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Abstract In this paper, we prove a local null controllability result for the
three-dimensional Navier-Stokes equations on a (smooth) bounded domain of
R

3 with null Dirichlet boundary conditions. The control is distributed in an
arbitrarily small nonempty open subset and has two vanishing components.
J.-L. Lions and E. Zuazua proved that the linearized system is not necessarily
null controllable even if the control is distributed on the entire domain, hence
the standard linearization method fails. We use the return method together
with a new algebraic method inspired by the works of M. Gromov and previous
results by M. Gueye.
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1 Introduction

1.1 Notations and statement of the theorem

Let T > 0, let Ω be a nonempty bounded domain of R3 of class C∞ and
let ω be a nonempty open subset of Ω. We define Q ⊂ R× R
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Q := (0, T )×Ω = {(t, x)| t ∈ (0, T ) and x ∈ Ω}
and we call

Σ := [0, T ]× ∂Ω.

The current point x ∈ R
3 is x = (x1, x2, x3). The i-th component of a vector

(or a vector field) f is denoted f i. The control is u = (u1, u2, u3) ∈ L2(Q)3.
We require that the support of u is included in ω, which is our control domain.
We impose that two components of u vanish, for example the first two:

u1 = 0 and u2 = 0 in Q, (1.1)

so that u will be written under the form (0, 0, 1ωv) with v ∈ L2(Q) from now
on, where 1ω : Ω → R is the characteristic function of ω:

1ω = 1 in ω, 1ω = 0 in Ω \ ω.

Let us define

V := {y ∈ H1
0 (Ω)3|∇ · y = 0}.

The space V is equipped with the H1
0 -norm. Let us denote by H the closure

of V in L2(Ω)3. The space H is equipped with the L2-norm.
We are interested in the following Navier-Stokes control system:





yt −∆y + (y · ∇)y +∇p = (0, 0, 1ωv) in Q,

∇ · y = 0 in Q,

y = 0 on Σ.

(1.2)

From [28, Theorem 3.1, p. 282], we have the following existence result: For
every y0 ∈ H, there exist y ∈ L2((0, T ), V ) ∩ L∞((0, T ), H) and p ∈ L2(Q)
satisfying

y(0, ·) = y0 in Ω (1.3)

such that (1.2) holds.
Our main result is the following theorem, which expresses the small-time

local null-controllability of (1.2):

Theorem 1 For every T > 0 and for every r > 0, there exists η > 0 such
that, for every y0 ∈ V verifying ||y0||H1

0 (Ω)3 6 η, there exist v ∈ L2(Q) and a

solution (y, p) ∈ L2((0, T ), H2(Ω)3 ∩ V )∩L∞((0, T ), H1(Ω)3 ∩ V )×L2(Q) of
(1.2)-(1.3) such that

y(T, ·) = 0, (1.4)

||v||L2(Q)3 6 r, (1.5)

||y||L2((0,T ),H2(Ω)3)∩L∞((0,T ),H1
0 (Ω)3) 6 r. (1.6)
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Remark 1 Once a control v ∈ L2(Q) is given, the corresponding solution
(y, p) of (1.2), (1.3) and (1.6) given by Theorem 1 is unique (recall that for
the Navier-Stokes system, the uniqueness of (y, p) means that y is unique and
p is unique up to a constant depending on the time). This comes from the
uniqueness result given in [28, Theorem 3.4, p. 297]: One has

L∞((0, T ), H1(Ω)3) ⊂ L8((0, T ), H1(Ω)3) ⊂ L8((0, T ), L4(Ω)3)

thanks to a classical Sobolev embedding, and there is at most one solution (y, p)
of (1.2) and (1.3) in the space

L2((0, T ), V ) ∩ L∞((0, T ), H) ∩ L8((0, T ), L4(Ω)3)× L2(Q).

Remark 2 One observes that in Theorem 1 the initial condition y0 is more
regular than usual (y0 ∈ H). In fact, using the same arguments as in [15]
and [16] (see also [6, Remark 1]), one can easily extend the previous theorem
to small initial data in H ∩ L4(Ω)3 with a solution (y, p) ∈ L2((0, T ), V ) ∩
L∞((0, T ), H) × L2(Q). In this case, Remark 1 is no longer true and there
might possibly exist many solutions (y, p) verifying (1.2) and (1.3) once v is
given.

1.2 Some previous results

The controllability of the two or three-dimensional Navier-Stokes equations
with a distributed control has been studied in numerous papers. In general,
for Navier-Stokes equations, it is relevant to consider the approximate control-
lability, the null controllability or the exact controllability to the trajectories,
the second one being a particular case of the third one.

In [22], a first result of local exact controllability to the trajectories was
established under technical conditions: Ω had to be homeomorphic to a ball,
the control had to be supported in a nonempty open subset whose closure is
included in Ω, and the target trajectory had to be a stationary solution of
the Navier-Stokes equation. Moreover, there were some technical regularity
conditions for these stationary solutions. A similar result for the linearized
Navier-Stokes equations was established but with the same strong conditions.
Many of these hypotheses were removed in [23].

Then, it was proved in [15] the local exact controllability to the trajec-
tories with regularity conditions that were weaker and more suitable for the
study of the Navier-Stokes equations. In this article, the authors also proved
some exact controllability results for linearized Navier-Stokes systems, with
very weak regularity conditions. The same authors proved in [16] the local
exact controllability to the trajectories with a control having one vanishing
component, provided that ω “touches” the boundary of the domain Ω in some
sense. Later on it was proved in [13] a local null controllability result for the
Stokes system with a control having a vanishing component without the ge-
ometrical condition on ω, but the authors were not able to extend it to the
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nonlinear Navier-Stokes system. A recent work ([6]) improved the previous one
and proved the local null controllability of the Stokes system with an addi-
tional source member by means of a control having a vanishing component,
which enabled the authors to prove the local null controllability of the Navier-
Stokes system for a control having a vanishing component. In all these articles,
the main points of the proof were to establish first the controllability of the
linearized control system around the target trajectory thanks to Carleman es-
timates on the adjoint of the linearized equation, and then to use an inverse
mapping theorem or a fixed-point theorem to deal with the nonlinear system.

The natural question is then: Can we remove another component of the
control, which would be an optimal result with respect to the number of con-
trols? Reducing the number of components of the control is important for ap-
plications, and have already been studied many times for linear or parabolic
systems of second order (that are quite similar to linearized Navier-Stokes sys-
tems), see for example [4], where a necessary and sufficient condition to control
a system of coupled parabolic equations with constant coefficients and with
less controls than equations is given, or [3,26] for time-dependent coefficients.
If the coefficients depend on the time and the space, there are no general re-
sults, in particular if we consider two coupled parabolic systems where the
coupling region and the control region do not intersect (a partial result under
the Geometric Control Condition is given in [1]). For a recent survey on the
controllability of coupled linear parabolic equations, see [5].

1.3 The linear test

To obtain Theorem 1, the first natural idea is to linearize the system around
0, i.e. to consider the Stokes control system





yt −∆y +∇p = (0, 0, v1ω) in Q,

∇ · y = 0 in Q,

y(0, ·) = y0 in Ω,

y = 0 on Σ.

(1.7)

It is well-known (see for example [16], or [23]) that if this linear system were
null controllable (with, in addition, an arbitrary source term in a suitable
space), then applying an inverse mapping theorem (for example the one pre-
sented in [2]) in some relevant weighted spaces, we would obtain that (1.2)
is locally null controllable around 0. However, the linear control system (1.7)
is in general not null controllable and not approximately controllable: In [25],
it is proved that this is for example the case if Ω is a cylinder with a circu-
lar generating set and with an axis parallel to e3, even if we control on the
entire cylinder (the approximate controllability property holds “generically”
with respect to the generating set of the cylinder as explained in [25] though).

Since linearizing around 0 is not relevant, we are going to use the return
method, which consists in linearizing system (1.2) around a particular tra-
jectory (y, p, u) (that we construct explicitly) verifying y(0, ·) = y(T, ·) = 0,
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proving that the linearized system (with a source term f verifying an ex-
ponential decrease condition at time t = T ) is null controllable, and then
concluding by a usual inverse mapping argument that our system is locally
null controllable. This method was introduced in [7] for a stabilization prob-
lem concerning nonlinear ordinary differential equations and first used in the
context of partial differential equations in [8]. The return method was already
successfully used in [9,11,18] to obtain global controllability results for the
Navier-Stokes equations and in [12] to prove the local null controllability for
the Navier-Stokes equations on the torus T2 when the control has one van-
ishing component. For more explanations about the return method and other
examples of applications, see [10, Chapter 6].

1.4 Structure of the article and sketch of the proof of Theorem 1

The paper is organized as follows.

– In Section 2, according to what was explained at the end of Subsection 1.3,
we construct a family of explicit particular trajectories (y, p, u) of the con-
trolled Navier-Stokes system (1.2) going from 0 at time t = 0 to 0 at time
t = T . These trajectories are compactly supported in [T/4, T ]×ω and van-
ish exponentially at time t = T . Moreover, they are polynomials in space
on some subcylinder of ω denoted C2, and they can be arbitrarily small.
We then linearize (1.2) around (y, p, u) and study the linearized equation





y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1
p = f1 in Q,

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2p = f2 in Q,

y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂x3
p = 1ωv + f3 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

(1.8)

where f is some source term in an appropriate space.
– Section 3 is devoted to proving that (1.8) is indeed null controllable (Propo-

sition 5). Subsection 3.1 is dedicated to introducing some useful notations
and the crucial Proposition 1. This proposition explains that we can split
up our proof of the null controllability of the linearized equations with a
scalar control into two parts:

– Firstly, we control the following linearized Navier-Stokes system:





y∗1t −∆y∗1 + (y · ∇)y∗1 + (y∗ · ∇)y1 + ∂x1
p∗ = B1u∗ + f1 in Q,

y∗2t −∆y∗2 + (y · ∇)y∗2 + (y∗ · ∇)y2 + ∂x2p
∗ = B2u∗ + f2 in Q,

y∗3t −∆y∗3 + (y · ∇)y∗3 + (y∗ · ∇)y3 + ∂x3
p∗ = B3u∗ + f3 in Q,

∇ · y∗ = 0 in Q,

y∗ = 0 on Σ,

(1.9)
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where B is some suitable local control operator that acts on each equa-
tion. This is the purpose of Subsection 3.3, where the controllability of
System (1.9) is proved thanks to the usual HUM method. More precisely,
we prove an appropriate Carleman estimate with observation B∗ on the
adjoint equation of (1.9) (Lemma 3), so that we create controls in the
image of B thanks to the study of an appropriate Lax-Milgram type prob-
lem, which also enables us to obtain controls that are very regular in the
sense that they are in weighted Sobolev spaces of high order in space and
time (Proposition 4). Let (y∗, p∗, u∗) be a trajectory of (1.9) that brings
the initial condition y0 to 0 at time T , with a very regular u∗ compactly
supported in space at each time in some open subset ω0 of C2 to be chosen
later, and that decreases exponentially at time t = T . We emphasize that
(y∗, p∗) is less regular than Bu∗ (however, it is in some weighted Sobolev
space of small order) because the source term f is not as regular as Bu∗.

– Secondly, we study in Subsection 3.2 the following system locally on Q0 :=
[T/2, T ]× ω0:





ỹ1t −∆ỹ1 + (y · ∇)ỹ1 + (ỹ · ∇)y1 + ∂x1
p̃ = −B1u∗ in Q0,

ỹ2t −∆ỹ2 + (y · ∇)ỹ2 + (ỹ · ∇)y2 + ∂x2
p̃ = −B2u∗ in Q0,

ỹ3t −∆ỹ3 + (y · ∇)ỹ3 + (ỹ · ∇)y3 + ∂x3 p̃ = −B3u∗ + ṽ in Q0,

∇ · ỹ = 0 in Q0,

(1.10)

where u∗ has been introduced above, and where the unknowns are (ỹ, p̃, ṽ).
We want to prove that there exists a solution (ỹ, p̃, ṽ) of (1.10) (extended
by 0 on [T/2, T ] × Ω) which has the same support as u∗. This seems rea-
sonable because System (1.10) is analytically underdetermined: we have 5
unknowns (the 3 components of ỹ, the pressure p̃ and the scalar control ṽ)
and only 4 equations. In fact, we prove in Proposition 2 that is is possible
to find such a (ỹ, p̃, ṽ) which can moreover be expressed as a linear combi-
nation of u∗ and some of its derivatives up to a certain order. This explains
why we need u∗ to be very regular. Since u∗ decreases exponentially at time
T , this is also the case for (ỹ, p̃, ṽ). The main idea behind the proof of the
existence of such a (ỹ, p̃, ṽ) is to consider the adjoint system of (1.10) and
to differentiate the equations appearing in this system until we get more
equations than “unknowns”, the “unknowns” being there the functions and
all their derivatives appearing in the equations of the adjoint system. Since
Subsection 3.2 is the most innovative, important, and difficult part of the
article, we give some further details.
1. In Paragraph 3.2.1, we make a choice for operator B and we prove

that the existence of (ỹ, p̃, ṽ) can be reduced to proving the following
property: There exists some ω0 and a linear partial differential operator
N : C∞(Q0)

4 → C∞(Q0)
6 such that for every ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈
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C∞(Q0)
4, if (z1, z2, π) ∈ C∞(Q0)

3 is a solution of




−2∂x3
y1∂x1

z1 − ∂x3
y2∂x2

z1 + (∂x1
y1 − ∂x3

y3)∂x3
z1 − y1∂2x1x3

z1

−y2∂2x2x3
z1 − y3∂2x3x3

z1 − ∂2x3tz
1 −∆∂x3

z1 − ∂x3
y2∂x1

z2

+∂x1y
2∂x3z

2 = ∂x3ϕ
1 − ∂x1ϕ

3,

−∂x3
y1∂x2

z1 + ∂x2
y1∂x3

z1 − ∂x3
y1∂x1

z2 − y1∂2x1x3
z2 − 2∂x3

y2∂x2
z2

−y2∂2x2x3
z2 + (∂x2y

2 − ∂x3y
3)∂x3z

2 − y3∂2x3x3
z2 − ∂2x3tz

2 −∆∂x3z
2

= ∂x3
ϕ2 − ∂x2

ϕ3,

−∂x1
z1 − ∂x2

z2 = ϕ4.
(1.11)

then (−∂x1
z1,−∂x2

z1,−∂x3
z1,−∂x1

z2,−∂x2
z2,−∂x3

z2) = Nϕ.
2. In Paragraph 3.2.2 we study the overdetermined system (1.11). If we

consider z1, z2, and all their derivatives at every order as independent
algebraic unknowns (i.e. we forget that ∂x1

z1, . . . are derivatives of z1

and consider them as unknowns of System (1.11)), we obtain a system
of 3 equations with 20 unknowns. However, we can prove that if we dif-
ferentiate the equations of System (1.11) enough times, one can obtain
more equations than unknowns. In particular, if the two first equations
of (1.11) are differentiated 19 times and if the last equation of (1.11)
is differentiated 21 times, then we get 30360 equations and 29900 un-
knowns. We can write the big system describing these equations as
follows:

L0(t, x)Z = Φ,

where L0 ∈ C∞(Q0;M30360×29900(R)), Z ∈ R
29900 contains the deriva-

tives of z1 and z2 up to the order 22 and Φ ∈ R
30360 contains the

derivatives of ϕ up to the order 21. If we are able to find a suitable sub-
matrix of L0 (denoted P ) that is invertible, then roughly the matrix
P−1 (seen as a differential operator) will be a good candidate for N .

3. In Paragraph 3.2.3, we describe how we created a program that enables
us to differentiate the equations of system (1.11) and that finds a proper
matrix P . Of course it cannot be done by hand, we have to use a
computer. Let us point out that in the computer part of the proof, we
only use symbolic computations, so that no approximations are made
by the computer.
We first prove (cf. Lemma 2) that it is enough to find a suitable matrix P
which is invertible at some precise point ξ0, i.e. it is enough to consider
L0(ξ

0) for some well-chosen ξ0. We explain in Lemma 1 how we found
P (ξ0) thanks to a suitable reordering of matrix L0(ξ

0) given by the
Dulmage-Mendelsohn decomposition of L0(ξ

0).
– We now remark that (y∗+ ỹ, p∗+ p̃, ṽ) is a trajectory of (1.8) (see (1.9) and

(1.10)) that brings the initial condition y0 to 0 at time T . We then prove
in Subsection 3.4 that (y∗ + ỹ, p∗ + p̃, ṽ) is in some appropriate weighted
Sobolev space (Proposition 5).
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– To conclude, in Section 4, we explain how the suitable functional setting we
obtained for the solutions (y, p, v) of System (1.8) enables us to go back to
the local null controllability of (1.2) thanks to a usual argument of inverse
mapping theorem.

2 Constructing a relevant trajectory

In this subsection, we construct explicit particular trajectories (y, p, u) go-
ing from 0 to 0 so that, as it will be shown in section 3, the linearized control
system around them is null controllable.

Without loss of generality we may assume that 0 ∈ ω. Let g ∈ C∞(R3),

g : (t, w, x3) 7→ g(t, w, x3),

and h ∈ C∞(R3),

h : (t, w, x3) 7→ h(t, w, x3).

For (x1, x2, x3) ∈ R
3, let r :=

√
x21 + x22. We define y ∈ C∞(R4;R3) by

y(t, x) :=



g(t, r2, x3)x1

g(t, r2, x3)x2

h(t, r2, x3)


 , ∀t ∈ R, ∀x = (x1, x2, x3) ∈ R

3. (2.1)

Let r1 > 0 be small enough so that

C1 := {(x1, x2, x3) ∈ R
3; r 6 r1, |x3| 6 r1} ⊂ ω. (2.2)

On the functions g and h, we also require that

Supp(g) ⊂ [T/4, T ]× (−∞, r21]× [−r1, r1], (2.3)

Supp(h) ⊂ [T/4, T ]× (−∞, r21]× [−r1, r1]. (2.4)

In (2.3), (2.4) and in the following, Supp(f) denotes the support of the function
f . From (2.1), (2.2), (2.3) and (2.4), one obtains

Supp(y) ⊂ [T/4, T ]× C1 ⊂ (0, T ]× ω ⊂ (0, T ]×Ω, (2.5)

which implies in particular that y has null trace on Σ. Let p̂ ∈ C∞(R3) be
defined by

p̂(t, w, x3) :=
1

2

∫ r21

w

(
∂tg − (4w′∂2wwg + 8∂wg + ∂2x3x3

g) + 2w′g∂wg + g2

+ h∂x3g
)
(t, w′, x3)dw

′. (2.6)

Let p ∈ C∞(R4) be defined by

p(t, x1, x2, x3) := p̂(t, r2, x3). (2.7)
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From (2.2), (2.3), (2.4), (2.6) and (2.7), it follows that

Supp(p) ⊂ [T/4, T ]× C1 ⊂ [T/4, T ]× ω ⊂ (0, T ]×Ω. (2.8)

From (2.1), (2.6) and (2.7), one obtains

y1t −∆y1 + (y · ∇)y1 + ∂x1
p = 0, (2.9)

y2t −∆y2 + (y · ∇)y2 + ∂x2p = 0. (2.10)

Let u ∈ C∞(R4)3 be defined by

u := (0, 0, y3t −∆y3 + (y · ∇)y3 + ∂x3
p). (2.11)

From (2.11), one obtains (1.1). From (2.5), (2.8) and (2.11), we have

Supp(u) ⊂ (0, T ]× ω. (2.12)

From (2.9), (2.10), (2.11) and (2.12), we have

yt −∆y + (y · ∇)y +∇p = 1ωu. (2.13)

Finally, in order to have

div y = 0, (2.14)

it suffices to impose

∂x3
h = −2(g + w∂wg). (2.15)

Let ν be a positive numerical constant which will be chosen later. Let a ∈
C∞(R), b ∈ C∞(R) and c ∈ C∞(R) be such that

Supp(a) ⊂ [T/4, T ] and a(t) = e
−ν

(T−t)5 in [T/2, T ], (2.16)

Supp(b) ⊂ (−∞, r21) and b(w) = w, ∀s ∈ (−∞, r21/4], (2.17)

Supp(c) ⊂ (−r1, r1) and c(x3) = x23 in [−r1/2, r1/2]. (2.18)

We then set

g(t, w, x3) = εa(t)b(w)c′(x3) (2.19)

and

h(t, w, x3) = −2εa(t)(b(w) + wb′(w))c(x3), (2.20)

where ǫ > 0 (which will be chosen small enough later). From (2.19) and (2.20),
one obtains (2.15).

In the next section, we prove that, for every small enough T , for every small
enough ε > 0 and for a well-chosen ν, the linearized control system around
the trajectory (y, p, u) is controllable.
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3 A controllability result on the linearized system

3.1 Definitions and notations

The linearized control system around the trajectory (y, p, u) is the linear
control system





y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1
p = f1 in Q,

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2p = f2 in Q,

y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂x3
p = 1ωv + f3 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

(3.1)

where the state is y : Q→ R
3, f : Q→ R

3 is a source term (it will be specified
later in which space exactly it shall be) and the control is v : Q → R. In all
what follows, in order to lighten the notations, we will write y as a function
of t and x only, but one has to remember that y also depends on ε and ν. Let
ω0 be a nonempty open subset of

C2 :=
{
(x1, x2, x3); r <

r1
2
, |x3| <

r1
2

}
, (3.2)

which will be chosen more precisely in the next section. Let Q0 := (T/2, T )×
ω0. The following figure summarizes the different roles of each open subset of
Ω we introduced up to now.

Let L : C∞(Q0)
5 → C∞(Q0)

4 be defined by

L



y

p

v


 :=




y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1p

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2p

y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂x3
p− v

∇ · y


 , (3.3)

for every y = (y1, y2, y3) ∈ C∞(Q0)
3, for every p ∈ C∞(Q0) and for every

v ∈ C∞(Q0). Let us denote by

ξ := (x0, x1, x2, x3) = (t, x1, x2, x3) = (t, x)

the current point in Q0. For α = (α0, α1, α2, α3) ∈ N
4 and ϕ : Q0 → R

k, ∂αϕ,
denotes, as usual,

∂α0
tα0∂

α1

x
α1
1

∂α2

x
α2
2

∂α3

x
α3
3

ϕ.

Let L(Rk;Rl) be the set of linear maps from R
k into R

l and Mk,l(R) be the
set of matrices of size k × l with values in the ring R.

As usual, in the inequalities written in this article C denotes a constant
(depending in general only on ω, Ω, T ) that may change from one line to
another.

Let us give some other definitions.
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0

Ω

C1 (support of ȳ)

C2 (where ȳ is polynomial)

ω (control domain)

ω0

Fig. 1 The open subsets C1, C2, ω0, ω.

Definition 1 A linear map M : C∞(Q0)
k → C∞(Q0)

l is called a linear
partial differential operator of order m if, for every α = (α0, α1, α2, α3) ∈ N

4

with |α| := α0 +α1 +α2 +α3 6 m, there exists Aα ∈ C∞(Q0;L(Rk;Rl)) such
that

(Mϕ)(ξ) =
∑

|α|6m

Aα(ξ)∂
αϕ(ξ), ∀ξ ∈ Q0, ∀ϕ ∈ C∞(Q0)

k.

A linear map M : C∞(Q0)
k → C∞(Q0)

l is called a linear partial differen-
tial operator if there exists m ∈ N such that M is a linear partial differential
operator of order m.

Let k be a positive integer and let B := (B1,B2,B3) : C∞(Q0)
k →

C∞(Q0)
3 be a linear partial differential operator. Let us consider the linear

equation

L



y

p

v


 =




B1u

B2u

B3u

0


 , (3.4)

where the data is u ∈ C∞(Q0)
k and the unknown is (y, p, v) ∈ C∞(Q0)

5.
Following [19, p. 148], we adopt the following definition.
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Definition 2 The linear equation (3.4) is algebraically solvable if there exists
a linear partial differential operator M : C∞(Q0)

k → C∞(Q0)
5 such that, for

every u ∈ C∞(Q0)
k, Mu is a solution of (3.4), i.e. such that

L ◦M = (B, 0). (3.5)

In the following, every function ϕ ∈ C∞(Q0)
l with a compact support included

in Q0 is extended by 0 in Q \Q0 and we still denote this extension by ϕ.
The next proposition explains how the notion of “algebraic solvability”

can be useful to reduce the number of controls as soon as a controllability
result is already known for a large number of controls. In fact, the question
of the null-controllability of (3.1) can be split up into two distinct problems:
One “algebraic” part (solving system(3.5)) and one “analytic” part (finding
controls which are in the image of B, the control acting possibly on all the
equations and not only on the third one). This proposition has a very general
scope and could be formulated for more general control systems. It is inspired
by techniques used in the control of ordinary differential equations (see, in
particular, [10, Chapter 1, pages 13-15]).

Proposition 1 Let us consider the linear control system




y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1
p = B1u+ f1 in Q,

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2p = B2u+ f2 in Q,

y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂x3
p = B3u+ f3 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0, ·) = y0 in Ω,

(3.6)

where the state is y : Q→ R
3, the control is u ∈ C∞(Q)k, which is required to

have a support in Q0, and f := (f1, f2, f3) ∈ C∞(Q)3 is a source term. Let
us assume that:

A1. The linear control system (3.6) is null controllable during the interval of
time [0, T ] in the sense that for every y0 ∈ V and for every f ∈ C∞(Q)
such that

there exists δ > 0 such that f = 0 on [T − δ, T ]×Ω, (3.7)

there exists u ∈ C∞(Q)k with a compact support included in Q0 such
that the solution (y, p) of (3.6) with initial condition y(0, ·) = y0 satis-
fies y(T, ·) = 0.

A2.

(3.4) is algebraically solvable.

Then, the linear control system (3.1) is null controllable during the interval of
time [0, T ]: For every y0 ∈ V and for every f ∈ C∞(Q) satisfying (3.7), there
exists v ∈ C∞(Q) with a compact support included in Q0 such that the the
solution (y, p) of (3.1) with initial condition y(0, ·) = y0 satisfies y(T, ·) = 0.
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Proof of Proposition 1.
First of all, we use the null-controllability of (3.6) with controls in the image

of B (Assumption A1) with source term f : let y0 ∈ V and let u∗ ∈ C∞(Q0)
k

with compact supported included in some open subset Q∗ ⊂⊂ Q0 included in
Q0 such that the solution (y∗, p∗) of the following equation:




y∗1t −∆y∗1 + (y · ∇)y∗1 + (y∗ · ∇)y1 + ∂x1
p = B1u∗ + f1 in Q,

y∗2t −∆y∗2 + (y · ∇)y∗2 + (y∗ · ∇)y2 + ∂x2p = B2u∗ + f2 in Q,

y∗3t −∆y∗3 + (y · ∇)y∗3 + (y∗ · ∇)y3 + ∂x3
p = B3u∗ + f3 in Q,

∇ · y∗ = 0 in Q,

y∗ = 0 on Σ,

(3.8)

with initial condition y∗(0, ·) = y0 satisfies y∗(T, ·) = 0. Let us remark that
B is a local operator, which implies that Bu∗|Q0

still has a compact support

included in Q∗. Now we use the algebraic solvability of (3.4) (Assumption A2).
Let M be as in Definition 2. For a map h ∈ C∞(Q)k with a support included
in Q0, we denote by M the map from Q into R

5 defined by

Mh = 0 in Q \Q0,Mh = M(h|Q0
) in Q0.

We shall use this slight abuse of notation until the end of the paper. Note that,
for every h ∈ C∞(Q)k with a support included in Q0, Mh ∈ C∞(Q)5 and has
a support included in Q0 (because M is a local operator). Let us call

(ỹ, p̃, ṽ) := −Mu∗,

so that (ỹ, p̃, ṽ) verifies the following linearized Navier-Stokes equation:




ỹ1t −∆ỹ1 + (y · ∇)ỹ1 + (ỹ · ∇)y1 + ∂x1
p̃ = −B1u∗ in Q,

ỹ2t −∆ỹ2 + (y · ∇)ỹ2 + (ỹ · ∇)y2 + ∂x2 p̃ = −B2u∗ in Q,

ỹ3t −∆ỹ3 + (y · ∇)ỹ3 + (ỹ · ∇)y3 + ∂x3
p̃ = ṽ − B3u∗ in Q,

∇ · ỹ = 0 in Q,

ỹ = 0 on Σ.

(3.9)

One observes that the support of (ỹ, p̃, ṽ) is still included in Q∗ (which is
strongly included in Q0). In particular ỹ(0, ·) = 0 and ỹ(T, ·) = 0. Let

(y, p, v) := (y∗ + ỹ, p∗ + p̃, ṽ).

Note that (y, p) is different from (y∗, p∗) only on Q∗. In particular one has
y(0, ·) = y0 and y(T, ·) = 0. Moreover, from (3.8) and (3.9), we obtain that
(y, p, v) verifies the equation





y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1p = f1 in Q,

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2
p = f2 in Q,

y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂x3
p = 1ω∗v + f3 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,
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which shows that the linear control system (3.1) is indeed null controllable
during the interval of time [0, T ] and concludes the proof of Proposition 1.

Remark 3 For the sake of simplicity, we have formulated Proposition 1 in a
C∞ setting. Let us assume that the control u coming from Assumption A1 is
not of class C∞, but is less regular (one sees that the regularities of y∗, p∗ and f
does not matter for the proof of Proposition 1 since only u∗ is differentiated by
the linear partial differential operator M). For example, assume that u∗ ∈ H1

where H1 is a functional space (for example a weighted Sobolev space), and
assume that M can be extended on H1, Mu∗ being then in another functional
space H2 (for example another weighted Sobolev space of order less that H1 in
order to take into account that M is a linear partial differential operator). Then
one easily verifies that Proposition 1 remains true as soon as every function
of H1 (and its derivatives until the order at least the order of M) vanishes at
time t = T , the first Assumption A1 being changed as the following: the linear
control system (3.6) is null controllable during the interval of time [0, T ], i.e.
for every y0 ∈ V and for every f ∈ L2(Q) satisfying (3.7) there exists u ∈ H1

with support included in Q0 such that the solution (y, p) of (3.6) satisfying the
initial condition y(0, ·) = y0 satisfies y(T, ·) = 0. Note that the scalar control v
is now only in H2. Similarly, we will need to relax property (3.7) by replacing
it with a suitable decay rate near t = T . This will be detailed in Subsection 3.4.

It remains to deal, for a suitable choice of B, with Assumption A2 (we
shall do it in Subsection 3.2) and with Assumption A1, i.e. with the null
controllability of the linear control system (3.6) in suitable spaces (we shall do
it in Subsection 3.3).

3.2 Algebraic solvability of (3.4)

We choose k = 7 and define B by

B(f1, f2, f3, f4, f5, f6, f7) :=



∂x1

f1 + ∂x2
f2 + ∂x3

f3

∂x1
f4 + ∂x2

f5 + ∂x3
f6

f7


 . (3.10)

The main result of this subsection is the following proposition.

Proposition 2 There exists ε∗ > 0, there exists T ∗ > 0 such that, for every
ε ∈ (0, ε∗), there exists a nonempty open subset ω0 of C2 such that Assumption
A2 holds for every T < T ∗: There exists a linear partial differential operator
M : C∞(Q0)

7 → C∞(Q0)
5 such that (3.5) holds.
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3.2.1 The adjoint problem

Let L0 : C∞(Q0)
4 → C∞(Q0)

3 be the linear partial differential operator
defined by

L0

(
y

p

)
:=



y1t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + ∂x1p

y2t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + ∂x2
p

∇ · y


 , (3.11)

for every y = (y1, y2, y3) ∈ C∞(Q0)
3, and every p ∈ C∞(Q0).

Let B0 : C∞(Q0)
6 → C∞(Q0)

3 be the linear partial differential operator
defined by

B0(f
1, f2, f3, f4, f5, f6) :=



∂x1

f1 + ∂x2
f2 + ∂x3

f3

∂x1
f4 + ∂x2

f5 + ∂x3
f6

0


 . (3.12)

Note that the third equation of (3.4) can be read as

v = y3t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + ∂3p− f7.

Hence, one easily sees that Assumption A2 is equivalent to the existence of a
linear partial differential operator M0 : C∞(Q0)

6 → C∞(Q0)
4 such that

L0 ◦M0 = B0. (3.13)

As in [19, p. 157], we study (3.13) by looking at the “adjoint equation”.
For every linear partial differential operator M : C∞(Q0)

k → C∞(Q0)
l, M =∑

|α|6mAα∂
α, we associate its (formal) adjoint

M∗ : C∞(Q0)
l → C∞(Q0)

k

defined by

M∗ψ :=
∑

|α|6m

(−1)|α|∂α(AT
αψ), ∀ψ ∈ C∞(Q0)

l, (3.14)

where AT
α(ξ) is the transpose of the matrix Aα(ξ). (Definition (3.14) makes

sense since ∑

|α|6m

Aα∂
α = 0

implies that the Aα are all equal to 0.) One has M∗∗ = M and, if M :
C∞(Q0)

k → C∞(Q0)
l and N : C∞(Q0)

l → C∞(Q0)
m are two linear partial

differential operators, then (N ◦M)∗ = M∗ ◦ N ∗.
Hence, (3.13) is equivalent to

M∗
0 ◦ L∗

0 = B∗
0 . (3.15)
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Direct computations, together with (2.14), show that, for every z = (z1, z2) ∈
C∞(Q0)

2 and for every π ∈ C∞(Q0),

L∗
0

(
z

π

)
=




−z1t −∆z1 − (y · ∇)z1 + ∂x1
y1z1 + ∂x1

y2z2 − ∂x1
π

−z2t −∆z2 − (y · ∇)z2 + ∂x2
y1z1 + ∂x2

y2z2 − ∂x2
π

∂x3
y1z1 + ∂x3

y2z2 − ∂x3
π

−∂x1
z1 − ∂x2

z2


 , (3.16)

B∗
0

(
z

π

)
= (−∂x1z

1,−∂x2z
1,−∂x3z

1,−∂x1z
2,−∂x2z

2,−∂x3z
2). (3.17)

Assumption A2 is now equivalent to the following property: There exists a
linear partial differential operator N (= M∗

0) : C∞(Q0)
4 → C∞(Q0)

6 such
that for every ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C∞(Q0)

4, if (z1, z2, π) ∈ C∞(Q0)
3 is a

solution of




−z1t −∆z1 − (y · ∇)z1 + ∂x1y
1z1 + ∂x1y

2z2 − ∂x1π = ϕ1,

−z2t −∆z2 − (y · ∇)z2 + ∂x2
y1z1 + ∂x2

y2z2 − ∂x2
π = ϕ2,

∂x3
y1z1 + ∂x3

y2z2 − ∂x3
π = ϕ3,

−∂x1
z1 − ∂x2

z2 = ϕ4,

(3.18)

then (−∂x1
z1,−∂x2

z1,−∂x3
z1,−∂x1

z2,−∂x2
z2,−∂x3

z2) = Nϕ.

Remark 4 The most natural linear partial differential operator B to try first
would have been B : C∞(Q0)

3 → C∞(Q0)
3 defined by

Bf :=



f1

f2

f3


 , ∀f = (f1, f2, f3) ∈ C∞(Q0)

3. (3.19)

Unfortunately, Proposition 2 does not hold with this B. Indeed, in this case
B∗
0 : C∞(Q0)

3 → C∞(Q0)
2 would be now (compare with (3.17)) such that, for

every z = (z1, z2) ∈ C∞(Q0)
2 and for every π ∈ C∞(Q0),

B∗
0(z, π) = (z1, z2). (3.20)

Let F1 ∈ C∞(T/2, T ) and let F2 ∈ C∞(T/2, T ). We define z = (z1, z2) ∈
C∞(Q0;R

2) and π ∈ C∞(Q0) by

z1(t, x) := F1(t),

z2(t, x) := F2(t),

π(t, x) := −F ′
1(t)x1 − F ′

2(t)x2 + F1(t)y
1 + F2(t)y

2.

Then L∗
0(z, π) = 0. However, if (F1, F2) 6= (0, 0), then B∗

0(z, π) 6= 0. Hence, in
this case, (3.15) does not hold whatever the linear partial differential operator
M0 is and whatever the trajectory (y, p, u) is.
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3.2.2 Number of variables and equations

Let us give some algebraic results about the number of derivatives of a
certain order.

Definition 3 Consider a scalar PDE with a smooth (enough) variable z de-
pending on 4 variables x0, x1, x2, x3. We call equations of level n all the dif-
ferent equations we obtain by differentiating the PDE with respect to all the
possible multi-integers of length n. The number of “distinct” equations of level
n is denoted E(n), and the number of “distinct” equations of a level less than
or equal to n is denoted F (n).

Remark 5 Clearly, E(n) is also the distinct number of derivatives of order
n for (smooth enough) functions having 4 variables, and F (n) is also the
distinct number of derivatives of an order less or equal than n for (smooth
enough) functions having 4 variables. Moreover, if we consider a scalar PDE
with many variables z1, . . . , zk depending on x0, x1, x2, x3 containing deriva-
tives of z1, . . . zk of order m at most, the maximum number of derivatives of
z1, . . . zk we may expect in the equations of a level less than or equal to n is
kF (n+m).

We want to compute E and F precisely. One has

E(n) =
(n+ 1)(n+ 2)(n+ 3)

6
, (3.21)

F (n) =
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

24
. (3.22)

Indeed

(α0, α1, α2, α3) 7→ {α0+1, α0+α1+2, α0+α1+α2+3, α0+α1+α2+α3+4}

defines a bijection between the set of (α0, α1, α2, α3) ∈ N
4 such that α0+α1+

α2+α3 6 n and the set of subsets of {1, 2, . . . , n+4} having 4 elements. Hence,
F (n) being the number of (α0, α1, α2, α3) ∈ N

4 such that α0+α1+α2+α3 6 n,
we have (3.22). In order to obtain (3.21), it suffices to notice that

E(n) = F (n)− F (n− 1)

=
(n+ 1)(n+ 2)(n+ 3)

6
.

3.2.3 A related overdetermined system

Let us now study the equation (3.18), where the data is (ϕ1, ϕ2, ϕ3, ϕ4) ∈
C∞(Q0)

4 and the unknown is (z1, z2, π) ∈ C∞(Q0)
3.

Let us explain the idea behind the reasoning we are going to develop in
this subsection. Equation (3.18) is “analytically” overdetermined, since we
have more equations (4) than unknowns (3). However, if we see (3.18) as a
linear system of algebraic unknowns (the unknowns being z1, z2, π and their
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derivatives) the system is now “algebraically” underdetermined: We have 4
equations and 19 unknowns. But it is easy to obtain as many new equations
as we want: It suffices to differentiate (3.18) enough times. Some new “alge-
braic unknowns” (the derivatives of z1, z2, π) appear, but since the system was
“analytically” overdetermined, one can hope that they are not “too many” new
unknowns appearing. Notably, one can hope that, after differentiating a suffi-
cient number of times, we obtain more equations than “algebraic unknowns”.
We would then deduce Assumption A2 by “inverting” in some sense this well-
posed linear system (this will be explained in detail later).

We first eliminate π in our equation (3.18). To reach this goal, in (3.18),
we apply ∂3 to the first and second lines, and use the third line. We obtain
the following equations:





−2∂x3
y1∂x1

z1 − ∂x3
y2∂x2

z1 + (∂x1
y1 − ∂x3

y3)∂x3
z1 − y1∂2x1x3

z1

−y2∂2x2x3
z1 − y3∂2x3x3

z1 − ∂2x3tz
1 −∆∂x3z

1 − ∂x3y
2∂x1z

2 + ∂x1y
2∂x3z

2

= ∂x3
ϕ1 − ∂x1

ϕ3,

−∂x3y
1∂x2z

1 + ∂x2y
1∂x3z

1 − ∂x3y
1∂x1z

2 − y1∂2x1x3
z2 − 2∂x3y

2∂x2z
2

−y2∂2x2x3
z2 + (∂x2

y2 − ∂x3
y3)∂x3

z2 − y3∂2x3x3
z2 − ∂2x3tz

2 −∆∂x3
z2

= ∂x3
ϕ2 − ∂x2

ϕ3,

−∂x1z
1 − ∂x2z

2 = ϕ4.
(3.23)

The first and second equation of (3.23) contain derivatives of z1 and z2 up
to order 3 and the third equation derivatives up to order 1. We would like to
have the same maximal order of derivatives appearing in the three equations
in order to be sure that the derivatives of maximal order appearing in the first
and second equation might also appear in the third one. Hence we are going
to differentiate the last equation 2 more times than the others. If we count the
maximum number of derivatives of z1 and z2 we create by differentiating n
times the first and second equation and n+ 2 times the third one, we obtain

H(n) = 2F (n+ 3) =
(n+ 4)(n+ 5)(n+ 6)(n+ 7)

12
(3.24)

different derivatives. The number G(n) of equations we obtain is then

G(n) = 2F (n) + F (n+ 2)

=
(3 + n)(4 + n)(34 + 17n+ 3n2)

24
.

(3.25)

From (3.24) and (3.25), one sees that G(n)−H(n) is increasing with respect
to n and that

G(18)−H(18) = −44 < 0 and G(19)−H(19) = 460 > 0.

Hence, in order to have more equations than unknowns and as few equations
as possible, we choose n = 19. We have G(19) = 30360 equations and H(19) =
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29900 unknowns. We can see this system of 30360 partial differential equations
as a linear system

L0(t, x)Z = Φ,

where L0 ∈ C∞(Q0;M30360×29900(R)), Z ∈ R
29900 (Z contains the derivatives

of z1 and z2 up to the order 19) and Φ ∈ R
30360 (Φ contains the derivatives

of ϕ up to the order 19). Note that L0 also depends on ε and ν, but this
does not need to be emphasized in what follows. Hence, in order to lighten the
notations, we will only see L0 as a function of t and x (as for L̃0, N, . . . that
are be introduced later). We order the 29900 lines of Z so that

Z1 = ∂x1
z1, Z2 = ∂x2

z1, Z3 = ∂x3
z1, Z4 = ∂x1

z2, Z5 = ∂x2
z2, Z6 = ∂x3

z2.

Assumption A2 can then be written as follows: Prove the existence of a
nonempty open subset ω0 of C2 and of a map N ∈ C∞(Q0;M6×30360(R)) (N
is the algebraic version of the linear partial differential operator N introduced
in Subsection 3.2, every linear partial differential operator can be alternatively
considered as a matrix acting on the derivatives of the input functions) such
that

N(t, x)L0(t, x)Z = (Z1, Z2, Z3, Z4, Z5, Z6), ∀(t, x) ∈ Q0, ∀Z ∈ R
29900.

(3.26)

Since the size of the matrix L0(t, x) is very large, it is impossible to find
some N verifying System (3.26) by hand and we will have to do computations
on a computer. Notably, it would be more convenient to make L0 be a sparse
matrix in order to use relevant tools adapted to the study of big sparse linear
systems. This is the reason for our simple choices for a, b and c given in (2.16),
(2.17) and (2.18) (polynomials of small order do not create to many non zero
coefficients in L0 when they are differentiated). Using (2.1), (2.16), (2.17),
(2.18), (2.19) and (2.20), System (3.23) becomes simply, in Q0,





a(t)(−4x31 − 4x1x
2
2)ε∂x1

z1 + a(t)(−2x21x2 − 2x32)ε∂x2
z1 + a(t)(14x21x3

+10x22x3)ε∂x3z
1 + a(t)(−2x21x2 − 2x32)ε∂x1z

2 + 4a(t)x1x2x3ε∂x3z
2 + a(t)

(−2x31x3 − 2x1x
2
2x3)ε∂

2
x1x3

z1 + a(t)(−2x21x2x3 − 2x32x3)ε∂
2
x2x3

z1 + a(t)

(4x21x
2
3 + 4x22x

2
3)ε∂

2
x3x3

z1 − ∂2x3tz
1 − ∂3x1x3x3

z1 − ∂3x2x2x3
z1 − ∂3x3x3x3

z1333

= ∂x3
ϕ1 − ∂x1

ϕ3,

a(t)(−2x31 − 2x1x
2
2)ε∂x2z

1 + a(t)4x1x2x3ε∂x3z
1 + a(t)(−2x31 − 2x1x

2
2)

ε∂x1
z2 + a(t)(−4x21x2 − 4x32)ε∂x2

z2 + a(t)(10x21x3 + 14x22x3)ε∂x3
z2

+a(t)(−2x31x3 − 2x1x
2
2x3)ε∂

2
x1x3

z2 + a(t)(−2x21x2x3 − 2x32x3)ε∂
2
x2x3

z2

+a(t)(4x21x
2
3 + 4x22x

2
3)∂

2
x3x3

z2 − ∂2x3tz
2 − ∂3x1x1x3

z2 − ∂3x2x2x3
z2 − ∂3x3x3x3

z2

= ∂x3
ϕ2 − ∂x2

ϕ3,

−∂x1z
1 − ∂x2z

2 = ϕ4.
(3.27)
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Let us consider the change of variables

s := εa(t)

and

e :=
1

T − t
.

(e appears when we differentiate t 7→ a(t) on Q0). Let R[E,S,X] be the set
of polynomials in the variables e, s, x1, x2, x3, with real coefficients. The
30360 × 29900 entries of L0 can alternatively be seen as functions depending
on (t, x1, x2, x3, ε) or as elements of R[E,S,X] and, from now on, we consider
L0 as an element of M30360×29900(R[E,S,X]). As we will see after, it turns
out that many of the entries of L0 are the 0 polynomial.

For a positive integer k, let us denote by Sk the set of permutations of
{1, . . . , k}. To each σ ∈ Sk, we associate the matrix Sσ ∈ Mk,k(R) defined by

Sσ(i)i = 1, ∀i ∈ {1, . . . , k},
Sji = 0, ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , k} \ {σ(i)}. (3.28)

For two positive integers k and l, let us denote by 0k×l the null matrix of
Mk×l(R) (which is included in Mk×l(R[E,S,X])). The following lemma is a
key step for the proof of Proposition 2.

Lemma 1 There exist

ξ0 := (e0, s0, x0) ∈ R
5,

σ ∈ S29900,

σ̃ ∈ S30360,

P ∈ M7321×7321(R[E,S,X]),

Q ∈ M23039×7321(R[E,S,X])

and

R ∈ M23039×22579(R[E,S,X])

such that

σ(i) = i, ∀i ∈ {1, 2, 3, 4, 5, 6}, (3.29)

Sσ̃L0Sσ =

(
P 07321,22579

Q R

)
, (3.30)

the rank of P (ξ0) is 7321. (3.31)

Let us assume for the moment that this lemma holds and end the proof of
Proposition 2. A consequence of Lemma 1 is the following:
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Lemma 2 There exists a nonempty open subset ω0 of C2, T ∗ > 0 and ε∗ > 0,
such that

det P (
1

T − t
, εa(t), x) 6= 0, ∀T ∈ (0, T ∗], ∀t ∈ [T/2, T ), ∀ε ∈ (0, ε0], ∀x ∈ ω0.

(3.32)

Proof of Lemma 2.
Let us first point out that det P ∈ R[E,S,X] and, by (3.31), this polyno-

mial is not the 0 polynomial. Hence there exist a nonnegative integer m and
a polynomial P̃ ∈ R[E,S,X] such that

det P (E,S,X) = SmP̃ (E,S,X), (3.33)

P̃ (E, 0, X) ∈ R[E,X] is not the 0 polynomial. (3.34)

By (3.34), there exist δ > 0, C ′ > 0 and a nonempty open subset ω0 of C2 such
that

|P̃ (e, 0, x)| > 2δ, ∀e ∈ [C ′,+∞), ∀x ∈ ω0. (3.35)

By the mean value theorem, there exist a positive integer l and a positive real
number C∗ such that

|P̃ (e, s, x)− P̃ (e, 0, x)| 6 C∗|s|
(
|e|l + |s|l + 1

)
, ∀e ∈ R, ∀s ∈ R, ∀x ∈ ω0.

(3.36)

By (2.16), there exists ε∗ such that

ε∗|a(t)|
(
(T − t)−l + ε∗l|a(t)|l + 1

)
6

δ

C∗ , ∀T ∈ (0, 2/C ′], ∀t ∈ [T/2, T ).

(3.37)

From (3.35), (3.36) and (3.37), we obtain that

|P̃ ((T − t)−1, εa(t), x)| > δ, ∀(T, t, ε, x) ∈ (0, 2/C ′]× [T/2, T )× (0, ε∗]× ω0,

which concludes the proof of Lemma 2.

Let us now go back to the proof of Proposition 2. For every positive integer
l, we denote by Idl the identity matrix of R

l. By (3.32), there exists U ∈
C∞(Q0;M7321×7321(R)) such that

U(t, x)P (t, x, ε) = Id7321, ∀x ∈ ω0. (3.38)

Let Ũ ∈ C∞(Q0;M7321×30360(R)) be defined by

Ũ(t, x) :=
(
U(t, x) 07321,23039

)
, ∀x ∈ ω0. (3.39)

From (3.30), (3.38) and (3.39), one has

Ũ(t, x)Sσ̃L0(t, x) =
(
Id7321 07321,22579

)
S−1
σ , ∀x ∈ ω0. (3.40)
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Let K ∈ M6,7321(R) be defined by

K :=
(
Id6 06,7315

)
. (3.41)

From (3.29), (3.40) and (3.41), one has

KŨ(t, x)Sσ̃L0(t, x) =
(
Id6 06,29894

)
S−1
σ =

(
Id6 06,29894

)
, ∀x ∈ ω0,

which shows that (3.26) holds with N(t, x) := KŨ(t, x)Sσ̃, and ends the proof
of Proposition 2.

To finish the proof of Proposition 2, it suffices to prove Lemma 1.
Proof of Lemma 1.
The fact that the dependence of y and its derivatives in the time variable

is quite complicated (it is both exponential and fractional) compared to the
dependence in the space variable (which is polynomial) is problematic, because
it is not very convenient to use for computations on a computer. In the previous
proof we have seen det P as a polynomial in s = εa(t), e = 1

T−t (which
corresponds to terms appearing when we differentiate t 7→ a(t)) and x. Assume
that we fix e = 0: This is equivalent to do “as if” the derivatives of a were all
identically the null function, i.e. to do as if the function t 7→ a(t) were replaced
by a constant function, which is simpler than our original function a. We will
then impose e0 = 0 for our computations. Let us set ξ0 := (e0, s0, x0) with
e0 = 0, s0 = 1 and x0 = (1.1, 1.2, 1.3).

First of all, let us prove that one can decompose M as in (3.30) at least at
point ξ0. We present in the Appendix A how we computed the matrix

L0
0 := L0(ξ

0) ∈ M30360×29900(R)

thanks to a C++ program.
From now on we assume that we have matrix L0

0 at our disposal and we
are going to explain how to exploit it in order to obtain Lemma 1.

We begin with reordering the columns so that the null columns of L0
0

are moved to the last columns. One verifies for example thanks to Matlab
that there are exactly 140 such columns. There exist σ ∈ S29900 and N0 ∈
M30360×29760(R) such that

L0
0Sσ =

(
N0 030360×140

)
. (3.42)

One problem is that it could happen that some columns of L0
0 are equal to

0 but the corresponding columns of L0 are not identically null. However, we
check that it is not the case (thanks to the evaluation function described in
Appendix A).

Let us recall that our goal is to extract a well-chosen submatrix of L0
0 which

is of maximal rank. A reasonable hope would have been that the matrix N0

(of size 30360 × 29760) itself is of maximal rank 29760 (we would then have
obtained something similar to Lemma 1 by choosing some squared extracted



Controllability of the 3-D Navier-Stokes system with a scalar control 23

matrix of maximal rank P 0 of N0, which is always possible, the matrix P 0

would then have been of size 29760×29760 and the non-selected lines would be
permuted to obtain matrices Q0 of size 600× 29760 and R0 of size 600× 140).
However it turns out to be false, as we will see later.

Since computing the rank of L0
0 on a computer is too long because of its

size, we introduce the notion of structural rank.

Definition 4 Let A ∈ Mn,m(R) and B ∈ Mn,m(R). We say that A and B
are structurally equivalent if the following property is verified:

Aij = 0 ⇔ Bij = 0.

This is an equivalence relation on Mn,m(R), and we call Cl(A) the equivalence
class of A. The structural rank of a matrix A (denoted sprank(A) in the
following) is the maximal rank of the elements of Cl(A). Equivalently, if we
fill randomly the nonzero coefficients of A, then, with probability 1, the rank
of A is equal to the structural rank.

One sees that the structural rank does not depend on the coefficients of
the matrix but only on the distribution of the zeros in the matrix and is
never less than the rank. The advantage of the structural rank is that it can
be computed fast (in a couple of seconds in our case), especially on sparse
matrices. It corresponds to the function sprank in Matlab.

Computing the structural rank of N0 thanks to Matlab we find that

sprank(N0) = 28654 < 29760,

hence there is no hope that the rank of N0 is maximal.
To extract a submatrix of N0 which is of maximal rank, we can, for exam-

ple, begin with extracting a submatrix of P 0 which is of maximal structural
rank, and verify that it is of maximal rank too. The right way to do this is
to explore more carefully how the structural rank is computed. In fact the
key point is the existence of a decomposition in block triangular form (which
is related to the Dulmage-Mendelsohn decomposition for the bipartite graph
associated to any matrix, see [14] and [27]) of a matrix.

Proposition 3 Let A be a matrix. Then one can permute the columns and
the lines of A to obtain a matrix of the following form:




A11 A12 A13 A14

0 0 A23 A24

0 0 0 A34

0 0 0 A44


 , (3.43)

where:

1. (A11, A12) is the underdetermined part of the matrix, it always has more
columns than rows.

2. (A33, A34) is the overdetermined part of the matrix, it always has more
rows than columns.
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3. A12, A23, A34 are square matrices with nonzero diagonals (in particular
these matrices are of maximal structural rank)

4. A23 is the well-determined part of the matrix (if the matrix is square and
non-singular, it is the entire matrix).

Moreover, one can permute rows and columns so that A23 is also block trian-
gular. The decomposition obtained is called the block triangular form of matrix
A. The structural rank of A is given by the sum of the structural ranks of
A12, A23, A34.

The block triangular form (3.43) (called the coarse decomposition) of the ma-
trix is in fact given by the dmperm function in Matlab, which also gives the
permutation that makes the matrix be in the form of (3.43) and a block
triangular form for the well-determined part (which is called the fine decom-
position). One easily understands how to obtain a matrix in the form of (3.30)
thanks to this decomposition: One can (for instance) permute the blocks to
obtain




A34 0 0 0

A44 0 0 0

A14 A11 A12 A13

A24 0 0 A23



, (3.44)

from which we easily deduce decomposition (3.30).
To simplify the computations, we are not going to apply this block trian-

gular decomposition directly to L0
0 but to a well-chosen submatrix L̃0

0. First
of all, we go back to L0 and select some equations and unknowns: There exist
σ0 ∈ S29900, σ̃

0 ∈ S30360, Q̃ ∈ M16623×14630(R) and R̃ ∈ M16623×15270(R)
such that (see (3.44))

Sσ̃0L0Sσ0 =

(
L̃0 013737×15270

Q̃ R̃

)
, (3.45)

where L̃0 corresponds to the equations we obtain by differentiating the two
first equations of (3.23) 15 times and the last equation 17 times, so that L̃0 is
of size (G(15), H(15)) = (13737, 14630) (here there are more unknowns than
equations but we will see that this will not be a problem).

Let us call

L̃0
0 := L̃0(ξ

0),

Q̃0 := Q̃(ξ0),

R̃0 := R̃(ξ0).

One has

Sσ̃0L0
0Sσ0 =

(
L̃0
0 013737×15270

Q̃0 R̃0

)
.
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Thanks to Matlab, we find the Dulmage-Mendelsohn decomposition of L̃0
0

and observe that there exists some permutations matrices σ1 and σ̃1 such that
(see (3.44))

Sσ̃1L̃0
0Sσ1 =

(
L
0

0 09050×5578

Q0 R0

)
,

with Q
0 ∈ M4687×9050(R), R

0 ∈ M4687×5578(R), and L
0

0 ∈ M9050×9050(R)
is of maximal structural rank and square (it corresponds to the block A34

in the block triangular decomposition). Applying the Dulmage-Mendelsohn

algorithm now on L
0

0, we can write L
0

0 in an (upper) block triangular form
with 352 diagonal blocks, the first 351 of them being of “small” size and the

latter one being of size 7321. Let us call L
0

0(i,j) (with (i, j) ∈ [|1; 352|]2) the

blocks of L
0

0.

Using this decomposition, one can see (using Matlab) that L
0

0 is not of

maximal rank. However, by computing the rank of the block L
0

0352,352 thanks
to Matlab, one sees that it is of maximal rank 7321. Moreover, we verify that
{
the columns corresponding to the unknowns ∂x1

z1, ∂x2
z1, ∂x3

z1, ∂x1
z2,

∂x2
z2, ∂x3

z2 appear in this block,

(3.46)
by looking carefully on Matlab where the columns corresponding to these
unknowns have been moved under the action of the permutation matrices Sσ0

and Sσ1 . More precisely, ∂xiz
1 corresponds to the i-th column of L

0

0(352,352)

and ∂xi
z2 to the (3632 + i)-th column of L0

352,352.
Let us call

P 0 := L
0

0352,352.

There exist σ ∈ S29900, σ̃ ∈ S30360, Q
0 ∈ M23039×7321(R[E,S,X]) and R0 ∈

M23039×22579(R[E,S,X]) such that

Sσ̃L̃
0
0Sσ =

(
P 0 07321×22579

Q0 R0

)
, (3.47)

the rank of the first block P 0 being maximal. The distribution of the nonzero
coefficients of P 0 is given in Figure 2.

Now, we come back to the matrix L0 and we consider the following matrix:

M̃0 := Sσ̃L̃
0Sσ,

where Sσ̃ and Sσ are introduced in (3.47).
Let us call Θ the set of all coefficients of L0 (considered as a polynomial

in the variables E,S,X) that are not identically zero, and Θ0 the set of all
coefficients of L0

0 that are not equal to 0. Clearly Θ0 ⊂ Θ (in fact thanks
to Matlab one can see that Θ0 is much smaller than Θ), moreover Θ \ Θ0

corresponds to the nonzero coefficients of the matrix that become identically
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Fig. 2 Distribution of the nonzero coefficients of P 0.

null when we change a(t) into the function identically equal to 1 and apply
it at point ξ0. What could happen is that M̃0 is not of block triangular form
as in (3.47) (the null block of the matrix M̃0 may contain some elements
of Θ \ Θ0). However, since the only important thing is the location of the
elements of Θ \ Θ0 and not their value, one can verify easily on Matlab that
the coefficients of Θ \ Θ0 do not influence the block form (3.47) (by looking
where the elements of Θ \ Θ0 are moved under the action of Sσ̃ and Sσ), i.e.
the permutations Sσ̃ and Sσ also give a decomposition as in (3.47) for L̃0:
There exists

P̃ ∈ M7321×7321(R[E,S,X]),

Q̃ ∈ M23039×7321(R[E,S,X])

and
R̃ ∈ M23039×22579(R[E,S,X])

such that

Sσ̃L̃
0Sσ =

(
P̃ 07321×22579

Q̃ R̃

)
, (3.48)

with the relations P (ξ0) = P 0, Q(ξ0) = Q0, R(ξ0) = R0.
Property (3.30) follows then directly from (3.45) and (3.48), (3.31) is a

direct consequence of the above construction, and (3.29) can be easily deduced
by permuting some lines and columns of Sσ̃ and Sσ (thanks to Property (3.46)).
Finally, Lemma 1 holds.

Consequently Proposition 2 holds. Moreover, one observes that the linear
partial differential operator M0 that we have just created so that (3.13) holds
is exactly P∗, (where P is the differential version of the matrix P seen as a
partial differential operator acting on (∂x1

z1, ∂x2
z1, ∂x3

z1, ∂x1
z2, ∂x2

z2, ∂x3
z2))
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and is of order 17 (because we have differentiated the equations of (3.18) 16
times, and (3.23) was obtained by differentiating System (3.18) 1 time). Hence,
the corresponding operator M in equality (3.5) is also of order 17.

This concludes the proof of Proposition 2.

3.3 Controllability of the linear control system (3.6)

In this subsection, we prove some technical lemmas that imply the null
controllability of (3.6) with controls which are derivatives of smooth enough
functions having a small support. This is needed to ensure that the controls
are in the image of B (this is exactly Assumption A1) and to take into account
Remark 3.

The first lemma is the following one (remind that y is one of the trajec-
tories constructed in Section 2). It consists in a Carleman estimate with curl
observation. We call Dy the operator

Dyz := (y.∇)z −



∂x1y

1z1 + ∂x1y
2z2 + ∂x1y

3z3

∂x2y
1z1 + ∂x2y

2z2 + ∂x2y
3z3

∂x3y
1z1 + ∂x3y

2z2 + ∂x3y
3z3


 .

Dy is exactly the opposite of the adjoint operator of y 7→ (y.∇y) + (y.∇)y
(because y is divergence-free).

Lemma 3 Let θ : Ω → [0,+∞) be a lower semi-continuous function which
is not identically 0 and let r ∈ (0, 1). There exists C1 > 0 such that, for
every K1 > C1, every ν > K1(1 − r)/r, there exists ε0 such that for every
ε ∈ (0, ε0), there exists C > 0 such that, for every g ∈ L2((0, T )×Ω)3 and for
every solution z ∈ L2((0, T ), V )∩L∞((0, T ), H) of the adjoint of the linearized
Navier-Stokes system





−zt −∆z −Dyz +∇π = g in Q,

∇ · z = 0 in Q,

z = 0 on Σ,

z(T ) = zT ∈ V,

(3.49)

one has

||e
−K1

2r(T−t)5 z||2L2((T/2,T ),H1(Ω)3) + ||z(T/2, ·)||2L2(Ω)3

6 C

(∫

(T/2,T )×Ω

θe
− K1

(T−t)5 |∇ ∧ z|2 +
∫

(T/2,T )×Ω

e
− K1

(T−t)5 |g|2
)
. (3.50)

Proof of Lemma 3.
In this proof, our system, which is initially defined on (0, T ), will only be

considered on the interval of time (T/2, T ). In fact, in the following, (see, in
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particular, the proof of Proposition 4), we will not act on the system on the
interval (0, T/2), hence we only need a Carleman estimate on (T/2, T ). For
our proof, we need to use the particular form of our y in time, in particular
that (see (2.16))

|y(t, x)|+ |∇y(t, x)| 6 Cεe
−ν

(T−t)5 , ∀(t, x) ∈ (T/2, T )×Ω. (3.51)

Without loss of generality, we may assume that there exists a nonempty open
subset ω∗ of Ω such that θ = 1ω∗ . Let us now give some other notations. Let
η0 ∈ C2(Ω) such that η > 0 and |∇η0| > 0 in Ω \ ω∗ and η0 = 0 on ∂Ω. For
the existence of η0, see [17, Lemma 1.1, p. 4]. Let us call

α(t, x) :=
e12λ||η

0||∞ − eλ(10||η
0||∞+η0(x))

(t− T/2)5(T − t)5
, ξ(t, x) :=

eλ(10||η
0||∞+η0(x))

(t− T/2)5(T − t)5

and

α∗(t) := max
x∈Ω

α(t, x).

We call Q/2 := (T/2, T ) × Ω. Using (3.51) and [21, Proposition 3.1, p. 6] on
the adjoint system (3.49) (where we see the first and zero order terms of this
equation as a second member, because Proposition 3.1 of [21] concerns only
the Stokes system), one has, for some C large enough, λ > C and s > C,

s3λ4
∫

Q/2

e−2sα−2sα∗

ξ3|∇ ∧ z|2 + sλ2
∫

Q/2

e−2sα−2sα∗

ξ|∇(∇∧ z)|2

6 C

(
s3λ4

∫

(T/2,T )×ω∗

e−2sα−2sα∗

ξ3|∇ ∧ z|2 + ε2
∫

Q/2

e−2sα∗

e
− 2ν

(T−t)5 (|z|2

+|∇z|2) +
∫

Q/2

e−2sα∗ |g|2
)
.

In fact, looking carefully at the proof of Proposition 3.1 of [21], one remarks
(just by changing the weight ρ(t) := e−sα∗

by ρ(t) := e−µsα∗

where µ > 1 is a
parameter that can be chosen as large as we wish) that the previous inequality
can be improved in the following way, as soon as s is large enough, for every
µ > 1 (the constant C depends on µ):

s3λ4
∫

Q/2

e−2sα−2µsα∗

ξ3|∇ ∧ z|2 + sλ2
∫

Q/2

e−2sα−2µsα∗

ξ|∇(∇∧ z)|2

6 C

(
s3λ4

∫

(T/2,T )×ω∗

e−2sα−2µsα∗

ξ3|∇ ∧ z|2 + ε2
∫

Q/2

e−2µsα∗

e
− 2ν

(T−t)5 (|z|2

+|∇z|2) +
∫

Q/2

e−2µsα∗ |g|2
)
. (3.52)
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As usual, we now change our weights so that they do not vanish at time
t = T/2. Let us call l : [T/2, T ] → R defined by l(t) = T 2/16 on [T/2, 3T/4]
and l(t) = (t− T/2)(T − t) on [3T/4, T ]. Next, we define

β(t, x) :=
e12λ||η

0||∞ − eλ(10||η
0||∞+η0(x))

l5(t)
, γ(t, x) :=

eλ(10||η
0||∞+η0(x))

l5(t)
,

β∗(t) := max
x∈Ω

β(t, x), γ∗(t) := max
x∈Ω

γ(t, x).

Clearly, the functions α and β coincide on [3T/4, T ], as well as the functions
ξ and γ. Using classical energy arguments, we deduce the existence of C (de-
pending now on s, λ, which are assumed to be large enough and fixed from
now on, and µ) such that

∫

Q/2

e−2(1+µ)sβ∗ |∇ ∧ z|2 +
∫

Q/2

e−2(1+µ)sβ∗ |∇(∇∧ z)|2

6 C

(∫

(T/2,T )×ω∗

e−2µsβ∗

γ∗3|∇ ∧ z|2 + ε2
∫

Q/2

e−2µsβ∗

e
− 2ν

(T−t)5 (|z|2 + |∇z|2)

+

∫

Q/2

e−2µsβ∗ |g|2
)
. (3.53)

One remarks that, since ∇ · z = 0 in Q and z = 0 on (0, T )× ∂Ω, one has

C||e−(1+µ)sβ∗∇∧ z||2L2(Q/2)3
> ||e−(1+µ)sβ∗∇z||2L2(Q/2)9

. (3.54)

Using Poincaré’s inequality, we also have

C||e−(1+µ)sβ∗∇z||2L2(Q/2)9
> ||e−(1+µ)sβ∗

z||2L2(Q/2)3
. (3.55)

Putting this into (3.53), one obtains

∫

Q/2

e−2(1+µ)sβ∗ |∇z|2 +
∫

Q/2

e−2(1+µ)sβ∗ |z|2

6 C

(∫

(T/2,T )×ω∗

e−2µsβ∗

γ∗3|∇ ∧ z|2 + ε

∫

Q/2

e−2µsβ∗

e
− 2ν

(T−t)5 (|z|2 + |∇z|2)

+

∫

Q/2

e−2µsβ∗ |g|2
)
. (3.56)

Let us define, for µ > 1,

K0 := 26(1 + µ+
√
µ)s

e12λ||η
0||∞ − e10λ||η

0||∞

T 5
, (3.57)

K1 := 26(µ−√
µ)s

e12λ||η
0||∞ − e10λ||η

0||∞

T 5
. (3.58)
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From equality (3.58), one deduces the existence of C∗ > 0 (depending on
µ > 1, λ >> 1 and s >> 1) such that

e−2µsβ∗(t)γ∗3(t) 6 C∗e
−K1

(T−t)5 , ∀t ∈ (T/2, T ). (3.59)

Moreover, from equality (3.57), there exists Ĉ > 0 (depending on µ > 1,
λ >> 1 and s >> 1) such that

e
− K0

(T−t)5 6 Ĉe−2(1+µ)sβ∗

, ∀t ∈ (T/2, T ). (3.60)

Fixing s, λ and making µ→ +∞, one easily sees that K0/K1 =
1+µ+

√
µ

µ−√
µ → 1+

so that for every r ∈ (0, 1), we have for µ large enough, K0 < K1/r. For ε > 0
small enough and for ν large enough (ν > K0 − K1), one can absorb the

undesired terms ε2
∫
Q/2

e−2µsβ∗

e
− 2ν

(T−t)5 (|z|2+ |∇z|2) from the right-hand side

of (3.56). Then using some classical energy estimates together with (3.59) and
(3.60), one obtains (3.50).

From now on, we set

ρr(t) := e
−K1

r(T−t)5 , ρ1(t) := e
−K1

(T−t)5 .

Let us now derive from this Carleman inequality a result of null-controllability
with controls which are derivatives of smooth functions. Let 1̂ω0

: R3 → [0, 1]
be a function of class C∞ which is not identically equal to 0 and having
a support included in ω0, where ω0 was introduced in Lemma 2. We apply
Lemma 3 with θ = 1̂ω0 . One has the following proposition.

Proposition 4 With the notations of Lemma 3, let f ∈ L2(Q)3 be such that
ρr

−1/2f ∈ L2(Q)3 and let us consider the following linearized Navier-Stokes
control system





yt −∆y + (y · ∇)y + (y · ∇)y +∇p = f +∇∧ ((∇∧ v)1̂ω0) in Q,

∇ · y = 0 in Q,

y = 0 on Σ,
(3.61)

where the control is v. Then, for every y0 ∈ V , there exists a solution (y, p, v)
of (3.61) such that y(0, ·) = y0 and for every K̃1 verifying 0 < K̃1 < K1,

e
K̃1(2−1/r)

2(T−t)5 (∇∧ v)1̂ω0
∈ L2((0, T ), H53(Ω)3) ∩H27((0, T ), H−1(Ω)3), (3.62)

e
K̃1

2(T−t)5 y ∈ L2((0, T ), H2(Ω)3) ∩ L∞((0, T ), H1(Ω)3). (3.63)

Remark 6 What is important in the previous proposition is the fact the con-
trols are very regular (which is quite new and interesting in itself) and that the
controls are derivatives (in fact curls) of functions, as in [20]. In the following,
it is enough to obtain a regularity L2((0, T ), H53(Ω)3)∩H27((0, T ), H−1(Ω)3)
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for eK̃1(2−1/r)/(2(T−t)5)(∇∧ v)1̂ω0
but the following proof can be easily adapted

to deduce controls v with

eK̃1(2−1/r)/(2(T−t)5)(∇∧v)1̂ω0
∈ L2((0, T ), H2m+1(Ω)3)∩Hm+1((0, T ), H−1(Ω)3)

for every given m as large as one wants.

Proof of Proposition 4.
In the following, we only control on the interval of time (T/2, T ), i.e. we

set v = 0 on (0, T/2) and let the corresponding solution (y, p) of (3.61) on
(0, T/2) evolve naturally until time T/2. Let yT/2 = y(T/2, ·).

Let P : L2(0, L)3 → L2(0, L)3 be the Leray projector Pϕ := ϕ−∇p, where
∆p = div ϕ in Ω and ∂p/∂n = ϕ · n on ∂Ω, (n is the unit outward normal
vector on ∂Ω). Since P∆ϕ = ∆Pϕ for every ϕ ∈ C∞

0 (Ω)3, P can be extended
as a continuous linear map from H−1(Ω)3 to H−2(Ω)3. We still denote by P
this extension. Let S : D′((T/2, T ), H1

0 (Ω)3) → D′((T/2, T ), H−2(Ω)3) and
S∗ : D′((T/2, T );H1

0 (Ω)3) → D′((T/2, T ), H−2(Ω)3) be defined by

Sz := −zt − P (∆z +Dyz) , (3.64)

S∗z := zt − P (∆z − (y · ∇)z − (z · ∇)y) . (3.65)

(S∗ corresponds to the linearized time-dependent Navier-Stokes operator and,
formally, S is the adjoint of S∗).

Since yT/2 is regular enough, one can assume from now on without loss of
generality that yT/2 = 0 by adding some suitable term in the source term f
(that we still call f) that still satisfies ρr

−1/2f ∈ L2(Q)3, and one can always
assume that Pf = f by changing the pressure. We define a closed linear
unbounded operator S : L2(Q/2)

3 → L2(Q/2)
3 by

D(S) := {z ∈ L2((T/2, T ), H1
0 ∩H2(Ω)3) ∩H1((T/2, T ), L2(Ω)3)|z(T, ·) = 0},

(3.66)

Sz := −zt − P (∆z +Dyz) . (3.67)

We call
Xm := D(Sm)

and
X−m := X ′

m,

where the pivot space is L2(Q/2)
3. For every (k, l) ∈ Z

2 such that k 6 l, one
has

Xl ⊂ Xk.

Moreover Xm is an Hilbert space for the scalar product

< z1, z2 >Xm
:=< Smz1,Smz2 >L2(Q/2)3 .

The associated norm is denoted ||.||Xm
. For m ∈ N, one can define S∗ as

an operator from X−m into X−m−1 by setting, for every z1 ∈ X−m−1 and
z2 ∈ Xm+1,

< S∗z1, z2 >X−m−1,Xm+1
:=< z1,Sz2 >X−m,Xm

. (3.68)
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(One easily checks that this definition is consistent: it gives the same image if
z1 is also in X−m′ for some m′ ∈ N). This implies in particular that, for every
z1 ∈ L2(Q/2)

3 and for every z2 ∈ Xm, one has, for every 0 6 j 6 l,

< (S∗)lz1, z2 >X−l,Xl
=< (S∗)l−jz1, (S)jz2 >Xj−l,Xl−j

. (3.69)

Let H0 be the set of z ∈ H1((T/2, T ), L2(Ω)3)∩L2((T/2, T ), H2(Ω)∩V ) such
that

√
ρ1Sz ∈ X26, (3.70)

√
1̂ω0

ρ1(∇∧ z) ∈ L2(Q/2)3. (3.71)

Let a be the following bilinear form defined on H0:

a(z, w) :=<
√
ρ1Sz,

√
ρ1Sw >X26 +

∫

Q/2

1̂ω0ρ1(∇∧ z).(∇∧ w).

From (3.50), we deduce that a is a scalar product on H0. Let H be the com-
pletion of H0 for this scalar product. Note that, still from (3.50) and also from
the definition of H, H is a subspace of L2

loc([T/2, T ), H
1
0 (Ω)3) and, for every

z ∈ H, one has (3.70), (3.71) and

||ρr1/2z||L2((T/2,T ),H1(Ω)3) 6 C
√
a(z, z), ∀z ∈ H. (3.72)

Let us now consider the linear form l defined on H by

l(w) :=

∫

Q/2

fw.

The linear form l is well-defined and continuous on H since, by the Cauchy-
Schwarz inequality together with (3.72), one has, for every w ∈ H,





∫

Q/2

|fw| 6 ||ρr−1/2f ||L2(Q/2)3 ||ρr1/2w||L2(Q/2)3

6 C||ρr−1/2f ||L2(Q/2)3

√
a(w,w).

(3.73)

Applying the Riesz representation theorem, there exists a unique

ẑ ∈ H (3.74)

verifying, for every w ∈ H,

< S26(
√
ρ1Sẑ),S26(

√
ρ1Sw) >L2(Q/2)3 −

∫

Q/2

ûw =

∫

Q/2

fw, (3.75)

with

û := −ρ1∇∧ (1̂ω0
∇∧ ẑ). (3.76)
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We then set

ỹ := (S∗)26S26(
√
ρ1Sẑ) ∈ X−26. (3.77)

We want to gain regularity on ỹ (by accepting to have a weaker exponential
decay rate for ỹ when t is close to T ). Let ψ ∈ C∞([T/2, T ]) and y ∈ X−1.
One can define ψy ∈ X−1 by the following way. Since S∗ : X0 → X−1 is onto,
there exists h ∈ X0 such that S∗h = y. We define ψy by

ψy = ψS∗h := ψ′h− S∗(ψh). (3.78)

This definition is compatible with the usual definition of ψy if y ∈ X0. We can
then define by induction on m ψy ∈ X−m for ψ ∈ C∞([T/2, T ]) and y ∈ X−m

in the same way. Using (3.77), this allows us to define

ŷ :=
√
ρ1ỹ ∈ X−26. (3.79)

From (3.75), (3.76), (3.77) and (3.79), one gets

S∗ŷ = f + û in X−27. (3.80)

Let K̃1 ∈ (0,K1) and ρ̃1 := e−K̃1/(T−t)5 . Using (3.76), (3.77) and (3.80), one
has

S∗
((√

ρ1/
√
ρ̃1

)
ỹ
)
=
(
1/
√
ρ̃1

)′ √
ρ1ỹ +

(
1/
√
ρ̃1

)
(f + û) ∈ X−26. (3.81)

We want to deduce from (3.81) that ỹ is more regular. This can be achieved
thanks to the following lemma:

Lemma 4 Let m ∈ N. If y ∈ X−m and S∗y ∈ X−m, then y ∈ X−m+1.

Proof of Lemma 4.

If m = 0, Lemma 4 follows from usual estimates on usual regularity prop-
erty of solutions of the linearized Navier-Stokes system. From now on, we
assume that m ∈ N

∗. Let h ∈ Xm. Since S is an operator from Xm+1 onto
Xm, there exists α ∈ Xm+1 such that Sα = h. Thanks to (3.68), one has

< y, h >X−m,Xm=< S∗y, α >X−m−1,Xm+1=< S∗y, α >X−m,Xm , (3.82)

the last equality coming from the fact that S∗y ∈ X−m. We deduce from (3.82)
that there exists some constant C > 0 such that for every h ∈ Xm,

| < y, h > |X−m,Xm 6 C||α||Xm = C||h||Xm−1 , (3.83)

which shows that y ∈ X1−m. This concludes the proof of Lemma 4.
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From (3.81) and Lemma 4, one gets that
(√

ρ1/
√
ρ̃1

)
ỹ ∈ X−25, ∀K̃1 ∈ (0,K1).

Using an easy induction argument together with Lemma 4 (and the fact that
one can choose K̃1 < K1 arbitrarily close to K1), we deduce that, for every
K̃1 ∈ (0,K1),

(√
ρ1/

√
ρ̃1
)
ỹ ∈ X0.

Let us now focus on û. Let us call v := ρ1ẑ. Using (3.72), one gets that

ρ1
−1ρr

1/2v ∈ L2(Q/2). (3.84)

Using (3.74) together with regularity results for S applied on ρ̃−1
1 ρr

1/2v ∈
L2(Q/2) and, as above for the proof of (3.84), a bootstrap argument (together

with the fact that one can choose K̃1 ∈ (0,K1) arbitrarily close to K1), one
obtains that

ρ̃−1
1 ρr

1/2v ∈ X27, ∀K̃1 ∈ (0,K1). (3.85)

From (3.85) and (3.80), we deduce (by looking the equation verified by (1/
√
ρ̃1)ŷ

and using usual regularity results for linearized Navier-Stokes system) that
(
1/
√
ρ̃1

)
ŷ ∈ L2((T/2, T ), H2(Ω)3) ∩ L∞((T/2, T ), H1

0 (Ω)3), ∀K̃1 ∈ (0,K1).

(3.86)

Proposition 4 follows from (3.80), (3.86) and (3.85).

3.4 Null-controllability of (3.1)

To finish, one can gather the results of Subsection 3.2 and Subsection 3.3
in order to apply Proposition 1 and obtain a controllability result on (3.1).
However, we cannot work in the C∞ setting of Proposition 1, so we need to
take into account Remark 3 and to be careful concerning the spaces we are
working with.

Proposition 5 For every T > 0 small enough, for every α ∈ (0, 1), there
exists r0 ∈ (0, 1) such that for every r ∈ (r0, 1), there exists C1 > 0 such that

for every K1 > C1, for every f ∈ L2(Q) be such that e
K1

2r(T−t)5 f ∈ L2(Q)3 and
for every y0 ∈ V , if

ν =
1− r

r
K1, (3.87)

there exists a solution (y, p, v) of the following linearized Navier-Stokes control
system





yt −∆y + (y · ∇)y + (y · ∇)y +∇p = f + (0, 0, 1ω0
v) in Q,

∇ · y = 0 in Q,

y(0, ·) = y0 in Ω,

y = 0 on Σ,

(3.88)
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such that

e
αK1

2(T−t)5 y ∈ L2((0, T ), H2(Ω)3) ∩ L∞((0, T ), H1(Ω)3), (3.89)

p ∈ L2((0, T ), H1(Ω)), e
αK1

2(T−t)5 v ∈ L2(Q). (3.90)

Proof of Proposition 5.
We want to apply Proposition 1. First of all, we deal with Assumption A1.

We apply Proposition 4: There exists a solution (y∗, p∗, v∗) of (3.61) such that
y∗(0, ·) = y0 and, for every K̃1 verifying 0 < K̃1 < K1,

e
K̃1(2−1/r)

2(T−t)5 1̂ω0
(∇∧ v∗) ∈ L2((T/2, T ), H53(Ω)3) ∩H27((T/2, T ), H−1(Ω)3),

(3.91)

e
K̃1

2(T−t)5 y∗ ∈ L2((T/2, T ), H2(Ω)3) ∩ L∞((T/2, T ), H1(Ω)3). (3.92)

Using well-known interpolation results (see for example [24, Section 13.2,
p. 96]) and setting n := 27, we obtain that

e
K̃1(2−1/r)

2(T−t)5 1̂ω0
(∇∧ v∗) ∈ H2n/3(Q0) ⊂ H17(Q0).

Let us call w := 1̂ω0
(∇∧ v∗), which is supported in Q0. One observes that

∇∧ w =



∂x3

w2 − ∂x2
w3

∂x3
w1 − ∂x1

w3

∂x2
w1 − ∂x1

w2


 .

Hence in view of equality (3.10) and setting

f1 = 0, f2 = −w3, f3 = w2, f4 = −w3, f5 = 0, f6 = w1, f7 = ∂x2
w1 − ∂x1

w2,

one has ∇∧ w ∈ Im(B) and Assumption A1 holds.
Now, we observe that Assumption A2 follows from Proposition 2. Let

(ỹ, p̃, ṽ) be defined by

(ỹ, p̃, ṽ) := −Mw,

where M is as in (the proof of) Proposition 2. It makes sense to apply M to
w because M is a partial differential operator of order 17 and w ∈ H17(Q0).

Using the fact that the operatorM is a partial differential operator of order

17 and that the coefficients ofM explode at time t = T at rate at most e
7321ν

(T−t)5 ,
as it follows from the construction of y given in Section 2 (see in particular
(2.16)) and the construction of M given in the proof of Proposition 2, one has

e
K2

2(T−t)5 ṽ ∈ L2(Q), (3.93)

e
K2

2(T−t)5 ỹ ∈ L2(Q), (3.94)
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for every K2 < K1(2 − 1/r) − 7321ν. In order to be obtain ỹ(T, .) = 0, it is
enough to have an exponential decay for y at time T , i.e. to impose

K1(2− 1/r)− 7321ν > 0,

which, with (3.87), is equivalent to

r >
7322

7323
,

which can be ensured since r can be arbitrarily chosen close to 1. Let α ∈ (0, 1).
We set

r0 :=
7322

7323− α
. (3.95)

Then, if r ∈ (r0, 1), one has

αK1 < K1 − 7321K1
1− r

r
. (3.96)

By (3.96), there exists K2 such that

αK1 < K2 < K1 − 7321K1
1− r

r
= K1 − 7321ν. (3.97)

Finally, one can apply (the proof of) Proposition 1 and we set

(y, p, v) := (y∗ + ỹ, p∗ + p̃, v∗ + ṽ).

Thanks to (3.91), (3.92), (3.93) and (3.94), one has

e
K2

2(T−t)5 v ∈ L2(Q),

e
K2

2(T−t)5 y ∈ L2(Q).

Then, using usual regularity results for the linearized Navier-Stokes operators

on e
K2

2(T−t)5 y (now considered on the entire time interval (0, T )), we obtain

e
αK1

2(T−t)5 y ∈ L2((0, T ), H2(Ω)3) ∩ L∞((0, T ), L2(Ω)3),

as soon as y0 ∈ V . The proof of Proposition 5 is completed.



Controllability of the 3-D Navier-Stokes system with a scalar control 37

4 Proof of Theorem 1

To conclude, we are going to apply an inverse mapping theorem to go back
to the nonlinear system, which is the following (see [2, Chapter 2, Section 2.3]):

Proposition 6 Let E and F be two Banach spaces. Let e0 ∈ E and F : E →
F which is of class C1 in a neighborhood of e0. Assume that the operator
dF(e0) ∈ Lc(E,F ) is onto. Then there exist η > 0 and C > 0 such that for
every g ∈ F verifying ||g −F(e0)|| < η, there exists e ∈ E such that

1. F(e) = g,
2. ||e− e0||E 6 C||g −F(e0)||F .
We are going to use the same techniques as in [12]. Let α ∈ (0, 1), and let us
consider some r ∈ (r0, 1) where r0 verifies (3.95). We apply Proposition 6 with
E and F defined in the following way. Let E be the space of the functions

(y, p, v) ∈ L2(Q)3 × L2(Q)× L2(Q)

such that

1. e
αK1

2(T−t)5 y ∈ L∞((0, T ), V )3 ∩ L2((0, T ), H2(Ω)3 ∩ V ),
2. ∇p ∈ L2(Q),

3. e
αK1

2(T−t)5 v ∈ L2(Q)3 and the support of v is included in Q0,

4. e
K1

2r(T−t)5 (yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v)) ∈ L2(Q)3,
5. y(0, ·) ∈ V ,

equipped with the following norm which makes it a Banach space:

||(y, p, v)||E := ||e
αK1

2(T−t)5 y||L∞((0,T ),H1
0 (Ω)3)∩L2((0,T ),H2(Ω)3)

+ ||p||L2((0,T ),H1(Ω)) + ||e
αK1

2(T−t)5 v||L2(Q)3

+ ||e
K1

2r(T−t)5 (yt −∆+ (y · ∇)y + (y · ∇)y +∇p− (0, 0, v))||L2(Q)3

+ ||y(0, ·)||H1
0 (Ω)3 .

Let F be the space of the functions (h, y0) ∈ L2(Q)3 × V such that

e
αK1

2(T−t)5 h ∈ L2(Q)3,

equipped with the following scalar product which makes it a Hilbert space:

((h, y0)|(k, z0)) = (e
αK1

2(T−t)5 h|e
αK1

2(T−t)5 k)L2(Q)3 + (y0|z0)H1
0 (Q)3 .

We define

F(y, p, v) = (yt −∆y + (y · ∇)y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v), y(0, ·)).

To apply the previous inverse mapping theorem, we first show the following
lemma.
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Lemma 5 The map F has its image included in F and is of class C1 on E.

Proof We see that F = F1 + F2 with

F1(y, p, v) := (yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v), y(0, ·)).
and

F2(y, p, v) := ((y · ∇)y, 0).

Thanks to the construction of E and F we have F1 : E → F and F1 is
continuous, so, since F1 is linear, F1 is of class C1. The map F2 is a quadratic
form, hence to prove that it maps E into F and is of class C1, it is sufficient
to prove that it is continuous, i.e. to prove that

||e
K1

2r(T−t)5 (y · ∇)y||L2(Q)3 6 C||(y, p, v)||2E . (4.1)

We choose r and α so that

K1

r
< 2αK1. (4.2)

(One can take for example α = 3/4 and r ∈ (0, 1) close enough to 1) Let us
call

ỹ(t, x) := e
K1

4r(T−t)5 y. (4.3)

This definition of ỹ and inequality (4.2) imply that

||ỹ||L∞((0,T ),H1(Ω)3) 6 C||(y, p, v)||E ,
which gives that

||∇ỹ||L∞((0,T ),L2(Ω)9) 6 C||(y, p, v)||E . (4.4)

We also have

||ỹ||L2((0,T ),H2(Ω)3) 6 C||(y, p, v)||E . (4.5)

A classical Sobolev embedding in dimension 3 together with (4.5) imply that

||ỹ||L2((0,T ),L∞(Ω)3) 6 C||(y, p, v)||E . (4.6)

Direct computations imply that

||(ỹ · ∇)ỹ||L2((0,T ),L2(Ω)3) 6 ||∇ỹ||L∞((0,T ),L2(Ω)9)||ỹ||L2((0,T ),L∞(Ω)3). (4.7)

From (4.4), (4.6) and (4.7), we obtain

||(ỹ · ∇)ỹ||L2((0,T ),L2(Ω)3) 6 C||(y, p, v)||2E ,
which, together with (4.3), gives (4.1).

We now consider the element e0 = (0, 0, 0) and we compute

dF(e0)(y, q, v) = yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v).

Proposition 5 implies that this application is onto. Hence, taking g = (0, y0)
and applying Proposition 6, Theorem 1 easily follows (in particular because
the trajectory y can be chosen as small as we want since ε can be arbitrarily
small).
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A Appendix: Creation of the matrix L0

In this appendix, we explain how the matrix L0 at point ξ0 (which represents all the
differentiated equations of System (3.27) up to the order 19) was created. The program
is written in C++, using the library uBLAS which is well-adapted to the manipulation of
sparse matrices. It is a parallel openMP algorithm, using 8 cores. We are not going to give
all the technical details but just explain rapidly the spirit of the algorithm. To simplify, we
will assume that the following “black boxes” (that had to be created) are at our disposal:
1. An evaluation function ep which evaluates a polynomial (represented by a vector) at

ξ0. This evaluation function can be created so that it can verify that ξ0 is not a root of
the polynomial P (0, ., .). (one just has to see if the evaluation is equal to 0 whereas the
polynomial has nonzero coefficients).

2. A derivation function deqex which differentiates an equation of level m with respect
to x1, x2, x3 or t.

A partial differential equation which is a derivative of order m of some of the equations of
(3.27) will be represented in a matricial form in the following way: We know that there are at
most F (m+3) derivatives appearing, and we observe that the coefficients are polynomials in
(x1, x2, x3) of an order less than 4 (it is a vector space of dimension 35). Hence an equation
of order m is represented by a matrix with F (m+3) lines and 35 columns, where on each line
one can find the coefficient of the partial derivatives of z1 (or z2 appearing) corresponding
to the number of this line, thanks to the natural bijection between N

4 and N. Since we
have 3 equations in (3.27) and 2 unknowns (z1 and z2), one can write the matrix M in the
following way:







A1 B1

A2 B2

A3 B3






. (A.1)

For i = 1, 2, 3, Ai represents the derivatives of z1 appearing in the derivatives of the i-th
equation of (3.27) and Bi those of z2. Hence, we can compute these Ai and Bi separately
and then gather them to obtain L0

0
.

The algorithm is the following. We explain it for the first equation of (3.27) and for the
unknown z1 (i.e. for A1, but it is the same for the other matrices).
1. We create a matrix e that represents the equation. We use ep to fill the line of L0

0

corresponding to the equation in a .txt file under the form i j A1(i, j). We create a
matrix h which is empty for the moment. In fact in e we will keep the equations of level
m− 1 and in h we will fill the equations of level m.

2. We create a “for” loop on m which will represent the level of equations we are creating.
The integer m goes from 1 to 19 since we differentiate 19 times at most.

3. We create a second “for” loop in the interior of the first loop on a number n which
represents one of the equations of level m. Thanks to the definition of the function F

given in Subsection 3.2.2, we have F (m − 1) + 1 6 n 6 F (m). If m = 1, then n goes
from F (0) + 1 = 2 to F (1) = 5 (n represents ∂1, ∂2, ∂3 or ∂t). If m = 2, then n goes
from F (1) + 1 = 6 to F (2) = 15 (n represents ∂2

11
, ∂2

12
, ∂2

13
, ∂2

1t
, ∂2

22
, ∂2

23
, ∂2

2t
, ∂2

33
, ∂2

3t
or

∂2
tt
), etc. This loop is parallelized on our 8 cores. In this loop, we want to create the

n-th equation denoted En, which is of level m. Hence we take a suitable equation of
level m − 1 denoted Er which is so that if we differentiate Er with respect to 1, 2, 3
or t, we obtain En. For example, if we consider m = 2 and if we want to obtain the
first equation of (3.27) differentiated two times with respect to 1, then we consider the
equation Er to be the first equation of (3.27) differentiated one time with respect to 1
and differentiated with respect to 1 to obtain En.
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4. Once the loop on n is ended, we have in our matrix e all the equations of level m − 1
and in h we have just created all the equations of level m. Now we just have to use our
evaluation function ep on h to obtain the coefficients of the lines of A1 corresponding
to the equations that are of level m, i.e. the equations numbered from F (m− 1) + 1 to
F (m). We write these coefficients in our .txt file under the form i j A1(i, j).

5. We update now e, take e = h, we empty h and we can go to the following loop m+ 1.

At the end we have created a file containing the coefficients of a sparse matrix A1 of size
(8855, 14950). Using the same program with z2 and the two others equation we obtain
five other files representing five matrices that we gather as in (A.1) to obtain the matrix
L0(ξ0) = L0

0
. Our matrix L0

0
, which represents all the equations, is of size (30360, 29900)

and has 651128 nonzero coefficients. Only 0.07% of the coefficients are different from 0, with
an average of 21.44 nonzero coefficients on each row, which is logical since we are working
with coefficients that are polynomials of small degree, so we do not create many terms on
each line when we differentiate the equations. In the following figure, one can observe how
the nonzero coefficients of L0

0
are distributed.

Fig. 3 Distribution of the nonzero coefficients of L0
0
.
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24(6):1029–1054, 2007.

21. Mamadou Gueye. Insensitizing controls for the Navier-Stokes equations. Ann. Inst. H.
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