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Local molecular and global connectomic
contributions to cross-disorder cortical
abnormalities
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Numerous brain disorders demonstrate structural brain abnormalities,
which are thought to arise from molecular perturbations or connectome
miswiring. The unique and shared contributions of these molecular and
connectomic vulnerabilities to brain disorders remain unknown, and has
yet to be studied in a single multi-disorder framework. Using MRI mor-
phometry from the ENIGMA consortium, we construct maps of cortical
abnormalities for thirteen neurodevelopmental, neurological, and psy-
chiatric disorders from N = 21,000 participants and N = 26,000 controls,
collected using a harmonised processing protocol. We systematically
compare cortical maps to multiple micro-architectural measures, includ-
ing gene expression, neurotransmitter density, metabolism, and myeli-
nation (molecular vulnerability), as well as global connectomic measures
including number of connections, centrality, and connection diversity
(connectomic vulnerability). We find a relationship between molecular
vulnerability and white-matter architecture that drives cortical disorder
profiles. Local attributes, particularly neurotransmitter receptor profiles,
constitute the best predictors of both disorder-specific cortical mor-
phology and cross-disorder similarity. Finally, we find that cross-disorder
abnormalities are consistently subtended by a small subset of network
epicentres in bilateral sensory-motor, inferior temporal lobe, precuneus,
and superior parietal cortex. Collectively, our results highlight how local
molecular attributes and global connectivity jointly shape cross-disorder
cortical abnormalities.
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The brain is a network with intricate connection patterns among
individual neurons, neuronal populations, and large-scale brain
regions. The wiring of the network supports propagation of electrical
signals, as well as molecules needed for growth and repair. This com-
plex system is vulnerable to multiple neurological, psychiatric and
neurodevelopmental disorders. Pathological perturbations—including
altered cellularmorphology, cell death, aberrant synaptic pruning and
miswiring—disrupt inter-regional communication and manifest as
overlapping groups of sensory, motor, cognitive and affective symp-
toms. How different disorders are shaped by local and global vulner-
ability is unknown.

Indeed, several studies have demonstrated cross-disorder con-
nectomic vulnerability, where regions and white-matter pathways are
targeted non-randomly. In particular, regions that are highly con-
nected and potentially important for communication tend to be dis-
proportionately affected by disease1,2. A similar phenomenon is
observed for connections that support multiple communication
pathways3. In neurodegenerative diseases such as Alzheimer’s and
Parkinson’s diseases, emerging evidence suggests pathological mis-
folded proteins spread trans-synaptically, such that the connectivity of
the brain shapes the course and expression of these diseases4–11.
Recent evidence also suggests that patterns of tissue volume loss in
schizophrenia are circumscribed by structural and functional con-
nection patterns12,13. Collectively, these studies demonstrate that both
neurodevelopmental and neurodegenerative brain diseases are influ-
enced by network connectivity14,15.

The effects of disease can also be driven by local cellular and
molecular vulnerability. Namely, local patterns of gene expression16–18,
neurotransmitter receptor profiles19, cellular composition20, and
metabolism21–24 may predispose individual regions to stress and, ulti-
mately, pathology. Importantly, local and global vulnerability are not
necessarilymutually exclusive; somediseasesmayoriginate from local
pathologies that spread selectively along the network to other vul-
nerable regions. How local attributes and global connectivity shape
cross-disorder pathology remains an open question.

Here, we map local molecular attributes ("molecular vulner-
ability”) and global network connectivity ("connectomic vulnerability”)
to case versus control cortical thickness abnormalities of thirteen
different neurological, psychiatric, and neurodevelopmental diseases
and disorders from the ENIGMA consortium25. We consistently find
that disorder-specific cortical abnormality is shaped more by the local
molecular fingerprints of brain regions than network embedding.
Interestingly, for disorders that are better predicted by molecular
attributes, we find that the spatial patterning of cortical abnormalities
reflects the underlying network architecture, suggesting that the joint
contribution of local molecular and global connectomic mechanisms
is greater than their individual contribution. Next, we study cross-
disorder similarity and find that regions with similar molecular make-
up tend to be similarly affected across disorders. Collectively, the
present reporthighlights how local and global factors interact to shape
cross-disorder cortical morphology.

Results
We collected thirteen spatial maps of cortical abnormalities from the
ENIGMA consortium for the following diseases, disorders, and condi-
tions: 22q11.2 deletion syndrome26, attention-deficit/hyperactivity
disorder (ADHD)27, autism spectrum disorder (ASD)28, idiopathic gen-
eralised epilepsy29, right temporal lobe epilepsy29, left temporal lobe
epilepsy29, depression30, obsessive-compulsive disorder (OCD)31,
schizophrenia32, bipolar disorder33, obesity34, schizotypy35, and Par-
kinson’s disease36. For simplicity, we refer to diseases, disorders, and
conditions as “disorders” throughout the text. While most disorders
show decreases in cortical thickness, some (e.g., 22q11.2 deletion
syndrome, ASD, schizotypy) also show regional increases in cortical
thickness. We therefore refer to the cortical measure as “cortical

abnormality”. All cortical abnormality maps were collected from adult
participants (except ASD which included younger participants), fol-
lowing identical processing protocols, for a total of over 21,000 scan-
ned participants against almost 26,000 controls. To assess the extent
to which each abnormality pattern is informed bymolecular attributes
and network connectivity, we defined a molecular and connectivity
fingerprint at each brain region. The molecular fingerprint of a region
was defined using the gene expression gradient (a potential proxy for
cell type distribution16,20,37–39), neurotransmitter receptor gradient,
excitatory-inhibitory receptor density ratio, glycolytic index, glucose
metabolism, synapse density, and myelination (Fig. 1a). Likewise, we
defined the connectivity fingerprint of a region by calculating the
strength, betweenness centrality, closeness centrality, mean Euclidean
distance, participation coefficient, clustering coefficient, and mean
first passage time of a weighted structural connectivitymatrix from 70
healthy adults (Fig. 1b; see Methods for details). Collectively, these
graph measures aim to capture the connectedness, centrality, and
connection diversity of regions in the network. All analyses were
conducted using the 68-regionDesikan-Killiany parcellation40,41, as this
is the native and only available representation of ENIGMA datasets.

Local and global contributions to disorder-specific cortical
morphology
To assess the extent to which cortical abnormalities of all thirteen
disorders are informed by molecular gradients versus measures of
network connectivity, we fit a multilinearmodel betweenmolecular or
connectivity predictors and abnormality maps for each disorder
separately, for a total of 13 × 2 = 26 model fits (Fig. 2a; for results when
molecular and connectomic predictors are combined, see Supple-
mentary Fig. 1). Next, we conducted a dominance analysis for each
multilinear model42–45. Dominance analysis distributes the R2

adj across
input variables as a measure of contribution ("dominance”) that each
input variable has on the cortical abnormality pattern (Fig. 2b). Each
model was cross-validated in a distance-dependent manner (Supple-
mentary Fig. 239).

We find that the fit between molecular predictors and cortical
abnormality is greater than that between connectivity predictors and
cortical abnormality for most disorders (Fig. 3). Notably, the variance
in cortical thickness of schizotypy (a possible precursor of schizo-
phrenia that is poorly defined in the brain46) and idiopathic generalised
epilepsy (a form of epilepsy that is thought to be informed by genetics
instead of brain structural abnormalities47,48) are poorly explained by
both biological gradients and network measures of the brain. On the
other hand, ADHD, ASD, OCD, Parkinson’s, and depression are better
predicted by molecular predictors, whereas schizophrenia, 22q11.2
deletion syndrome, and bipolar disorder are better predicted by
connectivity predictors (Fig. 3).

From the dominance analysis, we find that certain predictors are
consistently unimportant. Indeed, synapse density and myelination
demonstrate less dominance than microscale gradients such as the
gene expression gradient (a potential proxy for cell type
distribution16,20,37–39), neurotransmitter receptor gradient, and meta-
bolic gradients. Connectivity predictors, particularly measures of
centrality, demonstrate less dominance than more fundamental mea-
sures of connectivity such as number of connections (strength), dis-
tance, and connection diversity (participation coefficient). For
completeness, we tested a third family of predictors related to tem-
poral dynamics: magnetoencephalography (MEG)-derived power
spectral densities for six canonical frequency bands (Supplemen-
tary Fig. 3).

One important consideration with this analysis is that disorder-
specific pathology and symptompresentation are heterogeneous over
time. The analysis in Fig. 2 is limited to adults and encompasses mul-
tiple stages of disease progression. We therefore sought to investigate
changes across different ages (paediatric, adolescent, and adult) and
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different disease severities. First, we tracked the model fit (R2
adj) of

regression models that fit molecular/connectomic features to pae-
diatric, adolescent, and adult cortical abnormality profiles for the four
available disorders with this data (ADHD, bipolar disorder, depression,
and OCD; Supplementary Fig. 4a). We find that model fit is greatest in
adulthood, except forOCD,which shows little change for connectomic
predictors and a lowermodelfit in adulthood formolecularpredictors.
Model fit significantly improves when molecular features are used to
predict cortical abnormality patterns of ADHD and depression (F >
Fcritical, one-sided). Next, focusing on disease severity, we show how
model fit changes across four levels of Parkinson’s disease severity
(Hoehn and Yahr (HY) stages49; Supplementary Fig. 4b). Interestingly,
we find that from stage HY2, molecular predictors performworse with
disease severity whereas connectomic predictors perform better
(althoughnote the changes inmodelfit arenot statistically significant),
supporting the notion that Parkinson’s pathology is influenced by the
spread of misfolded proteins on the structural connectome10,50,51.
Altogether, these analyses provide a more nuanced and transdiag-
nostic representation of molecular and connectomic contributions to
cortical disorder vulnerability.

Interactions between local and global vulnerability
Theprevious section separately addressesmolecular and connectomic
contributions to disease-specific cortical abnormalities. However,
molecular attributes likely interact with network connectivity to shape
disease pathology. These molecular mechanisms include gene
expression, neurotransmitter expression, and metabolic pathways in
the cell. In neurodegenerative diseases, this interaction may result in
synaptic pruning and cortical atrophywhereas in neurodevelopmental
disorders, the pathology may manifest as perturbations in network

wiring during development52. We hypothesised that abnormalities in
such molecular mechanisms at the regional level may spread trans-
synaptically between connected regions, resulting in connectome-
informed changes in cortical morphology that reflect an interplay
between local vulnerability and network structure. For instance, two
regionsmay both participate in many connections (have high degree),
but one may be connected to more regions with local vulnerability.
Thus, despite the fact that their connectomic profiles are similar, one
region may have greater disease exposure than the other10,53.

To test the hypothesis that a region’s cortical thickness is driven by
"exposure” to abnormalities of connected regions, we measured the
extent to which disorders demonstrate network-spreading patterns of
cortical morphology9,13,54. The extent to which a disorder displays
network-informed cortical changes is defined as the correlation between
regional abnormality and mean abnormality of structurally connected
neighbours (Fig. 4a). Importantly, significance was assessed using the
spin-test to control for the effect of spatial autocorrelation on cortical
abnormality patterns. We also test the hypothesis that this network-
spreading effect is functionally informed, whereby the cortical thickness
of structurally connected neighbours is weighted by the functional
connectivity between regions when calculating the mean (Fig. 4b; see
Methods for details and Supplementary Figs. 5 and 6 for scatter plots of
regional abnormality versus mean neighbour abnormality across all
thirteen disorders). We find that multiple disorders display a significant
correlation between regional abnormality and abnormality of connected
neighbours (0.23 < r<0.80), suggesting that spatial patterning of dis-
orders reflects the connection patterns between brain regions, above
and beyond the effect of spatial autocorrelation (Supplementary Fig. 5).

Does molecular or connectomic predictability of a disorder pat-
tern (Fig. 2a) relate to network spreading? Interestingly, the extent to
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Fig. 1 | Molecular and connectomic cortical profiles. a, b Brain surfaces show the
z-scored molecular (a) and connectomic (b) predictors used in the multilinear
regression models. Heatmaps on the right show Pearson's correlation coefficients
betweenpairs of features. SeeMethods for details on how each featurewas derived.
Molecular predictors: gene PC1 = first component of 11 560 genes' expression;
receptor PC1 = first component of 18 PET-derived receptor/transporter density; E:I
ratio = excitatory:inhibitory receptor density ratio; glycolytic index = amount of
aerobic glycolysis; glucose metabolism = ½18F�-labelled fluorodeoxyglucose (FDG)
PET image; synapse density = synaptic vesicle glycoprotein 2A (SV2A)-binding

½11C�UCB-J PET tracer; myelination = T1w/T2w ratio. Connectivity predictors:
strength = sum of weighted connections; betweenness = fraction of all shortest
paths traversing region i; closeness =mean shortest path length between region i
and all other regions; Euclideandistance =mean Euclideandistancebetween region
i and all other regions; participation coefficient = diversity of connections from
region i to the seven Yeo-Krienen resting-state networks164; clustering = fraction of
triangles including region i; mean first passage time= average time for a random
walker to travel from region i to any other region.
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which a disorder can be predicted from molecular attributes (i.e.,
yellow R2 in Fig. 2a) is positively correlated with the extent to which a
disorder displays evidence of network spreading (r(11) = 0.61, p =0.03,
CI = [0.10, 0.87] when weighted by SC only as shown in Fig. 4a;
r(11) = 0.75, p =0.003, CI = [0.33, 0.92] when weighted by FC and SC as
shown in Fig. 4b). Notably, we do not observe this relationshipwith the
extent to which a disorder can be predicted from global connectivity
(i.e., blue R2 in Fig. 2a; r(11) = 0.24, p = 0.42, CI = [ −0.36, 0.70] when
weighted by SC only, Fig. 4a; r(11) = 0.06, p =0.84, CI = [ −0.50, 0.59]
when weighted by FC and SC, Fig. 4b). In other words, for disorders
with cortical morphologies that more strongly depend on molecular
attributes, we also observe a greater effect of disorder exposure.
Althoughwepreviously found that the cortical patterning of a disorder
is less influenced by network embedding per se (e.g., centrality or
connection diversity), here we show that it is instead more influenced
by network-driven exposure to regions with local vulnerability. This
finding is significant because it suggests that the combined effect of
local vulnerability and connectome architecture is greater than their
individual contribution.

Brain regions with high abnormality and high neighbour
abnormality are likely to act as an epicentre of the network-spreading
disorder pattern, since the region is both heavily affected and facil-
itates the spread of atypicalmorphology13,53,55. We calculated epicentre
likelihood of each brain region as the mean rank of regional and

neighbour abnormality, such that regions with high node and neigh-
bour abnormality would be labelled as likely epicentres (Fig. 4c). The
measure identifies "disorder hubs”—regions that areboth vulnerable to
disorder-specific changes but also embedded in a highly atypical net-
work cluster. Epicentre likelihood was only calculated for brain maps
with significant correlation between their node and neighbour
abnormality (network-spreading disorders), and we did not find evi-
dence for epicentre likelihood being driven by distance (Supplemen-
tary Fig. 14a. This list comprised of: 22q11.1 deletion syndrome, ADHD,
ASD, right and left temporal lobe epilepsy, bipolar disorder, and
schizotypy (Supplementary Fig. 7). Next, we aimed to construct a
single cross-disorder epicentre likelihood map (Fig. 4c). To avoid
having left and right temporal lobe epilepsy—which demonstrate
similar epicentre likelihood maps—bias the cross-disorder likelihood
map, we combined left and right epilepsy epicentre likelihood into a
single average map. We calculated the median epicentre likelihood
across these six disorders and find that cross-disorder epicentre like-
lihood is highest in bilateral sensory-motor cortex, angular gyrus,
inferior temporal lobe, precuneus, and superior parietal cortex. In
Supplementary Fig. 8 we show mean epicentre likelihood as well as a
map that shows the frequency with which a brain region is in the top
50% of most likely epicentres across the six disorders. Across all three
methods (mean, median, frequency), cross-disorder epicentre like-
lihood is consistent.
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Brain regions with similar molecular annotations are similarly
affected across disorders
In the previous sections, we mapped molecular annotations and net-
work measures to each disorder separately. Here, we focused on dis-
order similarity. For every region we constructed a 13-element vector
of abnormality values, where each element corresponds to cortical
change (i.e., cortical abnormality) in that region in one disorder. We
then correlated regional vectors with each other to estimate how
similarly two regions are affected across the thirteen disorders
(Fig. 5a). Disorder similarity is analogous to other measures of inter-
regional attribute similarity including anatomical covariance56–58,
morphometric similarity59, correlated gene expression60–62, receptor
similarity63, temporal profile similarity44, and microstructural
similarity64.

Wefirst askedwhether brain regionswith similarmolecular versus
connectivity fingerprints show greater disorder similarity. Molecular
similarity was likewise computed as the pairwise regional correlation
of molecular predictors, and vice versa for connectivity. We find that
disorder similarity is significantly correlated with molecular similarity
(r(2276) = 0.45, pspin = 0.0001, CI = [0.42, 0.49]; Fig. 5c). On the other
hand, the correlation between distance-regressed connectivity simi-
larity and disorder similarity is smaller and non-significant
(r(2276) = 0.25, pspin = 0.063, CI = [0.21, 0.29]; Fig. 5d).

Two of the molecular predictors included in the present report
are summary measures of much more expansive molecular annota-
tions: the gene expression gradient and the neurotransmitter receptor
gradient. We therefore asked whether inter-regional similarity of these
molecular attributes confers similar predisposition to disease. We
computed correlated gene expression and neurotransmitter receptor
similarity matrices63,65, and correlated these matrices with disorder
similarity (Fig. 5e, f). We find a significant correlation between disorder
similarity and neurotransmitter receptor similarity (r(2276) = 0.41,
pspin = 0.001, CI = [0.38, 0.45]), as well as correlated gene expression
(r(559) = 0.46, pspin = 0.0001, CI = [0.40, 0.53])60,63. These results hold
when distance-regression is applied to the similarity networks instead
of spin-tests (Supplementary Fig. 9). Altogether, our results indicate
that regions with similar molecular composition are similarly affected
across disorders.

We finally ask whether disorder similarity might analogously be
informed by structural and functional connectivity between regions.
We compared the disorder similaritymatrix toweighted structural and
functional connectomes. First, we find that brain regions that are
structurally connected are more likely to change similarly across

disorders than regions that are not structurally connected, although
this result is non-significant against a degree and edge-length preser-
ving null model (Fig. 5g66; see Null models). Second, we find that brain
regions that are within the same intrinsic functional network aremore
likely to change similarly than regions between functional networks,
against the spin-test (Fig. 5g, pspin = 0.01). Finally, we find a positive
significant correlation between disorder similarity and functional
connectivity (r(2276) = 0.36, pspin = 0.004, CI = [0.33, 0.40]; Fig. 5h).
Consistent with the previous subsection, these results collectively
suggest that areas that sharemolecular attributes and connections are
similarly affected across disorders.

Sensitivity and robustness analyses
To ensure the results are not driven by choice of dataset, acquisition
parameters and processing methodology, we repeated the analyses
using structural and functional networks from the Human Con-
nectome Project (N = 326), for which acquisition parameters and pro-
cessing methodologies differ. The connectomic predictors from the
Lausanne dataset used in the main text are highly correlated with the
same metrics calculated using HCP data (Supplementary Fig. 10). As a
result, the regressionmodels and dominance analyses show consistent
results (Supplementary Fig. 11). We also repeat the analysis in Fig. 2
using connectomic predictors calculated based on the binary struc-
tural connectome and the functional connectome from the Lausanne
dataset (Supplementary Fig. 12).

Next, since the Desikan-Killiany atlas parcellates the brain into
unequally sized parcels, we tested the effect of parcel size on disorder
abnormality maps. Parcel size was defined as the number of voxels
assigned to the parcel using the MNI-152 volumetric parcellation.
Across all thirteen disorder maps, we do not find a significant corre-
lation between parcel size and cortical abnormality (Supplementary
Fig. 13). Likewise, we compare effects of parcel size on epicentre like-
lihood maps (Supplementary Fig. 14b). We find no significant correla-
tions except between parcel size and bipolar epicentre likelihood
(r =0.44, pspin = 0.03). Finally, since epicentre likelihood is calculated
using the structural connectome, we also assessed the relationship
between epicentre likelihood and distance. Specifically, we correlate
epicentre likelihood with the average distance between a brain region
and all other brain regions (Supplementary Fig. 14a). We do not find
any significant correlations between epicentre likelihood anddistance.

Discussion
In the present report, we comprehensively map local molecular attri-
butes and global measures of connectivity to the cortical morphology
of thirteen different neurological, psychiatric, and neurodevelop-
mental disorders. We consistently find that local attributes govern
both disorder-specific abnormalities and cross-disorder similarity
more than global connectivity. In addition, we find that molecular
mechanisms interact with the structural and functional architectures
of the brain to guide cross-disorder abnormality patterns. Altogether,
our results highlight how molecular and connectomic vulnerability
shape cross-disorder cortical abnormalities.

This work builds on a growing literature on cross-disorder effects,
and how shared vulnerability may potentially transcend traditional
diagnostic boundaries3,67–69. It is becoming increasingly clear that
pathology is governed by layers of abnormal processes, at the mole-
cular and cellular level, to neural dynamics, to large-scale brain net-
works. Aligning high-qualitymaps of disorder-specific cortical changes
to a common reference frameof local andglobal attributes allows us to
systematically relate the effect of disease to multiple scales of orga-
nisation. By taking a cross-modal and cross-disorder approach we
reveal that, despite different clinical presentation and label, there
exists some commonality across diseases including predictors that are
ubiquitously important as well as interplay between local vulnerability
and network structure.
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Interestingly, we find that the principal gradient of receptor dis-
tribution is particularly dominant towards disease-specific cortical
morphology. This receptor gradient represents the maximal variance
of density distributions from fourteen receptors and four transporters
across nine different neurotransmitter systems, and therefore cap-
tures how brain regions may integrate exogenous signals
differently63,70. This gradient is a powerful predictor of ADHD, left
temporal lobe epilepsy, depression, and Parkinson’s disease. Indeed,
neurotransmitter dysfunction is thought to underlie multiple dis-
orders, including dopamine release in Parkinson’s and schizophrenia
or serotonin reuptake in depression. Modern therapeutics are
designed to selectively manipulate neurotransmitter function for the

purpose of alleviating behavioural symptoms, as opposed to altering
brain structure. Our findings confirm the fundamental contribution of
neurotransmitters to a wide spectrum of diseases, but they also
highlight an important link between the spatial patterning of neuro-
transmitter receptors and cortical disorder morphology itself63.

We generally find that cortical abnormality is better predicted by
local vulnerability compared to global connectomic vulnerability. One
possible reason for the relatively poorer performance of connectivity
predictors is that they are genericmeasures of a region’s embedding in
a network (number of connections, centrality, connection diversion)
but do not consider how this embedding exposes regions to pathology
elsewhere in thenetwork. Indeed,wefind thatdisorderswhose cortical
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morphology is better reflected by local vulnerability also bear a pro-
minent signature of network architecture (e.g., ASD, ADHD, 22q11.2
deletion syndrome, temporal lobe epilepsy, schizotypy, bipolar dis-
order). This suggests a network-spreading phenomenon where focal
pathology or perturbation propagates to connected regions, resulting
in cortical abnormality that is correlated with the underlying connec-
tion patterns14. This interaction between local vulnerability and con-
nectomic vulnerability has previously been reported in
neurodegenerative syndromes where the trans-synaptic spreading of
misfolded proteins appears to be guided and amplified by local gene
expression10,71–74. In other words, the poorer performance of con-
nectivity predictors does not suggest that the white-matter archi-
tecture is less relevant to disease progression. Indeed, pathogenesis of
multiple diseases is thought to originate in the white matter of the
brain14,75,76. A promising future direction for studying cross-disorder
brain abnormalities is to focus on disruptions in white-matter path-
ways instead of cortical thickness3,77.

The interaction between molecular vulnerability and network
structure naturally raises the question of what are the network epi-
centres of cortical disorder maps. We find epicentres—regions with
high abnormality that are also strongly connected with other regions
with high abnormality—in primarily transmodal regions (e.g., inferior
temporal lobe, angular gyrus, precuneus, superior parietal cortex),
although the motor cortex also appears as an epicentre. That the
sensory-motor cortex is an epicentre is consistent with recent reports
that multiple psychiatric and neurological disorders are accompanied
by sensory deficits and reduced motor control78–80. Indeed, the
sensory-motor cortex has been previously established as a functional

hub in temporal lobe epilepsies and across multiple psychiatric
disorders68,81. Interestingly, both the bilateral precuneus and superior
parietal cortex are members of the brain’s putative rich club—densely
inter-connected regions that are thought to support the integration
and broadcasting of signals82. Rich club regions undergo changes in
connectivity patterns in multiple diseases such as schizophrenia, Alz-
heimer’s, and Huntington’s1,3,15,83,84. We complement this work by
showing that the precuneus and superior parietal cortex are both
vulnerable to cortical abnormality and, by virtue of their network
embedding, increase disease exposure to connected regions. Con-
versely, although the anterior cingulate cortex (ACC) is implicated
acrossmultiple psychiatric disorders13,85, we do not find that the ACC is
an epicentre of cross-disorder corticalmorphology. This suggests that
although the ACC demonstrates considerable local vulnerability in a
subset of brain disorders, it is not consistently involved across the
seven disorders included in the epicentre analyses. Altogether, despite
variable cortical morphology patterns across the thirteen disorders,
when looked at through the lens of network connectivity, we see a
more consistent and compact subset of potential epicentres, sug-
gesting greater commonality among diseases than previously
appreciated.

One strength of the ENIGMA consortium is that the datasets are
pooled over thousands of individuals. However, such large-scale ana-
lyses obscure the important inter-subject variability that exists within
all disorders. We conduct supplementary analyses in which cortical
disorder profiles are stratified by age and disease severity (Supple-
mentary Fig. 4) and find that molecular and connectomic contribu-
tions vary. For example, we find that molecular and connectomic
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influences on Parkinson’s disease differ with disease severity: mole-
cular predictors become less powerful predictors and connectomic
predictors become more powerful predictors as the disease pro-
gresses. This complements previouswork that suggests that atrophy in
Parkinson’s is the result of network-mediated spread of alpha-
synuclein10. Furthermore, we find a similar trend of increased con-
nectomic influence for severity of psychotic symptoms: namely, schi-
zotypy and schizophrenia. Although schizotypy is not an earlier stage
of schizophrenia (indeed, schizotypy is not a disorder per se but rather
a multidimensional continuum of traits related to psychosis), indivi-
duals with schizotypy exhibit similar, albeit attenuated, characteristics
as schizophrenia patients35. We find that the connectomic influence is
considerably greater in schizophrenia compared to schizotypy, which
may suggest that the structural network gradually becomes more
implicated in diseaseprogression. One key factor thatwewerenot able
to study inmore depth is that of biological sex. Since ENIGMAdatasets
are all sex-corrected, we are unable to make conclusions about how
molecular and connectomic contributions may differ between the
sexes. Multiple disorders show well-established sex-differences,
including schizophrenia86, autism87, and depression88. Designing
effective clinical interventions will require more nuanced studies that
consider the many heterogeneities that exist within each disease.

This work considers multimodal molecular and connectomic
contributions to disorders but does not make conclusions about two
important features of disease: cognitive phenotypes and genetics. An
exciting future direction is to explore whether molecular and con-
nectomic contributions to disease can be related to phenotypic or
genetic similarity. Lee et al.89 compare single-nucleotide polymorph-
ismdata across eight psychiatric disorders and find that schizophrenia
and bipolar disorder show greatest genetic similarity. This comple-
ments our finding that schizophrenia and bipolar disorder have con-
sistent connectomic profiles. Lee et al.89 also find a clique among the
disorders that we find are best predicted bymolecular features: ADHD,
autism, and major depressive disorder. On the other hand, a com-
prehensive battery of cognitive and behavioural tests was not uni-
formly applied to all the disease groups in the ENIGMA datasets. As a
result, robust cross-disorder phenotypic profiles are less well-
established. Our findings potentially suggest an executive function
(anchored by schizophrenia) versus attention (anchored by ADHD and
ASD) cognitive axis that separates connectomic versus molecularly
informed disorder profiles, but more work is needed to standardise
cognitive testing and assess how cognitive/behavioural phenotypes
may be related to brain structure. Altogether, future work is necessary
to explore how overlapping genetic and neurocognitive disturbances
correspond to molecular and connectomic contributions to disease.

The present work should be considered along some important
methodological considerations. First, although the ENIGMA con-
sortium standardises pre-processing pipelines and provides large N
datasets, allowing for robust results and meaningful comparison
between disorder-specific cortical abnormality maps, working with
ENIGMAdata also has caveats: (1) themeasures of cortical abnormality
are effect sizes between patients and controls and do not represent
tissue volume loss/gain, (2) some of the patient populations included
have co-morbidities and patients may be undergoing treatment,
including treatment that may have an effect on cortical thickness90,
and (3) all analyses were conducted at the level of 68 cortical brain
areas, limiting regional specificity and precluding analyses of the
subcortex and cerebellum. Second, despite the fact that structural
connectomes were reconstructed from high-resolution diffusion
spectrum imaging, diffusion tractography is still prone to false-
positives and false-negatives91–93. Third, both local molecular and glo-
bal connectivity predictors are derived from state-of-the-art open-
access datasets in healthy participants, but they do not capture indi-
vidual variability or changes across the lifespan—both of which are key
factors in neurological, psychiatric, and neurodevelopmental

disorders. Additionally, the molecular predictors are limited by ima-
gingmodality (in particularmyelination, forwhich theT1w/T2w ratio is
an indirect estimate94,95), and, in the case of the gene and receptor
gradients, by the subset of genes and receptors included in the data
decomposition. Fourth, we assessed contribution of multiple pre-
dictors to disordermapsusing simple but robust linearmodels that are
not sensitive to nonlinear contributions or higher-order interactions
among the predictors. In addition to this, the correlational structure of
the predictor subsets affects predictive power, which limits our ability
to compare molecular and connectomic model fits (Supplementary
Fig. 15). Fifth, the linear models used in the present analyses assume
independence between observations, which is not the case in the
brain; we therefore employ spatial-autocorrelation-preserving null
models to account for the spatial dependencies between regions
throughout the report. Finally, although the present report spans a
wide range of neurological, psychiatric, and neurodevelopmental dis-
orders, results are only valid for this subset of disorders. Futurework is
needed tomap local and global vulnerabilities to themanymore brain
diseases and disorders that exist.

In summary, we find that molecular and connectomic vulner-
ability jointly shape cross-disorder cortical abnormalities. Cross-
disorder regional vulnerability is largely driven by molecular finger-
prints, including neurotransmitter receptor densities and gene
expression, while connection patterns among vulnerable regions fur-
ther amplify this vulnerability. Our results highlight howan integrative,
multimodal approach can illuminate the contributions of local biology
and connectome architecture to brain disease.

Methods
Cortical disorder maps
Patterns of cortical thickness were collected for the available thirteen
neurological, neurodevelopmental, and psychiatric disorders from the
ENIGMA consortium and the enigma toolbox (https://github.com/
MICA-MNI/ENIGMA96), including: 22q11.2 deletion syndrome (N = 474
participants, N = 315 controls)26, attention-deficit/hyperactivity dis-
order (ADHD; N = 733 participants, N = 539 controls)27, autism spec-
trum disorder (ASD; N = 1571 participants, N = 1651 controls)28,
idiopathic generalised (N = 367 participants), right temporal lobe
(N = 339 participants), and left temporal lobe (N = 415 participants)
epilepsies (N = 1727 controls)29, depression (N = 2148 participants,
N = 7957 controls)30, obsessive-compulsive disorder (OCD; N = 1905
participants, N = 1760 controls)31, schizophrenia (N = 4474 partici-
pants, N = 5098 controls)32, bipolar disorder (N = 1837 participants,
N = 2582 controls)33, obesity (N = 1223 participants, N = 2917
controls)34, schizotypy (N = 3004 participants)35, and Parkinson’s dis-
ease (N = 2367 participants, N = 1183 controls)36. The ENIGMA (Enhan-
cing Neuroimaging Genetics through Meta-Analysis) Consortium is a
data-sharing initiative that relies on standardised processing and
analysis pipelines, such that disorder maps are comparable25. Alto-
gether, over 21,000 participants were scanned across the thirteen
disorders, against almost 26,000 controls. The analysis was limited to
adults in all cases except ASD where the cortical abnormality map is
only available aggregated across all ages (2–64 years). The values for
each map are z-scored effect sizes (Cohen’s d) of cortical thickness in
patient populations versus healthy controls. Imaging and processing
protocols can be found at http://enigma.ini.usc.edu/protocols/, and
detailed demographic information can be found in the supplement of
eachaccompanying article. Local reviewboards andethics committees
approved each individual study separately, and written informed
consent was provided according to local requirements.

Structural and functional networks
Lausannedataset. Structural and functional datawere collected at the
Department of Radiology, University Hospital Center andUniversity of
Lausanne, on n = 70 healthy young adults (16 females, 25.3 ± 4.9
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years)97. Informed consent was obtained from all participants and the
protocolwas approvedby the EthicsCommittee ofClinical Researchof
the Faculty of Biology andMedicine, University of Lausanne. The scans
were performed in a 3-T MRI scanner (Trio; Siemens Medical), using a
32-channel head coil. The protocol included (1) a magnetisation-
prepared rapid acquisition gradient echo (MPRAGE) sequence sensi-
tive to white/grey matter contrast (1mm in-plane resplution, 1.2mm
slice thickness), (2) a DSI sequence (128 diffusion-weighted volumes
and a single b0 volume, maximum b-value 8000 s/mm2,
2.2 × 2.2 × 3.0mm voxel size), and (3) a gradient echo-planar imaging
(EPI) sequence sensitive to blood-oxygen-level-dependent (BOLD)
contrast (3.3mm in-plane resolution and slice thickness with a 0.3mm
gap, TR 1920ms, resulting in 280 images per participant). Participants
were not subject to any overt task demands during the fMRI scan. The
Lausanne dataset is available at https://zenodo.org/record/2872624#.
XOJqE99fhmMand has been used in other work98,99.

Grey matter was parcellated according to the 68-region Desikan-
Killiany cortical atlas40. Structural connectivity was estimated for
individual participants using deterministic streamline tractography.
The procedure was implemented in the Connectome Mapping
Toolkit100, initiating 32 streamline propagations per diffusion direction
for each which matter voxel. Collating each individual’s structural
connectome was done using a group-consensus approach that seeks
to preserve the density and edge-length distributions of the individual
connectomes (see Group-consensus structural network101). The binary
density for the final whole-brain structural connectomewas 24.6%. For
the weighted structural connectome, edges were weighted by the
average log-transform of non-zero streamline density, scaled to values
between 0 and 1.

Functional MRI data were pre-processed using procedures
designed to facilitate subsequent network exploration102. fMRI
volumes were corrected for physiological variables, including regres-
sion of white matter, cerebrospinal fluid, and motion (3 translations
and 3 rotations, estimated by rigid body coregistration). BOLD time-
series were then subjected to a low-pass filter (temporal Gaussian filter
with full width at half maximum equal to 1.92 s). The first four time
points were excluded from subsequent analysis to allow the time-
series to stabilise. Motion scrubbing was performed as described by
ref. 102. The data were parcellated according to the same 68-region
Desikan-Killiany atlas used for the structural network. Individual
functional connectivity matrices were defined as zero-lag Pearson
correlation among the fMRI BOLD time-series. A group-consensus
functional connectivitymatrix was estimated as themean connectivity
of pairwise connections across individuals. Note that one individual
did not undergo an fMRI scan and therefore the functional con-
nectome was composed of n = 69 participants.

HumanConnectomeProject. Following the procedure described in
de Wael et al.103, we obtained structural and functional magnetic
resonance imaging (MRI) data for 326 unrelated participants (age
range 22–35 years, 145males) from theHumanConnectome Project
(HCP; S900 release104; informed consent obtained). All four resting-
state fMRI scans (two scans (R/L and L/Rphase encodingdirections)
on day 1 and two scans (R/L and L/R phase encoding directions) on
day 2, each about 15 min long; TR = 720ms), as well as diffusion-
weighted imaging (DWI) data were available for all participants. All
the structural and functional MRI data were pre-processed using
HCP minimal pre-processing pipelines104,105. We provide a brief
description of data pre-processing below, while detailed informa-
tion regarding data acquisition and pre-processing is available
elsewhere104,105.

DWI data was pre-processed using the MRtrix3 package106

(https://www.mrtrix.org/). More specifically, fibre orientation dis-
tributions were generated using the multi-shell multi-tissue con-
strained spherical deconvolution algorithm from MRtrix107,108. White-

matter edges were then reconstructed using probabilistic streamline
tractography based on the generated fibre orientation distributions109.
The tract weights were then optimised by estimating an appropriate
cross-section multiplier for each streamline following the procedure
proposed by Smith et al.110 and a connectivitymatrix was built for each
participant using the 68-region Deskian-Killiany parcellation40,41. Col-
lating each individual’s structural connectomewasdoneusing a group-
consensus approach that seeks to preserve the density and edge-
length distributions of the individual connectomes (see Group-
consensus structural network101). The binary density for the final
whole-brain structural connectome was 31.2%. For the weighted
structural connectome, edges were weighted by the average log-
transform of non-zero streamline density, scaled to values
between 0 and 1.

All 3T functional MRI time-series were corrected for gradient
nonlinearity, head motion using a rigid body transformation, and
geometric distortions using scan pairs with opposite phase encoding
directions (R/L, L/R)103. Further pre-processing steps include coregis-
tration of the corrected images to the T1w structural MR images, brain
extraction, normalisation of whole-brain intensity, high-pass filtering
(>2000s FWHM; to correct for scanner drifts), and removing addi-
tional noise using the ICA-FIX process103,111. The pre-processed time-
series were then parcellated to 68 cortical brain regions according to
the Desikan-Killinay atlas40,41. The parcellated time-series were used to
construct functional connectivity matrices as a Pearson correlation
coefficient between pairs of regional time-series for each of the four
scans of each participant. A group-average functional connectivity
matrix was constructed as the mean functional connectivity across all
individuals and scans.

Group-consensus structural network
To construct a representative group-level connectome, we used a
consensus approach that seeks to preserve the density and edge-
length distributions of the individual connectomes (first applied in
Mišić et al.112 and presented formally in Betzel et al.101). This procedure
better captures important organisational features of subject-level
networks compared to other consensus methods (i.e., thresholding
based on whether an edge is observed in a fraction of subjects)101. The
procedure for generating the consensus network is as follows. First,
existing edges across participants were binned according to length.
The number of bins was determined heuristically as the square root of
the mean binary density across participants. Within each bin, the k
most frequently occurring edges across participants were retained. k
was set as the average across the number of edges each participant has
in the bin. To ensure that interhemispheric edges are not under-
represented, we carried out this procedure separately for inter- and
intrahemispheric edges.

Molecular predictors
A total of seven localmolecular predictors were used in themultilinear
model to represent the influence that local molecular attributes have
on disorder-specific cortical morphology.

Gene expression gradient. The first principal component of gene
expression (“gene gradient”) was used to represent the variation in
gene expression levels across the left cortex. This gradient has been
previously related to cell type distributions and cell-specific gene
expression, which suggests the gradient is related to the cellular
architecture of the brain16,20,37–39. Gene expression data was collected
by the Allen Human Brain Atlas as described in Hawrylycz et al.37 and
processed by abagen, an open-source Python toolbox113. A total of
11,560 genes with differential stability greater than 0.1 were retained in
the region by genematrix114. The left gene gradient wasmirrored in the
right hemisphere. A detailed account of the specific processing choi-
ces made can be found in Hansen et al.39.
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Receptor gradient. The first principal component of receptor density
(“receptor gradient”) was used to represent the variation in receptor
densities across the cortex. Receptor densities were estimated using
PET tracer studies for a total of 18 receptors and transporters, across 9
neurotransmitter systems. These include dopamine (D1

115, D2
116–119,

DAT120), norepinephrine (NET121–124), serotonin (5-HT1A
125, 5-HT1B

125–132,
5-HT2A

133, 5-HT4
133, 5-HT6

134,135, 5-HTT133), acetylcholine (α4β2
132,136, M1

137,
VAChT138,139), glutamate (mGluR5

140,141), GABA (GABAA
142), histamine

(H3
143), cannabinoid (CB1

144–147), and opioid (MOR148). Volumetric PET
imageswere registered to theMNI-ICBM152nonlinear 2009 (version c,
asymmetric) template, averaged across participants within each study,
thenparcellated to68 cortical regions. ParcellatedPETmapswere then
z-scored before compiling all receptors/transporters into a region ×
receptor matrix of relative densities. Data were originally presented as
an atlas in Hansen et al.63.

Excitatory-inhibitory ratio. The excitatory-inhibitory ratio was com-
puted as the ratio of z-scored PET-derived excitatory to inhibitory
neurotransmitter receptor densities in the cortex, using the same
dataset that was used to compute the receptor gradient. Excitatory
neurotransmitter receptors included are: 5-HT2A, 5-HT4, 5-HT6, D1,
mGluR5, α4β2, and M1. Inhibitory neurotransmitter receptors included
are: 5-HT1A, 5-HT1B, CB1, D2, GABAA, H3, and MOR.

Glycolytic index. Aerobic glycolysis is the process of converting glu-
cose to lactate in the presence of oxygen. It is traditionally calculated
as the ratio of oxygenmetabolism toglucosemetabolism.Here, we use
glycolytic index, a measure of aerobic glycolysis that mitigates certain
limitations of using the traditional ratio149. Glycolytic index is defined
as the residual after fitting glucosemetabolism to oxygen metabolism
in a linear regression model. Larger values indicate more aerobic gly-
colysis. Note that glycolytic index and the traditional ratio are highly
correlated (see Vaishnavi et al.149). Data were collected, calculated, and
made available by Vaishnavi et al.149. Glucosemetabolismwas obtained
as described in the section below, and oxygen metabolism was col-
lected in the same participants by administering ½150�-labelled water,
carbon monoxide, and oxygen. All experiments were approved by the
Human Research Protection Office and the Radioactive Drug Research
Committee at Washington University in St. Louis. Written informed
consent was provided by all participants.

Glucose metabolism. Glucose metabolism in the cortex was mea-
sured in 33 healthy adults (19 female, mean age 25.4 ± 2.6 years) by
administering ½18F�-labelled fluorodeoxyglucose (FDG) for a PET scan,
as described in detail in Vaishnavi et al.149. All experiments were
approved by the Human Research Protection Office and the Radio-
active Drug Research Committee atWashingtonUniversity in St. Louis.
Written informed consent was provided by all participants.

Synapse density. Synapse density in the cortex was measured in 76
healthy adults (45 males, 48.9 ± 18.4 years of age) by administering
½11C�UCB-J, a PET tracer that binds to the synaptic vesicle glycoprotein
2A (SV2A)150–161. Datawerecollectedon anHRRTPETcamera for 90min
post injection. Non-displaceable binding potential (BPND) was mod-
elled using SRTM2, with the centrum semiovale as reference and k0

fixed to 0.027 (population value). Each study was performed under a
protocol approved by the Yale University Human Investigation Com-
mittee and the Yale New Haven Hospital Radiation Safety Committee,
and written informed consent was obtained from all participants.

Myelination. Data from the Human Connectome Project (HCP, S1200
release)104,105 was used for measures of T1w/T2w ratios—a proxy for
intracortical myelin—for 417 unrelated participants (age range 22–37
years, 193 males), as approved by the WU-Minn HCP Consortium.
Images were acquired on a Siemens Skyra 3T scanner, and included a

T1-weighted MPRAGE sequence at an isotropic resolution of 0.7mm,
and a T2-weighted SPACE also at an isotropic resolution of 0.7mm.
Details on imaging protocols and procedures are available at http://
protocols.humanconnectome.org/HCP/3T/imaging-protocols.html.
Image processing includes correcting for gradient distortion caused
by non-linearities, correcting for bias field distortions, and registering
the images to a standard reference space. T1w/T2w ratios for each
participant was made available in the surface-based CIFTI file format
and parcellated into 68 cortical regions according to the Lausanne
anatomical atlas41. Note that the T1w/T2w ratio is an MRI-based esti-
mate of myelin content that has not yet been validated against myelin
histology94. Other MRI-based proxies may be more suitable alter-
natives, such as magnetisation transfer or simultaneous tissue
relaxometry of R1 and R2 relaxation rates and proton density (SyMRI),
which have been validated using myelin histology and are closely
correlated to one another94,95. Additionally, PET imaging may be a
promising avenue for mapping myelin content in the brain162,163.

Connectivity predictors
A total of nine global connectome predictors were used in the multi-
linear model to represent the influence that global connectivity has on
disorder-specific cortical morphology. In the main text, connectome
measures were computed on the weighted structural connectome.
Analyses were repeated using a binary structural connectome and an
absolute functional connectome (Supplementary Fig. 12). All con-
nectivity measures were computed using the Python-equivalent of the
Brain Connectivity Toolbox, bctpy.

Strength. The strength of region i is the sumof the edges connected to
region i. For a binary structural connectome, the strength is equivalent
to the degree, which is the number of links connected to region i.

Betweenness centrality. Betweenness centrality of region i is the
fraction of all shortest paths between any two regions that traverse
region i.

Closeness centrality. Closeness centrality is equivalent to the mean
shortest path distance from region i to every other region in the
network.

Euclidean distance. Mean Euclidean distance of a region to all other
regions in the network represents how spatially close one region is to
all other regions.

Participation coefficient. Participation coefficient was computed
using the putative intrinsic functional networks of the brain164. Parti-
cipation coefficient represents the connection diversity of a region. A
region with high participation coefficient is well connected to several
different networks, whereas a regionwith low participation coefficient
primarily makes local (within-network) connections.

Clustering coefficient. The clustering coefficient of region i is the
fraction of all triangles that are around region i. Equivalently, it is the
fraction of all of region i’s neighbours that are also neighbours with
each other. In the case of the weighted structural connectome, clus-
tering coefficient is the average geometric mean of all triangles asso-
ciated with the region.

Meanfirst passage time. Themeanfirst passage time from region i to j
is the expected amount of time it takes a random walker to reach
region j from i for the first time. For each region, mean first passage
time was averaged across regions, resulting in a mean mean first pas-
sage time representing the average amount of time it takes a random
walker to travel from region i to any other region in the network for the
first time.
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Temporal predictors
Six-minute resting-state eyes-open magenetoencephalography (MEG)
time-series were acquired from the HumanConnectome Project (HCP,
S1200 release) for 33 unrelated subjects (age range 22–35, 17
males)104,105. Complete MEG acquisition protocols can be found in the
HCP S1200 ReleaseManual. For each subject, we computed the power
of the run at the vertex level across six different frequencybands: delta
(2–4Hz), theta (5–7Hz), alpha (8–12 Hz), beta (15–29Hz), low gamma
(30–59Hz), and high gamma (60–90Hz), using the open-source
software, Brainstorm165. Each power band was then parcellated into 68
cortical regions41.

Dominance analysis
Dominance analysis seeks to determine the relative contribution
(“dominance”) of each input variable to the overall fit (adjusted R2) of
themultiple linear regressionmodel (https://github.com/dominance-
analysis/dominance-analysis42,43). This is done by fitting the same
regression model on every combination of input variables
(2p − 1 submodels for a model with p input variables). Total dom-
inance is defined as the average of the relative increase in R2 when
adding a single input variable of interest to a submodel, across all
2p − 1 submodels. The sum of the dominance of all input variables is
equal to the total adjusted R2 of the complete model, making total
dominance an intuitive measure of contribution. Note that sig-
nificance testing is not applied to the individual dominances because
the contributions of input variables are relative to other predictors in
the model and input variables do not act in isolation.

Each multilinear model was cross-validated using a distance-
dependent method proposed by Hansen et al.39. Briefly, for each of
1000 iterations, the 75% of regions closest in Euclidean distance to a
randomly chosen source node were selected as the training set, and
the remaining 25%of regions as the test set. Predicted values in the test
set were then correlated to true abnormality patterns, and the corre-
lations are shown in Supplementary Fig. 2.

Network spreading
Network spreading was computed as first introduced in Shafiei et al.13

and later adopted in Chopra et al.54, Shafiei et al.9. Briefly, regional
abnormality was defined as the normalised effect size used in all
ENIGMA brain maps. For each region i, its neighbours are those with
which region i is connected via a structural connection, as defined by
the structural connectivity matrix. Mean neighbour abnormality of
region i (Di) is the average abnormality of region i’s neighbours, where
dj represents the abnormality of neighbour j. Notably, this method
normalises neighbour abnormality by the number of connections
made by region i (Ni).

Di =
1
Ni

∑
Ni

j≠i,j = 1
dj ×SCij ð1Þ

when neighbour abnormality is weighted by functional connectivity,
each neighbour’s abnormality are weighted by the functional con-
nection to node i (FCij).

Di =
1
Ni

∑
Ni

j≠i,j = 1
dj ×SCij ×FCij ð2Þ

Each brain region was assigned a rank in terms of their node
abnormality and their mean neighbour abnormality. The average of
node and neighbour abnormality ranks was defined as the epicentre
likelihood of the node, where nodes with high abnormality and whose
neighbours are alsohighly atypical aremore likely to be an epicentre of
the disorder.

Disorder similarity
For every brain region, we constructed a 13-element vector of disorder
abnormality, where each element represents a disorder’s cortical
abnormality at the region. For every pair of brain regions, we corre-
lated the abnormality vectors to quantify how similarly two brain
regions are affected across disorders. This results in a region-by-region
matrix of “disorder similarity” (Fig. 5a). We verified that no single dis-
order pattern was driving the disorder similarity matrix by recalcu-
lating the disorder similarity when a single disorder is excluded. We
then correlated the leave-one-out disorder similarity matrix with the
original disorder similarity matrix. The minimum correlation was
r =0.95 (Supplementary Fig. 16a). Finally, influence on the disorder
similarity matrix by a disorder i was quantified as

Ii = 1� corrðD,DiÞ ð3Þ

whereD is the original disorder similarity matrix and Di is the disorder
similarity matrix constructed when disorder i is excluded (Supple-
mentary Fig. 16b).

Null models
Spatial-autocorrelation-preserving permutation tests were used to
assess statistical significance of associations across brain regions,
termed “spin tests”166–168. We created a surface-based representation of
the parcellation on the FreeSurfer fsaverage surface, via files from the
ConnectomeMapper toolkit (https://github.com/LTS5/cmp). We used
the spherical projection of the fsaverage surface to define spatial
coordinates for each parcel by selecting the coordinates of the vertex
closest to the center of the mass of each parcel98. These parcel coor-
dinates were then randomly rotated, and original parcels were reas-
signed the value of the closest rotated parcel (1000 repetitions).
Parcels forwhich themedialwall was closestwere assigned the valueof
the next most proximal parcel instead. The procedure was performed
at the parcel resolution rather than the vertex resolution to avoid
upsampling the data, and to each hemisphere separately. This spin-
permuted null model involves conflating and collapsing the brain
surface to and from a sphere. The geometry of the cortical surface is
therefore not retained in the spinning process, whichmay result in null
distributions that are toowide. Othermethods for constructing spatial
null models exist, such as generative models169 and 2D spatial
wavestrapping170.

A second null model was used to test whether disorder similarity
is greater in connected regions than unconnected regions. This model
generates a null structural connectome that preserves the density,
edge length, and degree distributions of the empirical structural
connectome66,171,172. Briefly, edges were binned according to Euclidean
distance. Within each bin, pairs of edges were selected at random and
swapped. This procedure was then repeated 10,000 times. To com-
pute a p-value, themean disorder similarity of unconnected edges was
subtracted from themean disorder similarity of connected edges, and
this difference was compared to a null distribution of differences
computed on the rewired networks.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the present report is openly available at https://github.
com/netneurolab/hansen_crossdisorder_vulnerability. More specifi-
cally, ENIGMA datasets are available through the ENIGMA consortium
and the ENIGMA toolbox (https://github.com/MICA-MNI/ENIGMA96).
The Lausanne dataset is available at https://zenodo.org/record/
2872624#.XOJqE99fhmM97. The HCP dataset is available at https://
db.humanconnectome.org/. Molecular predictors are available as
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volumetric images in the neuromaps toolbox (https://netneurolab.
github.io/neuromaps/173). The Allen Human Brain Atlas is available at
https://human.brain-map.org/.

Code availability
All code used to perform the analyses can be found at https://github.
com/netneurolab/hansen_crossdisorder_vulnerabilityand on Zenodo
(https://doi.org/10.5281/zenodo.6795748).

References
1. Crossley, N. A. et al. The hubs of the human connectome are

generally implicated in the anatomy of brain disorders. Brain 137,
2382–2395 (2014).

2. van den Heuvel, M. P. & Sporns, O. Network hubs in the human
brain. Trend. Cogn. Sci. 17, 683–696 (2013).

3. de Lange, S. C. et al. Shared vulnerability for connectome
alterations across psychiatric and neurological brain disorders.
Nat. Human Behav. 3, 988–998 (2019).

4. Warren, J. D. et al. Molecular nexopathies: a new paradigm of
neurodegenerative disease. Trend. Neurosci. 36, 561–569 (2013).

5. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of
disease progression in dementia. Neuron 73, 1204–1215 (2012).

6. Raj, A. et al. Network diffusion model of progression predicts
longitudinal patterns of atrophy and metabolism in alzheimer’s
disease. Cell Rep. 10, 359–369 (2015).

7. Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Evans, A. C. &
Initiative, A. D. N. Epidemic spreading model to characterize
misfolded proteins propagation in aging and associated neuro-
degenerative disorders. PLoS Comput. Biol. 10, e1003956 (2014).

8. Pievani, M., Filippini, N., Van Den Heuvel, M. P., Cappa, S. F. &
Frisoni, G. B. Brain connectivity in neurodegenerative diseases-
from phenotype to proteinopathy. Nat. Rev. Neurol. 10,
620–633 (2014).

9. Shafiei, G. et al. Network structure and transcriptomic vulner-
ability shape atrophy in frontotemporal dementia. Brain. https://
doi.org/10.1093/brain/awac069 (2022).

10. Zheng, Y.-Q. et al. Local vulnerability and global connectivity
jointly shape neurodegenerative disease propagation. PLoS Biol.
17, e3000495 (2019).

11. Yau, Y. et al. Network connectivity determines cortical thinning in
early parkinson’s disease progression. Nat. Commun. 9,
1–10 (2018).

12. Wannan,C.M. et al. Evidence for network-basedcortical thickness
reductions in schizophrenia.Am. J. Psychiatry 176, 552–563 (2019).

13. Shafiei, G. et al. Spatial patterning of tissue volume loss in schi-
zophrenia reflects brain network architecture. Biol. Psychiatry 87,
727–735 (2020b).

14. Fornito, A., Zalesky, A. &Breakspear,M. The connectomics of brain
disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

15. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome
landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20,
435–446 (2019).

16. Burt, J. B. et al. Hierarchy of transcriptomic specialization across
human cortex captured by structural neuroimaging topography.
Nat. Neurosci. 21, 1251–1259 (2018).

17. Morgan, S. E. et al. Cortical patterning of abnormal morphometric
similarity in psychosis is associated with brain expression of
schizophrenia-related genes. Proc. Natl Acad. Sci. USA 116,
9604–9609 (2019).

18. Arnatkeviciute, A., Fulcher, B. D., Bellgrove, M. A. & Fornito, A.
(2021b). Imaging transcriptomics of brain disorders. Biol. Psy-
chiatry Glob. Open Sci. Phenotype. https://doi.org/10.1016/j.
bpsgos.2021.10.002 (2021b).

19. Hoftman, G. D. et al. Altered gradients of glutamate and gamma-
aminobutyric acid transcripts in the cortical visuospatial working

memory network in schizophrenia. Biol. Psychiatry 83,
670–679 (2018).

20. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional
brain vulnerability to neurodevelopmental disorders. Nat. Com-
mun. 11, 3358 (2020).

21. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional
connectivity: mapping, assessment of stability, and relation to
alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

22. Buckner, R. L. et al. Molecular, structural, and functional char-
acterization of alzheimer’s disease: evidence for a relationship
between default activity, amyloid, and memory. J. Neurosci. 25,
7709–7717 (2005).

23. Vlassenko, A. G. et al. Aerobic glycolysis and tau deposition in
preclinical alzheimer’s disease. Neurobiol. Aging 67, 95–98
(2018).

24. Vlassenko, A. G. et al. Spatial correlation between brain aerobic
glycolysis and amyloid-β (aβ) deposition. Proc. Natl Acad. Sci. USA
107, 17763–17767 (2010).

25. Thompson, P. M. et al. Enigma and global neuroscience: a decade
of large-scale studies of the brain in health and disease across
more than 40 countries. Transl. Psychiatry 10, 1–28 (2020).

26. Sun, D. et al. Large-scalemapping of cortical alterations in 22q11. 2
deletion syndrome: convergence with idiopathic psychosis and
effects of deletion size. Mol. Psychiatry 25, 1822–1834 (2020).

27. Hoogman, M. et al. Brain imaging of the cortex in adhd: a coor-
dinated analysis of large-scale clinical and population-based
samples. Am. J. Psychiatry 176, 531–542 (2019).

28. Van Rooij, D. et al. Cortical and subcortical brain morphometry
differences between patients with autism spectrum disorder and
healthy individuals across the lifespan: results from the enigma
asd working group. Am. J. Psychiatry 175, 359–369 (2018).

29. Whelan, C. D. et al. Structural brain abnormalities in the common
epilepsies assessed in a worldwide enigma study. Brain 141,
391–408 (2018).

30. Schmaal, L. et al. Cortical abnormalities in adults and adolescents
with major depression based on brain scans from 20 cohorts
worldwide in the enigma major depressive disorder working
group. Mol. Psychiatry 22, 900–909 (2017).

31. Boedhoe, P. S. et al. Cortical abnormalities associated with
pediatric and adult obsessive-compulsive disorder: findings from
the enigma obsessive-compulsive disorder working group. Am. J.
Psychiatry 175, 453–462 (2018).

32. Van Erp, T. G. et al. Cortical brain abnormalities in 4474 individuals
with schizophrenia and 5098 control subjects via the enhancing
neuro imaging genetics through meta analysis (enigma) con-
sortium. Biol. Psychiatry 84, 644–654 (2018).

33. Hibar, D. et al. Cortical abnormalities in bipolar disorder: an mri
analysis of 6503 individuals from the enigma bipolar disorder
working group. Mol. Psychiatry 23, 932–942 (2018).

34. Opel, N. et al. Brain structural abnormalities in obesity: relation to
age, genetic risk, and common psychiatric disorders. Mol. Psy-
chiatry 26, 1–14 (2020).

35. Kirschner, M. et al. Cortical and subcortical neuroanatomical sig-
natures of schizotypy in 3004 individuals assessed in aworldwide
enigma study. Mol. Psychiatry 27, 1167–1176 (2021).

36. Laansma, M. A. et al. (2021). International multicenter analysis of
brain structure across clinical stages of parkinson’s disease.Mov.
Disord. 36, 2583–2594 (2021).

37. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the
adult human brain transcriptome. Nature 489, 391 (2012).

38. Anderson, K. M. et al. Convergentmolecular, cellular, and cortical
neuroimaging signatures of major depressive disorder. Proc. Natl
Acad. Sci. USA 117, 25138–25149 (2020).

39. Hansen, J. Y. et al.Mappinggene transcription andneurocognition
across human neocortex.Nat. Human Behav. 5, 1240–1250 (2021).

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 12

https://netneurolab.github.io/neuromaps/
https://netneurolab.github.io/neuromaps/
https://human.brain-map.org/
https://github.com/netneurolab/hansen_crossdisorder_vulnerability
https://github.com/netneurolab/hansen_crossdisorder_vulnerability
https://doi.org/10.5281/zenodo.6795748
https://doi.org/10.1093/brain/awac069
https://doi.org/10.1093/brain/awac069
https://doi.org/10.1016/j.bpsgos.2021.10.002
https://doi.org/10.1016/j.bpsgos.2021.10.002


40. Desikan, R. S. et al. An automated labeling system for subdividing
the human cerebral cortex on mri scans into gyral based regions
of interest. NeuroImage 31, 968–980 (2006).

41. Cammoun, L. et al. Mapping the human connectome at multiple
scales with diffusion spectrum mri. J. Neurosci. Meth. 203,
386–397 (2012).

42. Budescu, D. V. Dominance analysis: a new approach to the pro-
blem of relative importance of predictors in multiple regression.
Psychol. Bull. 114, 542 (1993).

43. Azen, R. & Budescu, D. V. The dominance analysis approach for
comparing predictors in multiple regression. Psychol. Methods 8,
129 (2003).

44. Shafiei, G. et al. Topographic gradients of intrinsic dynamics
across neocortex. Elife 9, e62116 (2020a).

45. Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain
networks. Commun. Biol. 5, 1–10 (2022).

46. Lenzenweger, M. F. Schizotaxia, schizotypy, and schizophrenia:
Paul e. meehl’s blueprint for the experimental psychopathology
and genetics of schizophrenia. J. Abnormal Psychol. 115,
195 (2006).

47. Feng, Y.-C. A. et al. Ultra-rare genetic variation in the epilepsies: a
whole-exome sequencing study of 17,606 individuals.Am. J. Hum.
Genet. 105, 267–282 (2019).

48. Consortium, T. I. L. A. E. et al. (2018). Genome-widemega-analysis
identifies 16 loci and highlights diverse biological mechanisms in
the common epilepsies. Nat. Commun. 9, 5269 (2018).

49. Hoehn, M. & Yahr, M. Parkinsonism: onset, progression and mor-
tality. Neurology 17, 427–442 (1967).

50. Luk, K. C. et al. Pathological α-synuclein transmission initiates
parkinson-like neurodegeneration in nontransgenicmice. Science
338, 949–953 (2012).

51. Henderson, M. X., Trojanowski, J. Q. & Lee, V. M.-Y. α-synuclein
pathology in parkinson’s disease and related α-synucleinopathies.
Neurosci. Lett. 709, 134316 (2019).

52. Di Martino, A. et al. Unraveling the miswired connectome: a
developmental perspective. Neuron 83, 1335–1353 (2014).

53. Brown, J. A. et al. Patient-tailored, connectivity-based forecasts of
spreading brain atrophy. Neuron 104, 856–868 (2019).

54. Chopra, S. et al. Network constraints on longitudinal grey matter
changes in first episode psychosis. Preprint atmedRxiv https://
doi.org/10.1101/2022.01.11.22268989 (2022).

55. Zeighami, Y. et al. Network structure of brain atrophy in de novo
parkinson’s disease. Elife 4, e08440 (2015).

56. Romero-Garcia, R. et al. Structural covariance networks are cou-
pled to expression of genes enriched in supragranular layers of
the human cortex. NeuroImage 171, 256–267 (2018).

57. Evans, A. C. Networks of anatomical covariance. Neuroimage 80,
489–504 (2013).

58. Váša, F. et al. Adolescent tuning of association cortex in human
structural brain networks. Cereb. Cort. 28, 281–294 (2018).

59. Seidlitz, J. et al. Morphometric similarity networks detect micro-
scale cortical organization and predict inter-individual cognitive
variation. Neuron 97, 231–247 (2018).

60. Arnatkeviciute, A., Fulcher, B., Bellgrove, M. & Fornito, A. Where
the genome meets the connectome: understanding how genes
shapehumanbrain connectivity.Neuroimage244, 118570 (2021a).

61. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub
connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA
113, 1435–1440 (2016).

62. Richiardi, J. et al. Correlated gene expression supports synchro-
nous activity in brain networks. Science 348, 1241–1244 (2015).

63. Hansen, J. Y. et al. Mapping neurotransmitter systems to the
structural and functional organization of the human neocortex.
Preprint at bioRxiv https://doi.org/10.1101/2021.10.28.
466336 (2121b).

64. Paquola, C. et al. Microstructural and functional gradients are
increasingly dissociated in transmodal cortices. PLoS Biol. 17,
e3000284 (2019).

65. Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D. Bridging the gap
between connectome and transcriptome. Trend. Cogn. Sci. 23,
34–50 (2019).

66. Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-
distance connections in weighted, interareal connectomes. Proc.
Natl Acad. Sci. USA 115, E4880–E4889 (2018).

67. Yee, C. M., Javitt, D. C. & Miller, G. A. Replacing dsm categorical
analyses with dimensional analyses in psychiatry research: the
research domain criteria initiative. JAMA Psychiatry 72,
1159–1160 (2015).

68. Kebets, V. et al. Somatosensory-motor dysconnectivity spans
multiple transdiagnostic dimensions of psychopathology. Biol.
Psychiatry 86, 779–791 (2019).

69. Vanasse, T. J. et al. Brain pathology recapitulates physiology: A
network meta-analysis. Commun. Biol. 4, 1–11 (2021).

70. Shine, J. M. et al. Computational models link cellular mechanisms
of neuromodulation to large-scale neural dynamics.Nat. Neurosci.
24, 765–776 (2021).

71. Cornblath, E. J. et al. Computational modeling of tau pathology
spread reveals patterns of regional vulnerability and the impact of
a genetic risk factor. Sci. Adv. 7, eabg6677 (2021).

72. Henderson, M. X. et al. Spread of α-synuclein pathology through
the brain connectome is modulated by selective vulnerability and
predicted by network analysis. Nat. Neurosci. 22,
1248–1257 (2019).

73. Raj, A. & Powell, F. Network model of pathology spread recapi-
tulates neurodegeneration and selective vulnerability in hunting-
ton’s disease. NeuroImage 235, 118008 (2021).

74. Shafiei, G. et al. (2022) Network structure and transcriptomic
vulnerability shape atrophy in frontotemporal dementia. Brain
https://doi.org/10.1093/brain/awac069 (2022).

75. Bartzokis, G. Alzheimer’s disease as homeostatic responses to
age-related myelin breakdown. Neurobiol. Aging 32,
1341–1371 (2011).

76. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons:
transport mechanisms and roles in brain function, development,
and disease. Neuron 68, 610–638 (2010).

77. Binette, A. P. et al. Bundle-specific associations between white
matter microstructure and aβ and tau pathology in preclinical
alzheimer’s disease. Elife 10, e62929 (2021).

78. Marco, E. J., Hinkley, L. B., Hill, S. S. & Nagarajan, S. S. Sensory
processing in autism: a review of neurophysiologic findings.
Pediat. Res. 69, 48–54 (2011).

79. Javitt, D. C. & Freedman, R. Sensory processing dysfunction in the
personal experience and neuronal machinery of schizophrenia.
Am. J. Psychiatry 172, 17–31 (2015).

80. Bernard, J. A. &Mittal, V. A. Updating the research domain criteria:
the utility of a motor dimension. Psychol. Med. 45,
2685–2689 (2015).

81. Larivière, S. et al. Network-based atrophy modeling in the com-
mon epilepsies: a worldwide enigma study. Sci. Adv. 6,
eabc6457 (2020).

82. Van Den Heuvel, M. P. & Sporns, O. Rich-club organization of the
human connectome. J. Neurosci. 31, 15775–15786 (2011).

83. Van Den Heuvel, M. P. et al. Abnormal rich club organization and
functional brain dynamics in schizophrenia. JAMA Psychiatry 70,
783–792 (2013).

84. McColgan, P. et al. Selective vulnerability of rich club brain
regions is an organizational principle of structural connectivity
loss in huntington’s disease. Brain 138, 3327–3344 (2015).

85. Goodkind, M. et al. Identification of a common neurobiological
substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 13

https://doi.org/10.1101/2022.01.11.22268989
https://doi.org/10.1101/2022.01.11.22268989
https://doi.org/10.1101/2021.10.28.466336
https://doi.org/10.1101/2021.10.28.466336
https://doi.org/10.1093/brain/awac069


86. Abel, K. M., Drake, R. & Goldstein, J. M. Sex differences in schi-
zophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).

87. Werling, D. M. & Geschwind, D. H. Sex differences in autism
spectrum disorders. Curr. Opin. Neurol. 26, 146 (2013).

88. Altemus, M., Sarvaiya, N. & Epperson, C. N. Sex differences in
anxiety and depression clinical perspectives. Front. Neuroendo-
crinol. 35, 320–330 (2014).

89. Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic
mechanisms across eight psychiatric disorders. Cell 179,
1469–1482 (2019).

90. Voineskos, A. N. et al. Effects of antipsychoticmedication on brain
structure in patientswithmajor depressive disorder andpsychotic
features: neuroimaging findings in the context of a randomized
placebo-controlled clinical trial. JAMA Psychiatry 77,
674–683 (2020).

91. Maier-Hein, K. H. et al. The challenge of mapping the human
connectome based on diffusion tractography. Nat. Commun. 8,
1–13 (2017).

92. Jones,D. K., Knösche, T. R. &Turner,R.Whitematter integrity,fiber
count, and other fallacies: the do’s and don’ts of diffusion mri.
Neuroimage 73, 239–254 (2013).

93. Zalesky, A. et al. Connectome sensitivity or specificity: which is
more important? Neuroimage 142, 407–420 (2016).

94. van der Weijden, C. W. et al. Myelin quantification with mri: A
systematic review of accuracy and reproducibility. NeuroImage
226, 117561 (2021).

95. Hagiwara, A. et al. Myelin measurement: comparison between
simultaneous tissue relaxometry, magnetization transfer satura-
tion index, and t1w/t2w ratio methods. Sci. Rep. 8, 1–12 (2018).

96. Larivière, S. et al. The enigma toolbox: multiscale neural con-
textualization of multisite neuroimaging datasets. Nat. Methods
18, 698–700 (2021).

97. Griffa, A., Alemán-Gómez, Y. & Hagmann, P. Structural and func-
tional connectome from 70 young healthy adults [data set].
Zenodo https://zenodo.org/record/2872624 (2019).

98. Vázquez-Rodríguez, B. et al. Gradients of structure–function
tethering across neocortex. Proc. Natl Acad. Sci. USA 116,
21219–21227 (2019).

99. Bazinet, V., deWael, R. V., Hagmann, P., Bernhardt, B. C. &Misic, B.
Multiscale communication in cortico-cortical networks. Neuro-
Image 243, 118546 (2021).

100. Daducci, A. et al. The connectome mapper: an open-source pro-
cessing pipeline to map connectomes with MRI. PLoS ONE 7,
e48121 (2012).

101. Betzel, R. F., Griffa, A., Hagmann, P. & Mišić, B. Distance-
dependent consensus thresholds for generating group-
representative structural brain networks. Netw. Neurosci. 3,
475–496 (2019).

102. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Peter-
sen, S. E. Spurious but systematic correlations in functional con-
nectivity mri networks arise from subject motion. Neuroimage 59,
2142–2154 (2012).

103. de Wael, R. V. et al. Anatomical and microstructural determinants
of hippocampal subfield functional connectome embedding.
Proc. Natl Acad. Sci. USA 115, 10154–10159 (2018).

104. Van Essen, D. C. et al. The wu-minn human connectome project:
an overview. Neuroimage 80, 62–79 (2013).

105. Glasser, M. F. et al. The minimal preprocessing pipelines for the
human connectome project. Neuroimage 80, 105–124 (2013).

106. Tournier, J.-D. et al. Mrtrix3: A fast, flexible and open software
framework for medical image processing and visualisation. Neu-
roimage 202, 116137 (2019).

107. Dhollander, T., Raffelt, D. & Connelly, A. Unsupervised 3-tissue
response function estimation from single-shell or multi-shell dif-
fusion mr data without a co-registered t1 image. In: ISMRM

Workshop on Breaking the Barriers of Diffusion MRI, Vol. 5.
(ISMRM, 2016).

108. Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A. & Sijbers,
J. Multi-tissue constrained spherical deconvolution for improved
analysis of multi-shell diffusion mri data. NeuroImage 103,
411–426 (2014).

109. Tournier, J. D. et al. Improved probabilistic streamlines tracto-
graphy by 2nd order integration over fibre orientation distribu-
tions. In: Proc. International Society for Magnetic Resonance in
Medicine, Vol. 1670 (John Wiley & Sons, Inc. New Jersey,
USA, 2010).

110. Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Sift2:
Enabling dense quantitative assessment of brain white matter
connectivity using streamlines tractography. Neuroimage 119,
338–351 (2015).

111. Salimi-Khorshidi, G. et al. Automatic denoising of functional mri
data: combining independent component analysis and hier-
archical fusion of classifiers. Neuroimage 90, 449–468 (2014).

112. Mišić, B. et al. Cooperative and competitive spreading dynamics
on the human connectome. Neuron 86, 1518–1529 (2015).

113. Markello, R. D. et al. Standardizing workflows in imaging tran-
scriptomics with the abagen toolbox. eLife 10, e72129 (2021).

114. Hawrylycz, M. et al. Canonical genetic signatures of the adult
human brain. Nat. Neurosci. 18, 1832 (2015).

115. Kaller, S. et al. Test–retest measurements of dopamine d 1-type
receptors using simultaneous pet/mri imaging. Eur. J. Nucl. Med.
Mol. Imag. 44, 1025–1032 (2017).

116. Smith, C. T. et al. Partial-volume correction increases estimated
dopamine d2-like receptor binding potential and reduces adult
age differences. J. Cereb. Blood Flow Metab. 39, 822–833 (2019).

117. Sandiego, C. M. et al. Reference region modeling approaches for
amphetamine challenge studies with [11c] flb 457 and pet. J.
Cereb. Blood Flow Metab. 35, 623–629 (2015).

118. Zakiniaeiz, Y. et al. Sex differences in amphetamine-induced
dopamine release in the dorsolateral prefrontal cortex of tobacco
smokers. Neuropsychopharmacology 44, 2205–2211 (2019).

119. Slifstein, M. et al. Deficits in prefrontal cortical and extrastriatal
dopamine release in schizophrenia: a positron emission tomo-
graphic functional magnetic resonance imaging study. JAMA
Psychiatry 72, 316–324 (2015).

120. Dukart, J. et al. Cerebral blood flow predicts differential neuro-
transmitter activity. Sci. Rep. 8, 1–11 (2018).

121. Ding, Y.-S. et al. Pet imaging of the effects of age and cocaine on
thenorepinephrine transporter in the humanbrain using (s, s)-[11c]
o-methylreboxetine and hrrt. Synapse 64, 30–38 (2010).

122. Chiang-shan, R. L. et al. Decreased norepinephrine transporter
availability in obesity: positron emission tomography imaging
with (s, s)-[11c] o-methylreboxetine. Neuroimage 86,
306–310 (2014).

123. Sanchez-Rangel, E. et al. Norepinephrine transporter availability in
brown fat is reduced in obesity: a human pet studywith [11 c]mrb.
Int. J. Obesity 44, 964–967 (2020).

124. Belfort-DeAguiar, R. et al. Noradrenergic activity in the human
brain: a mechanism supporting the defense against hypoglyce-
mia. J. Clin. Endocrinol. Metab. 103, 2244–2252 (2018).

125. Savli, M. et al. Normative database of the serotonergic system in
healthy subjects using multi-tracer pet. Neuroimage 63,
447–459 (2012).

126. Gallezot, J.-D. et al. Kinetic modeling of the serotonin 5-ht1b
receptor radioligand [11c] p943 in humans. J. Cereb. Blood Flow
Metab. 30, 196–210 (2010).

127. Murrough, J. W. et al. The effect of early trauma exposure on
serotonin type 1b receptor expression revealed by reduced
selective radioligand binding. Arch. Gen. Psychiatry 68,
892–900 (2011).

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 14

https://zenodo.org/record/2872624


128. Murrough, J. W. et al. Reduced ventral striatal/ventral pallidal
serotonin 1b receptor binding potential in major depressive dis-
order. Psychopharmacology 213, 547–553 (2011).

129. Matuskey, D. et al. Reductions in brain 5-ht1b receptor availability
in primarily cocaine-dependent humans. Biol. Psychiatry 76,
816–822 (2014).

130. Pittenger, C. et al. Ocd is associated with an altered association
between sensorimotor gating and cortical and subcortical 5-ht1b
receptor binding. J. Affect. Disorder. 196, 87–96 (2016).

131. Saricicek, A. et al. Test–retest reliability of the novel 5-ht 1b
receptor pet radioligand [11 c] p943. Eur. J. Nucl. Med. Mol. Imag.
42, 468–477 (2015).

132. Baldassarri, S. R. et al. Use of electronic cigarettes leads to sig-
nificant beta2-nicotinic acetylcholine receptor occupancy: evi-
dence from a pet imaging study. Nicotine Tob. Res. 20,
425–433 (2018).

133. Beliveau, V. et al. A high-resolution in vivo atlas of the human
brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).

134. Radhakrishnan, R. et al. Age-related change in 5-ht6 receptor
availability in healthy male volunteers measured with 11c-
gsk215083 pet. J. Nucl. Med. 59, 1445–1450 (2018).

135. Radhakrishnan, R. et al. In vivo 5-ht6 and 5-ht2a receptor avail-
ability in antipsychotic treated schizophrenia patients vs. unme-
dicated healthy humans measured with [11c] gsk215083 pet.
Psychiatry Res. Neuroimag. 295, 111007 (2020).

136. Hillmer, A. T. et al. Imaging of cerebral α4β2* nicotinic acet-
ylcholine receptors with (-)-[18f] flubatine pet: implementation of
bolus plus constant infusion and sensitivity to acetylcholine in
human brain. Neuroimage 141, 71–80 (2016).

137. Naganawa, M. et al. First-in-human assessment of 11c-lsn3172176,
an m1 muscarinic acetylcholine receptor pet radiotracer. J. Nucl.
Med. 62, 553–560 (2021).

138. Aghourian, M. et al. Quantification of brain cholinergic denerva-
tion in alzheimer’s disease using pet imaging with [18 f]-feobv.
Mol. Psychiatry 22, 1531–1538 (2017).

139. Bedard, M.-A. et al. Brain cholinergic alterations in idiopathic rem
sleep behaviour disorder: a pet imaging study with 18f-feobv.
Sleep Med. 58, 35–41 (2019).

140. Smart, K. et al. Sex differences in [11 c] abp688 binding: a positron
emission tomography study ofmglu5 receptors. Eur. J. Nucl. Med.
Mol. Imaging 46, 1179–1183 (2019).

141. DuBois, J. M. et al. Characterization of age/sex and the regional
distribution of mglur5 availability in the healthy human brain
measured by high-resolution [11 c] abp688 pet. Eur. J. Nucl. Med.
Mol. Imaging 43, 152–162 (2016).

142. Nørgaard, M. et al. A high-resolution in vivo atlas of the human
brain’s benzodiazepine binding site of gabaa receptors. Neuro-
Image 232, 117878 (2021).

143. Gallezot, J.-D. et al. Determination of receptor occupancy in the
presence of mass dose:[11c] gsk189254 pet imaging of histamine
h3 receptor occupancy by pf-03654746. J. Cereb. Blood Flow
Metab. 37, 1095–1107 (2017).

144. Normandin, M. D. et al. Imaging the cannabinoid cb1 receptor in
humans with [11c] omar: assessment of kinetic analysis methods,
test–retest reproducibility, and gender differences. J. Cereb.
Blood Flow Metab. 35, 1313–1322 (2015).

145. D’Souza, D. C. et al. Rapid changes in cannabinoid 1 receptor
availability in cannabis-dependent male subjects after abstinence
from cannabis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1,
60–67 (2016).

146. Ranganathan, M. et al. Reduced brain cannabinoid receptor
availability in schizophrenia. Biol. Psychiatry 79, 997–1005
(2016).

147. Neumeister, A. et al. Positron emission tomography shows ele-
vated cannabinoid cb 1 receptor binding in men with alcohol
dependence. Alcohol. Clin. Exp. Res. 36, 2104–2109 (2012).

148. Kantonen, T. et al. Interindividual variability and lateralization of μ-
opioid receptors in thehumanbrain.NeuroImage217, 116922 (2020).

149. Vaishnavi, S. N. et al. Regional aerobic glycolysis in the human
brain. Proc. Natl Acad. Sci. USA 107, 17757–17762 (2010).

150. Finnema, S. J. et al. Kinetic evaluation and test–retest reproduci-
bility of [11c] ucb-j, a novel radioligand for positron emission
tomography imaging of synaptic vesicle glycoprotein 2a in
humans. J. Cereb. Blood Flow Metab. 38, 2041–2052 (2018).

151. Chen, M.-K. et al. Comparison of [11c] ucb-j and [18f] fdg pet in
alzheimer’s disease: a tracer kinetic modeling study. J. Cereb.
Blood Flow Metab. 41, 2395–2409 (2021).

152. O’Dell, R. S. et al. Association of aβ deposition and regional
synaptic density in early Alzheimer’s disease: a pet imaging study
with [11 c] ucb-j. Alzheimer’s Res. Ther. 13, 1–12 (2021).

153. Smart, K. et al. Binding of the synaptic vesicle radiotracer [11c]
ucb-j is unchanged during functional brain activation using a
visual stimulation task. J. Cereb. Blood Flow Metab. 41,
1067–1079 (2021).

154. Weiss, J. J. et al. Preliminary in vivo evidence of reduced synaptic
density in human immunodeficiency virus (hiv) despite anti-
retroviral therapy. Clin. Infect. Dis. 73, 1404–1411 (2021).

155. Radhakrishnan, R. et al. In vivo evidence of lower synaptic vesicle
density in schizophrenia. Mol. Psychiatry 26, 7690–7698 (2021).

156. Finnema, S. J. et al. Reduced synaptic vesicle protein 2a binding in
temporal lobe epilepsy: a [11c] ucb-j positron emission tomo-
graphy study. Epilepsia 61, 2183–2193 (2020).

157. Bini, J. et al. Human adult and adolescent biodistribution and
dosimetry of the synaptic vesicle glycoprotein 2a radioligand 11 c-
ucb-j. EJNMMI Res. 10, 1–8 (2020).

158. Mecca, A. P. et al. In vivo measurement of widespread synaptic
loss in alzheimer’s disease with sv2a pet. Alzheimer’s Dement. 16,
974–982 (2020).

159. Finnema, S. J. et al. A single-center, open-label positron emission
tomography study to evaluate brivaracetam and levetiracetam
synaptic vesicle glycoprotein 2a binding in healthy volunteers.
Epilepsia 60, 958–967 (2019).

160. Holmes, S. E. et al. Lower synaptic density is associated with
depression severity and network alterations. Nat. Commun. 10,
1–10 (2019).

161. Chen, M.-K. et al. Assessing synaptic density in alzheimer disease
with synaptic vesicle glycoprotein 2a positron emission tomo-
graphic imaging. JAMA Neurol. 75, 1215–1224 (2018).

162. Auvity, S. et al. Repurposing radiotracers for myelin imaging: a
study comparing 18f-florbetaben, 18f-florbetapir, 18f-flutemeta-
mol, 11c-medas, and 11c-pib. Eur. J. Nucl. Med. Mol. Imaging 47,
490–501 (2020).

163. Zeydan, B. et al. Pittsburghcompound-b petwhitematter imaging
and cognitive function in latemultiple sclerosis.Mult. Scler. J. 24,
739–749 (2018).

164. Yeo, B. et al. The organization of the human cerebral cortex esti-
mated by intrinsic functional connectivity. J. Neurophysiol. 106,
1125–1165 (2011).

165. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M.
Brainstorm: a user-friendly application for meg/eeg analysis.
Comput. Intell. Neurosci. 2011, 879716 (2011).

166. Alexander-Bloch, A. F. et al. On testing for spatial correspondence
between maps of human brain structure and function. Neuro-
Image 178, 540–551 (2018).

167. Markello, R. D. & Misic, B. Comparing spatial null models for brain
maps. NeuroImage 236, 118052 (2021).

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 15



168. Vasa, F. & Misic, B. (2022). Null models in network neuroscience.
Nat. Rev. Neurosci. 23, 493–504 (2022).

169. Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D.
Generative modeling of brain maps with spatial autocorrelation.
NeuroImage 220, 117038 (2020).

170. Breakspear, M., Brammer, M. J., Bullmore, E. T., Das, P. &Williams,
L. M. Spatiotemporal wavelet resampling for functional neuroi-
maging data. Hum. Brain Mapp. 23, 1–25 (2004).

171. Roberts, J. A. et al. The contribution of geometry to the human
connectome. Neuroimage 124, 379–393 (2016).

172. Gollo, L. L. et al. Fragility and volatility of structural hubs in the
human connectome. Nat. Neurosci. 21, 1107–1116 (2018).

173. Markello, R. D. et al. Neuromaps: structural and functional inter-
pretation of brain maps. Preprint at bioRxiv https://doi.org/10.
1101/2022.01.06.475081 (2022).

Acknowledgements
This research was undertaken thanks in part to funding from the Canada
First Research Excellence Fund, awarded to McGill University for the
Healthy Brains for Healthy Lives initiative. B.M. acknowledges support
from the Natural Sciences and Engineering Research Council of Canada
(NSERC Discovery Grant RGPIN #017-04265), the Canada Research
Chairs Programme, the Brain Canada Future Leaders Fund and the
Healthy Brains for Healthy Lives initiative. J.Y.H. acknowledges support
from the Helmholtz International BigBrain Analytics & Learning Labora-
tory, the Natural Sciences and Engineering ResearchCouncil of Canada,
and the Fonds de reserches de Québec. The research studies produced
by the ENIGMA Working Groups would not be possible without the
contributions of many researchers across the globe and the authors of
this work thank all scientists who contribute to making this work possi-
ble. A full list of ENIGMA Consortium current and past members can be
found here http://enigma.ini.usc.edu/ongoing/members/. The authors
acknowledge the NIH Big Data to Knowledge (BD2K) award for founda-
tional support and consortium development (U54 EB020403 to P.M.T.)
and support from NIMH R01MH116147 (P.M.T.), NIMH R01MH116147
(T.G.M.v.E.), NIMH R01 MH117601 (N.J., L.S.), NIMH R01MH085953
(C.E.B.), NIMH R21MH116473 (C.E.B.), NIMH 1U01MH119736 (C.E.B.). For a
complete list of ENIGMA-related grant support please see here: http://
enigma.ini.usc.edu/about-2/funding. J.B. has been supported by the EU-
AIMS (European Autism Interventions) and AIMS-2-TRIALS programmes,
which receive support from Innovative Medicines Initiative Joint
Undertaking Grant No. 115300 and 777394, the resources of which are
composed of financial contributions from the European Union’s FP7 and
Horizon2020 Programmes, and from the European Federation of Phar-
maceutical Industries and Associations (EFPIA) companies’ in-kind con-
tributions, and AUTISM SPEAKS, Autistica and SFARI; and by the
Horizon2020 supported programme CANDY Grant No. 847818). B.F. is
supported by the European Community’s Horizon 2020 Programme
(H2020/2014-2020) under grant agreements no. 667302 (CoCA), no.
728018 (Eat2beNICE), and no. 847879 (PRIME). This work was supported
by a personal Veni grant to M.H. from the Netherlands Organisation for
Scientific Research (NWO, grant number 91619115). C.R.M. is supported
by NIH R01 NS065838; R21 NS107739. D.J.S. is supported by South
AfricanMedical ResearchCouncil. G.M. is funded by aWellcome Trust &
The Royal Society Sir Henry Dale Fellowship [202397/Z/16/Z]. The fun-
ders hadno role in studydesign, datacollection and analysis, decision to
publish or preparation of the manuscript.

Author contributions
J.Y.H. and B.M. conceived the study and wrote the manuscript, with
valuable revision from all authors. J.Y.H. performed the formal analysis,
with contribution from G.S. J.Y.H. interpreted the results with contribu-
tion from G.S., J.W.V., A.D., and B.M. K.S., C.E.B., M.H., B.F., D.V., J.B.,
C.R.M., S.M.S., L.S., D.J.V., O.A.V., D.J.S., T.G.M.v.E, C.R.K.C., O.A.A.,
T.H., N.O., G.M., A.A., Y.V., N.J., S.I.T., P.M.T., and R.E.C. provided data.
B.M. was the project administrator.

Competing interests
C.R.K.C., N.J., P.M.T. received partial research support fromBiogen, Inc.,
for research unrelated to this manuscript. J.B. has been in the past 3
years a consultant to/member of advisory board of/and/or speaker for
Takeda/Shire, Roche, Medice, Angelini, Janssen, and Servier. He is not
an employee of any of these companies, and not a stock shareholder of
any of these companies. He has no other financial or material support,
including expert testimony, patents, royalties. B.F. has received educa-
tional speaking fees from Medice GmbH. D.J.S. has received research
grants and/or consultancy honoraria from Lundbeck and Sun. The
remaining authors declare no competing interests.

Additional information
Supplementary informationTheonline version contains supplementary
material available at
https://doi.org/10.1038/s41467-022-32420-y.

Correspondence and requests for materials should be addressed to
Bratislav Misic.

Peer review information Nature Communications thanks Michael
Breakspear, Elika Garg, Rafael Romero-Garcia and the other,
anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

1McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada. 2Department of Psychiatry, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA. 3Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
06520, USA. 4Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of
California, Los Angeles, CA, USA. 5Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 16

https://doi.org/10.1101/2022.01.06.475081
https://doi.org/10.1101/2022.01.06.475081
http://enigma.ini.usc.edu/ongoing/members/
http://enigma.ini.usc.edu/about-2/funding
http://enigma.ini.usc.edu/about-2/funding
https://doi.org/10.1038/s41467-022-32420-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


6Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands. 7Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA. 8Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK. 9Centre for
Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia. 10Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam,
Amsterdam Neuroscience, Amsterdam, The Netherlands. 11Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam,
AmsterdamNeuroscience, Amsterdam, the Netherlands. 12SAMRCUnit on Risk & Resilience inMental Disorders, Dept of Psychiatry & Neuroscience Institute,
University ofCape Town,Cape Town, SouthAfrica. 13Clinical Translational Neuroscience Laboratory, Department of Psychiatry andHumanBehavior, &Center
for the Neurobiology of Leaning andMemory, University ofCalifornia Irvine, 309Qureshey Research Lab, Irvine, CA,USA. 14Keck School ofMedicine, Imaging
Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA. 15NORMENT
Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 16Department of
Psychiatry, Dalhousie University, Halifax, NS, Canada. 17Institute of Translational Psychiatry, University of Münster, Münster, Germany & Department of
Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany. 18Department of Psychosis Studies & MRC Centre for Neurodeve-
lopmental Disorders, King’s College London, London, UK. 19Department of Biomedical Sciences of Cells and Systems, University of Groningen,
Groningen, The Netherlands. e-mail: bratislav.misic@mcgill.ca

Article https://doi.org/10.1038/s41467-022-32420-y

Nature Communications |         (2022) 13:4682 17

mailto:bratislav.misic@mcgill.ca

	Local molecular and global connectomic contributions to cross-disorder cortical abnormalities
	Results
	Local and global contributions to disorder-specific cortical morphology
	Interactions between local and global vulnerability
	Brain regions with similar molecular annotations are similarly affected across disorders
	Sensitivity and robustness analyses

	Discussion
	Methods
	Cortical disorder maps
	Structural and functional networks
	Lausanne dataset
	Human Connectome Project
	Group-consensus structural network
	Molecular predictors
	Gene expression gradient
	Receptor gradient
	Excitatory-inhibitory ratio
	Glycolytic index
	Glucose metabolism
	Synapse density
	Myelination
	Connectivity predictors
	Strength
	Betweenness centrality
	Closeness centrality
	Euclidean distance
	Participation coefficient
	Clustering coefficient
	Mean first passage time
	Temporal predictors
	Dominance analysis
	Network spreading
	Disorder similarity
	Null models
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




