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Abstract: This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean

currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical

differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free

vector field (geostrophic ocean flow).

At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the

spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness.

Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a

convolution of the flow field with a scaled version of the regularized Green function.

Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phe-

nomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in

the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a

continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with

a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral

provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

1 Introduction

As a crucial factor for weather and climate, the oceans are of immediate importance. By modelling oceanic currents on

the sphere (and in a first approximation the regions under consideration may be assumed to be part of a spherically shaped

Earth), we gain a better understanding of meteorological processes. The point of departure for our intention to determine

the sea surface topography is the geostrophic flow equation derived in conventional form from the basic hydrodynamic

equation (see, e.g., [1, 5, 11, 12]). As a scalar field on the spherical Earth, the sea surface topography H consists of two

ingredients. On the one hand, on an Earth at rest, the water masses would align along the geoid (given as the deviation from
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the standard reference ellipsoid used in physical geodesy (see [7, 8])). On the other hand, satellite measurements provide

altimetric data of the actual sea surface height which in marine geodesy are also used (in relation to the standard reference

ellipsoid). The difference between these quantities can, of course, be considered as the actual sea surface topography. In

other words, the sea surface topography H is defined as the deviation of the ocean surface from the geoidal surface which is

here assumed to be due to the geostrophic component of the ocean currents. The surface geostrophic velocity of the ocean

currents then reads as follows (see [1, 5, 11, 12])

L∗
ξH(ξ) = h(ξ), ξ ∈ Ωoc, (1.1)

where Ωoc is the subset of the Earth’s sphere Ω ⊂ R
3 being covered by oceans (for simplicity, we associate Ω with the unit

sphere in R
3), L∗

ξ is the surface curl gradient acting on ξ ∈ Ωoc, defined by L∗
ξ = ξ ∧ ∇∗

ξ with ∇∗ the surface gradient.

Further, h(ξ) is the product of three factors, namely (i) the quotient between the mean equatorial Earth’s radius R and the

acceleration of gravity g(ξ) at ξ, (ii) the Coriolis force coefficient c(ξ) = 2|ω|(ε3 · ξ) (with |ω| the angular velocity of the

Earth), and (iii) the velocity field v(ξ) at ξ. In detail,

h(ξ) =
2R

g(ξ)
|ω|(ε3 · ξ)v(ξ), ξ ∈ Ωoc. (1.2)

Clearly, for all ξ ∈ Ωoc, the geostrophic flow h given by (1.1) is perpendicular to the tangential surface gradient ∇∗H of

the sea surface topography on Ωoc. This is a remarkable feature of the geostrophic velocity field. The currents flow along

and not across the lines of constant sea surface topography.

In this paper we are concerned with the so called Topography Problem of geostrophic ocean circulation in a normal

region Γ ⊂ Ωoc: Let the vectorial velocity field h be known for a finite subset of points {η1, . . . , ηN} on Γ, and the scalar

sea surface topography H be known for a set {η̃1, . . . , η̃Ñ} on the boundary ∂Γ of Γ. Find an approximation of H from

the discrete data {(ηi, h(ηi)}i=1,...,N and {(η̃i,H(η̃i)}i=1,...,Ñ on the whole domain Γ = Γ ∪ ∂Γ.

In oceanography the sea surface topography is conventionally represented (on the whole Earth’s surface) on the sphere

Ω by a conventional Fourier (orthogonal) expansion in terms of spherical harmonics Yn,j (see, e.g., [10]) thereby assuming
∫

Ω
H(ξ)Y0,1(ξ)dω(ξ) =

∫

Ωoc H(ξ)Y0,1(ξ)dω(ξ) = 0 (dω denotes the surface element).This approach ignores the local

formulation of the problem (1.1) for the oceanic part Ωoc of the (spherical) Earth’s surface. Instead it leads to an orthogonal

series expansion of the velocity field in terms of surface divergence free vector spherical harmonics L∗Yn,j on the whole

(spherical) Earth. But obviously, these vector types of polynomial functions are far from being suitable for purposes of

approximation on the oceanic area Ωoc. First, the constituting ingredients of spherical harmonics show certain phenom-

ena of (global) periodicity at least when the classical basis system involving associated Legendre functions is used. In

consequence, the assumptions on continents influence the approximation on oceans. Second, boundary effects along the

coast lines like the Gibbs phenomenon are not avoidable by use of spherical harmonics, i.e., by use of non-space-localizing

polynomials. So it is really necessary for geoscientific practice to develop on a geostrophic theory of ocean circulation

in restriction to the oceanic parts Ωoc on the Earth’s surface thereby using specific space-localizing (trial) kernel vector

functions for purposes of approximation on Ωoc. These requirements will be investigated in the approach presented below.

2 Preliminaries

Throughout this paper we need a number of differential operators on the unit sphere Ω ⊂ R
3 which are listed in Table 1

(see, e.g., [4]).

Table 1 Differential operators

Symbol Differential Operator

∇x Gradient at x

∆x = ∇x · ∇x Laplace operator at x

∇∗
ξ Surface gradient on the unit sphere Ω at ξ

L∗
ξ = ξ ∧∇∗

ξ Surface curl gradient on the unit sphere Ω at ξ

∆∗
ξ = ∇∗

ξ · ∇
∗
ξ = L∗

ξ · L
∗
ξ Beltrami operator on the unit sphere Ω at ξ

∇∗
ξ · Surface divergence on the unit sphere Ω at ξ

L∗
ξ · Surface curl on the unit sphere Ω at ξ
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It should be noted that the operators ∇∗, L∗, and ∆∗ will be always used in a coordinate-free representation, thereby

avoiding any kind of singularities at the poles. Moreover, following the nomenclature of [4] we denote by ∇∗· the surface

divergence on Ω and by L∗· the surface curl on Ω. Clearly, ∆∗ = L∗ · L∗ = ∇∗ · ∇∗. Note that the operators ∇∗, L∗, ∆∗

show special features in certain situations (for more details the reader is referred to [4]). For example, let η ∈ Ω be fixed.

If G is of class C(1)[−1, 1] and G′ ∈ C(0)[−1, 1] denotes its derivative, then we find

∇∗
ξG(ξ · η) = G′(ξ · η)(η − (η · ξ)ξ), ξ ∈ Ω,

L∗
ξG(ξ · η) = G′(ξ · η)(ξ ∧ η), ξ ∈ Ω, (2.1)

whereas for G ∈ C(2)[−1, 1]

∆∗
ξG(ξ · η) = (L∗ · L∗)G(ξ · η) = −2(ξ · η)G′(ξ · η) + (1 − (ξ · η)2)G′′(ξ · η), ξ ∈ Ω.

3 Green’s Theorems on (Normal) Regions of the Sphere

A standard method for solving boundary value problems corresponding to the Beltrami operator ∆∗ is the theory of Green’s

functions. We first introduce the definition and the properties of Green’s function with respect to the Beltrami operator ∆∗

(see [3]). Then we prove the fundamental theorem for L∗ on normal regions on the sphere in order to solve differential

problems involving the surface curl gradient (cf. [3, 6]).

Definition 3.1 The function G(∆∗; ·, ·) : (ξ, η) 7→ G(∆∗; ξ, η), ξ, η ∈ Ω with −1 ≤ ξ ·η < 1, is called Green’s function

on Ω with respect to the operator ∆∗, if it satisfies the following properties:

1. (differential equation) For every point ξ ∈ Ω, η 7→ G(∆∗; ξ, η) is twice continuously differentiable on {η ∈ Ω :
−1 ≤ ξ · η < 1}, and we have

∆∗
ηG(∆∗; ξ, η) = −

1

4π
, −1 ≤ ξ · η < 1.

2. (characteristic singularity) For every ξ ∈ Ω, the function

η 7→ G(∆∗; ξ, η) −
1

4π
ln(1 − ξ · η)

is continuously differentiable on Ω.

3. (rotational symmetry) For all orthogonal transformations t

G(∆∗; tξ, tη) = G(∆∗; ξ, η).

4. (normalization) For every ξ ∈ Ω,
∫

Ω

G(∆∗; ξ, η) dω(η) = 0.

Following [3] the uniqueness of Green’s function with respect to ∆∗ is guaranteed. In fact, the function

G(∆∗; ξ, η) =
1

4π
ln(1 − ξ · η) +

1

4π
−

1

4π
ln 2, −1 ≤ ξ · η < 1,

is an explicit representation of Green’s function with respect to the Beltrami operator ∆∗. In connection with (2.1) we

obtain

L∗
ηG(∆∗; ξ, η) = −

1

4π

η ∧ ξ

1 − ξ · η
, −1 ≤ ξ · η < 1. (3.1)

Next, we explain some geometrical assumptions imposed on subsets of the unit sphere Ω ⊂ R
3.

Definition 3.2 A region, i.e., an open and connected set Γ ⊂ Ω, is called normal if the surface theorem of Stokes
∫

Γ

L∗
ξ · f(ξ)dω(ξ) =

∫

∂Γ

τξ · f(ξ)dσ(ξ)

is valid for all continuously differentiable vector fields f ∈ c(1)(Ω), where ∂Γ is the boundary curve of Γ, τ is the unit

surface field pointing tangential to ∂Γ and σ is the arc length along ∂Γ. A normal region Γ ⊂ Ω is called regular, if its

boundary ∂Γ has a continuously differentiable unit normal field ν : ∂Γ → R
3 pointing outward of Γ, i.e., into Ω\Γ.
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By choosing f = FL∗Q,F ∈ C(1)(Γ), Q ∈ C(2)(Γ) in the surface theorem of Stokes we get Green’s surface identity

for the operator L∗, viz.
∫

Γ

(

L∗
ηF (η) · L∗

ηQ(η) + F (η)∆∗
ηQ(η)

)

dω(η) =

∫

∂Γ

F (η)τη · L∗
ηQ(η) dσ(η). (3.2)

Let the function F : Γ → R be continuously differentiable and ξ ∈ Γ be fixed. Applying Green’s surface identity to F and

Green’s function G(∆∗; ξ, ·) on the region {η ∈ ∂Γ : |ξ − η| ≥ ε} we obtain for sufficiently small ε > 0

∫

|ξ−η|≥ε, η∈Γ

(

L∗
ηF (η) · L∗

ηG(∆∗; ξ, η) + F (η)∆∗
ηG(∆∗; ξ, η)

)

dω(η)

=

∫

|ξ−η|=ε, η∈Γ

F (η)τη · L∗
ηG(∆∗; ξ, η) dσ(η) +

∫

|ξ−η|≥ε, η∈∂Γ

F (η)τη · L∗
ηG(∆∗; ξ, η) dσ(η), (3.3)

where σ denotes the arc length along ∂Γ and {η ∈ Γ : |ξ − η| = ε}, while τ is the unit surface vector tangential to

{η ∈ Γ : |ξ − η| = ε} or {η ∈ ∂Γ : |ξ − η| ≥ ε}, respectively. Using Property 1 of Definition 3.1

∆∗
ηG(∆∗; ξ, η) = −

1

4π
, η ∈ Γ,

equation (3.3) can be rewritten as follows

∫

|ξ−η|≥ε, η∈Γ

L∗
ηF (η) · L∗

ηG(∆∗; ξ, η) dω(η) −
1

4π

∫

|ξ−η|≥ε, η∈Γ

F (η) dω(η)

=

∫

|ξ−η|=ε, η∈Γ

F (η)τη · L∗
ηG(∆∗; ξ, η) dσ(η) +

∫

|ξ−η|≥ε, η∈∂Γ

F (η)τη · L∗
ηG(∆∗; ξ, η) dσ(η). (3.4)

Next, we concentrate on the integral

Iε(ξ) =

∫

|ξ−η|=ε, η∈Γ

F (η)τη · L∗
ηG(∆∗; ξ, η) dσ(η).

For each point η ∈ Γ with |ξ − η| = ε, we have

τη =
ξ ∧ η

√

1 − (ξ · η)2
. (3.5)

Hence, we find with (3.1)

Iε(ξ) = −
1

4π

∫

|ξ−η|=ε, η∈Γ

F (η)

√

1 − (ξ · η)2

1 − ξ · η
dσ(η).

Letting ε → 0 we obtain, in analogy to well-known results of potential theory (see e.g. [3, 9]),

lim
ε→0

Iε(ξ) = −
α(ξ)

2π
F (ξ),

where α(ξ) is the solid angel subtended at ξ ∈ Γ. This finally leads to the following integral formula.

Theorem 3.3 (Fundamental Theorem for L∗ on Normal Regions) Let Γ be a normal region with boundary ∂Γ.

Suppose that F is a continuously differentiable function on Γ, i.e., F ∈ C(1)(Γ). Then, for every point ξ ∈ Ω, we have

α(ξ)

2π
F (ξ) =

1

4π

∫

Γ

F (η) dω(η)−

∫

Γ

L∗
ηF (η) ·L∗

ηG(∆∗; ξ, η) dω(η) +

∫

∂Γ

F (η)τη ·L∗
ηG(∆∗; ξ, η) dσ(η).

Setting, particularly, F = 1 on Γ we immediately get from Theorem 3.3

α(ξ) =
‖Γ‖

2
+ 2π

∫

∂Γ

τη · L∗
ηG(∆∗; ξ, η)dσ(η), ‖Γ‖ =

∫

Γ

dω. (3.6)

Clearly, in case of a regular region, α(ξ) = 2π for all ξ ∈ Γ and α(ξ) = π for all ξ ∈ ∂Γ. Furthermore, for the whole

sphere Ω we have the following result (cf. [3, 4]).

Corollary 3.4 (Fundamental Theorem for L∗ on Ω) Suppose that F is of class C(1)(Ω). Then, for every ξ ∈ Ω,

F (ξ) =
1

4π

∫

Ω

F (η) dω(η) −

∫

Ω

L∗
ηF (η) · L∗

ηG(∆∗; ξ, η) dω(η).
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4 Potential and Stream Functions

Let us consider a continuous spherical vector field f of class c(0)(Ω). For all ξ ∈ Ω we call ξ → fnor(ξ) = (f(ξ) · ξ)ξ the

normal field of f , while ξ → ftan(ξ) = f−fnor(ξ), is called the tangential field of f . Obviously, f(ξ) = fnor(ξ)+ftan(ξ)
and fnor(ξ) · ftan(ξ) = 0. Furthermore, for f, g ∈ c(0)(Ω) and ξ ∈ Ω, f(ξ) · g(ξ) = fnor(ξ) · gnor(ξ) + ftan(ξ) · gtan(ξ).

Lemma 4.1 The tangential field of f vanishes, i.e., ftan(ξ) = 0, ξ ∈ Ω, if and only if f(ξ) · τ̂(ξ) = 0 for every unit

vector τ̂(ξ) that is perpendicular to ξ, i.e., for which ξ · τ̂(ξ) = 0, ξ ∈ Ω.

P r o o f. First, assume ftan = 0. Then for all ξ ∈ Ω, we have f(ξ) · τ̂(ξ) = 0. Conversely, assume that the tangential

field is non-vanishing, i.e., ftan(ξ) = f(ξ) − (f(ξ) · ξ)ξ 6= 0. Then it follows that ftan(ξ)|ftan(ξ)|−1 is a unit vector field

perpendicular to ξ. Hence, by our hypothesis, ftan(ξ) · ftan(ξ)|ftan(ξ)|−1 = 0. This implies |ftan(ξ)| = 0 which is a

contradiction. Thus it follows that ftan(ξ) = 0, as required.

Lemma 4.2 Suppose that f is continuous on a simply connected normal region Γ ⊂ Ω. Moreover, let
∫

C

τξ · f(ξ) dσ(ξ) = 0

for every curve C on Γ. Then ftan(ξ) = 0 for all ξ ∈ Γ, i.e., the tangential field of f vanishes for all ξ ∈ Γ.

P r o o f. Choose any point ξ0 ∈ Γ. Let τξ0
be any unit vector satisfying τξ0

·ξ0 = 0. Then there is a curve C on Γ passing

through ξ0 whose unit tangent vector at ξ0 is just τξ0
. Let Cξ0

sub be any subset of C containing ξ0. Then, in accordance with

our assumption,
∫

C
ξ0
sub

τξ · f(ξ) dσ(ξ) = 0.

Hence, letting the length of Cξ0

sub tend to zero we find τξ0
· f(ξ0) = 0. Lemma 4.1 then yields

ftan(ξ0) = f(ξ0) − (f(ξ0) · ξ0)ξ0 = 0. Since ξ0 can be any point on Γ, we have ftan(ξ) = f(ξ) − (f(ξ) · ξ)ξ = 0 for all

ξ ∈ Γ. This is the desired result.

The surface gradient acts like an ordinary gradient in R
3 when we integrate it along lines on Γ. In more detail, suppose

F is continuously differentiable in an open set in R
3 containing Γ, and C is any curve lying on Γ, starting at ξ0 and ending

at ξ1. Suppose that τξ is the unit tangent vector at ξ on C pointing from ξ0 to ξ1. Then

F (ξ1) − F (ξ0) =

∫

C

τξ · ∇
∗
ξF (ξ) dσ(ξ) (4.1)

(observe that τξ · ∇ξF (ξ) = τξ · ∇
∗
ξF (ξ), ξ ∈ Γ, see, e.g., [2, 4]). This result enables us to show the following lemma.

Lemma 4.3 Suppose that Γ is a simply connected normal region. Let F be of class C(1)(Γ), then ∇∗
ξF (ξ) = 0 if and

only if F is constant.

P r o o f. If ∇∗
ξF (ξ) = 0, then we obtain, in connection with (4.1), F (ξ1) = F (ξ0) for any ξ0, ξ1 on Γ.

Conversely, if F is constant, the identity (4.1) shows that f = ∇∗F fulfills
∫

C

τξ · f(ξ) dσ(ξ) = 0

for every curve C lying on Γ. Consequently, following Lemma 4.2, ftan(ξ) = 0 for all ξ ∈ Γ. This shows that ftan(ξ) =
f(ξ) − (f(ξ) · ξ)ξ = f(ξ) = ∇∗

ξF (ξ) = 0 for all ξ ∈ Γ.

Next we prove the following result of spherical vector analysis (see, e.g., [2]).

Lemma 4.4 Let f ∈ c(0)(Γ) be a tangent vector field on a simply connected region Γ, i.e., f(ξ) = ftan(ξ), ξ ∈ Γ.

Furthermore, suppose that
∫

C

τξ · f(ξ) dσ(ξ) = 0

for every closed curve on Γ. Then there is a scalar field P on Γ such that

f(ξ) = ∇∗
ξP (ξ), ξ ∈ Γ.

The field P is continuously differentiable and is unique up to a constant.
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P r o o f. Take an arbitrary, but fixed ξ0 ∈ Γ. We let

P (ξ) =

∫ ξ

ξ0

τζ · f(ζ) dσ(ζ),

be the integral along any curve C that starts at ξ0 ∈ Γ and ends at ξ ∈ Γ. Then, for any two points ξ0, ξ on Γ and any curve

C lying on Γ and starting at ξ0 and ending at ξ1,

P (ξ1) − P (ξ0) =

∫ ξ1

ξ0

τζ · f(ζ) dσ(ζ). (4.2)

Observing (4.1) we find

P (ξ1) − P (ξ0) =

∫ ξ1

ξ0

τζ · ∇
∗
ζP (ζ) dσ(ζ). (4.3)

Combining (4.2) and (4.3) we obtain

∫ ξ1

ξ0

τζ ·
(

f(ζ) −∇∗
ζP (ζ)

)

dσ(ζ) = 0

for any curve C on Γ. Lemma 4.2, therefore, shows us that f(ξ) −∇∗
ξP (ξ) = 0, ξ ∈ Γ. The proof that P is continuously

differentiable on Γ is omitted. The easiest way to construct such a proof is to take P constant on each straight line passing

through Γ in the normal direction (see, e.g., [2]). In order to verify that P is unique up to a constant, we observe that

∇∗
ξP1(ξ) = ∇∗

ξP2(ξ), ξ ∈ Γ, implies ∇∗
ξ(P1 − P2)(ξ) = 0, ξ ∈ Γ, i.e., by virtue of Lemma 4.3, P1 − P2 = const.

Now we are able to verify the following important theorem.

Theorem 4.5 Let f ∈ c(1)(Γ) be a tangential field on a simply connected normal region Γ, i.e., f(ξ) = ftan(ξ) for all

ξ ∈ Γ. Then L∗
ξ · f(ξ) = 0, ξ ∈ Γ, if and only if there is a scalar field P such that

f(ξ) = ∇∗
ξP (ξ), ξ ∈ Γ,

and P is unique up to an additive constant (P is called potential function for f ).

Similarly, ∇∗
ξ · f(ξ) = 0, ξ ∈ Γ, if and only if there is a scalar field S such that

f(ξ) = L∗
ξS(ξ), ξ ∈ Γ,

and S is unique up to an additive constant (S is called stream function for f ).

P r o o f. The condition f = ∇∗P implies L∗ · f = 0, and f = L∗S implies ∇∗ · f = 0.

Conversely, assume that L∗
ξ · f(ξ) = 0, ξ ∈ Γ. Then the surface theorem of Stokes implies

∫

C

τξ · f(ξ) dσ(ξ) = 0

for every closed curve C on Γ. From Lemma 4.4 it follows that there exists a scalar field P such that f = ∇∗P . Furthermore,

P is unique up to an additive constant.

Finally, suppose ∇∗ · f = 0. Then L∗
ξ · (ξ ∧ f(ξ)) = 0, ξ ∈ Γ, hence, there is a scalar field S, unique up to a constant, such

that −ξ ∧ f(ξ) = ∇∗
ξS(ξ), ξ ∈ Γ. This is equivalent to −ξ ∧ (ξ ∧ f(ξ)) = (ξ ∧∇∗

ξ)S(ξ), ξ ∈ Γ, or f = L∗S on Γ. This

proves Theorem 4.5.

From Lemma 4.3 we are immediately able to deduce the following statement.

Lemma 4.6 Let F be of class C(1)(Γ), then L∗
ξF (ξ) = 0 if and only if F is constant.

P r o o f. If L∗
ξF (ξ) = 0, i.e., ξ ∧ ∇∗

ξF (ξ) = 0 for all ξ ∈ Γ. Then ξ ∧ ξ ∧ ∇∗
ξF (ξ) = ξ · ∇∗

ξF (ξ) −∇∗
ξF (ξ)(ξ · ξ) =

−∇∗
ξF (ξ) = 0 for all ξ ∈ Γ. Thus by virtue of Lemma 4.3 we find F =const.

Conversely, if F is constant, then L∗
ξF (ξ) = ξ ∧∇∗

ξF (ξ) = 0 for all ξ ∈ Γ. This proves our assertion.
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5 The Differential Equations of the Surface Curl Gradient

In what follows we give two different solvability conditions for the differential equation (1.1) of the surface curl gradient

L∗. First, based on the results of Chapter 3 we formulate a certain integrability condition to assure uniqueness.

Theorem 5.1 Given f = L∗F ∈ c(0)(Ω). Then the scalar function F is uniquely determined by the condition:

1

4π

∫

Ω

F (η)dω(η) = C0, C0 ∈ R.

P r o o f. We suppose that F1, F2 ∈ C(1)(Ω) are functions satisfying the condition above. Then the difference D =
F1 − F2 satisfies L∗D = 0 on Ω and 1

4π

∫

Ω
D(η)dω(η) = 0. Consequently, from Corollary 3.4, we obtain D(ξ) = 0 for

all ξ ∈ Ω. Therefore, F1 = F2, as required.

Theorem 5.2 Let Γ ⊂ Ω be a simply connected normal region. Given f = L∗F ∈ c(0)(Ω). Then the scalar function F

is uniquely determined by the condition taken at one point ξ0 ∈ Γ:

1

4π

∫

Γ

F (η)dω(η) +

∫

∂Γ

F (η)τη · G(∆∗; ξ0, η)dσ(η) = C0, C0 ∈ R.

P r o o f. We look at the difference D of two solutions which satisfies L∗D = 0 in Γ. By Lemma 4.6 we find D(ξ) =
const = C for all ξ ∈ Γ. In connection with Theorem 3.3 we have

C

2π

(

‖Γ‖

2
+ 2π

∫

∂Γ

τη · L∗
ηG(∆∗; ξ0, η)dσ(η)

)

= 0.

Using with (3.6) we, therefore, find C = 0, i.e., D = 0 on Γ, as required.

Second, based on the results of Chapter 4, we are able to formulate a uniqueness condition by fixing a certain functional

value.

Theorem 5.3 Given f = L∗F ∈ c(0)(Ω). Then the scalar function F is uniquely determined by the condition taken at

one point ξ0 ∈ Ω:

F (ξ0) = C0, C0 ∈ R.

P r o o f. The constant difference D of two functions satisfying the conditions is equal to D(ξ0) = C0−C0 = 0 = D(ξ)
for all ξ ∈ Ω.

Theorem 5.4 Suppose that Γ is a simply connected normal region. Given f = L∗F ∈ c(0)(Ω). Then the scalar function

F is uniquely determined by the condition taken at one point ξ0 ∈ Γ:

F (ξ0) = C0, C0 ∈ R.

P r o o f. D is constant on Γ with D(ξ0) = 0. Hence D(ξ0) = 0 in Γ.

6 Regularized Green’s Theorems on (Normal) Regions on the Sphere

In the following we first introduce the regularized Green function with respect to ∆∗. We state its definition together with

some properties to be needed for the discussion of spherical wavelets on regular regions.

Definition 6.1 Given ρ ∈ (0, 2), the regularized Green function with respect to ∆∗ is defined for all ξ, η ∈ Ω by

Gρ(∆
∗; ξ, η) =

{

1
4π

ln(1 − ξ · η) + 1
4π

− 1
4π

ln 2, 1 − ξ · η > ρ,
1

4πρ
(1 − ξ · η) + 1

4π
ln(ρ) − 1

4π
ln 2, 1 − ξ · η ≤ ρ.

The regularized Green function with respect to the Beltrami operator (ξ, η) → Gρ(∆
∗; ξ, η) only depends on the inner

product of ξ and η, hence, it is a radial basis function, i.e., Gρ(∆
∗; tξ, tη) = Gρ(∆

∗; ξ, η) holds true for all orthogonal

transformations t. Figure 1 gives an illustration of the regularized Green function with respect to ∆∗. Note that, by

construction, this kernel function represents an approximation of the original Green’s function, i.e., it converges pointwise

to Green’s function as ρ tends to 0.
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Fig. 1 The regularized Green function ϑ 7→ Gρ(∆
∗; cos ϑ) for ρ = 1 − cos(π2−j) with j = 1, 2, 3 and the original Green function

Gρ(∆
∗; ξ · η) with respect to the Beltrami operator ∆∗. Note that ξ · η = cos ϑ, ϑ = ∡(ξ, η).

We immediately realize that the regularized Green function with respect to ∆∗ is continuously differentiable. Applying

the surface curl gradient L∗ to the second variable yields to the so-called regularized Green function with respect to L∗.

Obviously, for ρ ∈ (0, 2), we obtain for all ξ, η ∈ Ω

gL∗

ρ (ξ, η) = L∗
ηGρ(∆

∗; ξ, η) =

{

1
4π

1
1−ξ·η (ξ ∧ η), 1 − ξ · η > ρ,

1
4π

1
ρ
(ξ ∧ η), 1 − ξ · η ≤ ρ.

(6.1)

Observing the equation |ξ ∧ η| =
√

1 − (ξ · η)2 we derive for all ξ, η ∈ Ω and ρ ∈ (0, 2)

|gL∗

ρ (ξ, η)| =

{

1
4π

√

1+ξ·η
1−ξ·η , 1 − ξ · η > ρ,

1
4π

√

1 − (ξ · η)2, 1 − ξ · η ≤ ρ.

A graphical impression of the norm of the regularized Green function with respect to L∗ and the norm of the surface curl

gradient of Green’s function with respect to ∆∗ is illustrated in Figure 2. By similar arguments as known from potential

theory (see e.g. [6, 9]) we obtain the following counterpart of the integral formula developed in Chapter 3.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϑ

original

j=1

j=2

j=3

Fig. 2 The norm of the regularized Green function ϑ → |gL∗

ρ (cos(ϑ))| for ρ = 1 − cos(π2−j) with j = 1, 2, 3 and the norm of the

surface curl gradient of Green’s function with respect to ∆∗.

Theorem 6.2 For F ∈ C(1)(Ω) we have

lim
ρ→0

sup
ξ∈Ω

∣

∣

∣

∣

F (ξ) −
1

4π

∫

Ω

F (η)dω(η) −

∫

Ω

gL∗

ρ (ξ, η) · L∗F (η)dω(η)

∣

∣

∣

∣

= 0.
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After deriving the regularized version of the integral theorem for L∗ on Ω we now turn to the regularized integral theorem

for L∗ on normal regions Γ. For that purpose we introduce the following settings.

Definition 6.3 Let Γ ⊂ Ω be a normal region of the unit sphere Ω. For F ∈ C(1)(Γ) we let

Sρ(F )(ξ) =

∫

Γ

gL∗

ρ (ξ, η) · L∗
ηF (η)dω(η) −

∫

∂Γ

gL∗

ρ (ξ, η) · F (η)τηdσ(η), ρ ∈ (0, 2),

as a counterpart of

S(F )(ξ) =

∫

Γ

L∗
ηG(∆∗; ξ, η) · L∗

ηF (η)dω(η) −

∫

∂Γ

L∗
ηG(∆∗; ξ, η) · F (η)τηdσ(η).

Clearly, it is not hard to show that

lim
ρ→0

sup
ξ∈Ω

|S(F )(ξ) − Sρ(F )(ξ)| = 0. (6.2)

Theorem 6.4 (Regularized Integral Theorem for L∗ on Γ) Let Γ ⊂ Ω be a normal region with boundary ∂Γ. Suppose

that F is a continuously differentiable function on Γ, i.e., F ∈ C(1)(Γ). Then

lim
ρ→0

sup
ξ∈Γ

∣

∣

∣

∣

α(ξ)

2π
F (ξ) −

1

4π

∫

Γ

F (η)dω(η) + Sρ(F )(ξ)

∣

∣

∣

∣

= 0,

where α(ξ) denotes, as usually, the solid angle subtended at ξ ∈ Γ.

7 Vector Spherical Wavelets on Normal Regions

We turn our attention to the introduction of vector spherical wavelets, where Γ ⊂ Ω is supposed to be a normal region.

We choose a sequence which divides the continuous scale interval (0, 2) into discrete pieces. More explicitly, (ρj)j∈N0

denotes a sequence of real numbers satisfying limj→∞ ρj = 0 and limj→0 ρj = 1. For example, we can choose ρj = 2−j

or ρj = 1 − cos(π2−j), j ∈ N0. The point of departure for our considerations on normal regions Γ is Theorem 6.4 in the

form

α(ξ)

2π
F (ξ) − FΓ

mean = − lim
j→∞

Sρj
(F )(ξ), where FΓ

mean =
1

4π

∫

Γ

F (η)dω(η), ξ ∈ Γ. (7.1)

Note that the discrete steps in this approximation process are called scales, i.e., the value j takes the role of the scale pa-

rameter, i.e., the ”zooming-in” parameter. By using discrete regularization parameters we are naturally led to the following

type of scale discretized Green wavelets.

Definition 7.1 Let {gL∗

ρj
}j∈N0

be the regularized Green function with respect to L∗ (see (6.1)). Then the scale discretized

regularized Green wavelet function with respect to L∗ is defined by

ψρj
= gL∗

ρj+1
− gL∗

ρj
(7.2)

= L∗
ηGρj+1

(∆∗; ξ, η) − L∗
ηGρj

(∆∗; ξ, η), j ∈ N0. (7.3)

In fact, the difference of two consecutive scales of regularized Green functions with respect to ∆∗ reads

Gρj+1
(∆∗; ξ, η) − Gρj

(∆∗; ξ, η)

=











0, 1 − ξ · η > ρj ,
1
4π

ln(1 − ξ · η) − 1
4πρj

(1 − 1 − ξ · η) + 1
4π

(1 − ln(ρj)), ρj > 1 − ξ · η > ρj+1,
(

1
4πρj+1

− 1
4πρj

)

(1 − ξ · η) + 1
4π

(ln(ρj+1) − ln(ρj)), 1 − ξ · η ≤ ρj+1,

such that

ψρj
(ξ, η) = gL∗

ρj+1
(ξ, η) − gL∗

ρj
(ξ, η) =















0, 1 − ξ · η > ρj ,
1
4π

(

1
ρj

− 1
1−ξ·η

)

(ξ ∧ η), ρj > 1 − ξ · η > ρj+1,

1
4π

(

1
ρj

− 1
ρj+1

)

(ξ ∧ η), 1 − ξ · η ≤ ρj+1.

A graph of the norm of the scale discretized regularized Green wavelet function with respect to L∗ for the discretization

parameters ρ = 1 − cos(π2−j) with j = 0, 1, 2, 3 is shown in Figure 3. Note, that the functions ψρj
have a local support.
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Fig. 3 The norm of the regularized Green wavelet function ϑ → |Ψρj
(cos(ϑ))| with respect to L∗ for ρ = 1 − cos(π2−j) with scale

j = 0, 1, 2, 3.

Sρj
(F )(ξ), as given by Definition 6.3, is called the scale discrete regularized Green scaling function transform with re-

spect to L∗. Let {ψρj
}∈N0

be the scale discretized regularized Green function with respect to L∗. The scale discretized

regularized Green wavelet transform with respect to L∗ is defined by

Wρj
(F )(ξ) =

∫

Γ

L∗
ηF (η) · ψρj

(ξ, η)dω(η) −

∫

∂Γ

F (η)τη · ψρj
(ξ, η)dσ(η).

We arrive at the following theorem.

Theorem 7.2 Let {gL∗

ρj
}j∈N0

be the regularized Green function with respect to L∗. Then the multiscale reconstruction

of a function F ∈ C(1)(Γ) is given by

α(ξ)

2π
F (ξ) − FΓ

mean =

∞
∑

j=−∞

Wρj
(F )(ξ), ξ ∈ Γ,

where the equality holds in the ‖ · ‖C(Γ)-sense.

By observing the definition of the scaling transform Sρj
(F )(ξ), Theorem 7.2 admits the following reformulation.

Corollary 7.3 Under the assumptions of Theorem 7.2

α(ξ)

2π
F (ξ) − FΓ

mean − SρJ
(F )(ξ) =

∞
∑

j=J

Wρj
(F )(ξ), ξ ∈ Γ,

for every J ∈ N0 in the ‖ · ‖C(Γ)-sense.

These reconstruction formula will now be applied to the modelling of oceanic circulation.

8 Modelling of Sea Surface Topography From Ocean Circulation

As is well known, the (spherical) Earth Ω can de decomposed uniquely into two normal regions, namely the oceanic part

Ωoc and the continental part Ωco. Due to the definition of the sea surface topography we assume the differential equation

L∗H = h to be valid on Ωoc thereby relating the sea surface topography H ∈ C(1)(Ωoc) to the geostrophic ocean flow

h ∈ C(0)(Γ). Moreover, we assume that H = 0 on ∂Ωoc and
∫

Ωoc H(ξ)dω(ξ) = 0. Summarizing our results for the

normal region Γ = Ωoc, we therefore obtain

H(ξ) = −

∫

Ωoc

L∗
ηG(∆∗; ξ, η) · h(η)dω(η), ξ ∈ Ωoc,

which can be approximated as follows

H(ξ) = − lim
j→∞

∫

Ωoc

L∗
ηGρj

(∆∗; ξ, η) · h(η)dω(η), ξ ∈ Ωoc
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It suffices to have an (in the sense of Weyl) equidistributed nodal set (ηi, h(ηi)), ηi ∈ Ωoc, i = 1, · · · , N , to discretize the

integral on the left hand side and to establish a multiscale approximation of the sea surface topography.

In practice, however, we are often confronted with the problem of determining the sea surface topography on a certain

subdomain Γ of Ωoc (e.g., caps, squares or rectangles), where suitable discrete data information about the velocity vectors

of ocean currents is available. When we are interested in solving that problem numerically from discrete data material our

approach shows that we have to know, in addition, the sea surface topography on the boundary ∂Γ. But this quantity does

not vanish generally. Even more, our numerical calculation based on discrete data is only unique up to a constant HΓ
mean:

α(ξ)

2π
H(ξ) − HΓ

mean = − lim
j→∞

(
∫

Γ

h(η) · gL∗

ρj
(ξ, η)dω(η) +

∫

∂Γ

H(η)τη · gL∗

ρj
(ξ, η)dσ(η)

)

.

In what follows, particular attention is paid to the numerical stability caused by the specific observation of the boundary

terms in our calculation. Two examples will be presented for the discrete ”Topography Problem” involving discrete data on

the boundary ∂Γ. First, we consider a spherical cap Γ as a regular region. In a second step we will have a look at a normal

region, i.e., a rectangle.

8.1 Multiscale Approximation on a Spherical Cap

The spherical cap under consideration is defined by its center ζ ∈ Ω and its radius r > 0, more precisely we let

Γr(ζ) = {η ∈ Ω : |ζ − η| < r}.

In this case the tangential unit vector τη is explicitly given for all η ∈ ∂Γsea
r (ζ) by (3.5). Substituting the tangential unit

vector in the equations above we obtain

α(ξ)

2π
H(ξ) − HΓr

mean = − lim
j→∞

(

∫

Γr(ζ)

h(η) · gL∗

ρj
(ξ, η) dω(η) +

∫

∂Γr(ζ)

H(η)
gL∗

ρj
(ξ, η) · (ζ ∧ η)

√

1 − (ζ · η)2
dσ(η)

)

.

To be more precise, the region of interest in our first example is a spherical cap Γ21 where 21◦ denotes the apex angle of

the cap. Furthermore, we assume that the velocity field measurements are not continuously given, but on an equiangular

longitude-latitude grid with a step size of 0.1◦. The sea surface topography is prescribed at a finite set of boundary points

that are sampled with an angular distance of 0.0072◦. Both data sets have been generated from an artificial topography

model, the CLS01 model (which the Geomathematics Group, TU Kaiserslautern, received from the French enterprise CLS

(Collecte Localisation Satellites)). It has been computed using a 7-year TOPEX/ POSEIDON mean profile, a 5-year ERS-

1/2 mean profile, a 2-year GEOSAT mean profile and the two 168-day non repeat cycle data of the ERS-1 geodetic phase.

The data were processed and homogenized using the most recent corrections to compute the CLS01 mean sea surface

(CLS01 MSS). The surface is derived from altimetric data on oceans and from geoidal undulations elsewhere (continu-

ously connected in between, starting from an ocean depth of 10 meters). Since the velocity as well as the sea surface

topography have been generated from the CLS01 model we are able to compare the calculated results with the original data

later on. Figure 4 illustrates the mean dynamic topography which is used to calculate the input dataset, i.e., the geostrophic

flow which is also shown in Figure 4. Since we are especially interested in boundary effects, we always plot the spherical

cap together with its surrounding environment.

We deal with the discretization of the scale interval (0, 2). Very often the regularization parameter is set to ρj = 2−j ,

j ∈ N0. In order to increase the speed of convergence we use the definition ρj = 1 − cos(2−2j), j ∈ N0, instead. The

effect is that we obtain a good approximation of the sea surface topography already at low scales, which can be seen in

Figure 5 presenting the reconstruction of the topography at lower scales. The left column contains the reconstruction based

on the regularized Green function with respect to L∗ and the right column shows the approximation of the topography with

the corresponding scale discretized regularized Green wavelet function.

At first sight the approximated sea surface topography is close to the original topography inside the spherical cap, while

the topography at the boundary of the spherical cap seems to be disturbed. Taking the absolute value of the difference

between the original and the approximated sea surface topography, we can better specify the approximation errors (see

Figure 6).

8.2 Multiscale Approximation on a Spherical Rectangle

Next, we will have a look at the aforementioned rectangular region. From the dataset of the spherical cap we cut off a

rectangular region and generate a corresponding boundary dataset. Figure 7 illustrates the dynamic topography and the

geostrophic flow which is used as input dataset.
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Fig. 4 Plot of the mean dynamic topography in [m] (left), which is used to calculate the input dataset, i.e., the geostrophic flow in [cm/s]

(right).

Omitting the vertices in the process of integration it is easy to calculate τη for each η ∈ ∂Γ. As in the case of the

spherical cap we achieve a good approximation of the sea surface topography, which can be seen in Figure 8. It shows

the reconstruction of the topography at lower scales. The left column contains the reconstruction based on the regularized

Green function with respect to L∗ and the right column shows the approximation of the topography with the corresponding

regularized Green wavelet function. Analogously to the case of a spherical cap we achieve small errors.

A question we are interested in is in how far the part of the boundary integral influences the reconstruction. To give an

impression of this influence Figure 10 compares the total reconstruction to the part of the reconstruction coming from the

boundary integral in the cap and in the rectangular region at scale 5.

It is an interesting fact that the boundary integral takes the major part of the whole reconstruction. The numerical results

demonstrate that the new multiscale approximation method based on the regularized Green function with respect to L∗

yields an efficient procedure to model sea surface topography from ocean velocity field data. Already at low scales, i.e.,

with larger regularization caps, the approximation error inside of the regular region tends to zero. Compared to standard

methods using a truncated velocity field model that neglects the boundary effects our approximation method shows an

appealing convergence of the approximated version to the exact solution at the boundary of the region.
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Fig. 5 Reconstruction of the topography in [m] on the spherical cap Γ21 at low scales using the scale discretized regularized Green

function.
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Fig. 6 Approximation error of the dynamic topography in the spherical cap Γ21, where the constant value HΓ

mean was subtracted. Note

that the colorbar is logarithmic.

Fig. 7 Plot of the mean dynamic topography in [m] (left) and the geostrophic flow in [cm/s] (right) in a rectangular region .
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Fig. 8 Reconstruction of the topography in [m] on a rectangular region Γ at low scales using the scale discretized regularized Green

function.
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Fig. 9 Approximation error of topography in a rectangular region Γ, where the constant value HΓ

mean was subtracted. Note that the

colorbar is logarithmic.
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Fig. 10 Comparison of the total reconstruction of the dynamic topography in [m] (left) to the part of the reconstruction coming from

the boundary integral (right) in the cap and in the rectangular region at scale 5.
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