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Abstract - This work extends a previously developed research 

concerning about the use of local model predictive control in 

differential driven mobile robots. Hence, experimental results 

are presented as a way to improve the methodology by 

considering aspects as trajectory accuracy and time 

performance. In this sense, the cost function and the prediction 

horizon are important aspects to be considered.  The aim of the 

present work is to test the control method by measuring 

trajectory tracking accuracy and time performance. Moreover, 

strategies for the integration with perception system and path 

planning are briefly introduced. In this sense, monocular image 

data can be used to plan safety trajectories by using goal 

attraction potential fields.  

 

Index Terms – autonomous mobile robot, system identification, 

model based control, local predictive control, trajectory planning, 

robot vision. 

 

I.  INTRODUCTION 

The path tracking error minimization is considered as an 
important mobile robot objective that is accomplished by 
reducing the error between the robot and the desired path. 
Other aspects as vehicle speed or even acceleration profile 
can also be analysed as important issues to be considered in 
the path tracking strategies [1]. Hence, the dynamics of the 
robot becomes an important issue in planning accurate and 
safe trajectories, in which on-robot sensors provide enough 
environmental knowledge to avoid colliding with obstacles 
and to reach the final desired coordinates. The scientific 
community has carried out several studies in this field. The 
use of a dynamic window approach, with available robot 
speeds, the reactive and safety stopping distances, derived 
from robot motion dynamics, allow WMRs (wheeled mobile 
robots) reactively avoiding obstacles [2]. Rimon presented 
methodologies for exact motion planning and control, based 
on artificial potential fields where complete information 
about the free space and goal are encoded [3]. The main 
drawback of the potential fields is the local minimal failures. 
However, the flexibility is reported as an advantage when 
small or moving obstacles are met. Probabilistic Roadmap 
Method (PRM) [4] is a methodology not suffered from local 
minimal failures, but with drawbacks as unattractive path 
generation and lack of flexibility. Path optimization can be 
improved using local motions controlled by local potential 
fields [5]. Some approaches to mobile robots propose using 
potential fields, which satisfy the stability in a Lyapunov 
sense on a short prediction horizon [6].  

In the present work, model predictive control (MPC) is 
presented as an accurate nonlinear methodology that allows 
an exact trajectory tracking by minimizing the cost function.  
In this sense, simulated and experimental results are 
presented as an extension of previously developed work [7]. 

Hence, several studies concerning about the trajectory 
tracking accuracy are reported. Moreover, a trajectory 
planning framework consisted of a narrow and dense field of 
view and a goal attracting potential field point are used to 
test the MPC performance. From a monocular perception 
system, the selected free cell should avoid the obstacle 
collisions and approach the robot to the final desired 
configuration through the attraction objective field. Once the 
local desired cell is obtained a straight line between the cell 
and the robot is generated. These kinds of trajectories are 
used also to test the performance of robot trajectory 
tracking. The control action consists in steering and straight 
line following, such actions are common to a wide range of 
nonholonomic vehicles [8].  Hence, at each perception step, 
a tracking straight line is commanded as a new trajectory to 
be followed by the robot. The visual data are the meaningful 
source of information in order to accomplish with the tasks 
of obstacle detection. However, other data provided by the 
encoder-based odometer system are also considered. 

This paper is organized as follows. Section I briefly 
presents the aim of the present work. Section II introduces 
the MPC methodology and algorithms. The WMR PRIM, 
consisting of a differential driven robot with a free rotating 
wheel, is used as an available platform in order to orient the 
results [9]. Once the robot models are known several 
simulations are depicted. In the Section III, the experimental 
results attaining the trajectory tracking performance are 
presented. Hence, horizon of prediction, cost function, and 
time performance are studied. Moreover, the experimental 
results are developed within a context of path planning 
strategy with local monocular visual perception data in 
which trajectories with safe obstacle avoidance can 
approach the robot to the goal. Consequently, it can be used 
to test the control performance. Finally, in Section IV, some 
conclusions are drawn and future research is outlined. 
 

II. LOCAL MODEL PREDICTIVE CONTROL 
 
 In this section it is presented a useful methodology, 
which explains how to deal with the simplified dynamic 
system models and the odometer system. The LMPC 
trajectory tracking can be considered as a meaningful 
contribution of this paper, thus the cost function 
minimization is considered as a convex optimization 
problem and thus can be easily solved by using optimal 
interval search and taking into account some physical 
constraints. The LMPC algorithm design studies are also 
reported. 
 

A. System Identification 
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In this work, it is used parametric identification process 
based on black box models [10]. Thus, the transfer functions 
are related to a set of polynomials that allow the use of 
analytic methods in order to deal with the problem of 
controller design. 
 The nonholonomic system dealt with in this work is 
considered initially as a MIMO (multiple input multiple 
output) system, due to the dynamic influence between two 
dc motors. The approach of multiple transfer functions 
consists in making the experiments with three different 
(slow, medium and fast) speeds. The parameter estimation is 
done by using a PRBS (Pseudo Random Binary Signal) as 
excitation input signal. The ARX (auto-regressive with 
external input) structure has been used to identify the 
parameters of the system. 
The problem consists in finding a model that minimizes the 
error between the real and estimated data. By expressing the 
ARX equation as a lineal regression, the estimated output 
can be written as: 

θϕ=ŷ                                     (1) 
  
With ŷ  being the estimated output vector, θ the vector of 

estimated parameters and φ the vector of measured input and 
output variables. The system is identified by using the 
identification toolbox “ident” of Matlab. As e.g., after 
frequency filtering the following medium speed continuous 
transfer function matrix is obtained:  
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Where YR, and YL represent the speeds of right and left 

wheels, and UR and UL the corresponding speed commands, 
respectively. It is seen from (2) that the dynamics of two dc 
motors are different and the steady gains of coupling terms 
are relatively small (less than 20% of the gains of main 
diagonal terms). The experimental results should confirm 
that the coupled dynamics can be neglected, and the 
existence of different gains in steady state. Finally, the order 
reduction of system model is carried out trough the analysis 
of pole positions by using the method of root locus. If it 
reveals the existence of a dominant pole, then the model 
order can be reduced. Afterwards, as shown in Fig. 1, the 
system models are validated through the experimental data 
by using the PRBS input signal.  

 

 

Fig. 1. Experimental and model data for medium speeds 
 

B. The Odometer System and Path Following 

Denote (x, y, θ) as the coordinates of position and 
orientation, respectively. The positioning of robot as a 
function of the radius of left and right wheels (Rl, Rr), and 
the angular incremental positioning (θl,θr), with E being the 
distance between two wheels and dS the incremental 
displacement of the robot. The position and angular 
incremental displacements are expressed as: 
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Thus, the incremental position of the robot can be obtained 
by the odometer system through the available encoder 
information obtained from (3) and (4).  The need of control 
laws that include goal achievement under environment 
constraints has suggested the use of LMPC. Hence, the local 
perception provided by the on robot sensors deal with the 
local prediction horizon idea. 
 

C. Local Model Predictive Control 

 
 The MPC has many interesting aspects for its 
application to WMR control. The MPC is the most efficient 
advanced control technique, as compared to the standard 
PID control, that has made a significant impact to the 
industrial process control [11].  The MPC use on WMR can 
be solved using global sensor systems that provide real time 
information about the trajectories to be followed in order to 
achieve the goal [12]. Since the sensorial system of many 
robots is just local, the global trajectory planning becomes 
unfeasible. By using a MPC, the idea of the receding 
horizon can deal with the local sensor information. In this 
way it is proposed LMPC, in order to use the technique in 
the navigation strategies oriented to goal achievement. The 
MPC is based on minimize a cost function, related to the 
objectives, through the computation of the optimal inputs. In 
this case, the cost function can be expressed as follows: 
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The first term of (5) is referred to the desired coordinates 
achievement, Xd=(xd, yd, θd), the second to the trajectory that 
can be followed, and the last one to the input signals. The 
parameters P, Q, and R are weighting parameters that 
express the importance of each term. The system constrains 
are also considered: 
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The limitation of the input signal is taken into account in the 
first constraint. The second is related to the obstacle points 
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where the robot should avoid the collision. The last one is 
just a convergence criterion. The LMPC algorithm is run in 
following steps: 
 

1) To read the actual position 
2) To minimize the cost function, and to obtain a 

series of optimal input signals. 
3) To choose  the first obtained input signal as 

command signal 
4) Go back to the step one in the next sampling 

period. 
 

The minimization of the cost function is a nonlinear problem 
in which the following equation should be verified: 
 
                   ( ) ( ) ( ) ( )7yfxfyxf                          βαβα +≤+  

 
It is a convex optimization problem caused by the 
trigonometric functions used in (4). The use of interior point 
methods can solve the above problem [13]. Among many 
algorithms that can solve the optimization, the descent 
methods are used, such as the gradient descent method, 
steepest descent method, or the Newton’s method, among 
others. The gradient descent algorithm has been 
implemented in this work. In order to obtain the optimal 
solution, some constraints over the inputs are taken into 
account [11]. There is a fixed signal increment during part 
of prediction horizon, hence, on expression (5) input signals 
are commanded until j=m-1. The input signals are constant 
during the remaining interval of time, in (5) n-m-1, where n 
represents the prediction horizon. Normally, just forward 
movements are commanded, accordingly with the field of 
view perception. The input constraints present advantages 
such like the reduction in the computation time and the 
smooth behavior of the robot during the prediction horizon. 
Thus, the set of available inputs are reduced to just one 
value. In order to reduce the optimal signal value search, the 
possible input sets are as a bidimensional array, as shown in 
Fig. 2. Then, the array is decomposed into four zones, and 
the search is just located to analyze the center points of each 
zone. It is considered just the region that offers better 
optimization, where the algorithm is repeated for each sub-
zone, until no sub-interval can be found. The results were 
obtained by testing all possible inputs and the subinterval 
search algorithm, which were compared by simulating a 2m 
straight line tracking, as shown in Fig. 3.  

 
 
Fig. 2: Optimal interval search. 

 
Fig. 3: Trajectory tracking and command speed profiles during 2 m 
straight line tracking simulation, by computing the cost function 
for all the input combinations or by using the gradient descent 
method. 

The results show the discrepancy between the two methods 
in which the subinterval gradient descent method usually 
does not give the optimal solution. However, when 
acceleration is produced both results are similar. Fig. 4 
illustrates this case by showing the results of cost function 
obtained by all possible inputs, in which a unique minimum 
is found. However, when the acceleration process is finished 
and other criteria as final point and desired trajectory 
distances are considered, only suboptimal solutions are 
obtained. As shown in Fig. 4.b, local minimum can be 
obtained instead of being globally optimal. The gradient 
descent results can be considered as nearly optimal.  

 
Fig. 4 

The cost function analysis has shown the following two 
aspects: First, when only the desired coordinates are 
considered the robot could not arrive in the final point. Fig. 
5 shows that the inputs that can minimize the cost function 
by shifting the robot position to the left. The reason can be 
found in (2), since the left motor has more gain than the 
right. This problem can be easily solved by considering a 
straight line trajectory from the actual point of the robot to 
the final desired point. Thus, the distance to the trajectory 
should be included into the cost function. Second, when the 
robot orientation is reversed to the goal point, the robot 
cannot find solution, so initial points bring far away from 
goal and no action is done. This problem has been solved, 
just considering the orientation as one of the parameters to 
be minimized, when several orientation discrepancies are 
found. 
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Fig. 5: Predicted coordinates from speed zero, n=5, m=3. 
The left deviation is due to the bigger right gain of the robot. 
 
 Fig. 6 shows a simulated result of LMPC for the WMR 
by first using the orientation error as the cost function and 
then the local trajectory distance and the final desired point 
in the optimization. The prediction horizons between 0.5s 
and 1s were proposed and the computation time for each 
LMPC step was set to less than 100ms, running in an 
embedded PC of 700MHz. The computing time for the 
complete search of an optimal input is between 13 and 14 
ms when m=3 and n=5. In the case of using gradient descent 
method, the computing time is set to less than 1ms. 
Trajectory tracking and final point reaching are other 
interesting aspects to be analysed. Fig. 7 shows the results 
obtained in tracking a straight line of 2m using two different 
prediction horizons. The larger prediction horizon shows a 
closer final point achievement and worse trajectory tracking. 
Fig. 8 shows the velocities of both wheels using the above 
strategies. The wide prediction strategy shows a softer 
behaviour due to the larger control horizon.  
 

III. EXPERIMENTAL RESULTS 
 

 In this section, two important aspects are analysed: the 
trajectory tracking and the monocular local perception. The 
trajectory tracking is improved by the adequate choice of a 
cost function that is derived from simulated results and 
consists of a quadratic function containing some of the 
following three parameters to be minimized: The squared 
Euclidean approaching distance between the local desired 
coordinates, provided by the on-robot perception system, 
and the actual robot position. The squared trajectory 
deviation distance between the actual robot coordinate and a 
straight line that goes from the robot coordinates, when the 
local frame perception was acquired, and the local desired 
coordinates belonging to the referred frame of perception. 

 

Fig. 6: LMPC simulated results following a 45º trajectory m=3, 
n=5) . It is used firstly squared orientation difference minimization 
and then squared trajectory and final distances minimization. 

 
Fig. 7: Trajectory tracking in red (n=10, m=5) and in blue (n=5, 
m=3). The larger prediction horizon shows a closer final point 
achievement and worse trajectory tracking. 

The last parameter consists in the squared orientation 

difference that is used only when the desired orientation is 
greater than a selected threshold. In this case, other 
parameters of the cost function are not used. One 
consideration that should be taken into account is the 
different distance magnitudes. In general, the approaching 
distance could be more than one meter. However, the 
deviation distance has its magnitude normally in the order of 
cm, which becomes effective only when the robot is 
approaching to the final desired point. Hence, when it is 
tried to reduce further the deviation distance to less than 
1cm, it is proposed to increase the weight value for the 
deviation distance in the cost function.  

A. Local Perception and Trajectory Planning by Using 

Monocular Data 

The proposed path planning strategy arises from the 
local perception knowledge and potential attraction field 
provided by a global desired robot configuration. In this 
research it is used constrained monocular perception with 
just one frame [14]. Hence, the method uses a single image 
to obtain depth information (one bit) when the robot detects 
obstacles. Flat and homogeneous floor radiance is assumed.  

Results emerge from using a set of multi-resolution 
radiance measurement thresholds to avoid obstacle collision. 
Thus, obstacles are obtained as a binary result. Fig. 9 shows 
the on-robot camera configuration studied in this work with 
its analysis focused on particular indoor environments with 

flat floor surfaces. In Fig. 9 α , β and ϕ are angles of the 
vertical and horizontal field of view and the tilt camera pose, 
respectively.  

 
Fig. 8: Wheel speeds during the 2m straight line tracking. The red 
and blue dots show the right and left speeds respectively, with 
n=10 and m=5. The magenta and green dot lines depict the right 
and left speeds with n=5 and m=3. 

The vertical coordinate of the camera is represented by H. 
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Thus, the scene floor coordinates can be computed by the 
following trigonometric equations: 
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The Ki and Kj are parameters used in order to cover the 
image pixel discrete space. Thus, R and C represent the 
image resolution through the total number of rows and 
columns. In this research, the wide-path in experimental 
sense should be big enough so as to allow the WMR passing 
without any risk of collision. Thus, this parameter should 
allow a trajectory following deviation as well as an enough 
space in order that the robot can turn around itself. When the 
concept of the wide-path is considered in the local 
perception map, the number of possible local map 
coordinates that can be attained by the robot is reduced. Fig. 
10 shows the available coordinates, including the wide-path 
of WMR, within the local visual map. The information 
provided by the camera is considered as a local receding 
horizon where a trajectory without obstacles is planned. 
Hence, a local map with feasible coordinates is provided. 
Thus, when no obstacle is detected, optimal free coordinate 
points are obtained by minimizing a cost function J, 
consisting in the Euclidean distance between the global 
desired coordinates and the available local scene 
coordinates: 
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where (xd,yd) are the global desired coordinates, and 
IMAGE(i,j)=1 means that the visual coordinate is  
unavailable. Thus, a local free cell that minimizes the cost 
function objective is selected as the local desired 
coordinates to be achieved by the robot (Xld, Yld ). The 
obstacles appear as 2D radiance discontinuities and 
consequently free space can be obtained and mapped as 
floor part. When obstacles are found, the problem is 
formulated by finding the Yld taking in account the 
maximum geometric size of the closer obstacle and Xld 
based on the existing free configuration space [15].  

 

Fig. 9: Fixed camera configuration 

 
Fig. 10: Available local map coordinates (in green), the necessary 
coordinates free of obstacles and the necessary wide-path (in red) 

B. Experimental Results on Trajectory Tracking  

The trajectory tracking accuracy and time performance 
are two important aspects to be considered. In this context, 
the odometer system performance was analyzed by 
measuring the accuracy of the system. It was done by 
commanding long trajectories along lab corridors. After 
calibrating the odometer, the results showed that a 
commanded trajectory of 22m provided averaged final 
distance errors of less than 0.5m, and angular orientation 
errors of less than 5º.  Hence in this research, it is analyzed 
local trajectories of less than 1.5m accordingly with the 
narrow visual perception provided. Thus, the odometer 
system errors can be neglected when local trajectories are 
considered. Therefore, the odometer system is locally used 
to compute LMPC trajectory tracking errors. The tested 
trajectories are obtained from the available set of local map 
coordinates as shown in Fig. 10. The LMPC results are 
analyzed when different trajectories tracking are 
commanded, as it is depicted in Fig. 11.  

Denote E1 as the average final error, E2 the maximal 
average tracking error, E3 the average tracking error, E4 the 
standard deviation of average tracking error. Table 1 
presents the statistics concerning about the error obtained in 
cm testing the trajectories shown in Fig. 11. It can be seen 
that the accuracy of trajectory tracking, when straight line is 
commanded, has a deviation error of 0.54cm. However, 
when a turning action is performed, the error in straight line 
tracking is bigger as consequence of the robot dynamics 
when it is moving forward. Fig. 11 gives a clue about what 
is happening. Thus, the major turning angle will produce the 
major deviation distance. 

 
Fig. 11: Trajectory tracking tested from point to point by using the 
available local map coordinates provided by the monocular 
perception system. 
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Table 1: Point to point trajectory tracking statistics 

Trajectory E1 E2 E3 E4 
From (0,0) to 
(0,130) 

 
4.4cm 

 
0.9cm 

 
0.54cm 

 
0.068 

From (0,0) 
to (34,90) 

 
3.8cm 

 
3.9cm 

 
2.3cm 

 
0.82 

From (0,0) 
To (25,40) 

 
4.5cm 

 
5.3cm 

 
3.9cm 

 
1.96 

Usually, it is very difficult to reduce the approaching 
distance to zero, due to the control difficulty of dead zone 
for the WMR. Other interesting results consist in testing the 
LMPC performance when the trajectory is composed of a set 
of points to be tracked. In this sense, when it is regarded to 
the kind of robot used, a pure rotation is possible by 
commanding the same speed with different sense to each 
wheel motor. Hence, when a trajectory is composed of many 
points, two possibilities exist: continuous movement in 
advancing sense, or discontinuous movement in which the 
robot makes the trajectory orientation changes by turning 
around itself at the beginning of the new straight segment. 
Fig. 12 shows the tracking performance of the robot by 
tuning around itself, when the robot follows a trajectory 
composed of a set of points (0,0), (-25,50), (-25,100), (0, 
150) and (0,200). The reported trajectory deviations are less 
than 5cm. However, the tracking time may reach up to 25s. 
The trajectory tracking strategy with continuous movement, 
for a set of points (0,0), (25,50), (25,100), (0,150) and 
(0,200), is represented in Fig. 13. In this case, it is reported a 
bigger trajectory deviation, due to the WMR’s mechanical 
dynamics. The trajectory tracking is performed much faster 
(≤15s). Hence, in the continuous moving case, it needs a 
turning action with a minimum radius; once the direction is 
attained the robot deviation is very small. Thus, trajectories 
following straight lines have reported errors less than 1cm. 
When time performance is analysed the continuous 
movement presents a better behaviour.  

IV CONCLUSIONS AND FUTURE WORK 

In this paper, LMPC strategies have been used to track 
the trajectory and to reach the local desired coordinates, 
which result in the improved accuracy and time 
performance. Research is currently focused on 
implementing the presented methods by developing flexible 
software tools that allow vision methods to be tested and 
locally readable and virtual obstacle maps to be created 
taking into account the robot’s position and the selected 
camera configuration. The use of virtual visual information 
can be useful for testing the robot in synthetic environments 
and for simulating different camera configurations. Further 
studies on LMPC should be done in order to analyse 
improvements such as changing the tracking set-point or its 
relative performance with respect to other control laws. 

 
Fig. 12: Trajectory tracking with discontinuous movement. 

 
Fig. 13: Trajectory tracking with continuous movement. 

 

. The influence of the motor dead zones is also an interesting 
aspect that should make further efforts.  
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