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Abstract

We study the problem of ordinal embedding:

given a set of ordinal constraints of the form

distance(i, j) < distance(k, l) for some qua-

druples (i, j, k, l) of indices, the goal is to con-

struct a point configuration x̂1, ..., x̂n in R
p that

preserves these constraints as well as possible.

Our first contribution is to suggest a simple new

algorithm for this problem, Soft Ordinal Embed-

ding. The key feature of the algorithm is that

it recovers not only the ordinal constraints, but

even the density structure of the underlying data

set. As our second contribution we prove that in

the large sample limit it is enough to know “local

ordinal information” in order to perfectly recon-

struct a given point configuration. This leads to

our Local Ordinal Embedding algorithm, which

can also be used for graph drawing.

1. Introduction

In this paper we consider the problem of ordinal embed-

ding, also called ordinal scaling, non-metric multidimen-

sional scaling, monotonic embedding, or isotonic embed-

ding. Consider a set of objects x1, ..., xn in some abstract

space X . We assume that there exists a dissimilarity func-

tion ξ : X ×X → R≥0 that assigns dissimilarity values ξij
to pairs of objects (i, j). However, this dissimilarity func-

tion is unknown to us. All we get are ordinal constraints

ξij < ξkl for certain quadruples of indices (i, j, k, l). (⋆)

Our goal is to construct an embedding x̂1, ..., x̂n in some

Euclidean space R
p of given dimension p such that all or-

dinal constraints are preserved:

ξij < ξkl ⇐⇒ ‖x̂i − x̂j‖ < ‖x̂k − x̂l‖.
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This problem has first been studied by Shepard (1962a;b)

and Kruskal (1964a;b), and lately has drawn quite some at-

tention in the machine learning community (Quist & Yona,

2004; Rosales & Fung, 2006; Agarwal et al., 2007; Shaw

& Jebara, 2009; McFee & Lanckriet, 2009; Jamieson &

Nowak, 2011a; McFee & Lanckriet, 2011; Tamuz et al.,

2011; Ailon, 2012), also in its special case of rank-

ing (Ouyang & Gray, 2008; McFee & Lanckriet, 2010;

Jamieson & Nowak, 2011b; Lan et al., 2012; Wauthier

et al., 2013).

Soft ordinal embedding. The first main contribution of

our paper is to develop a new simple and efficient method

for ordinal embedding. We propose a new “soft” objec-

tive function that not only counts the number of violated

constraints, but takes into account the amount of violation.

The resulting optimization problem is surprisingly simple:

it does not have any parameters that need to be tuned, and it

can be solved by standard unconstrained optimization tech-

niques. We develop an efficient majorization algorithm for

this purpose. The resulting ordinal embedding has the nice

feature that it not only preserves the ordinal structure of the

data, but it even preserves the density structure of the data.

This is a key feature for machine learning because the re-

sults of learning algorithms crucially depend on the data’s

density. The code of our algorithm has been published as

an official R-package (Terada & von Luxburg, 2014).

Local ordinal embedding. There exists a fundamental

theoretical question about ordinal embedding that has re-

ceived surprisingly little attention in the literature. Namely,

in how far does ordinal information as in (⋆) determine

the geometry and the density of an underlying data set?

It is widely believed (p. 294 of Shepard, 1966; Section

2.2 of Borg & Groenen, 2005; Section 5.13.2 of Dat-

torro, 2005) and has recently been proved (Kleindessner

& von Luxburg, 2014) that upon knowledge of the ordi-

nal relationships for all quadruples (i, j, k, l), the point set

x1, ..., xn can be approximately reconstructed up to sim-

ilarity transforms if n is large enough An even more in-

teresting question is whether we really need knowledge

about all quadruples (i, j, k, l), or whether some subset of
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quadruples is already sufficient to guarantee the uniqueness

of the embedding. Particularly interesting are local ordinal

constraints. In the metric world, the whole field of dif-

ferential geometry is based on the insight that knowledge

about local distances is enough to uniquely determine the

geometry of a set. Does such a result also hold if our local

knowledge only concerns ordinal relationships, not metric

distances? As the second main contribution of this paper,

we provide a positive answer to this question: if the sample

size n is large enough, then it is possible to approximately

reconstruct the point set x1, ..., xn if we just know who are

each point’s k-nearest neighbors (for a parameter k to be

specified later). That is, the local ordering induced by the

distance function already determines the geometry and the

density of the underlying point set.

Application to graph drawing. The local point of view

suggests ordinal embedding as an interesting alternative to

graph drawing algorithms. If vertex i is connected by an

edge to vertex j, but not to vertex k, we interpret this con-

stellation as a constraint of the form ξij < ξik. With this

interpretation, graph embedding (drawing) for unweighted

graphs becomes a special case of ordinal embedding.

2. Related work

Ordinal embedding. Ordinal embedding was invented

as a tool for the analysis of psychometric data by Shep-

ard (1962a;b; 1966) and Kruskal (1964a;b). An approach

based on Gram matrices, called generalized non-metric

MDS (GNMDS), was proposed in Agarwal et al. (2007).

This approach solves a relaxed version of the embedding

problem as a semi-definite program. In a similar spirit,

Shaw & Jebara (2009) introduced structure preserving em-

bedding (SPE) for embedding unweighted nearest neighbor

graphs to Euclidean spaces. In practice, both SPE and GN-

MDS have a number of disadvantages. The computational

costs of the semi-definite programs are high, and both al-

gorithms have tuning parameters that have to be chosen

by some heuristic. Moreover, as a consequence of relax-

ation it may happen that even if a perfect embedding ex-

ists, it is not a solution of the optimization problem. More

on the theoretical side, there is related work on monotone

maps and sphericity (Bilu & Linial, 2005), with focus on

the question of the minimal achievable dimension p in the

non-realizable case, and Alon et al. (2008), with the focus

on the worst case distortion guarantees for embedding arbi-

trary metrics in the Euclidean space. In the machine learn-

ing community, the work of Jamieson & Nowak (2011a)

investigates a lower bound for the minimum number of

queries of the form “Is ξij ≤ ξkl?” for realizing an ordi-

nal embedding, and similar work exists for the special case

of ranking (Jamieson & Nowak, 2011b; Ailon, 2012; Wau-

thier et al., 2013). There is also a large literature on the

special case of graph embedding and graph drawing, see

for example the recent monograph by Tamassia (2013). In

our experiments, we include some of the most well-known

graph drawing algorithms such as the one by Fruchterman

& Reingold (1991) and by Kamada & Kawai (1989).

Metric embeddings. There exists a huge body of work on

algorithms that embed data points based on metric infor-

mation. An overview over the traditional approach of met-

ric multidimensional scaling is available in Borg & Groe-

nen (2005). Many of the recent embedding algorithms fol-

low the paradigm that it is enough to preserve local dis-

tances: Isomap (Tenenbaum et al., 2000), locally linear

embeddings (Roweis & Saul, 2000), Laplacian eigenmaps

(Belkin & Niyogi, 2003), stochastic neighbor embedding

(SNE; Hinton & Roweis, 2002), t-SNE (van der Maaten &

Hinton, 2008), and so on. Related theoretical work includes

the one of metric k-local embeddings, where the target is a

Johnson-Lindenstrauss-type theorem under the assumption

that only local distances have to be preserved (Gottlieb &

Krauthgamer, 2011; Bartal et al., 2011). We are not aware

of any theoretical work on local ordinal embeddings.

3. Soft ordinal embedding

3.1. A soft objective function

Consider a set of n objects with pairwise dissimilarity

scores ξij . To encode ordinal constraints, we introduce a

subset A ⊂ {1, . . . , n}4 of quadruples such that

(i, j, k, l) ∈ A ⇐⇒ ξij < ξkl.

Note that at this point the set A is allowed to be any subset

of {1, . . . , n}4. For given ordinal information A and given

dimension p, the aim of ordinal embedding is to find a p-

dimensional embedding X = (xis)n×p that preserves the

given ordinal information as well as possible. Denote by

dij(X) := ‖xi − xj‖ the Euclidean distances between the

embedded points xi and xj . The most natural objective

function for ordinal embedding is

Errhard(X | A) :=
∑

(i,j,k,l)∈A 1[dij(X) ≥ dkl(X)].

However, this objective function is discrete and difficult

to optimize. Moreover, it does not take into account the

“amount” by which a constraint is violated. This has al-

ready been observed by Johnson (1973), who suggested the

alternative penalty function

∑

(i,j,k,l)∈A max
[

0, d2ij(X)− d2kl(X)
]2

∑

(i,j,k,l)∈A(d
2
ij(X)− d2kl(X))

.

The numerator is a continuous version of Errhard and the

denominator’s purpose is to prevent the degenerate solu-

tion X ≡ 0. However, since the denominator depends on



Local Ordinal Embedding

X , this objective function is cumbersome to optimize. In

particular, no majorization algorithm exists for this type of

stress function (nor for similar stress functions such as (1)

in Kruskal, 1964a;b or (2) in Kruskal, 1968).

We now suggest an alternative approach. To overcome

the problem of degeneracy, we introduce a scale parame-

ter δ > 0 and propose the objective function

Errsoft(X | p, δ) :=
∑

i<j

∑

k<l oijkl max [0, dij(X) + δ − dkl(X)]
2
, (1)

where oijkl = 1 if (i, j, k, l) ∈ A and oijkl = 0 other-

wise. We call the problem of minimizing Errsoft the soft

ordinal embedding problem (SOE). Note that in the realiz-

able case, where the original point set comes from R
p, the

true point configuration is a global minimum of the objec-

tive function Errsoft. The following proposition shows that

the parameter δ > 0 just controls the scale of the embed-

ding and has no further effect on the solution (the proof is

straightforward and can be found in the supplement).

Proposition 1 (Scale parameter). Let δ1, δ2 > 0. If

Xδ1 := argminErrsoft(X | p, δ1) is an optimal solution

for parameter δ1, then (δ2/δ1)Xδ1 is an optimal solution

of argminErrsoft(X | p, δ2) for parameter δ2.

3.2. Majorization Algorithm for SOE

In order to minimize the objective function Errsoft, we pro-

pose a majorization algorithm. Let us briefly recap this

general method. Let X be a non-empty set and f : X → R

a real-valued function. A function g : X × X → R is a

majorizing function of f if it satisfies

(i)f(x0) = g(x0, x0) for all x0 ∈ X ,

(ii) f(x) ≤ g(x, x0) for all x0, x ∈ X .

For given x0 ∈ X , let x̃ ∈ X be such that g(x̃, x0) ≤
g(x0, x0). This implies f(x̃) ≤ g(x̃, x0) ≤ g(x0, x0) =
f(x0). Consequently, we can optimize the original function

by minimizing a majorizing function instead of the original

one. This can be of considerable advantage if the majoriz-

ing function g is easier to handle than the original function

f . The update step of a majorization algorithm for mini-

mizing f is xt+1 = argminx∈X g(x, xt−1).

To construct a majorizing function for our objective func-

tion Errsoft, we take inspiration from Groenen et al. (2006).

Given any current candidate point configuration Y , we con-

sider the following quadratic majorizing function:

Proposition 2 (Majorizing function). A majorizing func-

tion for each component of Errsoft is given by

oijkl max [0, dij(X) + δ − dkl(X)]
2

≤ αijkl‖xi − xj‖
2 + α∗

ijkl‖xk − xl‖
2

− 2βijkl(xi − xj)
T (yi − yj)

− 2β∗
ijkl(xk − xl)

T (yk − yl) + γijkl. (2)

The parameters αijkl, α∗
ijkl, βijkl, β∗

ijkl, and γijkl only

depend on Y . Their closed form expressions are provided

in the supplement of the paper.

The proof of this proposition is provided in the supplemen-

tary material, as well as the pseudocode for solving the soft

ordinal embedding problem based on this majorizing func-

tion. For the special case of local ordinal embedding we

explicitly state the majorization algorithm below.

4. Local ordinal embedding

The problem. The potential number of ordinal constraints

of the form (⋆) is of the order O(n4), much too large to be

practical. It is an interesting question whether it is possi-

ble to significantly reduce this number of constraints, with-

out giving up on embedding quality. In particular, we are

interested in the case of “local” ordinal constraints. By

kNN(i) ⊂ {1, ..., n} we denote the set of indices of the

nearest neighbors of point xi. Note that such a set encodes

a particular subset of ordinal constraints:

j ∈ kNN(i) and l 6∈ kNN(i) =⇒ ξij < ξil (⋆⋆)

It is well known from the area of manifold algorithms that

we can reconstruct a set of points if we know the distances

of each point to its k-nearest neighbors. We now want to

show the surprising fact that we do not even need to know

the distances — it is enough to know the indices in the sets

kNN(i) to reconstruct the point set.

It is convenient to formalize the neighborhood information

in the form of the k-nearest neighbor graph, in which each

point is connected to its k nearest neighbors by a directed,

unweighted edge. We define the problem of local ordinal

embedding (LOE) as follows: Given a directed, unweighted

kNN graph G, construct an embedding x̂1, ..., x̂n ∈ R
p

such that the kNN graph of the new points coincides with

the given graph G.

Our algorithm. Consider a directed, unweighted kNN-

graph with adjacency matrix A = (aij)i,j=1,...,n. With the

notation a∗ijk := aij(1−aik), our objective for local ordinal

embedding is a special realization of Errsoft, namely

Errlocal(X | p, δ) :=
n
∑

i=1

n
∑

j 6=i

n
∑

k 6=i

a∗ijk max [0, dij(X) + δ − dik(X)]
2
. (3)

Based on Proposition 2, we obtain the following majorizing

function for Errlocal:

Errlocal(X | p, δ) ≤

p
∑

s=1

[

xT
s Mxs − 2xT

s Hys

]

+ γ,
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where xs = (x1s, . . . , xns)
T , ys = (y1s, . . . , yns)

T , M =
(mij)n×n, H = (hij)n×n, γ =

∑n
i=1

∑n
j 6=i

∑n
k 6=i γijk,

mij =

{

1
2

∑

j 6=i(mij +mji) if i = j,

−2(αiji· + α∗
i·ij) if i 6= j,

hij =

{

∑

j 6=i(hij + hji) if i = j,

−(βiji· + β∗
i·ij + βjij· + β∗

j·ji) if i 6= j.

Note that the diagonal elements of M are positive. For

given Y and xjs (j 6= i), we can optimize the majorization

function with xis by the following update rule:

xis :=
2
∑n

j=1 hijyjs −
∑

j 6=i(mij +mji)xjs

2mii
. (4)

The pseudocode of the resulting majorization algorithm is

presented in Algorithm 1, called LOE-MM in the follow-

ing. The computational complexity of each of its itera-

tions is O(kn2). Compare this to the complexity of struc-

ture preserving embedding (SPE), an algorithm that has

been designed explicitly for the purpose of embedding k-

nearest neighbor graphs: here, the complexity of each iter-

ation is O(n3 + c3) with the number of ordinal constraints

c = (n−k)kn, so O(k3n6) altogether. A similar complex-

ity bound applies to the GNMDS algorithm.

As a final remark, note that local ordinal embedding applies

in a straightforward manner to general graph embedding

problems. Given a graph G = (V,E), we formulate the

constraints that ξij < ξik if (i, j) ∈ E and (i, k) 6∈ E.

Then we continue as above. In the supplementary mate-

rial we demonstrate that LOE works gracefully for visual-

Algorithm 1 LOE-MM: Majorization minimization algo-

rithm for local ordinal embedding

1: Set δ > 0 to a scale parameter and set X0 to some

initial n× p coordinate matrix.

2: Set iteration counter t := 0 and X−1 := X0.

3: Set ε > 0 to a small value as the convergence criterion

(e.g., ε = 10−5).

4: while t = 0 or Errlocal(Xt−1 | p, δ) − Errlocal(Xt |
p, δ) ≥ ε do

5: t := t+ 1.

6: Set Y := Xt−1.

7: Compute M and H .

8: for i = 1 to n do

9: for s = 1 to p do

10: Update xis by the formula (4).

11: end for

12: end for

13: Set Xt := X .

14: end while

izing moderately sized graphs and can outperform standard

graph drawing algorithms.

5. Local ordinal embedding: consistency

In this section, we prove that local ordinal embedding is

statistically consistent: in the large sample limit, it recov-

ers the original point position up to a small error. This es-

tablishes that local ordinal information is indeed sufficient

to reconstruct the geometry and density of a point set. To

be able to state the theorem, we first need to introduce a

distance function between sets of points X and Y :

∆(X,Y ) :=
∑n

i=1(xi − yi)
T (xi − yi)

∆sim(X,Y ) := inf
a>0,b∈Rp,

O: orthonormal

∆(X, a ·OY + 1bT ),

where 1 = (1, . . . , 1)T is the p-dimensional one-vector.

Theorem 3 (Consistency of LOE). Assume that X ⊂ R
p is

compact, connected, convex, has a smooth boundary, and

has full dimensionality in the sense that there exists some

ε > 0 such that the set Xε := {x ∈ X | d(x, ∂X ) > ε}
is nonempty and connected. Let f be a probability density

function with support X . We assume that f is continuously

differentiable and is bounded away from 0. Let X1, ...,Xn

be an i.i.d. sample from f , and X̂1, ..., X̂n ∈ R
p be a

global optimum of the LOE objective function Errlocal.
Then, as n → ∞, k → ∞ such that k/n → 0 and

kp+2/(n2 logp n) → ∞, we have that ∆sim(X, X̂LOE) →
0 in probability.

Proof sketch. In Proposition 4 below we prove that upon

knowledge of the unweighted, directed kNN graph it is pos-

sible to consistently estimate all pairwise Euclidean dis-

tances ‖Xi − Xj‖, up to a global multiplicative constant

and a small additive error ε. Consequently, the distance ma-

trix of any point configuration Z1, ...,Zn that has the same

kNN graph as the original set X1, ...,Xn, has to agree with

the original distance matrix (up to error ε and a global con-

stant). But it is well known in the context of classic multidi-

mensional scaling that if two distance matrices agree up to

entry-wise deviations of ε, then the ∆sim-distance between

the two corresponding point configurations is bounded by

ε2 times a constant (Sibson, 1979). Taken together, any

point configuration X̂1, ..., X̂n that is a solution of LOE

has to agree with the original point set, up to similarity

transforms and an error converging to 0.

The key ingredient in this proof is the following statement.

Proposition 4 (Estimating distances from kNN). Under

the assumptions of Theorem 3, consider the unweighted, di-

rected kNN graph on the sample X1, ...,Xn. Then we can

construct estimates d̂ij such that with probability 1 − pn
the following holds: There exists an unknown constant Cn,
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a scaling constant sn > 0 and an εn > 0 such that for all

i, j ∈ {1, ..., n}, we have |Cn ·sn ·d̂ij−‖Xi−Xj‖ | ≤ εn.

In particular, if n → ∞, k → ∞, k/n → 0, and

kp+2/(n2 logp n) → ∞, then εn → 0 and pn → 0, hence

the distance estimates converge to the true Euclidean dis-

tances uniformly in probability.

Proof sketch. It has been proved in von Luxburg & Alam-

gir (2013) that if we are given an unweighted, directed

k-nearest neighbor graph on a sample of points, then un-

der the conditions stated in the proposition it is possible

to consistently estimate the underlying density f(Xi) at

each data point, that is there exist estimates f̂i such that

f̂i → f(Xi) a.s., uniformly over all sample points. We

now use these estimates to assign edge weights to the pre-

viously unweighted kNN graph: if edge (i, j) exists, it gets

the weight rn,k(i) := (1/f̂i)
1/p. The key is now to prove

that the shortest path distances in the re-weighted kNN

graph converge to the underlying Euclidean distances. As-

sume first that we knew the underlying density values, that

is f̂i = f(Xi). Then under the conditions on n and k stated

in the proposition, the distance between a point Xi and its

k-nearest neighbor is highly concentrated around its expec-

tation, and this expectation is proportional to rn,k(i). To

see that ‖Xi−Xj‖ is lower bounded by the rescaled short-

est path distance between i and j, we take the straight line

between Xi and Xj and chop it into small pieces [al,al+1]
of length proportional to rn,k (this length varies with the

density as we go along the line). Now we replace each

of the intermediate points al by its closest sample point

bl. With some care we can ensure that bl is connected to

bl+1 in the graph, and in this case the length of the path

Xi, b1, b2, ...,Xj is an upper bound for the rescaled short-

est path distance between Xi and Xj in the re-weighted

graph. The other way round, consider a shortest path in

the re-weighted graph. It is straightforward to see that

its length is approximately proportional to the sum of Eu-

clidean distances between subsequent vertices, which is an

upper bound on the Euclidean distance between Xi and

Xj . The same analysis holds if f̂i does not coincide with

f(Xi), but consistently converges to f(Xi) up to a con-

stant. In this case, the matrix of pairwise shortest path

distances approximates a constant times the original Eu-

clidean distance matrix.

For an illustration of Proposition 4, we provide a number

of simulations in the supplementary material. They show

the convergence behavior of the shortest path distance in

the re-weighted graph.

Choice of k. Theorem 3 states that statistical consis-

tency of local ordinal embedding occurs if k/n → 0 but

k/n2/(p+2) → ∞ (ignoring log factors). This requirement

is inherited from von Luxburg & Alamgir (2013), but we

believe that this condition on k can be significantly low-
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Figure 1. Relationship between the number of constraints and

the embedding error, on the data described in Section 6.2 (with

n = 500). The “difference from the original embedding” refers

to the squared Frobenius distance between the original coordinate

matrix and the procrustes transformed LOE embedding.

ered to k some power of log n (this is ongoing work).

A natural question is whether the quality of the embedding

increases dramatically if we increase k. Note that the num-

ber of ordinal constraints of the type (⋆⋆) that are encoded

in a kNN graph is nk(n−k), which takes its maximum for

k = n/2. However, Figure 1 shows empirically that once

we passed some reasonably small value of k, the error of

the embedding stays about the same for a wide range of k,

and only increases when k gets extremely large again. Fur-

ther figures illustrating the behavior of LOE with respect to

the choice of k can be found in the supplementary material.

We should contrast our number of constraints with the re-

sults in Jamieson & Nowak (2011a). Here the authors

showed that at least Ω(n log n) actively chosen queries are

necessary to uniquely determine a point embedding. They

conjecture that there is also a matching upper bound. In our

case, however, we are not interested in the case of arbitrary

comparisons of type (⋆), but in the particular case of local

comparisons of type (⋆⋆). So even if their conjecture turns

out to be true, this is not in conflict with our results.

6. Experiments with local ordinal embedding

In our experiments we focus on the case of local ordinal

embedding (experiments for more general soft ordinal em-

bedding are provided in the supplementary material).

6.1. Evaluation criterion: Graph adjusted rand index

To measure a recovery rate of ordinal information in an

unweighted graph, we need an appropriate criterion. Let

An := (aij)n×n be a given adjacency matrix and Ân :=
(âij)n×n be a recovered adjacency matrix. The naive ap-

proach would be to consider the error function

Err(Ân, An) :=
1

n(n− 1)
‖Ân −An‖

2
F .
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Original data Kamada and Kawai

t-SNE

Laplacian eigenmaps Fruchterman and Reingold
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Figure 2. Two-dimensional embeddings of different methods in the realizable case. Our LOE algorithm is the only one that captures the

density information of the original data.

âij Total row
1 0

aij
1 mi ki −mi ki
0 ki −mi n− 1− 2ki +mi n− 1− ki

Total col ki n− 1− ki n− 1

Table 1. Contingency table of the i-th rows of An and Ân. Used

for deriving the graph adjusted rand index.

However, this function is unsuitable if n is large and k =
o(n), because then Err(Ân, An) ≤ 2k

n−1 → 0 as n →
∞. Thus, we introduce an adjusted recovery measure for an

unweighted graph, called graph adjusted rand index. Let

ki be the out-degree of vertex i and mi := #{j | aij = 1
and âij = 1}. Consider the contingency table presented

as Table 1. As with Hubert & Arabie (1985), for each i
we assume mi is drawn from a hypergeometric distribu-

tion, that is âij takes 1 or 0 randomly such that ki is fixed.

Under this assumption, we have E[mi] = k2i /(n − 1).
For Mi := (n − 1) − 2(ki − mi), we have E[Mi] =
(n − 1) + 2ki(ki − n+ 1)/(n− 1). We define the graph

adjusted rand index GARI(An, Ân) between An and Ân

as

GARI(An, Ân) :=

∑n
i=1(M̂i − E[Mi])

∑n
i=1(maxMi − E[Mi])

where M̂i :=
∑

j 6=i 1[aij = âij ]. GARI is bounded from

above by 1, and GARI(An, Ân) = 1 ⇐⇒ An = Ân.

A high GARI score implies that many of the ordinal con-

straints have been satisfied by the solution. Note, however,

that GARI does not take into account the amount by which

a constraint is violated. We will see below that there exist

embeddings that have a high GARI score, but do not pre-

serve the density information. In this sense, a high GARI

score is a necessary, but not a sufficient criterion for a good

ordinal embedding.

6.2. kNN graph embedding in the realizable case

We first consider a simple case in which a perfect embed-

ding to R
2 exists. We sampled n points in R

2 from a dis-

tribution that has two uniform high-density squares, sur-

rounded by a uniform low density region. See Figure 2

(upper left). We then constructed the unweighted kNN

graph and embedded this graph in R
2 by various embed-

ding methods, see Figure 2. We compare our approach to

Laplacian eigenmaps (LE), the Kamada and Kawai algo-

rithm (KK), the Fruchterman Reingold algorithm (FR), and

t-distributed stochastic neighbor embedding (t-SNE). We

also wanted to compare it to generalized non-metric scaling
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Figure 3. (a) Beanplots of GARI (high is good) and Err(Ân, An) (low is good) for 2-dimensional embeddings of each method with

100 datasets, (b) Two-dimensional embeddings of 5 methods for a unweighted k-NN graph with n = 1500.
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Figure 4. 2-dimensional embeddings of each method and a 3-dimensional perfect embedding (LOE-3D) for the Desargues graph.

(GNMDS) and structure preserving embedding (SPE), but

those two algorithms could not cope with this sample size

for computational reasons. Even for moderate 500 sam-

ple points, GNMDS and SPE failed due to out of memory

on a 3 GHz Intel core i7 with 8 GB of memory (we provide

their results on smaller data sets in the supplementary mate-

rial). In Figure 2 we can see that while most of the methods

get the rough point layout correct, LOE is the only method

that is capable to capture the original density and geomet-

ric structure of the data. For the Kamada and Kawai algo-

rithm we can give a theoretical explanation for the distor-

tion. This algorithm tries to find an embedding such that the

Euclidean distances between the embedded vertices corre-

spond to the shortest path distances in the graph. However,

as has been proved in Alamgir & von Luxburg (2012), the

shortest path distances in unweighted kNN graphs do not

converge to the Euclidean distances — to the opposite, any

embedding based on shortest path distances generates an

embedding that distributes points as uniformly as possible

(Alamgir et al., 2014).

6.3. kNN graph embedding in the non-realizable case

Next we consider a higher dimensional Gaussian mixture

model with three components. We define the mean vectors

of the three components as µl := Acl (l = 1, 2, 3), where

c1 :=
(

4√
3
, 0
)

, c2 :=
(

− 4
2
√
3
, 4
2

)

, c3 :=
(

− 4
2
√
3
,− 4

2

)

and A is a random p × 2 orthonormal matrix. The points

Xi = [Xi1, . . . , Xip]
T (i = 1, . . . , n) are generated as

Xi :=
∑3

l=1 uilµl + εil, where ui = (ui1, ui2, ui3) and

εik are independently generated from the multinomial dis-

tribution for three trials with equal probabilities and the

p-dimensional standard normal distribution Np(0, Ip), re-

spectively. Based on these observations, we then con-

struct the unweighted kNN graph. We set the true num-

ber of nearest neighbors k ≈ 2 log n, the number of orig-

inal dimensions p = 5. In order to run a more thor-

ough statistical evaluation, we chose the small sample size

n = 90 (k = 8) and constructed 100 such unweighted

kNN graphs. To these graphs, we applied various embed-

ding methods: LOE, a random embedding (RND) which
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just uses sample points from the standard normal distribu-

tion, Laplacian eigenmaps (LE), Kamada and Kawai algo-

rithm (KK), Fruchterman Reingold algorithm (FR), gen-

eralized non-metric multidimensional scaling (GNMDS),

structure preserving embedding (SPE), and t-distributed

stochastic neighbor embedding (t-SNE). To choose the tun-

ing parameter λ for GNMDS, we tried the candidate values

{0.5, 1, 2, . . . , 100} and chose the one that leads to the best

GARI value. This means that we had to run GNMDS 101
times for each data set. It took approximately 2 months to

get the solutions of GNMDS for 10 data sets, after which

we stopped (in this experiment, GNMDS was performed on

a 1.9 GHz Intel core i5 with 8 GB of memory). For SPE, we

allowed the original algorithm to select the tuning parame-

ter C. Figure 3(a) shows beanplots of the GARI scores for

2-dimensional embeddings. In this figure, LOE and t-SNE

perform best. However, the GARI scores do not tell the

whole story as they do not evaluate the actual distortion,

but just the number of violated ordinal constraints. To in-

vestigate the preservation of density information, we settle

on the larger sample size of n = 1500 (k = 14 ≈ 2 log n)
and compare various embeddings in Figure 3(b). The top

left figure shows the original data, projected on the space

spanned by the mean vectors. It is obvious that while most

methods do something reasonable, LOE is the only method

that is able to recover the Gaussian density structure of the

data. This finding also indicates that the GARI score alone

is not enough to evaluate quality of embeddings. To com-

pare the computational costs of the methods, we measured

the required time for 50 iterations of each algorithm, for

each parameter choice. This experiment was performed on

a 3 GHz Intel core i7 with 8 GB of memory. The results are

depicted in Figure 5. It is obvious that the two semi-definite

programming methods, GNMDS and SPE, are way too ex-

pensive. On the other hand, the standard graph embed-

ding algorithms such as LE, KK, FR, t-SNE are pretty fast.

The methods based on LOE are in the intermediate range.

More specifically, we additionally compared three differ-

ent methods to minimize our objective functions: LOE-SD

(the steepest descent algorithm, as implemented in C and

R, with the step size 1 and the rate parameter of the back-

tracking line search 0.5); LOE-BFGS (a Newton-like al-

gorithm, the Broyden-Fletcher-Goldfarb-Shanno algorithm

implemented as the optim function in the R stats package),

and our majorization algorithm LOE-MM. Figure 5 shows

that our majorization algorithm is the fastest among these

three.

6.4. Further simulations: graph drawing and SOE

We also applied our algorithm to standard graph-drawing

tasks. Figure 4 shows one example, the classic Desar-

gues graph. The 3-dimensional LOE-embedding can per-

fectly recover the original graph structure. It seems that
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Figure 5. Running times of various methods, cf. Section 6.3.

the 2-dimensional embedding of LOE is a projection of

the 3-dimensional one. We provide more graph drawing

examples in the supplementary material. The general bot-

tom line is that LOE outperforms competing algorithms in

many cases. Finally, we also ran experiments with the gen-

eral SOE approach, with varying amounts of ordinal con-

straints. The results can be found in the supplement.

7. Conclusion and Discussion

In this paper we suggest a new soft objective function for

ordinal embedding. It not only takes into account the num-

ber of ordinal constraints that are violated, but the actual

amount of distance by which these constraints are violated.

Optimizing this objective function leads to an ordinal em-

bedding algorithm that is able to recover the density struc-

ture of the underlying data set in a much better way than

many other methods. Our approach for optimizing this ob-

jective function is based on majorizing functions and has

been published as an R-package (Terada & von Luxburg,

2014). As a second contribution, we prove that ordinal em-

bedding is even possible if not all ordinal constraints are

given, but we just get to know the indices of the k near-

est neighbors of each data point. This theoretical insight

is new. As a special case of local ordinal embedding, we

consider the problem of graph embedding. We ran exten-

sive simulations to compare our algorithms to its competi-

tors (the main paper and the supplementary material). They

show that our method is very good at discovering the den-

sity structure of data sets and the geometric structure of

graphs.
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