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Abstract— This paper is concerned with the output feedback
guaranteed cost control problem for a class of uncertain
stochastic large-scale systems governed by a random parameter.
The uncertainties are assumed to satisfy integral quadratic
constraints, and the random parameter is a Markov process. A
sufficient condition is established for the design of decentralized
output feedback guaranteed cost controllers which use local
system states and local system operation modes to produce
local control inputs, and ensure suboptimal global quadratic
performance. The condition is given in terms of a set of rank
constrained linear matrix inequalities. A numerical example
and simulations are also provided to illustrate the theory.

I. INTRODUCTION

In the recent control literature, much attention has been

given to Markovian large-scale systems subject to uncertain

perturbations, e.g., see [4], [9], [2]. In particular, [9], [2]

derived necessary and sufficient conditions for decentralized

stabilization of a class of uncertain Markovian jump param-

eter systems, in which both local subsystem uncertain per-

turbations and uncertain interconnections were described in

terms of integral quadratic constraints (IQCs). An underlying

assumption, required to implement the controllers proposed

in many available results including [9], [2], is that the global

operation mode of the large-scale system must be known

to every controller; we refer to such controllers as global

mode dependent controllers. In a global mode dependent

control design, the number of controllers for each subsystem

is equal to the number of operation modes of the entire

system. Also, the controllers have to change their operation

modes even if the subsystems they control do not change.

Also, to implement such a control algorithm, the system

operation modes need to be made known to all subsystems.

Such requirement is often impractical and costly.

To remove the dependency of the controllers on the

knowledge of the global operation mode, [10] has recently

developed a local mode dependent control technique where

the modes of the decentralized controllers only depend on the

modes of the subsystems they control. The results in [10] are

a sufficient condition and an algorithm for the design of local

mode dependent stabilizing controllers under the assumption

of the full state feedback.

This paper extends the results of [10] in several direc-

tions. Firstly, in this paper we address the design of output

feedback controllers via local mode dependent control. Our
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result leads to an algorithm for designing dynamic output

controllers of full order. Secondly, unlike [10] which focused

on the stabilization problem, in this paper, we consider a

guaranteed cost control problem that is similar to that in [2].

Our controller design method leads to a set of local mode

dependent controllers which are suboptimal with respect

to a given quadratic performance cost functional. Thirdly,

in [10], the system model was somewhat limited in that the

uncertainty outputs, which were employed in the definition

of admissible uncertainties used in that paper, did not allow

for input feed-through. This paper overcomes this limitation

and reintroduces the control input feed-through term in the

definition of the uncertainty outputs. This however leads to

additional technical difficulties, which render the techniques

used in [9], [2], [10] not directly applicable to the problem

under consideration in this paper. Hence, the control design

technique developed in this paper is different from those

developed in the previous work. In particular, a version of

the bounded real lemma [11] is adopted to tackle the control

input feed-through term, and the projection lemma [1] is used

in the derivation of the proposed controller design condition.

Notation: R
+ denotes the set of positive real numbers.

R
n, R

m×n, and S
+ denote, respectively, the n-dimensional

Euclidean space, the set of m× n real matrices, and the set

of real symmetric positive definite matrices of compatible

dimensions. Given a matrix A ∈ R
m×n with r , rank(A) <

m, A⊥ ∈ R
(m−r)×m is an orthogonal complement of the

matrix A if A⊥A = 0 and rank(A⊥) = m − r. Note that

A⊥ exists if and only if r < m and is not unique. Also, we

have
[

A1 ∗
A2 A3

]

,

[

A1 AT
2

A2 A3

]

.

II. PROBLEM FORMULATION

Consider an uncertain Markovian jump large-scale system

consisting of N subsystems. The ith subsystem is given by

Si :



















ẋi(t) = Ai(ηi(t))xi(t) + Bi(ηi(t))ui(t)

+ Ei(ηi(t))ξi(t) + Li(ηi(t))ri(t),

ζi(t) = Hi(ηi(t))xi(t) + Gi(ηi(t))ui(t),

yi(t) = Ci(ηi(t))xi(t) + Di(ηi(t))ξi(t),

(1)

where i ∈ N , {1, 2, . . . , N} indicates that Si is the ith

subsystem, xi(t) ∈ R
ni is the system state of subsystem Si,

ui(t) ∈ R
mi is the control input, yi(t) ∈ R

ti is the measured

output which will be used for feedback, ζi(t) ∈ R
qi is the

uncertainty output, ξi(t) ∈ R
pi is the local uncertainty input,

ri(t) ∈ R
si is the interconnection input, which describes

the effect of other subsystems Sj , j 6= i, on Si due to the

uncertain interconnections between subsystem Si and other
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subsystems Sj , j 6= i. The random process ηi(t) denotes the

operation mode of subsystem Si; it takes values in the finite

state space Mi , {1, 2, . . . ,Mi}. It is worth mentioning that

the process ηi(t) is, in general, not Markovian. The initial

condition of subsystem Si is given by xi0 ∈ R
ni and ηi0 ∈

Mi.

The mechanism of mode changes for the large-scale

system is described by the random process η(t). It depends

on (and also determines) the operation modes of the subsys-

tems; e.g., see [10]. It is assumed that the random process

η(t) is a stationary ergodic continuous-time Markov process

defined on a complete probability space (Ω,F ,Pr) and takes

values in M , {1, 2, . . . ,M} where maxi∈N Mi ≤ M ≤
∏N

i=1 Mi. The state transition rate matrix of η(t) is given

by Q = (qµν) ∈ R
M×M , in which qµν ≥ 0 if ν 6= µ, and

qµµ , −∑M
ν=1,ν 6=µ qµν .

The connection between the global operation mode η(t)
of the large-scale system and the local operation modes ηi(t)
of the subsystems can be expressed in terms of a bijective

function [10]. Let Mp be a set of vectors describing feasible

simultaneous operation modes of the subsystems of the large-

scale system; it is a subset of the set M1×· · ·×MN and has

M elements. Then there is a bijective function Ψ : Mp →
M with υ = Ψ(υ1, . . . , υN ) where υi ∈ Mi, υ ∈ M, and

the functions Ψ−1
i : M → Mi with υi = Ψ−1

i (υ) ∈ Mi for

all i ∈ N , υ ∈ M.

The uncertainties and interconnections in the large-scale

system (1) are described by

ξi(t) = φ
ξ
i (t, ζi(t), ηi(t)),

ri(t) = φr
i (t, ζ1(t), . . . , ζi−1(t), ζi+1(t), . . . , ζN (t), η(t)).

Furthermore, these uncertainties are assumed to satisfy

IQCs [7], [9], [2], as described in the following definitions.

Definition 1: Given a set of matrices S̄i ∈ S
+, i ∈ N . A

collection of uncertainty inputs ξi(t), i ∈ N , is an admissible

local uncertainty for the large-scale system if there exists a

sequence {tl}∞l=1 such that tl → ∞, tl ≥ 0, and

E





tl
∫

0

[

‖ζi(t)‖2 − ‖ξi(t)‖2
]

dt | x0, η0



 ≥ −xT
i0S̄ixi0 (2)

for all l and for all i ∈ N , where x0 = [xT
10, . . . , x

T
N0]

T and

η0 = Ψ(η10, . . . , ηN0). Here Ψ(·) is the bijective function

mapping from Mp to M. The set of admissible local

uncertainties is denoted by Ξξ.

Definition 2: Given a set of matrices S̃i ∈ S
+, i ∈ N .

The subsystems of the large-scale system are said to have

admissible interconnections to other subsystems if there

exists a sequence {tl}∞l=1 such that tl → ∞, tl ≥ 0, and

E





tl
∫

0









N
∑

j=1,j 6=i

‖ζj(t)‖2



 − ‖ri(t)‖2



 dt | x0, η0





≥ −xT
i0S̃ixi0 (3)

for all l and for all i ∈ N . The set of admissible intercon-

nection uncertainties is denoted by Ξr.

Without loss of generality, we assume that the same

sequence {tl}∞l=1 is employed in both definitions.

Consider a decentralized local mode dependent output

feedback controller of the form
{

ẋK,i(t) = AK,i(ηi(t))xK,i(t) + BK,i(ηi(t))yi(t),

ui(t) = CK,i(ηi(t))xK,i(t) + DK,i(ηi(t))yi(t),
(4)

where xK,i(t) ∈ R
ni is the state of the controller for

subsystem Si. The controller’s initial state is set to zero.

Note that the controller’s initial operation mode is the same

as that of the system (1). The matrices AK,i(υi), BK,i(υi),
CK,i(υi), DK,i(υi), υi ∈ Mi, i ∈ N , are the parameters

of the controller. It is worthwhile to emphasize that for

the controllers under consideration of the form (4), these

parameters are determined by the state of the local operation

mode process ηi(t) of the corresponding subsystem Si, while

the controllers proposed in [9], [2] were dependent on the

values of the global operation mode process η(t).
Definition 3: The closed-loop system corresponding to the

uncertain system (1)–(3) with a controller of the form (4)

is said to be robustly stochastically stable if there exists a

constant c1 ∈ R
+ such that xi(·) ∈ L2[0,∞), i ∈ N , and

N
∑

i=1

E

(∫ ∞

0

‖xi(t)‖2
dt | x0, η0

)

≤ c1

N
∑

i=1

‖xi0‖2

for any initial conditions x0, η0, any admissible local uncer-

tainty ξi(t) and any admissible interconnection ri(t), i ∈ N .

Associated with the large-scale system (1) is the cost

functional of the form

J ,

N
∑

i=1

E

(∫ ∞

0

[

xT
i (t)Qi(ηi(t))xi(t)

+uT
i (t)Ri(ηi(t))ui(t)

]

dt | x0, η0

)

(5)

where Qi(υi) ∈ S
+, Ri(υi) ∈ S

+, υi ∈ Mi, i ∈ N , are

given weighting matrices.

The objective of the paper is to design a dynamic output

feedback controller of the form (4) for the uncertain sys-

tem (1)–(3), such that the resulting closed-loop system is

robustly stochastically stable and the corresponding worst-

case value of the cost functional (5) subject to the constraints

(2)–(3) is upper bounded.

III. CONTROLLER DESIGN

This section presents the main results of the paper. Our

controller design technique is based on decentralized global

mode dependent control with uncertainties. The design

methodology involves augmenting the class of uncertainties

introduced in the previous section to include effects of mis-

match between the global system mode dependent controllers

and the local mode dependent controllers. In Section III-

A, we show how a local mode dependent controller can be

derived from a given global mode controller; the result is

a sufficient condition to ensure that such a derivation is

possible. The design of a suitable auxiliary global mode

dependent controller is described in Section III-B. Here we

present a sufficient condition for the existence of such an
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auxiliary output feedback controller. Then, in Section III-

C we propose a controller design technique based on the

auxiliary controller presented in Section III-B.

A. Design Methodology

As noted above, the jump processes ηi(t) governing the

modes of the local controllers (4) are, in general, non-

Markovian. In this section, we will study an auxiliary un-

certain large-scale system, whose subsystems are governed

by the global Markovian operation mode process η(t), and

hence are easier to deal with.

Consider a class of uncertain large-scale systems consist-

ing of subsystems of the following form

S̃i :























˙̃xi(t) = Ãi(η(t))x̃i(t) + B̃i(η(t))ũi(t)

+ Ẽi(η(t))ξ̃i(t) + L̃i(η(t))r̃i(t),

ζ̃i(t) = H̃i(η(t))x̃i(t) + G̃i(η(t))ũi(t),

ỹi(t) = C̃i(η(t))x̃i(t) + D̃i(η(t))ξ̃i(t),

(6)

where Ãi(µ) = Ai(µi), B̃i(µ) = Bi(µi), Ẽi(µ) = Ei(µi),
L̃i(µ) = Li(µi), H̃i(µ) = Hi(µi), C̃i(µ) = Ci(µi),
D̃i(µ) = Di(µi), and µi = Ψ−1

i (µ), µ ∈ M, i ∈ N . The

uncertainty inputs ξ̃i(t) and r̃i(t) are described, respectively,

by the same functions as ξi(t) and ri(t) in (1). So ξ̃i(t) ∈ Ξξ

and r̃i(t) ∈ Ξr. The initial condition is given by x̃i0 = xi0,

i ∈ N , and η0 = Ψ(η10, . . . , ηN0). Note that system (6) and

system (1), in fact, have the same sample paths.

Associated with this uncertain system is the following cost

functional of the form

J̃ ,

N
∑

i=1

E

(∫ ∞

0

[

x̃T
i (t)Q̃i(η(t))x̃i(t)

+ũT
i (t)R̃i(η(t))ũi(t)

]

dt | x̃0, η0

)

(7)

where Q̃i(µ) = Qi(µi), R̃i(µ) = Ri(µi), and µi = Ψ−1
i (µ)

for µ ∈ M, i ∈ N .

We now consider the problem of guaranteed cost control of

the system (6) by means of an uncertain decentralized global

mode dependent output feedback controller of the form






















˙̃xK,i(t) = ÃK,i(η(t))x̃K,i(t) + B̃K,i(η(t))ỹi(t)

+ ξ̃1i(t) + ξ̃2i(t),

ũi(t) = C̃K,i(η(t))x̃K,i(t) + D̃K,i(η(t))ỹi(t)

+ ξ̃3i(t) + ξ̃4i(t).

(8)

The initial state of the controller is zero, and the initial

operation mode is the same as that of the system (6).

Note that controller dynamics are assumed to be subject to

controller uncertainties of the form

ξ̃1i(t) = φ1i(t, x̃K,i(t), η(t)), ξ̃2i(t) = φ2i(t, ỹi(t), η(t)),

ξ̃3i(t) = φ3i(t, x̃K,i(t), η(t)), ξ̃4i(t) = φ4i(t, ỹi(t), η(t)),

which satisfy the following IQCs.

Definition 4: Given β1i(µ), β2i(µ), β3i(µ), β4i(µ) ∈ R
+,

µ ∈ M, i ∈ N . A collection of uncertainty inputs ξ̃1i(t),
ξ̃2i(t), ξ̃3i(t), ξ̃4i(t), i ∈ N , is an admissible uncertainty

input for the dynamic controller in (8) if there exists a

sequence {tl}∞l=1 such that tl → ∞, tl ≥ 0 and

E

(∫ tl

0

[

β2
1i(η(t)) ‖x̃K,i(t)‖2 −

∥

∥

∥ξ̃1i(t)
∥

∥

∥

2
]

dt | x̃0, η0

)

≥ 0,

E

(∫ tl

0

(

β2
2i(η(t)) ‖ỹi(t)‖2 −

∥

∥

∥
ξ̃2i(t)

∥

∥

∥

2
)

dt | x̃0, η0

)

≥ 0,

E

(∫ tl

0

[

β2
3i(η(t)) ‖x̃K,i(t)‖2 −

∥

∥

∥ξ̃3i(t)
∥

∥

∥

2
]

dt | x̃0, η0

)

≥ 0,

E

(∫ tl

0

(

β2
4i(η(t)) ‖ỹi(t)‖2 −

∥

∥

∥ξ̃4i(t)
∥

∥

∥

2
)

dt | x̃0, η0

)

≥ 0,

(9)

for all l and for all i ∈ N . The set of the admissible controller

uncertainty inputs is denoted by ΞK .

We can assume that the same sequence {tl}∞l=1 is selected

as in Definitions 1, 2, and 4.

The following result gives a sufficient condition for when

the controller in (4) to stabilize the uncertain system (1) if

the controller (8) can stabilize the uncertain system (6).

Theorem 1: Suppose controller (8) stochastically sta-

bilizes the uncertain large-scale system (6) subject to

constraints (2)–(3), (9), and leads to the cost bound

supΞξ,Ξr,ΞK J̃ < c for some c ∈ R
+. If the controller

matrices in (4) are chosen so that
∥

∥

∥
ÃK,i(µ) − AK,i(µi)

∥

∥

∥ ≤ β1i(µ), (10)
∥

∥

∥B̃K,i(µ) − BK,i(µi)
∥

∥

∥ ≤ β2i(µ), (11)
∥

∥

∥C̃K,i(µ) − CK,i(µi)
∥

∥

∥ ≤ β3i(µ), (12)
∥

∥

∥
D̃K,i(µ) − DK,i(µi)

∥

∥

∥
≤ β4i(µ), (13)

for all µ ∈ M, i ∈ N , where µi = Ψ−1
i (µ), then the

controller in (4) stochastically stabilizes the uncertain large-

scale system in (1) subject to constraints (2)–(3) and also

leads to the cost bound supΞξ,Ξr J < c.

B. Design of Global Mode Dependent Controllers

In this section, a sufficient condition is established for the

design of the uncertain guaranteed cost controller of the form

(8). This condition, together with Theorem 1, provides us a

basis for the design of a local mode dependent guaranteed

cost controller of the form (4). We first define the following

notation:

Âi(µ) =

[

Ãi(µ) 0
0 0

]

= NiÃi(µ)NT
i , Ni =

[

Ini×ni

0ni×ni

]

,

B̂i(µ) =

[

Ẽi(µ) L̃i(µ) 0 0 B̃i(µ) B̃i(µ)
0 0 I I 0 0

]

,

Ĉi(µ) =























Q̃
1

2

i (µ) 0
0 0

H̃i(µ) 0
0 β1i(µ)I

β2i(µ)C̃i(µ) 0
0 β3i(µ)I

β4i(µ)C̃i(µ) 0























,
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D̂i(µ) =























0 0 0 0 0 0

0 0 0 0 R̃
1

2

i (µ) R̃
1

2

i (µ)

0 0 0 0 G̃i(µ) G̃i(µ)
0 0 0 0 0 0

β2i(µ)D̃i(µ) 0 0 0 0 0
0 0 0 0 0 0

β4i(µ)D̃i(µ) 0 0 0 0 0























,

Bi(µ) =

[

0 B̃i(µ)
I 0

]

, Ci(µ) =

[

0 I

C̃i(µ) 0

]

,

Di(µ) =

[

0 0 0 0 0 0

D̃i(µ) 0 0 0 0 0

]

,

Ei(µ) =





















0 0

0 R̃
1

2

i (µ)

0 G̃i(µ)
0 0
0 0
0 0
0 0





















,
[

V1i(µ) V2i(µ)
]

=







B̃i(µ)

R̃
1

2

i (µ)

G̃i(µ)







⊥

,

Q1i(µ) = NT
i Xi(µ)NiÃ

T
i (µ) + Ãi(µ)NT

i Xi(µ)Ni

+ qµµNT
i Xi(µ)Ni,

Q2i = −diag(τiI, θiI, τ1iI, τ2iI, τ3iI, τ4iI),

Q3i = −diag(I, I, τ̄iI, τ̄1iI, τ̄2iI, τ̄3iI, τ̄4iI),

Q4i(µ) = −diag(Xi(1), . . . ,Xi(µ − 1),

Xi(µ + 1), . . . ,Xi(M)),

Q5i(µ) = ÃT
i (µ)NT

i Pi(µ)Ni + NT
i Pi(µ)NiÃi(µ)

+

M
∑

ν=1

qµνNT
i Pi(ν)Ni,

Γ1i(µ) =
[√

qµ,1N
T
i Xi(µ) · · · √

qµ,µ−1N
T
i Xi(µ)

√
qµ,µ+1N

T
i Xi(µ) · · · √

qµ,MNT
i Xi(µ)

]

,

Γ2i(µ) =

























V1i(µ) 0 0 V2i(µ) 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I

























,

K̃i(µ) =

[

ÃK,i(µ) B̃K,i(µ)

C̃K,i(µ) D̃K,i(µ)

]

,

Θ1i(µ) = ÂT
i (µ)Pi(µ) + Pi(µ)Âi(µ) +

M
∑

ν=1

qµνPi(ν),

Θ2i(µ) =









Q1i(µ) ∗ ∗ ∗
B̂T

i (µ)Ni Q2i ∗ ∗
Ĉi(µ)Xi(µ)Ni D̂i(µ) Q3i ∗

ΓT
1i(µ) 0 0 Q4i(µ)









,

Θ3i(µ) =





Q5i(µ) ∗ ∗
B̂T

i (µ)Pi(µ)Ni Q2i ∗
Ĉi(µ)Ni D̂i(µ) Q3i



 ,

Φi(µ) =





Θ1i ∗ ∗
B̂T

i (µ)Pi(µ) Q2i ∗
Ĉi(µ) D̂i(µ) Q3i



 , (14)

Ψli(µ) =





Pi(µ)Bi(µ)
0

Ei(µ)



 , (15)

Ψri(µ) =
[

Ci(µ) Di(µ) 0
]

. (16)

Theorem 2: Given β1i(µ), β2i(µ), β3i(µ), β4i(µ) ∈ R
+.

Suppose there exist matrices Pi(µ) ∈ S
+, Xi(µ) ∈ S

+,

scalars τi, θi, τ1i, τ2i, τ3i, τ4i, τ̄i, τ̄1i, τ̄2i, τ̄3i, τ̄4i ∈ R
+,

µ ∈ M, i ∈ N , satisfying, for all µ ∈ M, i ∈ N , the

coupled LMIs

Γ2i(µ)Θ2i(µ)ΓT
2i(µ) < 0, (17)







[

C̃T
i (µ)

D̃T
i (µ)

]⊥

0

0 I






Θ3i(µ)







[

C̃T
i (µ)

D̃T
i (µ)

]⊥

0

0 I







T

< 0, (18)

with rank constraints

rank

([

Pi(µ) I

I Xi(µ)

])

≤ 2n, (19)

rank

([

τi + θ̄i 1
1 τ̄i

])

≤ 1, rank

([

τ1i 1
1 τ̄1i

])

≤ 1, (20)

rank

([

τ2i 1
1 τ̄2i

])

≤ 1, rank

([

τ3i 1
1 τ̄3i

])

≤ 1, (21)

rank

([

τ4i 1
1 τ̄4i

])

≤ 1. (22)

Consider the matrix inequality

Φi(µ) + Ψli(µ)K̃i(µ)Ψri(µ) + ΨT
ri(µ)K̃T

i (µ)ΨT
li(µ)

< 0, (23)

in which the matrices Φi(µ), Ψli(µ), Ψri(µ) are obtained

by substituting the solution of (17)–(22) to (14)–(16). Then

an output feedback controller of form (8) can be obtained

by solving the coupled LMIs in (23) for K̃i(µ). In addition,

with this controller, the corresponding closed-loop value of

the cost functional (7) satisfies

sup
Ξξ,Ξr,ΞK

J̃ <

N
∑

i=1

x̃T
i0

[

NT
i Pi(ηi0)Ni + τiS̄i + θiS̃i

]

x̃i0.

(24)
Remark 1: The introduction of τi, θi, τ1i, τ2i, τ3i and τ4i

allows us to apply the following optimization procedure to

minimize the upper bound of the cost functional (7):

inf
Pi(µ),Xi(µ),τi,θi,τ1i,τ2i,
τ3i,τ4i,τ̄i,τ̄1i,τ̄2i,τ̄3i,τ̄4i,

subject to (17)–(22)

N
∑

i=1

x̃T
i0

[

NT
i Pi(ηi0)Ni

+τiS̄i + θiS̃i

]

x̃i0. (25)

C. The Main Result: Design of Local Mode Dependent

Controllers

In this section, we select the dynamic local mode depen-

dent controller (4) as the expectation of a controller (8)
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conditioned on the subsystem operation modes as time

approaches infinity; see [10] for details. That is,

Ki(υi) =

[

AK,i(υi) BK,i(υi)
CK,i(υi) DK,i(υi)

]

,

∑M
µ=1{K̃i(µ)π∞µIi(µ, υi)}
∑M

µ=1{π∞µIi(µ, υi)}
(26)

for all υi ∈ Mi, i ∈ N , where π∞µ is the µ-th component

of vector π∞ = e(Q + E)−1, e =
[

1 1 · · · 1
]

∈ R
1×M ,

E =
[

eT eT · · · eT
]T ∈ R

M×M , and Ii(µ, υi) = 1 if

υi = Ψ−1
i (µ), Ii(µ, υi) = 0 otherwise. We also have

∆i(µ) , K̃i(µ) − Ki(µi)

=

∑M
ν=1,ν 6=µ{Ii(ν, µi)π∞ν

[

K̃i(µ) − K̃i(ν)
]

}
∑M

ν=1{Ii(ν, µi)π∞ν}
(27)

where µi = Ψ−1
i (µ). Note that ∆i(µ) is a linear matrix

function of K̃i(µ), µ ∈ M.

A computational method for the design of the guaranteed

cost controller (4) is presented in the following result, which

is based upon Theorem 1, Theorem 2 and the selection of

the controller parameters in (26). Let

N1i =

[

Ini×ni

0mi×ni

]

, N2i =

[

Ini×ni

0ti×ni

]

,

N3i =

[

0ni×ti

Iti×ti

]

, N4i =

[

0ni×mi

Imi×mi

]

.

Theorem 3: Given a set of β1i(µ), β2i(µ), β3i(µ),
β4i(µ) ∈ R

+. Suppose a set of solutions Pi(µ) ∈ S
+,

Xi(µ) ∈ S
+, τi, θi, τ1i, τ2i, τ3i, τ4i, τ̄i, τ̄1i, τ̄2i, τ̄3i,

τ̄4i ∈ R
+, µ ∈ M, i ∈ N is found for (17)–(22).

If there exist matrices K̃i(µ) such that the following LMIs

[

β1i(µ)I NT
2i∆

T
i (µ)N1i

NT
1i∆i(µ)N2i β1i(µ)I

]

≥ 0, (28)

[

β2i(µ)I NT
3i∆

T
i (µ)N1i

NT
1i∆i(µ)N3i β2i(µ)I

]

≥ 0, (29)

[

β3i(µ)I NT
2i∆

T
i (µ)N4i

NT
4i∆i(µ)N2i β3i(µ)I

]

≥ 0, (30)

[

β4i(µ)I NT
3i∆

T
i (µ)N4i

NT
4i∆i(µ)N3i β4i(µ)I

]

≥ 0, (31)

and the LMIs in (23) hold for all µ ∈ M, i ∈ N , where

∆i(µ) is the linear function of K̃i(µ) defined in (27), then

the local mode dependent controller of the form (4) with the

parameters defined in (26) robustly stabilizes the uncertain

system (1) subject to the constraints (2)–(3) and leads to the

cost bound

sup
Ξξ,Ξr

J <

N
∑

i=1

xT
i0

[

NT
i Pi(ηi0)Ni + τiS̄i + θiS̃i

]

xi0. (32)

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we present a numerical example to illus-

trate the developed theory. The uncertain large-scale system

in the example has 3 subsystems, and each subsystem can

operate in 2 different modes. The system data for the

system (1) are as follows.

A1(1) =

[

1 0
−0.5 −0.5

]

, B1(1) =

[

1
0

]

, C1(1) =
[

0.6 0
]

,

A1(2) =

[

1 0
0.1 −0.5

]

, B1(2) =

[

1
0.1

]

, C1(2) =
[

1 0
]

,

A2(1) =

[

−0.6 0.5
0 0.5

]

, B2(1) =

[

0
1

]

, C2(1) =
[

0.1 1
]

,

A2(2) =

[

−1 0
−0.5 0.5

]

, B2(2) =

[

0.1
1

]

, C2(2) =
[

0 1
]

,

A3(1) =

[

−1 0
−0.1 0.1

]

, B3(1) =

[

0.1
1

]

, C3(1) =
[

1 1
]

,

A3(2) =

[

−0.2 0
0.1 −0.2

]

, B3(2) =

[

1
0

]

, C3(2) =
[

1 0
]

,

Ei(1) =

[

0
0.01

]

, Li(1) =

[

0.01
0

]

, Hi(1) =
[

0.1 0
]

,

Ei(2) =

[

0.01
0

]

, Li(2) =

[

0
0.01

]

, Hi(2) =
[

0 0.1
]

,

and Gi(υi) = 0.1, Di(υi) = 0.1 for υi = 1, 2, i = 1, 2, 3.

The weighting matrices in the cost functional are given by

Qi(υi) =

[

0.001 0
0 0.001

]

, Ri(υi) = 0.01.

The initial condition of the system is assumed to be

x10 =

[

5
−5

]

, x20 =

[

3
−3

]

, x30 =

[

1
−1

]

,

η10 = η20 = η30 = 1.

The initial state condition of the controller is set to zero.

In this example, we assume that subsystems S2 and

S3 switch from one mode to another synchronously, and

therefore they are governed by a common switching process.

However, subsystem S1 has its own operation regime. Ac-

cording to this, the operating pattern set of the subsystems is

{(1, 1, 1), (1, 2, 2), (2, 1, 1), (2, 2, 2)}. That is, the large-scale

system has 4 operation modes in total. The mode transition

rate matrix of the Markov process η(t) is assumed to be

Q =









−2 0.5 0.1 1.4
0.2 −0.5 0.1 0.2
0.4 0.8 −1.3 0.1
0.1 0.3 0.2 −0.6









.

Note that despite subsystems S2 and S3 switch syn-

chronously, they cannot be aggregated into a larger sub-

system, since they do not share their measured outputs.

Furthermore, augmenting will create an additional problem

in that it will be necessary to ensure the decentralized

structure of the respective controllers.

The software we use are the Matlab LMIRank toolbox [5]

with the YALMIP interface [3] and the underlying SeDuMi
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solver [8]. Firstly, we treated the optimization problem in

(25) as a additional constraint

N
∑

i=1

x̃T
i0

[

NT
i Pi(ηi0)Ni + τiS̄i + θiS̃i

]

x̃i0 ≤ γ.

Secondly, let γ = 60 and βji(µ) = 1 for j = 1, . . . , 4,

i = 1, . . . , 3, µ = 1, . . . , 4. Thirdly, we solved (17)–(22)

and the above additional constraint. Fourthly, we solved (23)

and (28)–(31). Finally, we obtained a local mode dependent

controller using (26). Surprisingly, the obtained controller

had very small values of BK,i(υi) and CK,i(υi), which

indicates that these controllers can be approximated by static

output controllers ui(t) = DK,i(ηi(t))yi(t). Hence we only

provide the values of the static gains DK,i(υi):

DK,1(1) = −6.9814, DK,1(2) = −3.7084,

DK,2(1) = −6.4037, DK,2(2) = −3.9084,

DK,3(1) = −3.2025, DK,3(2) = −1.7732.

We now present some simulations to illustrate properties

of the resulting local mode dependent static output feedback

controllers. In our simulations, the admissible uncertainties

were chosen to have the form, for i = 1, 2, 3,

ξi(t) = ζi(t), ri(t) = −
3

∑

j=1,j 6=i

ζj(t).

The reason for this particular uncertainty choice is as fol-

lows. With these particular uncertainties and the controller

designed using our approach, the stability properties of the

open-loop and the closed-loop large-scale systems are easy

to verify by substituting the uncertainties into the system

and forming a corresponding Markovian jump linear system.

It follows that the open-loop system with ui(t) ≡ 0 was

not stochastically stable while the closed-loop system was

found to be stochastically stable; this confirms the result of

Theorem 3.

For a comparison, the algorithm given in [2] was used to

design a optimal worst-case global mode dependent output

feedback controller. Firstly, the system (1) with the cost

functional (5) was regarded as a special class of the system

(6) with the cost functional (7), which were studied in [2].

Then following the design procedure in [2], it was found

that a optimal global mode dependent controller could be

designed which yields a upper bound of 3.4 for the cost

functional (7). Simulations showed that in practice our local

mode dependent controller may have better transient perfor-

mance as shown in Figure 1 at least for some uncertainties,

although it is not guaranteed to hold for all uncertainties.

After calculating the sample of the cost functional along the

system trajectory over the first 15 seconds, it was found that

for our controller the sample cost was equal to 0.9814, while

the optimal controller based on the results of [2] produced a

sample cost of 0.9819.

V. CONCLUSIONS

This paper has studied the decentralized output feedback

guaranteed cost control problem for a class of uncertain

Markovian jump large-scale systems. The controllers are

entirely decentralized with respect to the subsystems. They

use local system states and local operation modes of the

subsystems to produce the local control inputs. A sufficient

condition in terms of rank constrained LMIs has been de-

veloped to construct such controllers. Also, the developed

theory has been illustrated by a numerical example and

simulations.
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