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Abstract

In this paper, we propose a novel method, called local non-
negative matrix factorization (LNMF), for learning spa-
tially localized, parts-based subspace representation of vi-
sual patterns. An objective function is defined to impose lo-
calization constraint, in addition to the non-negativity con-
straint in the standard NMF [1]. This gives a set of bases
which not only allows a non-subtractive (part-based) repre-
sentation of images but also manifests localized features.
An algorithm is presented for the learning of such basis
components. Experimental results are presented to compare
LNMF with the NMF and PCA methods for face represen-
tation and recognition, which demonstrates advantages of
LNMF.

Based on our LNMF approach, a set of orthogonal, bi-
nary, localized basis components are learned from a well
aligned face image database. It leads to a Walsh function
based representation of the face images. These properties
can be used to resolve occlusion problem, improve the com-
puting efficiency, and compress the storage requirement of
face detection and recognition system.

1 Introduction

Subspace analysis helps to reveal low dimensional struc-
tures of patterns observed in high dimensional spaces. A
specific pattern of interest can reside in a low dimen-
sional sub-manifold in the original input data space of
possibly an unnecessarily high dimensionality. Consider
the case of N � M image pixels, each taking a value in
f0; 1; : : : ; 255g; there is a huge number of possible config-
urations: 256N�M . This space is capable of describing a
wide variety of visual object classes or patterns. However,
for a specific pattern, such as the human face, the number
of admissible configurations is a only tiny fraction of that
huge number. In other words, the intrinsic dimensionality
is much lower thanN �M .
An observation can be considered as a consequence of

linear or nonlinear fusion of a small number of intrinsic or
latent variables. Subspace analysis is aimed to derive a rep-
resentation for such a fusion. It is closely related to fea-
ture extraction in pattern analysis aimed at discovering and

computing intrinsic low dimensions of the pattern from the
observation.

For these reasons, subspace analysis has been a major re-
search issue in learning based image analysis, such as object
detection and recognition [2, 3, 4, 5, 6, 7]. The significance
is twofold: (1) effective characterization of a pattern of in-
terest, or effective classification of different patterns; and
(2) dimension reduction.

These are major goals of feature extraction common
in both traditional computer vision and current learning
based paradigms. However, traditional vision methods pre-
specifies features of interest, for example, corners, line seg-
ments and surface patches. Visual recognition based on
such intuitive features has not been very successful in the
past. This is perhaps because less intuitive but more crucial
information may have been lost in the course of abstract-
ing the image into these features. In contrast, in the current
learning paradigm, features are not pre-specified, although
may be constrained in much looser way, but learned possi-
bly from a given set of training examples.

Algorithms from both paradigms in effect construct a
mapping from the high dimensional input (e.g. image)
space to a low dimensional feature space. A mapping con-
structed by visual feature extraction algorithms (e.g. corner
detection) in traditional computer vision is understandably
highly nonlinear and discontinuous. Although a mapping
derived by a learning algorithm may also be nonlinear, it is
mostly continuous.

Here in this paper, we are interested the linear type of
mappings: Dimension reduction from a high dimensional
input x to a low dimensional feature vector h can be ex-
pressed as a linear projection operation as h = Px. Re-
construction from is done via a set of basis as x = Bh.
Different learning algorithms derive different basis matrix
B and project matrix P.

The eigen-image method [2, 3, 4] uses principal com-
ponent analysis (PCA) [8] performed on a set of represen-
tative training data to decorrelate second order moments
corresponding to low frequency properties. Any image is
represented as a linear combination of most significant or-
thonormal basis components, while least significant compo-
nents corresponding to lowest eigen-values are discarded to
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achieve dimension reduction. Due to the holistic nature of
the method, the resulting components are global interpreta-
tions, and thus PCA is unable to extract basis components
manifesting building parts consisting of localized features.
However, in many applications, a part-based represen-

tation, in which object parts are composed of more local-
ized features, offers advantages in object recognition, in-
cluding stability to local deformations, lighting variations,
and partial occlusion. Several methods have been proposed
recently for spatially localized, parts-based (non-subtractive
or additive) feature extraction.
Local feature analysis (LFA) [9], also based on second

order statistics, is a method for extracting, from the holistic
PCA basis, local topographic representation in terms of lo-
cal features. Independent component analysis [10, 11] is a
linear non-orthogonal transform leading to a representation
in which unknown linear mixtures of multi-dimensional
random variables are made as statistically independent as
possible. ICA not only decorrelates the second order statis-
tics but also reduces higher-order statistical dependencies.
It is found that independent component of natural scenes
are localized edge-like filters [12].
The projection coefficients for the linear combinations

in the above methods can be either positive or negative, and
such linear combinations generally involve complex cancel-
lations between positive and negative numbers. Therefore,
these representations lack the intuitive meaning of adding
parts to form a whole.
Non-negative matrix factorization (NMF) [1] imposes

the non-negativity constraints in learning basis images. The
pixel values of resulting basis images, as well as coeffi-
cients for reconstruction, are all non-negative. This way,
only non-subtractive combinations are allowed. This en-
sures that the components are combined to form a whole in
the non-subtractive way. For this reason, NMF is consid-
ered as a procedure for learning a parts-based representa-
tion [1]. However, the additive parts learned by NMF are
not necessarily localized, and moreover, we found that the
original NMF representation yields low recognition accu-
racy, as will be shown.
In this paper, we propose a novel subspace method,

called local non-negative matrix factorization (LNMF), for
learning spatially localized, parts-based representation of
visual patterns. Inspired by the original NMF [1], the aim
of this work a NMF representation that truly manifests part-
based representation for tasks where feature localization is
important. The constraints of sparsity is imposed on coordi-
nates (h) in the low dimensional feature space and locality
of features on the basis components (B), in addition to the
non-negativity constraint of [1]. A procedure is presented
to perform the constrained optimization to learn truly local-
ized, parts-based components. A proof of the convergence
of the algorithm has been provided in [13].

In our experiments, with the locality constraint, the basis
components (B) of the face images tend to be binary-like.
For a congregated train process, we can get a set of binary,
orthogonal basis components for the train face images. The
binary basis components has advantages on dimension re-
duction ( decreasing the storage needed for face recognition
and detection algorithms) and increasing the computing ef-
ficiency of algorithms(Binary basis can be computed very
fast). This Walsh function like property provides us an ap-
proach to resolve the occlusion problem in face detection
and recognition problem.
The rest of the paper is organized as follows: Section 2

introduces NMF in contrast to PCA. This is followed by
the formulation of LNMF. A LNMF learning procedure is
presented and its convergence proved. Section 3 presents
experimental results illustrating properties of LNMF and its
performance in face recognition as compared to PCA and
NMF.

2 Constrained Non-Negative Matrix
Factorization

Let a set of NT training images be given as an n � NT

matrix X = [xij ] = [x1; : : : ;xNT
] where a column vector

xj consists of the n non-negative pixel values of a training
image. Denote a set ofm � n basis vectors by an n�mma-
trix B = [b1; : : : ;bm]. (Dimension reduction is achieved
when m < n). A training image can be represented as a
linear combination of the basis vectors xj � Bhj where
hj = [h1j ; : : : ; hmj ]

T is anm-element column vector con-
sisting of projected coordinates in the m dimensional fea-
ture space, and hence the training image matrix can be ap-
proximately factorized as

X � BH (1)

whereH = [h1; : : : ;hNT
] ism�NT . While Eq.(1) repre-

sent the reconstruction, the reverse process, i.e. projection,
can be done as hj = Pxj where the projection matrix P is
the (generalized) inverse ofB.
The PCA factorization imposes no other constraints than

the orthogonality, and hence allows the entries of B andH
to be of arbitrary sign. Many basis images, i.e. eigenfaces
in the case of face recognition, lack intuitive meaning; and
a linear combination of them generally involves complex
cancellations between positive and negative numbers. The
NMF and LNMF representations allow only positive coef-
ficients and thus non-subtractive combinations.
2.1 NMF

NMF imposes the non-negativity constraints

B;H � 0 (2)

such that all entries ofB andH are non-negative, and hence
only non-subtractive combinations are allowed [1]. This is
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believed to be compatible to the intuitive notion of com-
bining parts to form a whole, and also consistent with the
physiological fact that the firing rate are non-negative.
NMF uses the divergence ofX fromY, defined as

D(XjjY) =
X
i;j

�
xij log

xij

yij
� xij + yij

�
(3)

as the measure of cost for factorizing X into BH
4
= Y =

[yij ]. D(XjjY) reduces to Kullback-Leibler divergence
when

P
i;j xij =

P
i;j yij = 1. An NMF factorization is

defined by a solution to the following constrained problem

min
B;H

D(XjjBH) (4)

s:t B;H � 0;
X
i

bij = 1 8j

where
P

i bij = 1 is for stablizating the computation
(see http://journalclub.mit.edu). The above
optimization can be done by using multiplicative update
rules [14], for which a matlab program is available at
http://journalclub.mit.edu under the “Compu-
tational Neuroscience” discussion category. A set of NMF
components (columns of B) obtained by using the above
learning algorithm on a set of face training data are shown
in [1]. There, most of the components present localized and
part-based features.
The constrained minimization of Eq.(3) leads to additive

decomposition of the data, but not necessarily to basis com-
ponents consisting of local parts such as eyes and mouth of
the face. To evaluate, we applied the algorithm on another
data set, which is the ORL face database of AT&T Labo-
ratories Cambridge, and obtained a result shown on the left
of Fig.1. On the right of the figure is the result from an-
other face database in which we have aligned the faces in a
better quality than the ORL database. These results differ
from the above referred one in several aspects: It is holis-
tic rather than localized, and hence not really part-based.
We believe that the differences are caused by the different
quality of alignment of faces in these databases. Whereas
faces in the ORL database are not well aligned, more careful
alignment may have been done in Lee and Seung’s data. We
believe that the desired properties of the NMF results pre-
sented in [1], i.e. features of localized parts, is ascribed to
the good alignment done by the pre-processing of the data,
rather than by an inherent ability of the algorithm to learn
local parts.
Another reason for this present work is concerning the

suitability of NMF basis for object recognition. PCA has
been extensively used for face recognition. While NMF is
an alternative factorization method, it is natural to evaluate
how it compares to PCA in face recognition. Our test with

Figure 1: NMF basis components learned from ORL
database (left) and a better aligned face database (right).
They appear holistic and do not manifest meaningful facial
features.

the ORL database concludes that the NMF-based recogni-
tion rate is lower than PCA-based, as will be shown in ex-
periments. These motivated us to do an investigation into a
rectified NMF model in this paper.

2.2 LNMF

LNMF is aimed at learning localized, part-based features
in B for a factorizationX � BH. Denoting U = [uij ] =
B
T
B,V = [vij ] = HH

T , both beingm�m, the following
three additional constraints are imposed on the NMF basis.
(1) Maximum Sparsity inH. H should contain as many
zero components as possible. This requires that a basis
component should not be further decomposed into more
components so that the number of basis components re-
quired to represent X is minimized. Given the existing
constraints kbjk1 =

Pn

i=1 bij = 1 for all j, we wish
to minimize

Pn

i=1 b
2
ij = ujj so that each bi contains as

many non-zero elements as possible to be as expressive
as possible. The maximum sparsity in H in imposed asPn

i=1 b
2
ij = ujj = min.

(2) Maximum Expressiveness ofB. As we have seen from
the above, sparsity inH and expressiveness ofB are closely
related. The constraint presented here further enhances the
maximum sparsity in (1). The idea is that only those com-
ponents which carry much information about the training
examples should be retained. The amount of information
about example xj carried by component bi is measured by
the “activity” of the example on the component defined as
h2ij . The total activity of all examples on the component bi
is
PNT

j=1 h
2
ij . The total activity on all the learned compo-

nents is
Pm

i=1

PNT

j=1 h
2
ij =

P
i vii. The maximum expres-

siveness ofB is imposed as
P

i vii = max.
(3) Maximum Orthogonality of B. Different bases should
be as orthogonal as possible, so as to minimize redun-
dancy between different bases. This can be imposed byP

i6=j uij = min. Combining this with (1), we requireP
8i;j uij = min.
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The incorporation of the above constraints leads the fol-
lowing constrained divergence as the objective function for
LNMF:

D(XjjBH) = (5)X
i;j

�
xij log

xij

yij
� xij + yij

�
+

�
X
i;j

uij � �
X
i

vii

where �; � > 0 are some constants (these constants will be
eliminated in the derivation of a minimization algorithm). A
local solution to the above constrained minimization, as an
LNMF factorization, can be found by using the following
three step update rules:

hkl =

s
hkl
X
i

xil
bikP

k bikhkl
(6)

bkl =
bkl
P

j xkj
hljP

k
bklhljP

j hlj
(7)

bkl =
bklP
k bkl

(8)

The derivation and a proof of the convergence is provided
in [13].

2.3 Face Recognition in LNMF Subspace

Face recognition in the PCA, NMF or LNMF linear sub-
space is performed as follows where B+ = (BT

B)�1BT :

1. Feature extraction. Each training face image xi is pro-
jected into the linear space as a feature vector hi =
B
+
xi which is then used as a prototype feature point.

A query face image xq to be classified is represented
as hq = B+xq .

2. Nearest neighbor classification. Some suitable dis-
tance between the query and each prototype, d(hq ;hi),
is calculated. The query is classified to the class to
which the closest prototype belongs.

3 Experiments

3.1 Data Preparation

The Cambridge ORL face database is used for deriving
PCA, NMF and LNMF bases. There are 400 images
(112�92) of 40 persons, 10 images per person (Fig.2 shows
the 10 images of one person). The images are taken at
different times, varying lighting slightly, facial expressions
(open/closed eyes, smiling/non-smiling) and facial details

(glasses/no-glasses). All the images are taken against a dark
homogeneous background. The faces are in up-right posi-
tion of frontal view, with slight left-right out-of-plane rota-
tion. Each image is linearly stretched to the full range of
pixel values of [0,255].

Figure 2: Face examples from ORL database.

The set of the 10 images for each person is randomly
partitioned into a training subset of 5 images and a test set
of the other 5. The training set is then used to learn basis
components, and the test set for evaluate. All the compared
methods take the same training and test data.

3.2 Learning Basis Components

LNMF, NMF and PCA representations with
25; 36; 49; 64; 81; 100; 121 basis components are com-
puted from the training set. The matlab package from
http://journalclub.mit.edu is used for NMF.
NMF converges about 5-times faster than LNMF. Fig.3
shows the resulting LNMF and NMF components for
subspaces of dimensions 25 and 81. Higher pixel values are
in in darker color; the components in each LNMF basis set
have been ordered (left-right then top-down) according to
the significance value vii. The NMF bases are as holistic as
the PCA basis (eigenfaces) for the training set. We notice
the result presented in [1] does not appear so, perhaps
because the faces used for producing that result are well
aligned. The LNMF procedure learns basis components
which not only lead to non-subtractive representations, but
also manifest localized features and thus truly parts-based
representations. Also, we see that as the dimension (num-
ber of components) increases, the features formed in the
LNMF components become more localized.
By applying the localization and orthogonal criteria for

the basis component, we get a set binary bases. Figure 4
shows the histograms of the basis components of the LNMF
(left) and NMF (right). It can be shown that the LNMF
components are binary images. This leading to a Walsh
function based represention of face images. Two important
characteristics of the Walsh functions are their compactness
(representing the lower order functions requires fewer sam-
ples), and the simplicity and quickness of their compution.
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Figure 3: LNMF (left) and NMF (right) bases of dimensions
25 (row 1),81 (row 2). Every basis component is of size
112 � 92 and the displayed images are re-sized to fit the
paper format. The LNMF representation is both parts-based
and local, whereas NMF is parts-based but holistic.
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Figure 4: Histogram of the component basis LNMF (left)
and NMF (right) bases of dimensions 81. The LNMF rep-
resentation is binary, whereas NMF is not.

It leads to a significant dimension compression for the face
images and improvement of computing efficiency ( Binary
vector can be computed very quickly on digital computers).

3.3 Reconstruction

Fig.5 shows reconstructions in the LNMF, NMF and PCA
subspaces of various dimensions for a face image in the test
set which corresponds to the one in the middle of row 1
of Fig.2. As the dimension is increased, more details are
recovered. We see that while NMF and PCA reconstruc-
tions look similar in terms of the smoothness and texture
of the reconstructed images, with PCA presenting better
reconstruction quality than NMF. Surprisingly the LNMF
representation, which is based on more localized features,
provides smoother reconstructions than NMF and PCA.

Figure 5: Reconstructions of the face image in the (left to
right) 25, 49, 81 and 121 dimensional (top-down) LNMF,
NMF, and PCA subspaces.

Figure 6: Examples of random occluding patches of sizes
(from left to right) 10x10, 20x20, ..., 50x50, 60x60.

3.4 Face Recognition

The LNMF, NMF and PCA representations are compara-
tively evaluated for face recognition using the images from
the test set. The recognition accuracy, defined as the per-
centage of correctly recognized faces, is used as the per-
formance measure. Tests are done with varying number of
basis components, with or without occlusion. The occlu-
sion is simulated in an image by using a white patch of size
s � s with s 2 f10; 20; : : : ; 60g at a random location; see
Fig.6 for examples.
Figs.7 and 8 show recognition accuracy curves under

various conditions. Fig.7 compares the three representa-
tions in terms of the recognition accuracies versus the num-
berm�m of basis components form 2 f5; 6; : : : ; 10; 11g.
The LNMF yields the best recognition accuracy, slightly
better than PCA whereas the original NMF gives very low
accuracy. Fig.8 compares the three representations un-
der varying degrees of occlusion and with varying num-
ber of basis components, in terms of the recognition ac-
curacies versus the size s � s of occluding patch for s 2
f10; 20; : : : ; 50; 60g. As we see, although PCA yields more
favorable results than LNMF when the patch size is small,
the better stability of the LNMF representation under partial
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Figure 7: Recognition accuracies as function of the num-
ber (in 5x5, 6x6, ..., 11x11) of basis components used, for
the LNMF (solid) and NMF (dashed) and PCA (dot-dashed)
representations.
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Figure 8: Recognition accuracies versus the size (in 10x10,
20x20, ..., 60x60) of occluding patches, with 25, 49, 81, 121
basis components (left-right, then top-down), for the LNMF
(solid) and NMF (dashed) and PCA (dot-dashed) represen-
tations.

occlusion becomes clear as the patch size increases.

4 Conclusion

In this paper, we have proposed a new method, local non-
negativematrix factorization (LNMF), for learning spatially
localized, part-based subspace representation of visual pat-
terns. The work is aimed to learn localized of features
in NMF basis components suitable for tasks such as face
recognition. An algorithms is presented for the learning and
its convergence proved. Experimental results have shown
that we have achieved our objectives: LNMF derives bases
which are better suited for a localized representation than
PCA and NMF, and leads to better recognition results than
the existing methods.
The LNMF and NMF learning algorithms are local min-

imizers. They give different basis components from differ-
ent initial conditions. We will investigate how this affects
the recognition rate. Further future work includes the fol-
lowing topics. The first is to develop algorithms for faster
convergence and better solution in terms of minimizing the
objective function. The second is to investigate the abil-
ity of the model to generalize, i.e. how the constraints, the
non-negativity and others, are satisfied for data not seen in
the training set.The third is to compare with other methods
for learning spatially localized features such as LFA [9] and
ICA [12].
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