, B, a, N and ψ are as in the statement of Theo-
rem 4.6; in particular, that B = A + a ⊗ N . We investigate the uniqueness of solutions of
the Euler–Lagrange equations (4.48) in the class

S = {u ∈ C3(R,Rn); u(s) → 0, a as s → −∞,∞};
note that if u ∈ W 1,2

loc (R,R
n) satisfies the weak Euler–Lagrange equations for (4.1),

then u ∈ C3(R,Rn) and satisfies (4.48). Of course, any solution u of (4.48) yields a
one-parameter family of solutions, u(· + τ) for all τ ∈ R, and our interest is in unique-
ness modulo such translation.

When n = 1, strong uniqueness properties hold in the class of all solutions of (4.48) in
S . This is in part due to the maximum principle, which does not hold for (4.48) for gen-
eral n. These properties in fact follow from well-known uniqueness and stability results for
travelling-front solutions u(x, t) = w(x − ct) of reaction-diffusion equations of the form
ut = uxx + f (u) when f is of so-called “bistable” type, having stable equilibria 0 and a to
which w(x − ct) tends as x − ct → −∞,∞ respectively. The fact that W (0) = W (a) here
means that f = W ′ satisfies

∫ a
0 f (u) du = 0, and so the speed c of travelling fronts must

actually be zero. A precise statement is the following.

Proposition 5.1 (Fife and McLeod [18]) Let W ∈ C2(R,R) be such that W (0) = W (a) = 0
for some a > 0, W (u) > 0 for u �∈ {0, a},

W ′(u) < 0 when u < 0 and W ′(u) > 0 when u > a, (5.1)

and

W ′(u) ≥ 0 for u > 0 close to 0, W ′(u) ≤ 0 for u < a close to a.

Then up to translation, there is at most one solution u ∈ C2(R,R) of the equation

u′′(s)− W ′(u(s)) = 0, s ∈ R, (5.2)

with u(s) → 0, a as s → −∞,∞, respectively.
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We next give a physical example, with n = 3, of non-uniqueness of solutions of (4.48)
within the subset of S consisting of global minimizers of (4.1). Some of the ideas in this
construction are due to S. Müller. Note that examples of non-uniqueness when n = 2 can be
devised using a similar approach. As in the toy model at the end of Sect. 4, we again base
our construction on the two martensite variants that minimize subcritical-temperature energy
densities in orthorhombic to monoclinic phase transformations. Let δ > 0 and

A = I − δe3 ⊗ e1, B = I + δe3 ⊗ e1,

so that

B = A + a ⊗ N , where a = 2δe3, N = e1.

We will construct a density ψ with the energy wells SO(3)A ∪ SO(3)B that, in addition to
the frame-indifference (f) and non-interpenetration (n) conditions, satisfies the orthorhombic
material symmetry property:

ψ(F Q) = ψ(F) for all F ∈ R
n×n+ and all Q ∈ P := ∪i=0,...,3{Qi }, (5.3)

where

Q0 = I and Qi = −I + 2ei ⊗ ei , i = 1, . . . , 3. (5.4)

Here P is the orthorhombic group, consisting of the identity together with rotations of π
about each of the three co-ordinate axes.

Now let ψ in the reduced functional (4.1) be defined by

ψ(F) =
3∑

i=0

ψ̂(QT
i FT F Qi ), F ∈ R

3×3+ , (5.5)

where Qi are as in (5.4) and ψ̂ is to be specified below. It is straightforward to check that
both the frame-indifference condition (f) and the orthorhombic symmetry property (5.3) are
automatically satisfied by ψ for any choice of ψ̂ . To define ψ̂ : S3×3+ → R, first note that
given C ∈ S3×3+ , there exist unique c1, c2, . . . , c6 ∈ R such that

C = I + c1[e1 ⊗ e1] + c2[e2 ⊗ e1 + e1 ⊗ e2] + c3[e3 ⊗ e1 + e1 ⊗ e3]
+c4[e2 ⊗ e2] + c5[e3 ⊗ e3] + c6[e2 ⊗ e3 + e3 ⊗ e2], (5.6)

and then let

ψ̂(C) = 1

4

{
g(c3)h(c2)+ q(c1 + 1 − c2

2 − c2
3)

2 + c2
2 + c2

4 + c2
5 + c2

6 + p(det C)
}
, (5.7)

where

(i) q ∈ C∞(R,R) is a non-decreasing function such that

q(s) =
⎧⎨
⎩

−1 + √
s if s ≥ γ ;

−1 ≤ q(s) ≤ −1 + √
s if 0 ≤ s ≤ γ ;

−1 if s ≤ 0,

for some 0 < γ << 1 (see Fig. 2);
(ii) the function g ∈ C∞(R,R) is such that g(w) = g(−w) for all w ∈ R, g(−δ) =

g(δ) = 0, g′(−δ) = g′(δ) = 0, g′′(−δ) > 0, g′′(δ) > 0, and g(w) > 0 for
w �∈ {−δ, δ} (see Fig. 2);
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Fig. 2 Forms of the functions q and g

Fig. 3 Forms of the functions h and p

(iii) the function h ∈ C∞(R,R) is such that h(w) > 0 and h(w) = h(−w) for all w ∈ R,
h(w) → ∞ as |w| → ∞, h(0) = 1, h′(0) = 0 and h′′(0) = −k for some (large)
positive constant k, to be chosen later (see Fig. 3);

(iv) there exists 0 < β << 1 such that the function p ∈ C∞((0,∞),R) satisfies p(w) = 0
for w ≥ β, p is decreasing on (0, β), and p(w) → ∞ as w → 0 (see Fig. 3).

Then ψ̂(C) ≥ 0 for all C ∈ S3×3+ and ψ̂(C) → ∞ as det C → 0. Hence, by (5.5) and the
fact that det(Qi FT F QT

i ) = (det F)2, ψ(F) ≥ 0 for all F ∈ R
3×3+ and ψ(F) → ∞ as

det F → 0. So the non-interpenetration condition (n) is satisfied.
The rank-one ansatz (3.2) here becomes

A + u ⊗ N = I − δe3 ⊗ e1 + u ⊗ e1

where u(ξ) → 0, 2δe3 as ξ → −∞,∞. It is convenient to work with

ũ = u − δe3 ∈ R
3, (5.8)

where ũ(ξ) → −δe3,+δe3 as ξ → −∞,∞; using ũ rather than u simplifies the symmetry
formulae in the following, and there is clearly an immediate correspondence between the
existence of ũ and of u. Note also that

det(I + ũ ⊗ e1) = 1 + ũ · e1 = 1 + ũ1(= 1 + u1),

so that

det(I + ũ ⊗ e1) > 0 ⇔ 1 + ũ1 > 0.
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Now if F = I + ũ ⊗ e1 with det F > 0, then

FT F = I + ũ ⊗ e1 + e1 ⊗ ũ + |ũ|2e1 ⊗ e1

= I + (ũ1e1 + ũ2e2 + ũ3e3)⊗ e1 + e1 ⊗ (ũ1e1 + ũ2e2 + ũ3e3)

+(ũ2
1 + ũ2

2 + ũ2
3)e1 ⊗ e1

= I + (2ũ1 + ũ2
1 + ũ2

2 + ũ3
3)e1 ⊗ e1 + ũ2[e2 ⊗ e1 + e1 ⊗ e2]

+ũ3[e3 ⊗ e1 + e1 ⊗ e3]. (5.9)

Taking C = FT F in (5.6) then gives

c1 = (ũ1 + 1)2 + ũ2
2 + ũ2

3 − 1, c2 = ũ2, c3 = ũ3 and c4 = c5 = c6 = 0,

and hence for such F ,

ψ̂(FT F) = 1

4

{
g(ũ3)h(ũ2)+ q((ũ1 + 1)2)2 + ũ2

2 + p((1 + ũ1)
2)
}
. (5.10)

From the definition of q and the fact that 1 + ũ1 > 0, it follows that

q((ũ1 + 1)2) = −1 +
√
(ũ1 + 1)2 = ũ1 if (ũ1 + 1)2 ≥ γ, (5.11)

and

− 1 ≤ q((ũ1 + 1)2) ≤ ũ1 ≤ −1 + √
γ if 0 ≤ (ũ1 + 1)2 ≤ γ. (5.12)

In particular, if (ũ1 + 1)2 ≥ γ , then

ψ̂(FT F) = 1

4

{
g(ũ3)h(ũ2)+ ũ2

1 + ũ2
2 + p((1 + ũ1)

2)
}
. (5.13)

To deduce the form of ψ(F) for F = I + ũ ⊗ e1, note first that for each i, j = 1, 2, 3,

Qi e j = (−I + 2ei ⊗ ei )e j = −e j + 2(ei · e j )ei =
{

e j if i = j;
−e j if i �= j,

and so for each F = I + ũ ⊗ e1,
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QT
1 FT F Q1

= I + [(ũ1 + 1)2 + ũ2
2 + ũ2

3 − 1]e1 ⊗ e1 − ũ2[e2 ⊗ e1 + e1 ⊗ e2]
−ũ3[e3 ⊗ e1 + e1 ⊗ e3];

QT
2 FT F Q2

= I + [(ũ1 + 1)2 + ũ2
2 + ũ2

3 − 1]e1 ⊗ e1 − ũ2[e2 ⊗ e1 + e1 ⊗ e2]
+ũ3[e3 ⊗ e1 + e1 ⊗ e3];

QT
3 FT F Q3

= I + [(ũ1 + 1)2 + ũ2
2 + ũ2

3 − 1]e1 ⊗ e1 + ũ2[e2 ⊗ e1 + e1 ⊗ e2]
−ũ3[e3 ⊗ e1 + e1 ⊗ e3].

Since the expression in (5.10) is invariant under replacing ũ2 by −ũ2 and/or ũ3 by −ũ3, it
follows that for F = I + ũ ⊗ e1,

ψ̂(FT F) = ψ̂(QT
i FT F Qi ), i = 1, 2, 3, (5.14)

and hence (5.5) implies that ψ(I + ũ ⊗ e1) in the reduced functional (4.1) is given by the
formula

ψ(F) = 4ψ̂(FT F)

= g(ũ3)h(ũ2)+ q((ũ1 + 1)2)2 + ũ2
2 + p((1 + ũ1)

2) (5.15)

= g(ũ3)h(ũ2)+ ũ2
1 + ũ2

2 + p((1 + ũ1)
2) if (ũ1 + 1)2 ≥ γ. (5.16)

Next observe that the energy wells of ψ , when ψ(F) = 0, occur precisely when F ∈
SO(3)A ∪ SO(3)B. To see this, note first that given C ∈ S3×3+ ,

ψ̂(C) = 1

4
{g(c3)h(c2)+ q(c1 + 1 − c2

2 − c2
3)

2 + c2
2 + c2

4 + c2
5 + c2

6 + p(det C)} = 0

if and only if

g(c3) = 0 ⇔ c3 = ±δ, c2 = c4 = c5 = c6 = 0, det C ≥ β,

and

q(c1 + 1 − c2
2 − c2

3) = 0 ⇔
√

c1 + 1 − c2
2 − c2

3 = 1

⇔ c1 = δ2.

It follows that C is of the form

C = I + δ2[e1 ⊗ e1] ± δ[e3 ⊗ e1 + e1 ⊗ e3]
= FT F where F = I + ũ ⊗ e1 with ũ = ±δe3. (5.17)

Now given C = FT F with det F > 0, there exists unique U ∈ S3×3+ with det U > 0 such
that F = RU for some R ∈ SO(3), and so the matrix F is determined uniquely, up to a
rotation, by C . Since det C = (det F)2 = 1 > β for F = I ± δe3 ⊗ e1, we thus have

ψ̂(FT F) = 0 ⇔ F = R(I ± δe3 ⊗ e1) for some R ∈ SO(3),

and

ψ(F) = 0 ⇔ F = R(I ± δe3 ⊗ e1) for some R ∈ SO(3),
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because (5.14) holds for F = R(I ± δe3 ⊗ e1), R ∈ SO(3), and so ψ̂(FT F) = 0 ⇔
ψ̂(QT

i FT F Qi ) = 0 for each i = 1, 2, 3. Thus the multi-well structure (m) is satisfied
with k = 2. Note that there being exactly two energy wells means that condition (4.9) in
Lemma 4.3 is trivially satisfied.

Now define

η(ũ1, ũ2, ũ3) := g(ũ3)h(ũ2)+ q((ũ1 + 1)2)2 + ũ2
2 + p((ũ1 + 1)2)

= ψ(I + ũ ⊗ e1). (5.18)

Then

η(ũ1, ũ2, ũ3) = 0 ⇔ (ũ2, ũ2, ũ3) = (0, 0,−δ) or (0, 0, δ),

and, since q((ũ1 +1)2)2 = ũ2
1 and p((ũ1 +1)2) = 0 when (ũ1 +1)2 ≥ max{γ, β}, it is easy

to see that

D2η(0, 0,−δ) > 0 and D2η(0, 0, δ) > 0,

which ensures that the non-degeneracy condition (ii) in Theorem 4.6 is satisfied by ψ .
Application of Theorem 4.1 with n = 1 and W (y) := η(0, 0, y), y ∈ R, yields the

existence of a minimizer u of (4.1) among

S0 := {ũ ∈ C2(R,R3) : ũ1(s) ≡ 0, ũ2(s) ≡ 0, ũ3(s) → −δ, δ as s → −∞,∞}.
Since

∂η

∂ ũ1
(0, 0, ũ3) = 4q(1)q ′(1)+ 2p′(1) = 0 and

∂η

∂ ũ2
(0, 0, ũ3) = g(ũ3)h

′(0) = 0

for all ũ3 ∈ R, u ∈ S0 is also a solution of the full system of three Euler–Lagrange equations
for (4.1). In fact, the proof of Proposition 5.1 yields that u is up to translation the unique such
solution in S0, and that u′

3(s) > 0 for all s ∈ R.
We will show that u is not a global minimizer of (4.1) in

S̃ = {ũ ∈ C3(R,R3); ũ(s) → −δe3, δe3 as s → −∞,∞}
when the parameter k in the definition of the function h is sufficiently large. The second
variation at u, acting on variations φ(s) = φ2(s)e2, is given by

δ2J (u)(φ, φ) =
∫

R

∂2η

∂ ũ2
2

(0, 0, u3(s))φ
2
2(s)+ 2ε2φ̇2

2(s) ds

=
∫

R

[2 + g(u3(s))h
′′(0)]φ2

2(s)+ 2ε2φ̇2
2(s) ds

=
∫

R

[2 − kg(u3(s))]φ2
2(s)+ 2ε2φ̇2

2(s) ds.

Now choose an interval [−M,M]. For s ∈ [−M,M],
∂2η

∂ ũ2
2

(0, 0, u3(s)) = 2 − kg(u3(s)) ≤ 2 − kg0,
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where g0 := mins∈[−M,M] g(u3(s)) > 0. So k can then be chosen large enough that there
exists φ2 : R → R with suppφ2 ⊂⊂ [−M,M] and

δ2J (u)(φ, φ) ≤
∫

R

(2 − kg0)φ
2
2 + 2ε2φ̇2

2 ds < 0. (5.19)

Thus u is not a global minimizer of J in S̃ .
Since Theorem 4.6 ensures a global minimizer of J in S̃ does exist, this yields non-

uniqueness of solutions to the Euler–Lagrange equations of J in S̃ . In fact, the choice of
the function ψ here ensures that there must also be non-uniqueness in the class of global
minimizers. To see this, note first that the form (5.18) ofψ(I + ũ ⊗ e1) implies that if ũ ∈ S̃
with ũ1 �≡ 0 and ũ0 = 0e1+ ũ2e2 + ũ3e3, then J (ũ0) < J (ũ). Hence any global minimizer
ũ of J in S̃ has ũ1 ≡ 0, and, by (5.19), ũ2 �≡ 0. Since η(ũ1, ũ2, ũ3) = η(ũ1,−ũ2, ũ3), it
follows that there must be at least two global minimizers, since there must be such a min-
imizer with non-zero ũ2 dependence, and a second can be constructed by replacing ũ2 by
−ũ2.

Remark Note that Alikakos et al. [2] study the issue of uniqueness in the case n = 2, using
complex-function theory to investigate solutions of the Euler–Lagrange equations connecting
minima of W (u), for a class of W in the general functional (4.2). Attention is focussed on
potentials of form W (u) = | f (u1 + iu2)|2, where f : C → C. Multiple connections are
constructed for certain potentials with f meromorphic, whereas it is proved that there is up
to translation at most one connection when f is holomorphic.

6 Interfaces between martensitic variants in cubic to tetragonal transformations

In this section, we use material symmetry to show that there are interfaces with symmetry
properties between martensite variants in cubic to tetragonal transformations. Let n = 3, and
suppose that the elastic energy density ψ ∈ C2(R3×3+ ; R) satisfies (f) and (n) together with
the cubic material symmetry property

ψ(F Q) = ψ(F) for all F ∈ R
3×3 and

Q ∈ P24 = {rotations of a cube to itself} ⊂ SO(3),

and that the multi-well condition (m) is satisfied with k = 3 and

U1 = diag(η2, η1, η1), U2 = diag(η1, η2, η1), U3 = diag(η1, η1, η2),

for some η1, η2 > 0. The matrices U1,U2 and U3 correspond to the three variants of the
low-symmetry phase, martensite, that minimize the energy density at such a sub-critical tem-
perature. Recall from the remark following Lemma 4.3 that condition (4.9) is satisfied in this
case.

We will concentrate on interfaces between A = U1 and B = A + a ⊗ N ∈ SO(3)U2. By
an interface we understand a solution u ∈ C3(R,R3) of the Euler–Lagrange equations (4.48)
with u(s) → 0, a as s → −∞,∞, which is not necessarily a global or even local minimizer
of (4.1). For concreteness, we focus on the case

a =
√

2(η2
2 − η2

1)

η2
1 + η2

2

(−η2e1 + η1e2), N = 1√
2
(e1 + e2).
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Proposition 6.1 Let A, a, N and ψ be as above. Then there exists a solution u ∈ C3(R,R3)

to the Euler–Lagrange equations (4.48) with u(s) → 0, a as s → −∞,∞ such that

(i) u3 ≡ 0;
(ii) {u(s) : s > 0} is given by the reflection of {u(s) : s < 0} in the perpendicular bisector

in the {u3 ≡ 0}-plane of the straight line joining 0 to a.

Proof First note that

Q AQT = A,

for Q = −e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3, which is a rotation of an origin-centred cube to itself.
Since the frame-indifference (f) and material symmetry assumptions then give

ψ(A + u ⊗ N ) = ψ(Q(A + u ⊗ N )QT ),

and QN = −N , it thus follows that

ψ(A + u ⊗ N ) = ψ(A − Qu ⊗ N ) for all u = u1e1 + u2e2 + u2e3 ∈ R
3. (6.1)

Also, since −Qu = u1e1 + u2e2 − u3e3, differentiating with respect to u3 yields

∂ψ

∂F3α
(A + u ⊗ N ) Nα = − ∂ψ

∂F3α
(A − Qu ⊗ N ) Nα = − ∂ψ

∂F3α
(A + u ⊗ N )Nα,

if u ∈ C2(R,R3) has u3 ≡ 0. Hence the Euler–Lagrange equation for u3,

2ε2 u′′
3 = ∂ψ

∂F3α
(A + u ⊗ N )Nα, (6.2)

is satisfied for any function u ∈ C2(R,R3) with u3 ≡ 0. Now applying the existence theory
in Sect. 3 to the functional∫

R

ψ(A + (u1e1 + u2e2 + 0e3)⊗ N ))+ ε2|u′
1e1 + u′

2e2 + 0e3|2 ds, (6.3)

implies the existence of û = û1e1 + û2e2 + 0e3 ∈ C2(R,R3) that minimizes (6.3) among

Cz = {u ∈ W 1,2
loc (R,R

3) : u3 ≡ 0, u(s) → 0, a as s → −∞,∞}
and is such that

2ε2û′′
1 = ∂ψ

∂F1α
(A + û ⊗ N ) Nα, 2ε2û′′

2 = ∂ψ

∂F2α
(A + û ⊗ N ) Nα.

In particular, there is an interface, û, with u3 ≡ 0, and so (i) holds.
We next show that there is at least one such interface û that satisfies both (i) and (ii). The

key is the fact that

Q̂U1 Q̂T = U2, (6.4)

where Q̂ = e2 ⊗ e1 + e1 ⊗ e2 − e3 ⊗ e3 is a rotation of π about the axis 1√
2
(e1 + e2), which

maps an origin-centred cube to itself. Now a routine calculation shows that

A + a ⊗ N = RU2 = RQ̂ AQ̂T , (6.5)

where A = U1 and R ∈ SO(3) is given by

R = 2η1η2

η2
1 + η2

2

(e1 ⊗ e1 + e2 ⊗ e2)+ η2
1 − η2

2

η2
1 + η2

2

(e1 ⊗ e2 − e2 ⊗ e1)+ e3 ⊗ e3. (6.6)
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Fig. 4 The line L and the point a
in the {u3 = 0}-plane

Equations (6.4) and (6.5) together yield that for each u ∈ R
3,

RQ̂(A + u ⊗ N )Q̂T = RQ̂ AQ̂T + RQ̂u ⊗ Q̂N

= A + a ⊗ N + RQ̂u ⊗ N

= A + (a + RQ̂u)⊗ N ,

since Q̂N = N . It then follows from (f) and the cubic symmetry property that for all u ∈ R
3,

ψ(A + u ⊗ N ) = ψ(A + (a + RQ̂u)⊗ N ), (6.7)

and hence

W (u) = W (a + RQ̂u),

where W is, as usual, defined by (4.7).
To see the effect of this symmetry more clearly, note first that if v ∈ R

3 is such that
a + RQ̂v = v, then for all u ∈ R

3,

W (v + u) = W (a + RQ̂v + RQ̂u)

= W (v + RQ̂u). (6.8)

Now straightforward calculations show that

a + RQ̂v = v ⇔ v lies on the line L =
{
v:v3 = 0 and η1v2 − η2v1 = 1√

2
(η2

2 − η2
1)

}
,

(6.9)

RQ̂u = −u ⇔ u1e1 + u2e2 = λa for some λ ∈ R, and (6.10)

RQ̂u = u ⇔ u3 = 0 and (u1e1 + u2e2) · a = 0. (6.11)

So (6.8) yields in particular that

W (v + u) = W (v − u), (6.12)

whenever v ∈ L and u = λa for some λ ∈ R. The line L is the perpendicular bisector of the
line between 0 and a in the {u3 ≡ 0}-plane, and u �→ a + RQ̂u reflects u = u1e1 + u2e2 in
L . We label the two halves of the {u3 = 0}-plane by Ω1 and Ω2, as in Fig. 4.

It follows from (6.12) that there is a minimizer ũ of (6.3) among Cz with the additional
properties that ũ(−s) is the reflection in L of ũ(s) for each s ∈ R, and

ũ(s) ∈ Ω1 ∪ L for s < 0, ũ(0) ∈ L , ũ(s) ∈ Ω2 ∪ L for s > 0. (6.13)

To see this, consider an element u ∈ Cz of a minimizing sequence for (6.3). It can be supposed
without loss of generality that
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(i) u(0) ∈ L and u(s) ∈ Ω2 for s > 0;
(ii) u(s) ∈ L ∪Ω1 for s < 0.

Property (i) is immediate because u(s) → 0, a as s → −∞,∞ and (6.3) is invariant
under translation of u. That (ii) can be assumed is a consequence of (6.12): a segment with
u(s1), u(s2) ∈ L and u(s) ∈ Ω2 for s1 < s < s2 ≤ 0 can be reflected in L without altering
the value of (6.3) or changing the fact that u ∈ Cz . Now if

0∫

−∞
ψ(A + (u1e1 + u2e2 + 0e3)⊗ N ))+ ε2|u′

1e1 + u′
2e2 + 0e3|2 ds

≤
∞∫

0

ψ(A + (u1e1 + u2e2 + 0e3)⊗ N ))+ ε2|u′
1e1 + u′

2e2 + 0e3|2 ds, (6.14)

we can, without increasing (6.3), replace u(s) for s > 0 by the reflection of u(−s) in L , since
u(−s) → 0 as s → ∞ and thus its reflection in L tends to a as s → ∞. If the opposite
inequality holds in (6.14), we can replace u(s) for s < 0 by the reflection of u(−s) in L . So in
both cases, u(−s) is the reflection of u(s) in L for all s ∈ R. Hence this, together with (6.13),
also holds for a minimizer ũ of (6.3) among Cz . Since such a minimizer ũ ∈ C3(R,R3), by
Proposition 4.11 (a), the curve ũ must be perpendicular to L at ũ(0). ��
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