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Abstract
We investigate the existence and regularity of the local times of the solution to a linear
system of stochastic wave equations driven by a Gaussian noise that is fractional in
time and colored in space. Using Fourier analytic methods, we establish strong local
nondeterminism of the solution and the existence of jointly continuous local times.We
also study the differentiability and moduli of continuity of the local times and deduce
some sample path properties of the solution.
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1 Introduction

The stochastic wave equation is a fundamental stochastic partial differential equation
(SPDE) of hyperbolic type. The wave equation driven by the space-time white noise
and temporally white, spatially correlated noise has been studied bymany authors; see,
e.g., [12,13,21,22,37,39,42,48]. Since the recent development of stochastic calculus
with respect to fractional Brownian motion, there have been growing interests in the
studies of SPDEs driven by fractional Brownian motion and other fractional Gaussian
noise in time and/or in space, for which we refer, among others, to [3,4,6,15,28,29,
36,40,44].

In this paper, we study the stochastic wave equation driven by a Gaussian noise that
is fractional with Hurst index 1/2 < H < 1 in time (or white in time), and is colored in
space with some spatial covariance. More precisely, we consider the following system
of linear stochastic wave equations
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⎧
⎪⎨

⎪⎩

∂2

∂t2
u j (t, x) = �u j (t, x) + Ẇ j (t, x) for t ≥ 0, x ∈ R

N ,

u j (0, x) = 0,
∂

∂t
u j (0, x) = 0, j = 1, . . . , d,

(1.1)

where � is the Laplacian in variable x and Ẇ = (Ẇ1, . . . , Ẇd) is a d-dimensional
Gaussian noise. We assume that Ẇ1, . . . , Ẇd are i.i.d. and formally, each Ẇ j has
covariance

E[Ẇ j (t, x)Ẇ j (s, y)] = ρH (t − s) fβ(x − y), (1.2)

where

ρH (t − s) =
{

δ(t − s) if H = 1/2,

|t − s|2H−2 if 1/2 < H < 1

and the spatial covariance function fβ is the Fourier transform of a nonnegative tem-
pered measure μβ which has a density hβ(ξ) (with respect to the Lebesgue measure)
that is comparable to |ξ |−β , where 0 < β < N .

For the stochastic wave equation driven by the space-time white noise, there is no
function-valued solution when the spatial dimension N is greater than 1. An approach
to study this equation in higher dimensions is to consider a Gaussian noise that is white
in time but has some correlation in space, so that the equation admits a solution as a
real-valued process (or a random field); see [17,20,21]. In particular, their results show
that when Ẇ is white in time, i.e., H = 1/2, the Eq. (1.1) has a unique random field
solution if and only if N −β < 2. The fractional case 1/2 < H < 1 is studied in [5]. It
is proved that (1.1) has a unique random field solution if and only if N −β < 2H +1.
Besides existence and uniqueness, results on space-timeHölder regularities and hitting
probabilities for the solution of (1.1) can be found in [16,23]. To the best of the author’s
knowledge, not many other fine properties of (1.1) are known in the case of H �= 1/2
and N ≥ 2.

The purpose of this paper is to study the local times (or occupation densities) of
the stochastic wave equation driven by fractional-colored noise. The solution of (1.1)
is an R

d -valued Gaussian random field u = {u(t, x) : t ≥ 0, x ∈ R
N }. Our approach

to the study of local times of u is based on the Fourier analytic method due to Berman
[7,11] and the use of local nondeterminism, which is one of the main tools for studying
local times of Gaussian random fields. This approach was used in [41] to study local
times of the stochastic heat equation in the time variable; a different approach was
used in [47].

The notion of local nondeterminism (LND) for Gaussian processes was first intro-
duced by Berman [11] to study the existence of jointly continuous local times, and was
extended by Pitt [43] to study the local times of multivariate Gaussian random fields.
Various forms of LND have been studied in the literature, e.g., [18,19,31,38,53].
In particular, the property of strong local nondeterminism has been developed. An
example of Gaussian random field that satisfies this stronger property of LND is the
multiparameter fractional Brownian motion [43]. The investigation of the strong LND
property is of interest because it has found applications in studying various properties
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of Gaussian random fields such as exact modulus of continuity of sample paths, small
ball probabilities and fractal properties. We refer to the survey of Xiao [52] for details.

A result of Walsh [48, Theorem 3.1] shows that the solution of the linear stochastic
wave equation in one spatial dimension driven by the space-time white noise can be
represented by amodifiedBrownian sheet. It is known that theBrownian sheet does not
satisfy the LND property in the sense of Berman or Pitt, but it satisfies a different type
of LND called sectorial LND [30,31]. This leads to the natural question of whether
the solution of the stochastic wave equation satisfies the LND property.

Recently, Lee and Xiao [34] considered the linear stochastic wave equation driven
by a Gaussian noise that is white in time and colored in space with spatial covariance
given by the Riesz kernel, and showed that the solution satisfies a new type of strong
LND in the form of a spherical integral, which turns out to be useful in proving the
exact modulus of continuity of the sample functions.

The contributions of the present paper are as follows. We extend the result of
[34] to the case of fractional-colored noise and prove that the solution u of (1.1)
satisfies a spherical integral form of strong LND in (t, x) (Proposition 3.2). We also
study the LND property of u in t or x when the other variable is held fixed. Since
the LND property in joint variable (t, x) takes a different form from those that are
studied previously, e.g., in [11,27,43,50,51], their local times results cannot be applied
directly. In this case, we exploit this new type of LND property to study the local times
of the stochastic wave equation. More specifically, in Theorem 4.8, we prove that u,
as a Gaussian random field (t, x) �→ u(t, x), has a jointly continuous local time if
1
2 (2H+1−N+β)d < 1+N .Moreover,we obtain differentiability results for the local
times in the space variable, and the local and uniformmoduli of continuity of the local
times in the set variable (Theorems 5.1 and 5.3). Our results lead to sample function
properties that are new for the stochastic wave equation with fractional-colored noise,
including the exact uniform modulus of continuity of (t, x) �→ u(t, x) (Theorem 3.7)
and the property that (t, x) �→ u(t, x) is nowhere differentiable (Theorem 5.5).

The rest of the paper is organized as follows. In Section 2, we recall the theory of
the stochastic wave equation with fractional-colored noise and some facts about local
times. In Section 3, we study the local nondeterminism property for the solution u
of (1.1) and give the exact modulus of continuity of the sample functions. In Section
4, we derive moment estimates for the local times of u using the LND property and
prove the existence of jointly continuous local times. Finally, in Section 5, we study
regularities of the local times including the differentiability in the set variable and the
moduli of continuity in the set variable, and we use the latter to derive lower envelopes
of the sample path oscillations.

2 Preliminaries

This section contains preliminaries about the stochastic wave equation and local times.
We first introduce some notations and review the theory for fractional-colored noise
and the solution of the Eq. (1.1). After that, we will recall the definition and some
properties of the local times of stochastic processes.
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The Fourier transform of a function φ : RN → R (or C) is defined by

Fφ(ξ) = φ̂(ξ) =
∫

RN
e−i x ·ξ φ(x)dx

whenever the integral is well-defined. We write x · ξ = ∑N
j=1 x jξ j for the usual dot

product in R
N . We assume that the function fβ in (1.2), where 0 < β < N , is the

Fourier transform of a nonnegative tempered measure μβ in the sense that

∫

RN
fβ(x)φ(x)dx =

∫

RN
Fφ(ξ)μβ(dξ)

for all φ in the Schwartz space S(RN ) of rapidly decreasing smooth functions, and
that μβ has a density hβ(ξ) with respect to the Lebesgue measure satisfying

C1|ξ |−β ≤ hβ(ξ) ≤ C2|ξ |−β, (2.1)

where C1 and C2 are positive finite constants. A typical example of fβ is the Riesz
kernel:

fβ(ξ) = |ξ |−(N−β), 0 < β < N ,

which is the Fourier transform ofμβ(dξ) = C |ξ |−βdξ , whereC is a suitable constant
depending on β and N . See [45, §V].

Let us recall the random field approach for the fractional-colored noise Ẇ and the
construction of the solution of (1.1) proposed by Balan and Tudor [4,5]. LetC∞

c (R+×
R

N ) denote the space of smooth, compactly supported functions on R+ × R
N , and

define the inner product 〈·, ·〉HP on C∞
c (R+ × R

N ) by

〈ϕ,ψ〉HP =
∫

R+
dt
∫

R+
ds
∫

RN
dx
∫

RN
dy ϕ(t, x) ρH (t − s) fβ(x − y) ψ(s, y)

= C
∫

R+
dt
∫

R+
ds
∫

RN
dξ Fϕ(t, ·)(ξ)Fψ(s, ·)(ξ) ρH (t − s) hβ(ξ).

(2.2)
The Hilbert space HP associated with the noise Ẇ is defined as the completion of
C∞
c (R+ × R

N ) with respect to the inner product 〈·, ·〉HP . This Hilbert space can be
identified as the space of all distribution-valued functions S : R+ → S ′(RN ) such
that for each t ≥ 0, F S(t) is a function, and

∫

R+
dt
∫

R+
ds
∫

RN
dξ F S(t)(ξ)F S(s)(ξ) ρH (t − s) hβ(ξ) < ∞.

The Gaussian noise Ẇ can be defined as a generalized Gaussian process {W (ϕ) : ϕ ∈
C∞
c (R+ × R

N )} with mean zero and covariance E[W (ϕ)W (ψ)] = 〈ϕ,ψ〉HP . Then
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W produces an isometry fromHP into a Gaussian subspace of L2(P)

ϕ �→ W (ϕ) =:
∫

R+

∫

RN
ϕ(s, y)W (ds, dy),

such that E[W (ϕ)W (ψ)] = 〈ϕ,ψ〉HP for all ϕ,ψ ∈ HP .
Let gt,x (s, y) = G(t − s, x − y)1[0,t](s), where G(t, x) is the fundamental solution
of the wave equation. By Theorem 3.1 of [5], under the Assumption (2.1), gt,x ∈ HP
if and only if

β > N − 2H − 1, (2.3)

and when (2.3) holds, (1.1) has a random field solution that is mean square continuous
in (t, x):

u(t, x) = W (gt,x ) =
∫ t

0

∫

RN
G(t − s, x − y)W (ds, dy).

Note that u = {u(t, x) : t ≥ 0, x ∈ R
N } is an R

d -valued Gaussian field with i.i.d.
components.

If the Fourier transforms of s �→ Fϕ(s, ·)(ξ) and s �→ Fψ(s, ·)(ξ) exist, they are
equal to the Fourier transforms of ϕ and ψ in (t, x)-variables, denoted by Fϕ(τ, ξ)

and Fψ(τ, ξ), respectively. In this case, it follows from (2.2) and the Plancherel
theorem that

〈ϕ,ψ〉HP = C
∫

R

dτ

∫

RN
dξ Fϕ(τ, ξ)Fψ(τ, ξ) |τ |1−2H hβ(ξ). (2.4)

This formula remains true when H = 1/2. Recall that the Fourier transform of the
fundamental solution in the space variable is FG(t, ·)(ξ) = |ξ |−1 sin(t |ξ |); see [26,
Ch.5]. Then

F gt,x (s, ·)(ξ) = e−i x ·ξ sin((t − s)|ξ |)
|ξ | 1[0,t](s)

and the Fourier transform of s �→ F gt,x (s, ·)(ξ) is

F gt,x (τ, ξ) = e−i x ·ξ

2|ξ |
(
e−i tτ − eit |ξ |

τ + |ξ | − e−i tτ − e−i t |ξ |

τ − |ξ |
)

. (2.5)

This and (2.4) provide a formula for the covariance of u(t, x).
Next, let us recall the definition and properties of local times. Let u = {u(z) : z ∈

R
k} be a random field with values in Rd . The occupation measure of u on a Borel set

T ∈ B(Rk) is the random measure defined by

νT (B) = νT (B, ω) = λk{z ∈ T : u(z) ∈ B}, B ∈ B(Rd),

where λk denotes the Lebesgue measure on R
k . We say that u has a local time on

T if νT is a.s. absolutely continuous with respect to λd , the Lebesgue measure on
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R
d . A version of the Radon–Nikodym derivative, denoted by L(v, T ) = L(v, T , ω),

v ∈ R
d , is called a version of the local time. It follows from the definition that for all

B ∈ B(Rd),

λk{z ∈ T : u(z) ∈ B} =
∫

B
L(v, T ) dv. (2.6)

Obviously, if u has a local time on T , then it has a local time on every S inB(T ),
the collection of all Borel subsets of T . We say that L(v, S) is a kernel if

(i) For each S ∈ B(T ), the function (v, ω) �→ L(v, S, ω) isB(Rd)×F -measurable;
(ii) For each (v, ω) ∈ R

d × �, the set function S �→ L(v, S, ω) is a measure on
(T ,B(T )).

It is desirable to work with a version of the local time that is a kernel because it
satisfies the following properties [27, Theorem (6.4)]:

(i) Occupation density formula: for every nonnegative Borel function f (z, v) on T ×
R
d , ∫

T
f (z, u(z)) dz =

∫

Rd
dv

∫

T
f (z, v)L(v, dz).

(ii) L(v, Mc
v ) = 0 for a.e. v, where Mv = {z ∈ T : u(z) = v}, i.e., the support of the

measure L(v, ·) is contained in the v-level set Mv of u.

For any z = (z1, . . . , zk) ∈ R
k , let (−∞, z] denote the unbounded interval∏k

j=1(−∞, z j ] in R
k with upper right corner at z. Let T be a compact interval in

R
k and Qz = (−∞, z]∩ T . We say that a version of the local time L is jointly contin-

uous on T if (v, z) �→ L(v, Qz) is jointly continuous on R
d × T . It is known that if

L is jointly continuous, then L(v, Qz) can be uniquely extended to a kernel L(v, S),
S ∈ B(T ), satisfying the property that L(v, J ) = 0 for all v /∈ u(J ) and all intervals
J ⊂ T with rational endpoints; and if, in addition, u has continuous sample paths,
then L(v, Mc

v ) = 0 for all v ∈ R
d ; see [9], [27, p.12], [1, p.223]. Since the local

times serve as a natural measure on the level sets of u, they are useful in studying the
properties of the level sets of u [10,27,38,51].

3 Local Nondeterminism

This section is devoted to studying LND property of the solution u(t, x) of (1.1). In
what follows, we denote

α = 2H + 1 − N + β

2

and assume
N − 2H − 1 < β < N − 2H + 1 (3.1)

so that the solution u(t, x) exists by (2.3), and that 0 < α < 1. In this case, the
proposition below implies that the sample functions (t, x) �→ u(t, x) are a.s. locally
Hölder continuous of any order strictly less than α.
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Proposition 3.1 For any 0 < a < b and M > 0, there exist positive finite constants
C1 and C2 such that for all (t, x), (s, y) ∈ [a, b] × [−M, M]N ,

C1(|t − s|+|x−y|)2α ≤E(|u(t, x) − u(s, y)|2)≤C2(|t − s|+|x − y|)2α. (3.2)

Proof We may assume that d = 1. By (2.4), we have

E(|u(t, x)−u(s, y)|2)=C
∫

R

dτ

∫

RN
dξ |F gt,x (τ, ξ)−F gs,y(τ, ξ)|2 |τ |1−2H hβ(ξ).

Then, by the Assumption (2.1) for hβ , it is enough to consider the case that hβ(ξ) =
|ξ |−β . But for this case, (3.2) has been proved in [16]. ��

The following LND result is the basis for the study of regularity properties of local
times in this paper. This result extends Proposition 2.1 of [34] and shows that u(t, x)
satisfies a strong LND property in the form of a spherical integral. The proof involves
a Fourier analytic method.

Proposition 3.2 For any 0 < a < ∞, there exist constants C > 0 and r0 > 0 such
that for all integers n ≥ 1, for all (t, x), (t1, x1), . . . , (tn, xn) ∈ [a,∞) × R

N with
max j (|t − t j | + |x − x j |) ≤ r0, we have

Var(u1(t, x)|u1(t1, x1), . . . , u1(tn, xn))≥C
∫

SN−1
min
1≤j≤n |(t−t j )+(x−x j )·w|2α σ (dw),

(3.3)
where σ is the surface measure on the unit sphere SN−1.

Proof Take r0 = a/2. For each w ∈ S
N−1, let

r(w) = min
1≤ j≤n

|(t − t j ) + (x − x j ) · w|.

Since u is Gaussian, the conditional variance Var(u1(t, x)|u1(t1, x1), . . . , u1(tn, xn))
is the squared distance between u(t, x) and the linear subspace spanned by
u1(t1, x1), . . . , u1(tn, xn) in L2(P). Thus, it suffices to prove that there exist constants
C > 0 and r0 > 0 such that for any n ≥ 1, for any (t, x), (t1, x1), . . . , (tn, xn) ∈
[a,∞)×R

N with max j (|t − t j |+ |x − x j |) ≤ r0, and for any choice of real numbers
a1, . . . , an , we have

E

[(
u1(t, x) −

n∑

j=1

a ju1(t
j , x j )

)2
]

≥ C
∫

SN−1
r(w)2H+1−N+β σ (dw). (3.4)
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To this end, we note that by (2.1) and (2.4),

E

[(
u1(t, x) −

n∑

j=1

a ju1(t
j , x j )

)2
]

≥ C
∫

R

dτ

∫

RN
dξ

∣
∣
∣F gt,x (τ, ξ) −

n∑

j=1

a jF gt j ,x j (τ, ξ)

∣
∣
∣
2|τ |1−2H |ξ |−β.

Then, we use (2.5) and spherical coordinates ξ = ρw to get

C
∫

R

dτ

∫

R+
dρ

∫

SN−1
σ(dw)

∣
∣
∣F(t, x · w, τ, ρ)

−
n∑

j=1

a j F(t j , x j · w, τ, ρ)

∣
∣
∣
2|τ |1−2HρN−β−3,

where

F(t, y, τ, ρ) = e−iρy

2

(
e−i tτ − eitρ

τ + ρ
− e−i tτ − e−i tρ

τ − ρ

)

.

Since F(t, x · w,−τ,−ρ) = −F(t, x · w, τ, ρ), it follows that

E

[(
u1(t, x) −

n∑

j=1

a j u1(t
j , x j )

)2
]

≥ C

2

∫

SN−1
σ(dw)

∫

R

dτ

∫

R

dρ

∣
∣
∣F(t, x · w, τ, ρ)−

n∑

j=1

a j F(t j , x j · w, τ, ρ)

∣
∣
∣
2|τ |1−2H |ρ|N−β−3

︸ ︷︷ ︸
=:A(w)

.

(3.5)

Choose and fix any two nonnegative smooth test functions φ,ψ : R → R satisfying
the following properties: φ is supported on [0, a/2] and ∫ φ(s)ds = 1;ψ is supported
on [−1, 1] and ψ(0) = 1. Let ψr (x) = r−1ψ(r−1x). For each w ∈ S

N−1 with
r(w) > 0, write ψ̂r(w) = F (ψr(w)) and consider

I (w) :=
∫

R

dρ

∫

R

dτ

(

F(t, x · w, τ, ρ) −
n∑

j=1

a j F(t j , x j · w, τ, ρ)

)

× e−i tρe−iρx ·wφ̂(τ − ρ)ψ̂r(w)(ρ).
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Note that for ρ fixed, τ �→ φ̂(τ −ρ) is the Fourier transform of s �→ eisρφ(s), and
τ �→ F(t, x · w, τ, ρ) is the Fourier transform of s �→ e−iρx ·w sin((t − s)ρ)1[0,t](s).
Then apply the Plancherel theorem to the integral in τ to get that

I (w)=2π
∫

R

dρ

∫

R

ds

(

e−iρx·w sin((t−s)ρ)1[0,t](s)−
n∑

j=1

a j e−iρx j ·w sin((t j −s)ρ)1[0,t j ](s)
)

× e−i(t−s)ρe−iρx ·wφ(s)ψ̂r(w)(ρ).

Since sin(z) = 1
2i (e

iz − e−i z) and φ is supported on [0, a/2], this is

= −π i
∫ a/2

0
ds
∫

R

dρ

[

eiρx ·w
(
ei(t−s)ρ − e−i(t−s)ρ

)

−
n∑

j=1

a j e
iρx j ·w(ei(t j−s)ρ − e−i(t j−s)ρ

)]

e−i(t−s)ρe−iρx ·wφ(s)ψ̂r(w)(ρ).

Then, apply the Fourier inversion theorem to ψ̂r(w) = F (ψr(w)) to get

= − 2π2i
∫ a/2

0
φ(s)

[

ψr(w)(0)−ψr(w)(−2(t−s))−
n∑

j=1

a j

(
ψr(w)((x

j − x) · w+(t j − t))

− ψr(w)((x
j − x) · w + (t j − t) − 2(t j − s))

)]

ds.

Since t ≥ a and r(w) ≤ r0 = a/2, we see that for all s ∈ [0, a/2], 2(t − s)/r(w) ≥ 2
and thus

ψr(w)(−2(t − s)) = 0.

By the definition of r(w), we have |(x j − x) ·w + (t j − t)|/r(w) ≥ 1, which implies

ψr(w)((x
j − x) · w + (t j − t)) = 0.

Moreover, we have (x j − x) · w + (t j − t) − 2(t j − s) ≤ r0 − a = −a/2 ≤ −r(w),
hence

ψr(w)((x
j − x) · w + (t j − t) − 2(t j − s)) = 0.

It follows that

|I (w)| = 2π2ψr(w)(0)
∫ a/2

0
φ(s) ds = 2π2r(w)−1. (3.6)
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On the other hand, by the Cauchy–Schwarz inequality,

|I (w)|2 ≤ A(w) ×
∫

R

dτ

∫

R

dρ |φ̂(τ − ρ)|2|ψ̂r(w)(ρ)|2|τ |2H−1|ρ|3−N+β. (3.7)

Note that ψ̂r(w)(ρ) = ψ̂(r(w)ρ) and both φ̂ and ψ̂ are rapidly decreasing functions.
To estimate the double integral in (3.7), we consider two regions: (i) |τ | ≤ |ρ| and (ii)
|τ | > |ρ|. For region (i), by |τ |2H−1 ≤ |ρ|2H−1 and scaling in ρ, we have

∫

R

dρ

∫

|τ |≤|ρ|
dτ |φ̂(τ − ρ)|2|ψ̂r(w)(ρ)|2|τ |2H−1|ρ|3−N+β

≤
∫

R

dρ |ψ̂(r(w)ρ)|2|ρ|2H+2−N+β

∫

R

dτ |φ̂(τ )|2

= Cr(w)−2H−3+N−β.

For region (ii), note that 3 − N + β > 2H + 1 − N + β > 0 by (3.1), so
|ρ|3−N+β ≤ |τ |3−N+β . By letting z = τ − ρ and then by scaling,

∫

R

dρ

∫

|τ |>|ρ|
dτ |φ̂(τ − ρ)|2|ψ̂r(w)(ρ)|2|τ |2H−1|ρ|3−N+β

≤
∫

R

dρ |ψ̂(r(w)ρ)|2
∫

R

dz |φ̂(z)|2|z + ρ|2H+2−N+β

≤ C
∫

R

dρ |ψ̂(r(w)ρ)|2
∫

R

dz |φ̂(z)|2|z|2H+2−N+β

+ C
∫

R

dρ |ψ̂(r(w)ρ)|2|ρ|2H+2−N+β

∫

R

dz |φ̂(z)|2

≤ Cr(w)−1 + Cr(w)−2H−3+N−β,

which is≤ Cr(w)−2H−3+N−β for some larger constantC because 2H+3−N+β > 1.
Hence

|I (w)|2 ≤ CA(w)r(w)−2H−3+N−β. (3.8)

Now, combining (3.6) and (3.8), we get that

A(w) ≥ Cr(w)2H+1−N+β, (3.9)

and this remains true if r(w) = 0. Therefore, we can integrate both sides of (3.9) over
S
N−1 with respect to σ(dw) and use (3.5) to get (3.4). ��

When N = 1, σ is supported on {−1, 1}. In this case, u(t, x) satisfies sectorial LND
under the change of coordinates (t, x) �→ (t + x, t − x). It is known that the Brownian
sheet and fractional Brownian sheets satisfy the sectorial LND property [30,49].
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Corollary 3.3 When N = 1, (3.3) becomes

Var(u1(t, x)|u1(t1, x1), . . . , u1(tn, xn))
≥ C

(
min

1≤ j≤n
|(t + x) − (t j + x j )|2α + min

1≤ j≤n
|(t − x) − (t j − x j )|2α

)
.

Moreover, u(t, x) satisfies the strong LND property in one variable (t or x) while
the other variable is held fixed.

Corollary 3.4 Fix x0 ∈ R
N . For any 0 < a < ∞, there exist constants C > 0

and r0 > 0 such that for all integers n ≥ 1, for all t, t1, . . . , tn ∈ [a,∞) with
max j |t − t j | ≤ r0, we have

Var(u1(t, x0)|u1(t1, x0), . . . , u1(tn, x0)) ≥ C min
1≤ j≤n

|t − t j |2α.

Proposition 3.5 Fix t0 > 0. Then {u1(t0, x) : x ∈ R
N } is a stationary Gaussian

random field with a spectral density ft0(ξ) = Nt0(ξ)hβ(ξ), ξ ∈ R
N , where

Nt0(ξ) = C |ξ |−2
∫

R

∣
∣
∣
∣
e−i t0τ − eit0|ξ |

τ + |ξ | − e−i t0τ − e−i t0|ξ |

τ − |ξ |
∣
∣
∣
∣

2

|τ |1−2H dτ.

Moreover, for any 0 < M < ∞, there exists a constant C > 0 such that for all
integers n ≥ 1, for all x, x1, . . . , xn ∈ {y ∈ R

N : |y| ≤ M},

Var(u1(t0, x)|u1(t0, x1), . . . , u1(t0, xn)) ≥ C min
1≤ j≤n

|x − x j |2α. (3.10)

Proof By (2.4) and (2.5), we have E[u1(t0, x)u1(t0, y)] = ∫

Rn e−i(x−y)·ξ Nt0(ξ)

hβ(ξ) dξ , which verifies the first assertion. To prove (3.10), use (2.4), (2.1) and (2.5)
to get that, for any a1, . . . , an ∈ R,

E

[(
u1(t0, x)−

n∑

j=1

a ju1(t0, x
j )
)2
]

≥ C
∫

RN

∣
∣
∣1 −

n∑

j=1

a j e
i(x−x j )·ξ

∣
∣
∣
2
Nt0(ξ)|ξ |−β dξ.

By Lemma 6.2 of [2], there exists a constant C > 0 depending on t0 such that for all
ξ ∈ R

N ,

Nt0(ξ) ≥ C
√|ξ |2 + 1

∫

R

|τ |1−2H

|τ |2 + |ξ |2 + 1
dτ.

Fix any two nonnegative smooth test functions φ : R → R and ψ : RN → R

satisfying the following properties: φ is supported on [−1, 1], ψ is supported on {ξ ∈
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R
N : |ξ | ≤ 1}, and φ(0) = ψ(0) = 1. Let r = min j |x − x j |, φr (τ ) = r−1φ(r−1τ),

ψr (ξ) = r−Nψ(r−1ξ) and consider

I :=
∫∫

R×RN

(
1 −

n∑

j=1

a j e
i(x−x j )·ξ)φ̂r (τ )ψ̂r (ξ) dτ dξ.

By Fourier inversion,

I = (2π)1+Nφr (0)
(
ψr (0) −

n∑

j=1

a jψr (x − x j )
)

= (2π)1+Nr−1−N . (3.11)

On the other hand, by the Cauchy–Schwarz inequality,

I 2 ≤ C E

[(
u1(t0, x) −

n∑

j=1

a ju1(t0, x
j )
)2
]

×
∫∫

R×RN

√
|ξ |2 + 1 (|τ |2 + |ξ |2 + 1)|τ |2H−1|ξ |β |φ̂(rτ)ψ̂(rξ)|2 dτ dξ.

By scaling, the double integral is equal to

r−2H−3−N−β

∫∫

R×RN

√
|ξ |2 + r2 (|τ |2 + |ξ |2 + r2)|τ |2H−1|ξ |β |φ̂(τ )ψ̂(ξ)|2 dτ dξ,

which is ≤ Cr−2H−3−N−β by applying r ≤ 2M to the integrand. This and (3.11)
imply that

E

[(
u1(t0, x) −

n∑

j=1

a ju1(t0, x
j )
)2
]

≥ Cr2H+1−N+β,

where C does not depend on n, x, x j or a j . This proves (3.10). ��
A property of the conditional variances Var(u1(t, x)|u1(t1, x1), . . . , u1(tn, xn)) is

that they are strictly positive whenever the points (t j , x j ) are all different from (t, x).
Indeed, u has the following linear independence property:

Proposition 3.6 For any n ≥ 2, for any distinct points (t1, x1), . . . , (tn, xn) in
(0,∞) ×R

N , the Gaussian random variables u1(t1, x1), . . . , u1(tn, xn) are linearly
independent.

Proof Suppose a1, . . . , an are real numbers such that
∑n

j=1 a ju1(t j , x j ) = 0 a.s.
Then by (2.4),

0 = E

( n∑

j=1

a ju1(t
j , x j )

)2

=
∫

R

dτ

∫

RN
dξ

∣
∣
∣
∣

n∑

j=1

a jF gt j ,x j (τ, ξ)

∣
∣
∣
∣

2

|τ |1−2Hhβ(ξ).
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It follows that for all τ ∈ R and ξ ∈ R
N ,
∑n

j=1 a jF gt j ,x j (τ, ξ) = 0, which, by
(2.5), implies

n∑

j=1

b j e
−i t j τ + c1τ + c2 = 0, (3.12)

where b j = −2a j |ξ |e−i x j ·ξ ,

c1 = −
n∑

j=1

a j e
−i x j ·ξ (eit j |ξ | − e−i t j |ξ |),

c2 =
n∑

j=1

a j |ξ |e−i x j ·ξ (eit j |ξ | + e−i t j |ξ |).

We need to show that a j = 0 for all j = 1, . . . , n. Let t̂1, . . . , t̂ p be all distinct
values of the t j ’s. If we fix an arbitrary ξ ∈ R

N and differentiate (3.12) with respect
to τ , we see that for all τ ∈ R,

p∑

�=1

(

− i t̂�
∑

j :t j=t̂�

b j

)

e−i t̂�τ + c1 = 0.

Since the functions {e−i t̂1τ , . . . , e−i t̂ pτ , 1} are linearly independent over C, we have

−i t̂�
∑

j :t j=t̂�

b j = 0

for all � = 1, . . . , p. Since ξ ∈ R
N is arbitrary, this implies that

∑

j :t j=t̂�

a j e
−i x j ·ξ = 0 (3.13)

for all ξ ∈ R
N and all � = 1, . . . , p. Since the points (t1, x1), . . . , (tn, xn) are distinct,

for any fixed �, the x j ’s that appear in the sum in (3.13) are distinct from each other.
By linear independence of the functions e−i x j ·ξ , we conclude that a j = 0 for all j . ��

In fact, using the LND property of u(t, x), we can obtain a stronger result which
saysmore than theHölder regularity of the sample functions, namely the exact uniform
modulus of continuity:

Theorem 3.7 Assume (3.1). For any compact interval I in (0,∞) × R
N , there exists

a constant 0 < C < ∞ such that

lim
ε→0

sup
(t,x),(s,y)∈I ,

0<|t−s|+|x−y|≤ε

|u(t, x) − u(s, y)|
(|t − s| + |x − y|)α

√

log
[
1 + (|t − s| + |x − y|)−1

] = C a.s.

(3.14)
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Proof Using the Karhunen–Loève expansion of u(t, x) and Kolmogorov’s zero–one
law, we can show that the limit (3.14) holds for some constant 0 ≤ C ≤ ∞ (cf.
Lemma 7.1.1 of [35]). Then, from (3.2), we can use the standard metric entropy result
for Gaussian modulus of continuity [24] to prove that this limit is finite, and use
Proposition 3.2 to prove that it is also strictly positive. The proof is similar to that of
Theorem 3.1 of [34] so we omit the details. ��

4 Existence of Jointly Continuous Local Times

The objective of this section is to establish the existence of jointly continuous local
times for the solution of (1.1). Let us first recall a necessary and sufficient condition
for the existence of square-integrable local times for general Gaussian random fields
based on the Fourier analytic approach of Berman; see [7], [27, p.36].

Let X = {X(z) : z ∈ T } be an R
d -valued Gaussian random field on a compact

interval T ⊂ R
k . The Fourier transform (or characteristic function) of the occupation

measure νT of X is

ν̂T (ξ) =
∫

Rd
eiξ ·vνT (dv) =

∫

T
eiξ ·X(z) dz.

By the Plancherel theorem, a necessary and sufficient condition for X to have a square-
integrable local time on T , namely, L(·, T ) ∈ L2(λd × P), is

∫

Rd

∫

T

∫

T
E[eiξ ·(X(z)−X(z′))] dz dz′ dξ < ∞. (4.1)

The integral in (4.1) above is equal to E
∫

Rd |ν̂T (ξ)|2dξ . In particular, when (4.1)
holds, a version of the local time can be obtained by the inverse L2-Fourier transform
of ν̂T :

L(v, T )
L2= lim

M→∞(2π)−d
∫

[−M,M]d
e−iξ ·v

∫

T
eiξ ·X(z)dz dξ. (4.2)

There are several ways to consider the local times of the stochastic wave Eq. (1.1).
The solution u(t, x) can be regarded as a process in t , in x , or in (t, x). Using (4.1)
and (3.2), we can easily derive the following necessary and sufficient conditions for
the existence of square-integrable local times for u, for each of the three cases.

Theorem 4.1 Assume (3.1). Let T1 ⊂ (0,∞) and T2 ⊂ R
N be compact intervals and

T = T1 × T2.

(i) For any fixed x0 ∈ R
N , {u(t, x0) : t ∈ T1} has a square-integrable local time

Lx0(v, T1) on T1 if and only if αd < 1.
(ii) For any fixed t0 > 0, {u(t0, x) : x ∈ T2} has a square-integrable local time

Lt0(v, T2) on T2 if and only if αd < N.
(iii) {u(t, x) : (t, x) ∈ T } has a square-integrable local time L(v, T ) on T if and

only if αd < 1 + N.
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By Corollary 3.4 and Proposition 3.5, u satisfies the LND property (in the sense of
Berman or Pitt) in one variable t or x when the other variable is held fixed. Therefore, if
the conditions in (i) and (ii) above hold, then the joint continuity andHölder conditions
of the local times follow from the standard results of [11,27,43]. For case (iii), when
N = 1, u(t, x) satisfies sectorial LND by Corollary 3.3, so the results of [50] can be
applied; otherwise, u satisfies a different type of strong LND which takes an integral
form by Proposition 3.2, so the standard results of [11,27,43,50,51] cannot be directly
applied. It can be seen from (2.6) that if αd < 1, then

L(v, T ) =
∫

T2
Lx (v, T1) dx a.e. v,

and if αd < N , then

L(v, T ) =
∫

T1
Lt (v, T2) dt a.e. v.

While these relations may allow us to deduce regularity of L(v, T ) from that of
Lt (v, T2) or Lx (v, T1), they are not accessible when N ≤ αd < 1 + N .

The main result of this section is Theorem 4.8, which establishes joint continuity
of the local times of u, particularly for case (iii) above. Our approach is to directly
exploit the spherical LND property in Proposition 3.2 to obtain moment estimates for
the local times.

Lemma 4.2 Let p > 0 and T be a compact interval in (0,∞) ×R
N . If α p < 1+ N,

then there exists a constant C < ∞ such that for all intervals I in T , n ≥ 1 and
(t1, x1), . . . , (tn, xn) ∈ I ,

∫

I
dt dx

[∫

SN−1
min
1≤i≤n

|(t + x · w) − (t i + xi · w)|2ασ (dw)

]− p
2

≤ Cnα p[λ1+N (I )]1− α p
1+N .

Proof Fix (t1, x1), . . . , (tn, xn) ∈ I . Let δ > 0 be a small constant to be determined.
For � = 1, . . . , N , let e� denote the unit vector inRN whose �-th entry is 1 and all other
entries are 0. Let e0 = −e1. Also, let S(e�, δ) = {w ∈ S

N−1 : |w − e�| ≤ δ}. Suppose
δ is small enough so that S(e0, δ), . . . , S(eN , δ) are disjoint. For each 0 ≤ � ≤ N , fix
a rotation matrix R� such that R�e1 = e� and let w� = R�w. Then

∫

SN−1
min
1≤i≤n

|(t + x · w) − (t i + xi · w)|2ασ (dw)

≥
N∑

�=0

∫

S(e�,δ)
min
1≤i≤n

|(t + x · w) − (t i + xi · w)|2ασ (dw)

=
∫

S(e1,δ)

N∑

�=0

min
1≤i≤n

|(t + x · w�) − (t i + xi · w�)|2ασ (dw).



26 Page 16 of 38 Journal of Fourier Analysis and Applications (2022) 28 :26

Let M = σ(S(e1, δ)). Since s �→ s−p/2 is a convex function on R+, by Jensen’s
inequality,

∫

I
dt dx

[∫

SN−1
min
1≤i≤n

|(t + x · w) − (t i + xi · w)|2ασ (dw)

]− p
2

≤ M−p/2
∫

I
dt dx

[ ∫

S(e1,δ)

N∑

�=0

min
1≤i≤n |(t+x · w�) − (t i+xi · w�)|2α σ (dw)

M

]− p
2

≤ M−p/2
∫

I
dt dx

∫

S(e1,δ)

[ N∑

�=0

min
1≤i≤n

|(t + x · w�)−(t i +xi · w�)|2α
]− p

2 σ(dw)

M
.

By using the inequality (
∑N

�=0 |z�|)α ≤ ∑N
�=0 |z�|α for 0 < α < 1, and Fubini’s

theorem, this is

≤ C
∫

S(e1,δ)
σ (dw)

∫

I
dt dx

[ N∑

�=0

min
1≤i≤n

|(t + x · w�) − (t i + xi · w�)|2
]− α p

2

. (4.3)

For each w ∈ S(e1, δ), we estimate the integral over I using the linear transformation
from R

1+N to itself

fw : (t, x) �→ y = (y0, . . . , yN )

defined by y� = t+x ·w� for � = 0, . . . , N . Writew� = (w�,1, . . . , w�,N ) and denote
the Jacobian by

Jw = det Dfw = det

⎛

⎜
⎜
⎜
⎝

1 w0,1 · · · w0,N
1 w1,1 · · · w1,N
...

. . .

1 wN ,1 · · · wN ,N

⎞

⎟
⎟
⎟
⎠

.

Since w �→ Jw is continuous and Je1 = 2, we can choose and fix a small enough
constant 0 < δ < 1 such that

1 ≤ Jw ≤ 3 for all w ∈ S(e1, δ). (4.4)

Fixw ∈ S(e1, δ) and let yi� = yi�(w) = t i +xi ·w�. Then, under the transformation,

∫

I
dt dx

[ N∑

�=0

min
1≤i≤n

|(t + x · w�) − (t i + xi · w�)|2
]− α p

2

≤ C
∫

fw(I )

dy
(∑N

�=0 min
1≤i≤n

|y� − yi�|2
) α p

2
.
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Consider the Cartesian product Z = ∏N
�=0{y1� , . . . , yn� }. This set consists of at most

n1+N different points in R
1+N . For each z = (z0, . . . , zN ) ∈ Z , define

�z =
{
y ∈ fw(I ) : |y� − z�| = min

1≤i≤n
|y� − yi�| for all � = 0, . . . , N

}
.

Then
⋃

z∈Z �z = fw(I ) and the interiors of �z are non-overlapping, so that

∫

fw(I )

dy
(∑N

�=0 min
1≤i≤n

|y� − yi�|2
) α p

2
=
∑

z∈Z

∫

�z

dy

|y − z|α p
.

For each z ∈ Z , we compute the integral over �z using polar coordinates y = z + ρθ .
Note that fw(I ) is a convex set in R

1+N , and so is �z . Thus, for each θ ∈ S
N the

variable ρ takes values between two nonnegative numbers ρz(θ) ≤ ρ̃z(θ). Let σ(dθ)

be the surface measure on S
N . Then

∑

z∈Z

∫

�z

dy

|y − z|α p
=
∑

z∈Z

∫

SN
σ(dθ)

∫ ρ̃z(θ)

ρz(θ)

ρN−α pdρ

= 1

1 + N − α p

∑

z∈Z

∫

SN
[ρ̃z(θ)1+N−α p − ρz(θ)1+N−α p]σ(dθ)

≤ 1

1 + N − α p

∑

z∈Z

∫

SN
[ρ̃z(θ)1+N − ρz(θ)1+N ]1−

α p
1+N σ(dθ).

The last inequality follows from bq − aq ≤ (b − a)q for 0 ≤ a ≤ b and 0 < q < 1,
which can be verified easily. Since the Lebesgue measure of �z is

λ1+N (�z) = 1

1 + N

∫

SN
[ρ̃z(θ)1+N − ρz(θ)1+N ]σ(dθ)

and the function s �→ s1−
α p
1+N is concave onR+, we can use Jensen’s inequality to get

that
∑

z∈Z

∫

SN
[ρ̃z(θ)1+N − ρz(θ)1+N ]1− α p

1+N σ(dθ)

≤
∑

z∈Z

(∫

SN
[ρ̃z(θ)1+N − ρz(θ)1+N ]σ(dθ)

)1− α p
1+N

= (1 + N )1−
α p
1+N

∑

z∈Z

(
λ1+N (�z)

)1− α p
1+N .
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Let |Z | denote the cardinality of Z . Then by Jensen’s inequality again, this is

= (1 + N )1−
α p
1+N |Z | · 1

|Z |
∑

z∈Z

(
λ1+N (�z)

)1− α p
1+N

≤ C |Z |
(

1

|Z |
∑

z∈Z
λ1+N (�z)

)1− α p
1+N

= C |Z | α p
1+N [λ1+N ( fw(I ))]1− α p

1+N .

Since |Z | ≤ n1+N and λ1+N ( fw(I )) ≤ Cλ1+N (I ) by (4.4), we deduce that

∫

I
dt dx

[ N∑

�=0

min
1≤i≤n

|(t + x · w�) − (t i + xi · w�)|2α
]−p/2

≤ Cnα p[λ1+N (I )]1− α p
1+N ,

where C is a constant independent of w ∈ S(e1, δ). Then put this back into (4.3) to
complete the proof. ��

The proof of Lemma 4.2 also yields the following result.

Lemma 4.3 Let T be a compact interval in Rk . Let p > 0 be such that α p < k. Then
there exists a finite constant C such that for all convex subsets F of T , for all n ≥ 1
and y, y1, . . . , yn ∈ F,

∫

F

dy
(∑k

�=1 min
1≤i≤n

|y� − yi�|2
) α p

2
≤ Cnα p[λk(F)]1− α p

k .

For any mean-zero Gaussian vector (X1, . . . , Xn), the following formula can be
easily verified:

det Cov(X1, . . . , Xn) = Var(X1)

n∏

j=2

Var(X j |X1, . . . , X j−1), (4.5)

where det Cov(X1, . . . , Xn) denotes the determinant of the covariance matrix of
(X1, . . . , Xn).

Lemma 4.4 Let I be a compact interval in R and t0 = 0.

(i) If I ⊂ (0,∞) and B(t) is a fractional Brownian motion with Hurst index 0 <

α < 1, then there exist constants 0 < C1 ≤ C2 < ∞ such that for any n ≥ 1,
for any t, t1, . . . , tn ∈ I ,

C2 min
0≤i≤n

|t − t i |2α ≤ Var(B(t)|B(t1), . . . , B(tn)) ≤ C2 min
0≤i≤n

|t − t i |2α.
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(ii) There exists a constant C > 0 such that for any n ≥ 1, for any t1, . . . , tn ∈ I ,
for any permutation π on {1, . . . , n},

n∏

j=2

min
1≤i≤ j−1

|tπ( j) − tπ(i)| ≥ Cn
n∏

j=2

min
1≤i≤ j−1

|t j − t i |.

Proof (i) The first inequality is due to the strong LND property of the fractional
Brownianmotion [43,Lemma7.1]; the second inequality holds because the conditional
variance is ≤ Var(B(t)) and is ≤ Var(B(t) − B(t i )) for every 1 ≤ i ≤ n.

(ii) Clearly, both sides of the inequality are translation invariant, so by shifting
we may assume that I ⊂ (0,∞) and t > diam(I ) for all t ∈ I . Take α = 1/2.
Since det Cov(B(tπ(1)), . . . , B(tπ(n))) = det Cov(B(t1), . . . , B(tn)), the result fol-
lows from part (i) of this lemma and the formula (4.5). ��
Lemma 4.5 [19, Lemma 2] Let Z1, . . . , Zn be mean-zero Gaussian random variables
that are linearly independent. Let g : R → R be a measurable function such that
∫

R
g(x)e−εx2dx < ∞ for every ε > 0. Then

∫

Rn
g(ξ1) exp

[

−1

2
Var
( n∑

j=1

ξ j Z j

)]

dξ1 · · · dξn

= (2π)(n−1)/2

[det Cov(Z1, . . . , Zn)]1/2
∫

R

g
( x

V1

)
e−x2/2 dx,

where V 2
1 = Var(Z1|Z2, . . . , Zn).

Lemma 4.6 Let T be a compact interval in (0,∞) × R
N . Let q j,k ≥ 0 and q > 0 be

such that α(d + 2q) < 1+ N and
∑d

k=1 q j,k = q for each j . For z̄ = (z1, . . . , zn) ∈
T n, let

J (z̄) =
∫

Rnd

( n∏

j=1

d∏

k=1

|ξ j
k |q j,k

)
E
(
ei
∑n

j=1
∑d

k=1 ξ
j
k uk (z

j )
)
d ξ̄ .

where ξ̄ = (ξ11 , . . . , ξnd ). Then there exist constants C < ∞ and r0 > 0 such that the
following hold for all n ≥ 2:

(i) For all compact intervals I ⊂ T with side lengths ≤ r0,

∫

I n
J (z̄) dz̄ ≤ Cn(n!)αd+( 12+2α)q [λ1+N (I )]n(1− α(d+2q)

1+N ) d
d+2q . (4.6)

(ii) If, in addition, I has side lengths ≤ r with 0 < r ≤ r0, then

∫

I n
J (z̄) dz̄ ≤ Cn(n!)αd+( 12+α)qrn(1+N−α(d+q)). (4.7)
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Proof (i). Let I ⊂ T be a compact interval with side lengths ≤ r0. By the fact that
u1, . . . , ud are i.i.d. and Gaussian, and by the generalized Hölder inequality,

J (z̄) =
d∏

k=1

∫

Rn

n∏

j=1

|ξ j
k |q j,k

exp

[

− 1

2
Var
( n∑

j=1

ξ
j
k u1(z

j )
)]

d ξ̄k

≤
d∏

k=1

n∏

j=1

{∫

Rn
|ξ j
k |nq j,k

exp

[

− 1

2
Var
( n∑

j=1

ξ
j
k u1(z

j )
)]

d ξ̄k

} 1
n

,

where ξ̄k = (ξ1k , . . . , ξnk ) ∈ R
n . It is enough to consider points z1, . . . , zn ∈ I that are

distinct from each other since the set of such points has full Lebesgue measure in I n .
Then u1(z1), . . . , u1(zn) are linearly independent by Proposition 3.6. By Lemma 4.5
and Stirling’s formula, J (z̄) is bounded by

Cn
d∏

k=1

n∏

j=1

{
[det Cov(u1(z1), . . . , u1(zn))]−

1
2 [Var(u1(z j )|u1(zi ) : i �= j)]−

nq j,k
2 �

(nq j,k+1

2

)} 1
n

≤ Cn(n!) q
2 [det Cov(u1(z1), . . . , u1(zn))]−

d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]−
q
2 . (4.8)

Define e0, . . . , eN , w0, . . . , wN and δ as in the proof of Lemma 4.2. By (4.5) and
Proposition 3.2, for r0 small enough,

[det Cov(u1(z1), . . . , u1(zn))]
d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]
q
2

≥ Cn
n∏

j=1

[ ∫

SN−1
r j (w)2ασ (dw)

] d
2

n∏

j=1

[ ∫

SN−1
r̃ j (w)2ασ (dw)

] q
2

≥ Cn
n∏

j=1

[ ∫

S(e1,δ)

N∑

�=0

r j (w�)
2ασ (dw)

] d
2

n∏

j=1

[ ∫

S(e1,δ)

N∑

�=0

r̃ j (w�)
2ασ (dw)

] q
2

,

where r1(w) ≡ 1,

r j (w) = min
1≤i≤ j−1

|(t j + x j · w) − (t i + xi · w)|, 2 ≤ j ≤ n,

r̃ j (w) = min
1≤i≤n, i �= j

|(t j + x j · w) − (t i + xi · w)|, 1 ≤ j ≤ n.
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Then, by the generalized Hölder inequality,

[det Cov(u1(z1), . . . , u1(zn))]
d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]
q
2

≥ Cn
[ ∫

S(e1,δ)

n∏

j=1

( N∑

�=0

r j (w�)
2α
) d

2m
( N∑

�=0

r̃ j (w�)
2α
) q

2m
σ(dw)

]m

,

wherem = n(d+q)
2 . Recall that δ is a constant andM = σ(S(e1, δ)). Then, by Jensen’s

inequality for the convex function x �→ x−m on R+, we have

[det Cov(u1(z1), . . . , u1(zn))]−
d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]−
q
2

≤ CnM−m−1
∫

S(e1,δ)

n∏

j=1

[( N∑

�=0

r j (w�)
2α
)− d

2
( N∑

�=0

r̃ j (w�)
2α
)− q

2
]

σ(dw)

≤ Cn
∫

S(e1,δ)

n∏

j=1

[( N∑

�=0

r j (w�)
2
)− αd

2
( N∑

�=0

r̃ j (w�)
2
)− αq

2
]

σ(dw).

(4.9)

Recall the transformation fw : z = (t, x) �→ y = (y0, . . . , yN ) defined by y� =
t + x · w� and that it satisfies (4.4). To estimate the integral of J (z̄) over I n , first
use (4.8) and (4.9). Then, by interchanging the order of integration and using the
transformation, followed by Hölder’s inequality with exponents d+2q

d and d+2q
2q , we

get that

∫

I n
J (z̄) dz̄ ≤ Cn(n!) q

2

∫

S(e1,δ)
σ (dw)

∫

[ fw(I )]n
dy1 · · · dyn

∏n
j=1

[(∑N
�=0 min

1≤i≤ j−1
|y j

� − yi�|2
) αd

2
(∑N

�=0 min
i : i �= j

|y j
� − yi�|2

) αq
2
]

≤ Cn(n!) q
2

∫

S(e1,δ)
A1(w)A2(w)σ(dw),

where y j
� = t j + x j · w�,

A1(w) =
{∫

[ fw(I )]n
dy1 · · · dyn

∏n
j=1

(∑N
�=0 min

1≤i≤ j−1
|y j

� − yi�|2
) α(d+2q)

2

} d
d+2q

,

A2(w) =
{∫

[ fw(I )]n
dy1 · · · dyn

∏n
j=1

(∑N
�=0 min

i : i �= j
|y j

� − yi�|2
) α(d+2q)

4

} 2q
d+2q

.
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Now, we need the assumption that α(d+2q) < 1+N , and recall that (4.4) implies
λ1+N ( fw(I )) ≤ Cλ1+N (I ) for all w ∈ S(e1, δ). Then by Lemma 4.3, we have

A1(w) ≤ Cn(n!)αd [λ1+N (I )]n(1− α(d+2q)
1+N ) d

d+2q .

For A2, we first use the AM–GM inequality to get

A2(w) ≤
{∫

[ fw(I )]n
dy1 · · · dyn

∏n
j=1
∏N

�=0 min
i : i �= j

|y j
� − yi�|

α(d+2q)
2(1+N )

} 2q
d+2q

.

Since I has side lengths ≤ r0, we can see from the definition of y j
� that each y j =

(y j
0 , . . . , y j

N ) is contained in
∏N

�=0 Ĩ�, where each Ĩ� is an interval in R of length
≤ (1 + N )r0. From this, we get

≤
N∏

�=0

{∫

( Ĩ�)
n

dy1� · · · dyn�
∏n

j=1 min
i : i �= j

|y j
� − yi�|

α(d+2q)
2(1+N )

} 2q
d+2q

.

Fix �. For each (y1� , . . . , yn� ) ∈ ( Ĩ�)n , let π be a permutation such that yπ(1)
� ≤ · · · ≤

yπ(n)
� , and note that the y j

� are all bounded. For convenience, set yπ(0)
� = yπ(n+1)

� = 0.
It follows that

n∏

j=1

min
i : i �= j

|y j
� − yi�| =

n∏

j=1

min
i : i �= j

|yπ( j)
� − yπ(i)

� |

=
n∏

j=1

min{|yπ( j)
� − yπ( j−1)

� |, |yπ( j)
� − yπ( j+1)

� |}

≥ Cn
n∏

j=1

(|yπ( j)
� − yπ( j−1)

� | · |yπ( j)
� − yπ( j+1)

� |)

≥ Cn
n∏

j=2

|yπ( j)
� − yπ( j−1)

� |2

≥ Cn
n∏

j=2

min
1≤i≤ j−1

|y j
� − yi�|2.

The last inequality follows from Lemma 4.4(ii). Then, by Lemma 4.3,

A2(w) ≤ Cn
N∏

�=0

{∫

( Ĩ�)
n

dy1� · · · dyn�
∏n

j=2 min
1≤i≤ j−1

|y j
� − yi�|

α(d+2q)
1+N

} 2q
d+2q

≤ Cn(n!)2αq .
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The constant C does not depend on w ∈ S(e1, δ). This leads to (4.6).
To prove (ii), suppose that I has side lengths ≤ r , where r ≤ r0. Again, by (4.5),

Proposition 3.2 and the generalized Hölder inequality, for r0 small enough,

[det Cov(u1(z1), . . . , u1(zn))]
d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]
q
2

≥ Cn
n∏

j=1

[ ∫

SN−1
r j (w)2ασ (dw)

] d
2

n∏

j=1

[ ∫

SN−1
r̃ j (w)2ασ (dw)

] q
2

≥ Cn
[ ∫

SN−1

n∏

j=1

(
r j (w)

αd
m r̃ j (w)

αq
m

)
σ(dw)

]m

≥ Cn
[ ∫

S(e1,δ)

N∑

�=0

n∏

j=1

(
r j (w�)

αd
m r̃ j (w�)

αq
m

)
σ(dw)

]m

,

where m = n(d+q)
2 , r j and r̃ j are defined as before. Define the variables y j

� = t j +
x j · w� as before. Then, by the AM–GM inequality and Jensen’s inequality,

[det Cov(u1(z1), . . . , u1(zn))]−
d
2

n∏

j=1

[Var(u1(z j )|u1(zi ) : i �= j)]−
q
2

≤ Cn
[ ∫

S(e1,δ)

N∏

�=0

n∏

j=1

(
r j (w�)

αd
m(1+N ) r̃ j (w�)

αq
m(1+N )

)
σ(dw)

]−m

≤ Cn
∫

S(e1,δ)

N∏

�=0

n∏

j=1

(
r j (w�)

− αd
1+N r̃ j (w�)

− αq
1+N

)
σ(dw).

Since I has side lengths ≤ r , each y j
� is contained in an interval Ĩ� ⊂ R of length

≤ (1 + N )r . Then, using (4.8) and the transformation fw : z �→ y, we have

∫

I n
J (z̄) dz̄ ≤ Cn(n!) q

2

∫

S(e1,δ)
σ (dw)

×
N∏

�=0

∫

( Ĩ�)
n

dy1� · · · dyn�
∏n

j=2 min
1≤i≤ j−1

|y j
� − yi�|

αd
1+N

∏n
j=1 min

i : i �= j
|y j

� − yi�|
αq
1+N

.

(4.10)
Fix � and consider the integral over ( Ĩ�)n . For (y1� , . . . , yn� ) ∈ ( Ĩ�)n , let π be a permu-

tation such that yπ(1)
� ≤ · · · ≤ yπ(n)

� . Then, by Lemma 4.4(ii),
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n∏

j=2

min
1≤i≤ j−1

|y j
� − yi�|

αd
1+N

n∏

j=1

min
i : i �= j

|y j
� − yi�|

αq
1+N

≥ Cn
n∏

j=2

min
1≤i≤ j−1

|yπ( j)
� − yπ(i)

� |
αd
1+N

n∏

j=1

min
i : i �= j

|yπ( j)
� − yπ(i)

� |
αq
1+N

≥ Cn
n∏

j=1

(
|yπ( j)

� −yπ( j−1)
� |

αd
1+N |yπ( j)

� −yπ( j−1)
� |

αq
1+N θ j |yπ( j)

� −yπ( j+1)
� |

αq
1+N (1−θ j )

)

for some θ = (θ1, . . . , θn) ∈ {0, 1}n with θ1 = 0 and θn = 1. Denote θ ′
j = 1 − θ j .

By Lemma 4.4(ii) again, we get

≥ Cn
n∏

j=2

|yπ( j)
� − yπ( j−1)

� | α
1+N (d+q(θ j+θ ′

j−1))

≥ Cn
n∏

j=2

min
1≤i≤ j−1

|y j
� − yi�|

α
1+N (d+q(θ j+θ ′

j−1))
.

Hence, for each �, the integral over ( Ĩ�)n in (4.10) is bounded by

Cn
∑

θ

∫

( Ĩ�)
n

dy1� · · · dyn�
∏n

j=2 min
1≤i≤ j−1

|y j
� − yi�|

α
1+N (d+q(θ j+θ ′

j−1))
.

The sum runs over all θ ∈ {0, 1}n with θ1 = 0 and θn = 1, containing< 2n summands.
Note that α

1+N (d+q(θ j +θ ′
j−1)) ≤ α

1+N (d+2q) < 1. By Lemma 4.3 and the relation
θ j + θ ′

j = 1, we get

≤ Cn
∑

θ

n∏

j=1

(
j

α
1+N (d+q(θ j+θ ′

j−1))r1−
α

1+N (d+q(θ j+θ ′
j−1))

)

≤ Cnrn(1− α(d+q)
1+N )

∑

θ

n∏

j=1

j
α

1+N (d+qθ j )
n∏

j=1

(2 j)
α

1+N (d+qθ ′
j )

≤ Cn(n!) α(d+q)
1+N rn(1− α(d+q)

1+N )

(we have set θ ′
0 = 0 in the above). Finally, put this back into (4.10) to conclude (4.7).

��

We can use the above lemmas to get moment estimates for the local times. Recall
the following formulas for the local times L(v, T ) of an R

d -valued random field
{X(z) : z ∈ T }, which can be found in [27, §25]: for any even number n ≥ 2, for any
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v, ṽ ∈ R
d ,

E[L(v, T )n] = (2π)−nd
∫

T n
dz̄
∫

Rnd
d ξ̄ e−i

∑n
j=1 ξ j ·v

E
(
ei
∑n

j=1 ξ j ·X(z j ))
, (4.11)

E[(L(v, T ) − L(ṽ, T ))n]

= (2π)−nd
∫

T n
dz̄
∫

Rnd
d ξ̄

n∏

j=1

(
e−iξ j ·v − e−iξ j ·ṽ)

E
(
ei
∑n

j=1 ξ j ·X(z j ))
. (4.12)

Proposition 4.7 Assume (3.1) and αd < 1 + N. Let T be a compact interval in
(0,∞) × R

N and L(v, T ) be the local time of {u(t, x) : (t, x) ∈ T }. Then the
following statements hold for some constant r0 > 0:

(i) There exists a constant C such that for all intervals I in T with side lengths ≤ r0,
for all v ∈ R

d , for all even numbers n ≥ 2,

E[L(v, I )n] ≤ Cn(n!)αd [λ1+N (I )]n(1− αd
1+N ). (4.13)

(ii) For any 0 < γ < min{ 12 ( 1+N
α

− d), 1}, there exists a constant C such that for all
intervals I in T with side lengths ≤ r , where 0 < r ≤ r0, for all v, ṽ ∈ R

d , for
all even numbers n ≥ 2,

E[(L(v, I ) − L(ṽ, I ))n] ≤ Cn|v − ṽ|nγ (n!)αd+( 12+α)γ rn(1+N−α(d+γ )). (4.14)

Proof (i). Write z = (t, x). By (4.11),

E[L(v, I )n] ≤ (2π)−nd
∫

I n

∫

Rnd
E[ei

∑n
j=1 ξ j ·u(z j )] d ξ̄ dz̄

= (2π)−nd/2
∫

I n
[det Cov(u1(z1), . . . , u1(zn))]−d/2 dz1 · · · dzn .

By (4.5) and Proposition 3.2, for r0 sufficiently small, this is

≤ Cn
∫

I n

n∏

j=2

[ ∫

SN−1
min

1≤i≤ j−1
|(t j +x j ·w)−(t i +xi ·w)|2ασ (dw)

]−d/2

dz1 · · · dzn .

Then, integrate in the order dzn, dzn−1, . . . , dz1 and apply Lemma 4.2(i) repeatedly
to get (4.13).

(ii). By (4.12),

E[(L(v, I ) − L(ṽ, I ))n]

≤ (2π)−nd
∫

I n
d z̄
∫

Rnd
d ξ̄

n∏

j=1

∣
∣e−iξ j ·v − e−iξ j ·ṽ∣∣E

(
ei
∑n

j=1 ξ j ·u(z j ))
.
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For any 0 < γ < 1, we have the inequality |e−i x − e−iy | ≤ 2|x − y|γ , which implies
that

n∏

j=1

∣
∣e−iξ j ·v − e−iξ j ·ṽ∣∣ ≤ 2n|v − ṽ|nγ

∑

(k1,...,kn)

n∏

j=1

∣
∣ξ

j
k j

∣
∣
γ
,

where the sum is taken over all (k1, . . . , kn) ∈ {1, . . . , d}n . Thus,

E[(L(v, I ) − L(ṽ, I ))n]

≤ Cn|v − ṽ|nγ
∑

(k1,...,kn)

∫

I n
d z̄
∫

Rnd
d ξ̄
( n∏

j=1

|ξ j
k j

|γ
)
E
(
ei
∑n

j=1 ξ j ·u(z j ))
.

Let γ satisfy α(d + 2γ ) < 1 + N . Then we can derive (4.14) using Lemma 4.6(ii)
with q j,k = γ if k = k j , and q j,k = 0 otherwise. ��

We now conclude the main result of this section.

Theorem 4.8 Assume (3.1).

(i) If αd < 1, then for any fixed x0 ∈ R
N , {u(t, x0) : t ∈ T1} has a jointly continuous

local time on any compact interval T1 in (0,∞).
(ii) If αd < N, then for any fixed t0 > 0, {u(t0, x) : x ∈ T2} has a jointly continuous

local time on any compact interval T2 in RN .
(iii) If αd < 1+ N, then {u(t, x) : (t, x) ∈ T } has a jointly continuous local time on

any compact interval T in (0,∞) × R
N .

Proof (i) and (ii). By Corollary 3.4 and Proposition 3.5, the processes t �→ u(t, x0)
and x �→ u(t0, x) satisfy the LND property in the sense of Berman or Pitt, so the joint
continuity of their local times follow from the results of [11,27,43]; see also [53].

(iii). By Theorem 4.1, {u(t, x) : (t, x) ∈ T } has a square-integrable local time on
T . Denote this local time by L(v, T ). In particular, a.s., for all B ∈ B(Rd) and all
S ∈ B(T ),

λ1+N {(t, x) ∈ S : u(t, x) ∈ B} =
∫

B
L(v, S) dv. (4.15)

We need to find a version L∗ of the local time that is jointly continuous. Let
Qz = (−∞, z] ∩ T for z ∈ T . In what follows, we can assume that T has side
lengths ≤ r0 so that Proposition 4.7 applies, because it is enough to prove existence
of jointly continuous local times on sufficiently small subintervals of T . For all even
numbers n ≥ 2, for all v, ṽ ∈ R

d , for all z, z̃ ∈ T , we have

E[(L(v, Qz) − L(ṽ, Qz̃))
n] ≤ 2n−1{E[(L(v, Qz) − L(v, Qz̃))

n]
+E[(L(v, Qz̃) − L(ṽ, Qz̃))

n]}.

For the first term, the difference L(v, Qz) − L(v, Qz̃) can be written as a finite
sum of terms (the number of which depends only on N ) of the form L(v, I j ), where
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each I j is a subinterval of T with at least one of its side length ≤ |z − z̃|, so we can
use Proposition 4.7(i) to bound this term. Also, we can bound the second term by
Proposition 4.7(ii). Hence, we have

E[(L(v, Qz) − L(ṽ, Qz̃))
n] ≤ Cn(|v − ṽ|γ + |z − z̃|δ)n

with constants 0 < γ < min{ 12 ( 1+N
α

− d), 1} and δ = 1 − αd
1+N . Then, by a multi-

parameter version of Kolmogorov’s continuity Theorem ([14, Proposition 4.2] or [32,
Theorem 1.4.1]), we can obtain a process {L∗(v, Qz) : v ∈ R

d , z ∈ T } such that
(v, z) �→ L∗(v, Qz) is jointly continuous (moreover, locally Hölder continuous of
order < γ in v, and of order < δ in z) and P{L∗(v, Qz) = L(v, Qz)} = 1 for every
v ∈ R

d and z ∈ T . To verify that this version L∗ is still a local time, note that, for
each z ∈ T , by Fubini’s theorem,

∫

�

λd{v : L∗(v, Qz) �= L(v, Qz)} dP =
∫

Rd
P{ω : L∗(v, Qz) �= L(v, Qz)} dv = 0.

Then, there is a single event of probability 1 on which for all rational z ∈ T simulta-
neously, we have L∗(v, Qz) = L(v, Qz) a.e. v. This and (4.15) imply that L∗ satisfies

λ1+N {(t, x) ∈ Qz : u(t, x) ∈ B} =
∫

B
L∗(v, Qz) dv a.s.

for all rational z ∈ T , and hence for all z ∈ T by the continuity of z �→ L∗(v, Qz).
This proves that L∗ is a local time and finishes the proof. ��

5 Regularity of the Local Times

In this section, we investigate the regularity of the local times of u(t, x). As we have
seen, the processes t �→ u(t, x) and x �→ u(t, x) satisfy the strong LND property,
so the results of Xiao [51,52] can be applied to obtain moment estimates, Hölder
conditions and moduli of continuity for the respective local times. In the following,
we will treat the local times of u regarded as the random field (t, x) �→ u(t, x). First,
we study the differentiability of the local time L(v, T ) in v and the Hölder regularity of
its derivatives. Then, we give a result on the local and uniform moduli of continuity of
L in the set variable T and discuss their implications on sample function oscillations.

Conditions for local times of Gaussian random fields to have square-integrable
partial derivatives have been given in [8] and [27, §28]. In Theorem 5.1 below, we
obtain conditions for the existence of continuous partial derivatives in v. We make use
of the Fourier representation (4.2) and the estimates in Lemma 4.6 above, which have
been established using the spherical integral form of strong LND, to provide sufficient
conditions for the local times of u to have partial derivatives (up to certain order)
that are jointly continuous and Hölder continuous. We employ the Fourier analytic
approach of [25] to prove this result.
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Theorem 5.1 Assume (3.1). Let T be a compact interval in (0,∞) × R
N . If α(d +

2K ) < 1 + N for some integer K ≥ 1, then u = {u(t, x) : (t, x) ∈ T } has a local
time L(v, T ) such that all of its partial derivatives

∂ pL(v, T ) = ∂ p1 · · · ∂ pd

∂v
p1
1 · · · ∂v

pd
d

L(v, T )

of order |p| ≤ K exist and are a.s. jointly continuous and locally Hölder continuous
in v of any exponent γ < min{ 12 ( 1+N

α
− d − 2|p|), 1}.

Proof By Theorem 4.8, u has a jointly continuous local time L(·, I ) on any interval
I ⊂ T . Also, according to the paragraph preceding Theorem 4.1, L(·, I ) is a.e. equal
to the inverse L2-Fourier transform of ν̂I , which can be expressed as the limit of
LM (·, I ) in L2(Rd) as M → ∞, where

LM (v, I ) = (2π)−d
∫

[−M,M]d
e−iξ ·v

∫

I
eiξ ·u(z)dz dξ, v ∈ R

d .

For any multi-index p = (p1, . . . , pd) with |p| = p1 + · · · + pd ≤ K ,

∂ pLM (v, I ) = (2π)−d
∫

[−M,M]d

d∏

k=1

(−iξk)
pk e−iξ ·v

∫

I
eiξ ·u(z)dz dξ.

Let n = 2m > 0 be an even number. We are going to show that, for small subin-
tervals I of T , ∂ pL(v, I ) exists and

sup
v∈Rd

E(|∂ pLM (v, I ) − ∂ pL(v, I )|2m) → 0 as M → ∞. (5.1)

Indeed, note that ∂ pLM (v, I ) is real-valued, and for 0 ≤ M < M ′,

E((∂ pLM ′ (v, I ) − ∂ pLM (v, I ))2m)

= (2π)−2md
E

∫

([−M ′,M ′]d\[−M,M]d )2m

2m∏

j=1

( d∏

k=1

(−iξ j
k )pk

)

e−iξ j ·v
∫

I 2m
ei
∑2m

j=1 ξ j ·u(z j ) dz̄ d ξ̄

≤ (2π)−2md
∫

([−M ′,M ′]d\[−M,M]d )2m

∫

I 2m

( 2m∏

j=1

d∏

k=1

|ξ j
k |pk

)

E
(
ei
∑2m

j=1 ξ j ·u(z j )) dz̄ d ξ̄ ,

uniformly in v. By Lemma 4.6 with q j,k = pk and q = |p|,
∫

R2md

∫

I 2m

( 2m∏

j=1

d∏

k=1

|ξ j
k |pk

)

E
(
ei
∑2m

j=1 ξ j ·u(z j )) dz̄ d ξ̄ < ∞. (5.2)

Then, by the dominated convergence theorem, as M → ∞, ∂ pLM (v, I ) converges to
a limit, denoted by X p(v, I ), in L2m(P), uniformly in v. In particular, we can extract
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a subsequence Mj → ∞ such that

sup
v∈Rd

E(|∂ pLMj (v, I ) − ∂ pLMj−1(v, I )|) ≤ 2− j .

For each compact set F ⊂ R
d , by Fubini’s theorem,

E

∫

F

∞∑

j=2

|∂ pLMj (v, I ) − ∂ pLMj−1(v, I )| dv ≤
∞∑

j=2

2− jλd(F) < ∞.

Hence, by taking a sequence of compact sets Fi ↑ R
d , we can find a single event of

probability 1 on which
∑∞

j=2 |∂ pLMj (v, I ) − ∂ pLMj−1(v, I )| is locally integrable in
v, so that ∂ pLMj (v, I ) → X p(v, I ) in L1

loc(R
d) a.s. Also, we know that

∫ |LM (v, I )−
L(v, I )|2dv → 0 a.s. These imply that, on an event of probability 1, for all smooth
test functions φ(v) with compact support,

∫

Rd
X p(v, I ) φ(v) dv = lim

j→∞

∫

Rd
∂ pLMj (v, I ) φ(v) dv

= lim
j→∞(−1)|p|

∫

Rd
LMj (v, I ) ∂ pφ(v) dv

= (−1)|p|
∫

Rd
L(v, I ) ∂ pφ(v) dv.

This proves, for each |p| ≤ K , the existence of ∂ pL(v, I )(= X p(v, I )) as a weak
derivative of L(v, I ),which satisfies (5.1). The existenceof (jointly) continuous deriva-
tives and their Hölder continuity will follow from an application of Kolmogorov’s
continuity theorem as in Theorem 4.8 once we show that there is some constant
0 < δ < 1 such that for all sufficiently small intervals I ⊂ T ,

E(|∂ pL(v, I )|n) ≤ Cn[λ1+N (I )]nδ, (5.3)

and for any constant 0 < γ < min{ 12 ( 1+N
α

− d − 2|p|), 1},

E(|∂ pL(v, I ) − ∂ pL(ṽ, I )|n) ≤ C ′
n|v − ṽ|nγ , (5.4)

where Cn and C ′
n are constants depending on n = 2m (and also on γ for C ′

n), but not
on v, ṽ or I . In fact, (5.3) follows from

E(|∂ pL(v, I )|2m) = lim
M→∞E((∂ pLM (v, I ))2m)

≤ C2m
∫

R2md

∫

I 2m

( 2m∏

j=1

d∏

k=1

|ξ j
k |pk

)

E
(
ei
∑2m

j=1 ξ j ·u(z j )) dz̄ d ξ̄
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andLemma4.6(i)with q j,k = pk and q = |p|, which yields δ = (1− α(d+2|p|)
1+N ) d

d+2|p| .
As for (5.4), use the inequality |e−i x − e−iy | ≤ 2|x − y|γ for 0 < γ < 1 to get that

E((∂ pL(v, I ) − ∂ pL(ṽ, I ))2m)

≤ C2m
∫

R2md

∫

I 2m

( 2m∏

j=1

d∏

k=1

|ξ j
k |pk

)( 2m∏

j=1

∣
∣e−iξ j ·v − e−iξ j ·ṽ∣∣

)

E
(
ei
∑2m

j=1 ξ j ·u(z j )) dz̄ d ξ̄

≤ C2m |v − ṽ|2mγ
∑

(k1,...,k2m )

∫

R2md

∫

I 2m

( 2m∏

j=1

d∏

k=1

|ξ j
k |pk

)( 2m∏

j=1

|ξ j
k j

|γ
)

E
(
ei
∑2m

j=1 ξ j ·u(z j )) dz̄ d ξ̄ ,

where the sum is taken over all (k1, . . . , k2m) ∈ {1, . . . , d}2m . Then, estimate the
integral term using Lemma 4.6 with q j,k = pk + γ if k = k j , and q j,k = pk
otherwise, to finish the proof. ��

Next, we study the regularity of the local time in the set variable. The following
definition can be found in [1, p.227]. Let 0 < γ ≤ 1. We say that the local time
L satisfies a uniform Hölder condition of order γ in the set variable if there exists
C < ∞ such that for all v ∈ R

d and all cubes I ⊂ T with a sufficiently small side
length, we have

L(v, I ) ≤ C[λ(I )]γ ,

where λ(I ) is the Lebesguemeasure of the cube I . Hölder conditions of the local times
of random fields contain rich information about irregularity properties of the sample
paths; see [1,10,27].

In fact, we are going to present a result (Theorem 5.3) which provides not only
information about Hölder condition but also the moduli of continuity of the local
times in the set variable. To establish this result, we need the following lemma.

Lemma 5.2 Assume (3.1)andαd < 1+N.Let T bea compact interval in (0,∞)×R
N .

Then the following hold for some constant r0 > 0:

(i) For any b > 0, there exists a finite constant c such that for all (t, x) ∈ T ∪ {0}
and intervals I in T with side lengths = r ≤ r0, for all v ∈ R

d and A > 1,

P

{
L(v + u(t, x), I ) ≥ c r1+N−αd Aαd

}
≤ exp(−bA). (5.5)

(ii) For any b > 0 and 0 < γ < min{ 12 ( 1+N
α

− d), 1}, there exists a finite constant
c such that for all (t, x) ∈ T ∪ {0}, for all intervals I in T with side lengths
= r ≤ r0, for all v, ṽ ∈ R

d and A > 1,

P

{
|L(v + u(t, x), I ) − L(ṽ + u(t, x), I )|
≥ c |v − ṽ|γ r1+N−αd−αγ Aαd+( 12+α)γ

}
≤ exp(−bA).

(5.6)
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Proof For (t, x) = 0, note that u(t, x) = 0. In this case, (i) and (ii) can be proved by
the moment estimates in Proposition 4.7 with the use of Chebyshev’s inequality and
Stirling’s formula. For (t, x) = (t0, x0) ∈ T , consider the process ũ = {ũ(s, y) :=
u(s, y) − u(t0, x0) : (s, y) ∈ T }, so that the local time L̃ of ũ exists and satisfies
L̃(v, I ) = L(v + u(t0, x0), I ). By Proposition 3.2, the conditional variance of ũ
satisfies

Var(ũ(t, x)|ũ(t1, x1), . . . , ũ(tn, xn))

≥ Var(u(t, x)|u(t0, x0), u(t1, x1), . . . , u(tn, xn))

≥ C
∫

SN−1
min
0≤i≤n

|(t − t i ) + (x − xi ) · w|2α σ (dw).

With slight modifications, the proof of Proposition 4.7 can be carried over to ũ and L̃
to yield

E[L(v + u(t, x), I )n] ≤ Cn(n!)αdrn(1+N−αd),

E[(L(v + u(t, x), I ) − L(ṽ + u(t, x), I ))n] ≤ Cn |v − ṽ|nγ (n!)αd+( 12+α)γ rn(1+N−αd−αγ )

for γ < min{ 12 ( 1+N
α

− d), 1} and n ≥ 2 even. These estimates imply (i) and (ii) as in
the first part the proof. ��

From this, we can deduce the local and uniform moduli of continuity of the local
times in the set variable. Let Ir (t, x) = [t − r , t + r ] ×∏N

�=1[x� − r , x� + r ], and let
I (T , r) denote the set of all intervals Iρ(t, x) in T with ρ ≤ r .

Theorem 5.3 Assume (3.1) and αd < 1+ N. For any compact interval T in (0,∞)×
R

N , there exists a finite constant C1 such that for any fixed (t, x) ∈ T ,

lim sup
r→0

sup
v∈Rd

L(v, Ir (t, x))

r1+N−αd(log log(1/r))αd
≤ C1 a.s. (5.7)

Moreover, there exists a finite constant C2 such that

lim sup
r→0

sup
I∈I (T ,r)

sup
v∈Rd

L(v, I )

[λ1+N (I )]1− αd
1+N (log(1/λ1+N (I )))αd

≤ C2 a.s. (5.8)

Hence, L satisfies a uniform Hölder condition of order γ in the set variable for any
0 < γ < 1 − αd

1+N .

Remark 5.4 By the strong LND property and the results of Xiao [51,52], the local and
uniform moduli of continuity for the local times of t �→ u(t, x0) and x �→ u(t0, x) are
as follows in comparison to the above theorem. For t �→ u(t, x0) and αd < 1, those
are

r1−αd(log log(1/r))αd and [λ1(I )]1−αd(log(1/λ1(I )))
αd .
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For x �→ u(t0, x) and αd < N , those are

r N−αd(log log(1/r))
αd
N and [λN (I )]1− αd

N (log(1/λN (I )))
αd
N .

Proof of Theorem 5.3 The proof of this theorem is based on Lemma 5.2 and a chaining
argument as in [25,51]. We will make some necessary changes for our purposes.

Let L∗(I ) = sup{L(v, I ) : v ∈ R
d} and ϕ(r) = r1+N−αd(log log(1/r))αd . To

prove (5.7), it suffices to prove that for any fixed (t, x) ∈ I ,

lim sup
n→∞

L∗(Jn)
ϕ(2−n)

≤ C1 a.s., (5.9)

where Jn = I2−n (t, x). The proof of (5.9) is divided into four steps.
Step 1 Let δn = c0 2−nα

√
log n. By Lemma 2.1 of Talagrand [46], there exists a

constant c0 < ∞ such that for n large,

P

{

sup
(s,y)∈Jn

|u(s, y) − u(t, x)| ≥ δn

}

≤ n−2,

which, by the Borel–Cantelli lemma, implies that with probability 1, for all n large,

sup
(s,y)∈Jn

|u(s, y) − u(t, x)| ≤ δn . (5.10)

Step 2 Let θn = 2−nα(log n)− 1
2−α and

Gn =
{
v ∈ R

d : |v| ≤ δn and v = θn p for some p ∈ Z
d
}
.

The cardinality of Gn is ≤ C(log n)(1+α)d . By Lemma 5.2(i) with b = 2, we can find
a finite constant c such that for all n large

P

{

max
v∈Gn

L(v + u(t, x), Jn) ≥ c ϕ(2−n)

}

≤ C(log n)(1+α)d n−2.

It follows from the Borel–Cantelli lemma that with probability 1, for all n large,

max
v∈Gn

L(v + u(t, x), Jn) ≤ c ϕ(2−n). (5.11)

Step 3 For n, k ≥ 1 and v ∈ Gn , define

F(n, k, v) =
{
y ∈ R

d : y = v + θn

k∑

j=1

ε j2
− j , ε j ∈ {0, 1}d for 1 ≤ j ≤ k

}
.
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We say that a pair y1, y2 ∈ F(n, k, v) is linked if y1 − y2 = θnε2−k for some
ε ∈ {0, 1}d . Fix any 0 < γ < min{ 12 ( 1+N

α
− d), 1}. Consider the event An defined by

An =
⋃

v∈Gn

⋃

k≥1

⋃

y1∼y2

{
|L(y1 + u(t, x), Jn) − L(y2 + u(t, x), Jn)|

≥ c 2−n(1+N−αd−αγ )|y1 − y2|γ (k log n)αd+( 12+α)γ
}
,

where
⋃

y1∼y2 denotes the union over all linked pairs in y1, y2 ∈ F(n, k, v). There

are at most 2kd3d linked pairs in F(n, k, v). Then by Lemma 5.2(ii) with b = 2, for
n large,

P(An) ≤ C(log n)(1+α)d
∞∑

k=1

2kd exp(−2k log n)

= C(log n)(1+α)d 2dn−2

1 − 2dn−2 ,

so
∑∞

n=1 P(An) < ∞. By the Borel–Cantelli lemma, a.s. An occurs at most finitely
many times.

Step 4.Weproceedwith the chaining argument in [25,51]. For y ∈ R
d with |y| ≤ δn ,

we can represent y as the limit of (yk), where

yk = v + θn

k∑

j=1

ε j2
− j ,

y0 := v ∈ Gn and ε j ∈ {0, 1}d for j = 1, . . . , k. Since L(v, Jn) is continuous in v,
we see that on the event Ac

n ,

|L(y + u(t, x), Jn) − L(v + u(t, x), Jn)|

≤
∞∑

k=1

|L(yk + u(t, x), Jn) − L(yk−1 + u(t, x), Jn)|

≤
∞∑

k=1

c 2−n(1+N−αd−αγ )(θn2
−k)

γ
(k log n)αd+( 12+α)γ

≤ c 2−n(1+N−αd)(log n)αd
∞∑

k=1

kαd+( 12+α)γ 2−kγ

≤ Cϕ(2−n).

(5.12)

Now, (5.11) and (5.12) imply that a.s. for all n large,

sup
|y|≤δn

L(y + u(t, x), Jn) ≤ Cϕ(2−n).
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Since L(·, Jn) is supported on u(Jn), this, together with (5.10), implies (5.9) and hence
(5.7).

The proof of (5.8) is similar. Let �(r) = r1−
αd
1+N (log(1/r))αd and Dn denote the

collection of dyadic cubes
∏1+N

j=1 [i j2−n, (i j + 1)2−n] that intersect with T , where
i j ∈ Z. Note that any interval I = Ir (t, x) with r ≤ 2−n can be covered by at most
81+N dyadic intervals Di of side length ≤ r such that each Di is in

⋃
m≥n Dm and

has Lebesgue measure λ1+N (Di ) ≤ λ1+N (I ). Then

L∗(I ) ≤ 81+N sup
m≥n

sup
D∈Dm

L∗(D).

Also, �(r) is increasing for r > 0 small, so it suffices to prove that

lim sup
n→∞

max
D∈Dn

L∗(D)

�(λ1+N (D))
≤ C2 a.s. (5.13)

To this end, define θn = 2−nα(log 2n)− 1
2−α and

Gn =
{
v ∈ R

d : |v| ≤ n and v = θn p for some p ∈ Z
d
}
.

By Lemma 5.2(i), we can find a large enough C so that a.s. for all n large,

max
D∈Dn

max
v∈Gn

L(v, D) ≤ C�(λ1+N (D)) a.s. (5.14)

Define F(n, k, v) as in the the proof of (5.7) above, and similarly, let

An =
⋃

D∈Dn

⋃

v∈Gn

⋃

k≥1

⋃

y1∼y2

{
|L(y1, D) − L(y2, D)|

≥ C2−n(1+N−αd−αγ )|y1 − y2|γ (k log 2n)αd+( 12+α)γ
}
.

Then by Lemma 5.2(ii), a.s. An occurs at most finitely many times. Since u(t, x) is
continuous, there exists n0 = n0(ω) such that sup(t,x)∈T |u(t, x)| ≤ n0 a.s. If |y| ≤ n,
then by the chaining argument as before, we can deduce that on the event Ac

n ,

|L(y, D) − L(v, D)| ≤ C2−n(1+N−αd)(log 2n)αd

≤ C�(λ1+N (D)).

Then by (5.14), we see that a.s. for all n large,

max
D∈Dn

sup
|y|≤n

L(y, D) ≤ C�(λ1+N (D)). (5.15)

If |y| > n0, then y /∈ u(T ), thus L(y, D) = 0. This together with (5.15) implies
(5.13), and hence completes the proof of (5.8). ��
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As discussed in [25], themoduli of continuity of the local times are closely related to
the degree of oscillations of the sample functions. The former leads to lower envelopes
for the oscillations. A consequence of this is that the solution is nowhere differentiable.

Theorem 5.5 Assume (3.1). Let T be a compact interval in (0,∞) × R
N . Then there

exist positive constants C3 and C4 such that for each fixed (t, x) ∈ T ,

lim inf
r→0

sup
(s,y)∈Ir (t,x)

|u(s, y) − u(t, x)|
rα(log log(1/r))−α

≥ C3 a.s. (5.16)

and

lim inf
r→0

inf
(t,x)∈T sup

(s,y)∈Ir (t,x)
|u(s, y) − u(t, x)|
rα(log(1/r))−α

≥ C4 a.s. (5.17)

In particular, (5.17) implies that (t, x) �→ u(t, x) is a.s. nowhere differentiable on
(0,∞) × R

N .

Proof of Theorem 5.5 Since u has i.i.d. components, it suffices to prove the result for
d = 1. Then αd = α < 1 + N , so that u(t, x) has a jointly continuous local time
L(v, T ), v ∈ R. Fix (t, x) ∈ T and r > 0. Since L(v, Ir (t, x)) = 0 for v /∈ u(Ir (t, x)),
we have

λ1+N (Ir (t, x)) =
∫

u(Ir (t,x))
L(v, Ir (t, x)) dv

≤ 2 sup
(s,y)∈Ir (t,x)

|u(s, y) − u(t, x)| × sup
v∈R

L(v, Ir (t, x)).
(5.18)

Therefore, (5.16) follows from (5.18) and (5.7), while (5.17) follows from (5.18) and
(5.8). ��

The corresponding results for t �→ u(t, x0) and x �→ u(t0, x) are:

lim inf
r→0

sup
s∈Ir (t)

|u(s, x0)−u(t, x0)|
rα(log log(1/r))−α

≥ C, lim inf
r→0

inf
t∈T1

sup
s∈Ir (t)

|u(s, x0) − u(t, x0)|
rα(log(1/r))−α

≥C,

lim inf
r→0

sup
y∈Ir (x)

|u(t0, y) − u(t0, x)|
rα(log log(1/r))−α/N

≥ C, lim inf
r→0

inf
x∈T2

sup
y∈Ir (x)

|u(t0, y) − u(t0, x)|
rα(log(1/r))−α/N

≥ C,

which follow from the strong LND property and the results of Xiao [51,52]. In par-
ticular, this indicates that (5.16) is not sharp when N ≥ 2. It would be interesting
to derive sharp envelopes for (5.16) and (5.17) so that the lim infs are positive and
finite. In fact, when N = 1 and Ẇ (t, x) is white in time (H = 1/2) and has spatial
covariance given by the Riesz kernel, the following Chung-type law of the iterated
logarithm has been proved in [33]:

lim inf
r→0

sup
(s,y)∈Ir (t,x)

|u(s, y) − u(t, x)|
rα(log log(1/r))−α

= C a.s.

where C is a positive finite constant.
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