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Abstract

Biomolecular Computation(BMC) is computation at the molecular scale,
using biotechnology engineering techniques. Most proposed methods for
BMC used distributed (molecular) parallelism (DP); where operations are
executed in parallel on large numbers of distinct molecules. BMC done ex-
clusively by DP requires that the computation execute sequentially within
any given molecule (though done in parallel for multiple molecules). In con-
trast, local parallelism (LP) allows operations to be executed in parallel on
each given molecule.

Winfree, et al [W96, WYS96]) proposed an innovative method for LP-
BMC, that of computation by unmediated self-assembly of 2D arrays of
DNA molecules, applying known domino tiling techniques (see Buchi [B62],
Berger [B66], Robinson [R71], and Lewis and Papadimitriou [LP81]) in
combination with the DNA self-assembly techniques of Seeman et al [SZC94].

We develop improved techniques to more fully exploit the potential power
of LP-BMC. we propose a refined step-wise assembly method, which pro-
vides control of the assembly in distinct steps. Step-wise assembly may
increase the likelihood of success of assembly, decrese the number of tiles
required, and provide additional control of the assembly process. The as-
sembly depth is the number of stages of assembly required and the assembly
size is the number of tiles required.

We also introduce the assembly frame, a rigid nanostructure which binds
the input DNA strands in place on its boundaries and constrains the shape
of the assembly. Our main results are LP-BMC algorithms for some fun-
damental problems that form the basis of many parallel computations. For
these problems we decrease the assembly size to linear in the input size and
and significantly decrease the assembly depth. We give LP-BMC algorithms
with linear assembly size and logarithmic assembly depth, for the parallel
prefix computation problems, which include integer addition, subtraction,
multiplication by a constant number, finite state automata simulation, and
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fingerprinting (hashing) a string. We also give LP-BMC methods for per-
fect shuffle and pair-wise exchange using a linear size assembly and con-
stant assembly depth. This provides logarithmic assembly depth LP-BMC
algorithms for the large class of normal parallel algorithms [S71, U84, L92]
on shuffle-exchange networks, e.g. DFT, bitonic merge, fixed permutation
of data, as well as evaluation of a bounded degree Boolean circuit in time
bounded by the product of the circuit depth times a logarithm of the circuit
size. Our LP-BMC methods may require somewhat smaller volumes than
previous DP-BMC algorithms [R95,R98b, OR97] for these problems. All
our LP-BMC assembly techniques can be combined with DP-BMC paral-
lelism to simultaneously solve multiple problems with distinct inputs (e.g.
do parallel arithmetic on multiple inputs, or determine satisfying inputs of a
circuit), so they are an enhancement of the power of DP-BMC.



1 Introduction

Biomolecular Computation. We will use the term nanocomputation to denote
computation executed at the molecular scale. See Reif [R98a] for an extensive sur-
vey of BMC. To be effective, nanocomputation will depend on a technology that
allows for manipulation of objects at a molecular scale. One such promising tech-
nology is that of microbiology, specifically by use of well established recombinant
DNA [WHRS87, S94, SM97] and RNA operations (appropriately modified to in-
sure the required reliability). A key operation is hybridization of single-stranded
DNA molecules which are Watson-Crick complementary and oriented in opposite
directions, into double-stranded DNA in a helical structure. We will use the term
Biomolecular computation (BMC) to denote nanocomputation using biotechnol-
ogy. The first implementation of BMC by Adleman [A94] solved a small Hamilto-
nian path problem by use of recombinant DNA technologies.

The fundamental principles for doing BMC need to be motivated by the under-

lying biotechnology, but since this is a quickly evolving technology, the principles
for doing BMC should be sufficiently general so that they will hold for later forms
of this biotechnology. This motivates us to develop parallel algorithms for BMC in
the context of well defined models, that represent the key aspects and technology
constraints of BMC. It is still not clear what the fundamental techniques for do-
ing BMC may be. In particular, the literature in BMC utilizes only a few distinct
classes of methods.
Distributed Parallel Biomolecular Computation. In the following, let a Dis-
tributed Parallel (DP) operation be a single operation done in parallel on multiple
distinct molecules (for example the use of restriction enzymes to do editing of
these molecules, each at the corresponding same labeled site). This parallel exe-
cution by DP on multiple molecules to execute computations will be termed here
Distributed Parallel BMC (DP-BMC). DP-BMC provides a potential for massive
parallel computation due to the vast numbers of molecules in a test tube.

BMCs [SM97] have utilized certain base methods which include:

e generation of a large number of sequences by random assembly; see Adle-
man [A95] and Lipton [L95] (interestingly, this is the only method now in
use in BMC that could be viewed as a combined DP-BMC and LP-BMC
method) and

o DP-BMC methods for string editing operations, executed sequentially within
each molecule.

Many known proposed methods for BMC then use a combination of these base
methods and DP-BMC. They can be categorized as follows:



e simulation of sequential computations (e.g. execution of bit serial arithmetic
or more generally universal Turing Machines), and

e solution of NP search problems, by the use of DP-BMC processing.

Note that the papers [Be94, A95, L95, BDL95, SM97, BCGT96, ARRW96] pro-
pose to solve NP search problems in essentially the same manner, as follows:

1. a generation phase for assembling all possible solutions,

2. verification of the validity of each possible solution; this is done in parallel
by DP-BMC for each possible solution, but is done sequentially for each
solution, and

3. detection of a valid solution.

In many cases, the potential speed-up benefits from DP-BMC are somewhat limited
because each circuit or formula defining the search problem is locally evaluated
sequentially, and so such DP-BMC methods for BMC require many steps to do this
evaluation locally. This presents a possible disadvantage, since the step duration
in BMC is much longer than the step duration for conventional VLSI, but this
disadvantage may be overcome by the use of massive parallelism due to DP-BMC.

For example, consider the recent stickers project of Adleman et al [ARRW96]
(see also an earlier proposal of [BDL95]) for breaking the DES standard cryptosys-
tem via BMC. Their proposed method for breaking DES makes use of DP-BMC to
evaluate in parallel the DES circuit for all possible key values. Their method uses
at least as many operations as required by the sequential evaluation of the DES cir-
cuit, which consists of a few thousand Boolean gates. In contrast, a conventional
VLSI circuit for DES takes time which is the depth of the DES circuit, which can
be done in conventional VLSI at a very high step rate, in just a few dozen parallel
steps. [ARRW96] still argue, quite convincingly, that the massive parallelism due
to DP-BMC may allow them a sufficient advantage over conventional computers
to allow them to break DES. Nevertheless, this provides a motive for us to attempt
to also exploit DP-BMC where possible to improve the advantages of BMC, even
in the case where the more obvious major advantage is due to DP.

Circuits can be evaluated in parallel by use of DP-BMC algorithms! [R95,R98b,
OR97] requiring a large volume; in contrast our LP-BMC methods require a con-
siderably smaller volume.

'Reif [R95,R98b] gave first known polylog DP-BMC algorithm for the parallel evaluation
Boolean circuits; if a circuit is constructable in s space with unbounded fan-out, and depth d, then
that algorithm had time cost O(d+ s log s) for circuit evaluation in a PAM model for DP-BMC where
long complementary matching is allowed (with a factor s further cost for a more restricted RDNA
model where only constant length matches are allowed). Recently Ogihara and Ray [OR97] gave the
similar bounds for circuit evaluation assuming implicitly a similar model for DP-BMC where long



Local Parallel Biomolecular Computation. Let a Local Parallel (LP) operation
be a parallel operation done on a given molecule (for example the editing of a sin-
gle molecule at multiple sites). For large molecules, such as long DNA or RNA
strands, LP-BMC is the natural analog to the parallelism as provided by conven-
tional VLSI for parallel circuit evaluation.

Another motivation for developing LP-BMC methods is to allow us to effi-
ciently work with large biological DNA strands. In contrast, most methods pro-
posed for BMC deal with relatively short DNA and RNA strands, due to the sequen-
tial processing within individual strands. However, many biological applications,
for example DNA sequencing, involve large DNA strands. LP-BMC methods may
allow for the efficient processing for such large DNA and RNA strands.

LP-BMC via Unmediated Self-assembly. Domino tiling techniques were devel-
oped by Buchi [B62], Berger [B66], Robinson [R71], and Lewis and Papadimitriou
[LP81] in the early 1960s, and allow simulation of a one-tape Turing Machine with
S > n space (or a 1D parallel array of S processors) running in time 7" > n by
construction of an assembly of an S/2 x T array of A = ST /2 > n?/2 tiles with
assembly depth T'.. Winfree [W96] (also Winfree, et al [WYS96]), proposed to ex-
ecute these domino tiling techniques in LP-BMC by assembling 2D arrays of DNA
molecules, using the DNA self-assembly techniques of Seeman et al [SZC94].
Winfree proposed the computation be done by unmediated self-assembly, that is the
assembly of tiles proceeds without mediation (i.e., external control). While the idea
of computation via unmediated self-assembly is very appealing, an early version of
this paper expressed skepticism about unmediated self-assembly, it appeared that
it was difficult to determine the likelihood for a successful assembly. However,
there is now considerable evidence that computation via unmediated self-assembly
is feasible. First, computer simulations by Winfree [W97] indicated that careful
choice of settings of the parameters allow unmediated self-assembly to succeed
in kinetic assembly model. Further, the subsequent development of error-resilient
tiling systems by Winfree [WB2004], Reif [RS04] and others, has Then computa-
tional tiling assemblies using unmediated self-assembly were first experimentally
demonstrated via one dimensional assemblies [LWR99, MMLROO], using designs
based on the tiling prefix-computation assemblies described in this paper, in col-
laberations involving this author’s group, Seeman’s group at NYU, and Winfree at
Caltech. Later work by Winfree’s group at Caltech demonstrated two dimensional
computational tiling assemblies [R2004].

The Goals of this Paper. The central task which we investigate in this paper, is

complementary matching is allowed (but do not consider more refined models such as the RDNA
where only constant length matches are allowed). Both these results required large amount of com-
munication between distinct molecules and thus require large volume growing at least as 2%



to develop and refine methods for LP-BMC and to combine these methods with
the already known DP-BMC techniques (e.g., as provided naturally by recombi-
nant DNA techniques). Our approach is to utilize certain parallel algorithm design
techniques, including parallel prefix computation and parallel shuffle-exchange op-
erations. With the use of some form of global parallel communication between
distributed molecules or an associative match operation on sets of molecules, these
parallel algorithm design techniques can be applied to BMC (Reif [R95,R98b]).
However, we require in this paper that DP-BMC not utilize global parallel com-
munication between distributed molecules, and in this case application of these
parallel algorithm design techniques to LP-BMC is not obvious or straightforward.

It should be emphasized that although our molecular assembly techniques have
some experimental basis (due to the extensive DNA self-assembly work of Seeman
[SZC94, WYS96], who has constructed many of the basic components (tiles) of our
proposed assemblies, this paper is theoretical in nature and should be evaluated
from that perspective.

Our Improvements to LP-BMC:

(1) Step—Wise Assembly. We propose instead a refined assembly method, which
we call step-wise assembly. This provides control of the assembly of an S/2 x T
array in distinct 7" steps, to increase the likelihood of success. This simulation is
also extended to simulate a 2D processor array.

(2) Framing. We also introduce a new method for constraining the assembly,
which we call an assembly frame, which is a rigid nanostructure whose interior
boundary binds the the input DNA strand and constrains the shape of the initial
assembly to a given polygonal shape, thus providing for inputs and constraining
the geometry of the subsequent tiling assembly.

(3) Compact Assemblies with Small Assembly Depth. Let the assembly depth of
a tile in the intended tiling be the number of matches between tiles in paths of this
breadth first assembly tree. We define the assembly depth d of the tiling assembly
to be the maximum assembly depth of any tile of the intended assembly; it is the
number of stages of assembly required if step-wise assembly is used. The assembly
size is the number of tiles required.

Using our assembly techniques, we propose LP-BMC methods that have linear
assembly size in the input size and have small assembly depthThese techniques for
LP-BMC can be used for many applications: basic arithmetic and register level
operations, data rearrangements and permutations, as well as more sophisticated
operations done on large sequences of data. We use LP-BMC to solve the following
problems with linear assembly size:

e logarithmic assembly depth prefix computation: given a composition opera-
tion that is associative and a sequence of n inputs, compute the composition



of all prefixes of the inputs (e.g., prefix sums of n numbers; n-bit arithmetic
such as addition, and subtraction, multiplication by a constant number; sim-
ulation of a finite state automata on an input of length n; fingerprint a length
n string),

e constant assembly depth perfect shuffle and pair-wise exchange permuta-
tions, which allows constant time emulation of the shuffle-exchange net-
work,

e logarithmic assembly depth execution of a large class of normal parallel
algorithms [S71, U84, L.92] on shuffle-exchange networks (e.g., DFT and
bitonic merge of n-vectors),

e logarithmic assembly depth general permutations, by use of known Benes
network techniques [B65],

e cevaluation of a bounded degree Boolean circuit of size n in assembly depth
bounded by the circuit depth times O (log n) (without a large amount of com-
munication between distinct molecules, in contrast with known DP-BMC
algorithms [R95,R98b, OR97]).

Using LP-BMC to Enhance DP-BMC. LP parallelism complements the more
apparent DP parallelism available in BMC. We feel that BMC needs to develop
methodologies that combine the use of LP-BMC and DP-BMC, just as conven-
tional electronic computational systems combine the use of VLSI and more dis-
tributed modes of computing. Let a LPDP operation be a LP operation done on
multiple distinct molecules, that is via a combination of LP and DP. Let LPDP-
BMC be the resulting mode of BMC computation combining LP-BMC and DP-
BMC. With the use of surface attachments, all the LP-BMC techniques we pro-
pose can be executed in parallel by separate molecules in a distributed fashion.
Thus they can simultaneously solve multiple problems with distinct inputs. For
example, our LP-BMC methods for parallel prefix, addition, and circuit evaluation
can be done simultaneously in parallel for all possible inputs using LPDP-BMC, so
they can execute parallel arithmetic on multiple inputs, and also determine satisfy-
ing inputs of a circuit. Thus our LP-BMC assembly techniques are an enhancement
to the power of DP-BMC.

1.1 Organization of this Paper

An introduction to BMC is given in Section 1. Section 2 provides useful DNA
notation (Subsection 2.1), preliminary descriptions of previous work on DNA self-
assembly techniques (Subsection 2.2) and known Turing Machine simulations us-



ing tiling (Subsection 2.3). Section 3 describes Winfree’s proposed use of unmedi-
ated BMC using DNA self-assembly. Section 4 presents our refined method for
BMC via step-wise assembly. We discuss emulation of a 1D array using step-wise
2D assembly (Subsection 4.1), methods for self-assembly of the tiling assembly
(Subsection 4.2) (including nano-construction of of tiles, encoding methods, read-
out methods after assembly, and rigid framing of the initial assembly), 3-way and 4-
way pairing of DNA strands, and extensions to emulations of 2D processor arrays
(Subsection 4.3). The further Sections provide our main results: the construction
of very compact, linear size assemblies, with progressively small depth. Section 5
proposes a step-wise local assembly method for prefix computation with linear size
and depth and Section 6 describes application of these techniques to integer addi-
tion. Section 7 describes step-wise local assembly with linear size and logarithmic
depth for parallel prefix computation and integer addition. Section 8 describes
methods for emulating shuffle-exchange operations with linear size and constant
depth using unmediated assembly, including pair-wise exchange (subsection 8.1),
and perfect shuffle operations (subsection 8.2). This allows us to efficiently em-
ulate shuffle-exchange networks (Subsection 8.3), execute normal parallel algo-
rithms (Subsection 8.4), and execute general permutations and parallel evaluation
of circuits (Subsection 8.5). Section 9 gives conclusions and acknowledgments.

2 Preliminaries

2.1 DNA notation

We use ssDNA to denote single-stranded DNA and use dsDNA to denote double-
stranded DNA. We denote DNA double crossover molecules as DX. We let 5’ — 3’
denote the normal orientation of a ssDNA strand by its direction from 5" to —3'.

2.2 Nanofabrication Techniques Using DNA Self-assembly

Feynman [F61] proposed nanofabrication of structures of molecular size. Nan-
otechnology, without use of DNA, is discussed in [CL.92, M93].

Fabrication of nanostructures in DNA using self-assembly was pioneered by
Seeman (e.g., see [SZC94]) in the 1990s (also see [CRFCC96, MLMS96] for other
early work in DNA nanotechnology). These ingenious constructions used such
basic constructive components as:

e DNA junctions: i.e., immobile and partially mobile DNA n-armed branched
junctions [SCK89],

e DNA knots: e.g., ssDNA knots [MDS91, DS92] and Borromean rings[MS97],



e DNA crossover molecules: e.g., DX molecules of Fu and Seeman[FS93].
Many, but not all, of Seeman’s constructions used:

e DX molecules for rigidity (or dsDNA for partial rigidity), and

e construction by hybridization in solution, usually followed by ligation.

Using these self-assembly techniques, Seeman and his students, such as Chen
and Wang, nanofabricated in DNA (see [£2592, ZS94, SWLQ96, SQLYL96, SZDC95,
SZC94, SCI1, SZDWM94, SQLYL96, SWLQI6])

e 2D polygons, including interlinked squares, and
e 3D polyhedra, including a cube and a truncated octahedron.

The truncated octahedron was made by solid-support (e.g., immobilized via surface
attachments [S88]), to avoid interaction between constructed molecules [ZS92].

Seeman also characterized the structural and topological properties of unusual
DNA motifs in solution [SZDWM94, SQLYL96, SWLQ96].

The ultimate goal in Seeman’s work seems to have been to construct regular
arrays to immobilize proteins in regular arrays so as to be able to do crystallography
analysis of proteins. However, his work may well be of central importance to the
progress of the emerging field of BMC.

2.3 Known Tiling Results

Consider the square regions in the plane defined by horizontal and vertical lines
which are integer units apart from the horizontal and vertical axis respectively.

A class of (domino) tiling problems were defined by Wang [W61] as follows:
We are given a finite set of tiles of unit size square tiles each with top and bottom
sides labeled with symbols over a finite alphabet. These labels will be called pads.
We also specify the initial placement of a specified subset of these tiles, and the
borders of the region where tiles must be placed defining the region of tiling. The
tiling problem is to determine if it is possible to place the tiles, chosen with re-
placement, so the placed tiles fully cover the specified region of tiling, so that each
pair of vertical abutting tiles have identical symbols on their contacting sides. Let
the size of the tiling assembly be the number of tiles placed.

Wang [W61] defined the tiling problem. Buchi [B62] proved that given a finite
set of tile types, the domino tiling problem is undecidable if the extent of tiling is
the positive quadrant of the plane and a single initial tile is required to be at a fixed
location. Berger [B66] gave a proof that removed the latter condition, thus proving
the undecidability of the tiling problem with no initial placement of tiles. Later



simplified proofs of Robinson [R71], and the text book of Lewis and Papadimitriou
[LP81], (pages 296-300) provide a direct simulation of a single tape deterministic
Turing Machine to prove this undecidablility result.

Garey, Johnson, and Papadimitriou [GJP77] (see citation of [GJ79], page 257)
proved that the domino tiling problem is NP-complete if the extent of tiling is a
rectangle of polynomial size. They used a direct reduction from the directed Hamil-
tonian path problem (known to be NP-complete). Later, the textbook of Lewis and
Papadimitriou [LP81]( pages 345-348) gave a direct proof of this NP-completeness
result, providing a simulation of a single tape nondeterministic Turing Machine
running in time 7" > n and space S < n by assembly of an S/2 x T array of tiles.
Grunbaum, Branko, and Shepard [GBS87] surveyed these and related results on
the complexity of tiling, including these direct simulations of Turing Machines.

3 BMC using Unmediated Self-Assembly

Winfree [W96] defined a cellular automaton as a Turing Machine with a single
tape of S cells such that disjoint pairs of adjacent cells are updated in parallel by
a transition function depending on those cells and the state of the machine. The
disjoint pairs of cells which are updated are at consecutive positions that are either
odd, even or even, odd (these two cases alternate each step). He observed that the
tiling constructions cited above ([LP81]( pages 345-348), [GBS87]) also give the
direct simulation of a cellular automaton running in time 7" > n and space S by
assembly of an S/2 x T array of tiles with T assembly depth.

Winfree [W96] then proposed a very intriguing idea: to do these tiling con-
structions by application of the DNA nanofabrication techniques of Seeman et al
[SZC94], which may be used for the self-assembly of small DNA molecules that
can function as square tiles with pads on the sides. The pads are ssDNA (pairs
of complementary pads are denoted sticky ends in some literature). If two pads
are Watson-Crick complementary and 5 — 3’ oriented in opposite directions, we
consider them to be matching. At the appropriate conditions (determined by tem-
perature and salinity, etc.), they may hybridize into doubly stranded DNA. The
assembly of the tiles is due to this hybridization of pairs of matching pads on the
sides of the tiles. We will call this idea BMC via unmediated DNA self-assembly,
since the computations advance with no intervention by any controllers. The ad-
vantages of the unmediated DNA assembly idea of Winfree, et al, are potentially
very significant for BMC: the computations advance with no intervention by any
controllers, and require no thermal cycling.

Winfree, et al [WYS96] then provided further elaboration of this idea, to solve
a variety of computational problems using unmediated DNA self-assembly. For



example, they propose the use of these unmediated DNA assembly techniques to
directly solve the NP-complete directed Hamiltonian path problem, using a con-
struction similar to that of Garey, Johnson, and Papadimitriou’s [GJP77] (see also
[GJ79], page 257) NP-completeness proof for tiling of polynomial size extent.
Winfree, et al [WYS96], also provided a very valuable experimental test validating
the preferential pairing of matching DNA tiles over partially non-matching DNA
tiles, but did not at that time experimentally demonstrate a DNA self-assembly for
a (non-trivial) computation.

Erik Winfree, et al [WLW98] experimentally constructed the first large (in-
volving thousands of individual tiles) two dimensional arrays of DNA crystals by
self-assembly of nearly identical DNA tiles. The tiles consisted of two double-
crossovers (DX) which self-assemble into a periodic 2D lattice. They produced
atomic force microscope (AFM) images of these tilings (by insertion of a hairpin
sequence into one of the tiles they created 25 nm stripes in the lattice). They also
verified the assembly by the use of reporter ssDNA sequences spanning multiple
tiles adjacent in the lattice, where the reporter ssSDNA sequences were formed by
ligation of individual ssDNA sequences within the adjacent tile. This experiment
provided strong evidence of the feasibility of large scale self-assembly, but it was
not in itself computational. LaBean, et al [?, L2000] designed and experimentally
tested in the lab a new class of DNA tiles, denoted TAO, which is a rectangu-
lar shaped triple crossover molecule with sticky ends on each side that can match
with other such tiles and with a reporter ssSDNA sequence that runs through the tile
from lower left to upper right, facilitating output of the tiling computation. Future
major milestones will be to experimentally demonstrate: (i) DNA self-assembly
for a (non-trivial) computation, and (ii) DNA self-assembly of a (possibly non-
computational) 3D tiling.

out, out, out, out,
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Figure 1: The tile transition function and a DNA DX nano-structure for the tile.



Simulation of a 1D Cellular Automaton. We now consider Winfree’s [W96]
direct simulation of a 1D cellular automaton running in time 7" > n and space
S > n by assembly of an S/2 x T array with assembly depth 7. Each tile 7 has
two distinguished pads in1,ings ordered left to right on its bottom side, and two
distinguished pads out;, outy ordered left to right on its top side (see Figure 1).
The pads are defined from the transitions of the cellular automaton. We adopt
the convention of considering the bottom of the tile to be associated with the current
step and the top of the tile associated with subsequent step, via its pads in these
positions. In Winfree’s [W96] intended assembly, for each ¢,0 < ¢t < T and
i,1 <14 < S where (i =t) mod 2, there will be placed a tile 7 (4, ¢) representing
the transition from time ¢ — 1 to time ¢ at the two consecutive tape cells at positions
i,% + 1. The bottom of the tile is associated with time ¢ — 1 and the top of the
tile is associated with time ¢, via its pads in these positions. The construction was
intended to result in an assembly so tile 7(i,t) is placed to abut and match its
pads inq, ing at the outy, out; respective pads of the neighboring tiles 7w(i — 1,¢ —
1), 7(i+1,¢t — 1), which abut just below 7 (7, t). Also, tile 7 (i, t) is placed to abut
and match its pads out;, outy at the ing,in; respective pads of the neighboring
tiles (i — 1, + 1), 7(i + 1,¢ + 1) which abut just atop 7 (i, t) . The size (number
of tiles placed) of the assembly is A = ST'/2.
Is Unmediated DNA Self-Assembly Feasible for Computation? We have noted
that the idea of unmediated DNA assembly has theoretical and mathematical foun-
dations provided by the known tiling complexity results which were quite well
established in the 1960s and 1970s. However, the idea of unmediated DNA as-
sembly can not necessarily rely only on these, for it needs some sort of analysis or
experimental validation of the random assembly process itself.

4 BMC via Step-wise assembly

We consider here an assembly method for computation which we call step-wise
assembly that involves control of the assembly in distinct steps. Our step-wise
assembly method refines the unmediated self-assembly method of Winfree, et al
[W96, WYS96]. It may increase the likelihood that the assembly always succeeds.
However, it has the drawback of not being fully autonomous. For example, we
modify the assembly of Winfree, et al [W96], as detailed also in Section 3, to
control the assembly of the S/2 x T  tiling array so it is done in breadth first manner
from the initial tile placements, in 7" distinct steps.

As in the previous Section 3, we idealize the DNA molecules to be assembled
as polyhedra which we call tiles, with pads on the sides that can be matched by
Watson-Crick complementation, and the assembly of the tiles is due to hybridiza-



tion of matching pads on the sides of the tiles.

We specialize the tiles used for each time step ¢ to include time stamps on
their pads; that is we augment the tile pads with characters distinctly encoding
the assembly depth (complemented if need be to insure consistent Watson-Crick
complementary matching). The input pads of each such tile are edited to contain
a DNA string whose Watson-Crick complement encodes the step number ¢ and the
output pads of the tile are edited to contain also a unique DNA string encoding ¢+ 1
(this is used to insure Watson-Crick complementary matching of the tile layer for
time step ¢ with the tile layer for time step ¢t 4+ 1)

The number of tile types is increased by a multiplicative factor of d, and each
resulting tile has an associated depth. We presume that the initial tiles are initially
placed as specified, without any initial blockage. To insure that distinct assemblies
do not interfere with each other, we assume each initial assembly is solid-supported
using standard surface biotechnology (e.g., immobilized via surface attachments
[S88]).

We will consider the entire assembly to be done with a maximal matching tile
in each given location, and assume that there are no partial or total mismatches
allowed between the pads of abutting placed tiles.

For our assembly algorithms, for simplicity we assume a worst case assembly
model: we assume that the further assembly is done by choosing a worst case unit
region which adjoins at least one region so far tiled and where further tiling is
possible (the region must be so far untiled, and not a blockage), and then choose
(the worst case) maximal matching tile to place there, where that tile is chosen
among all tiles where there are no pad mismatches among abutting tiles. We repeat
this worst case choice of regions to tile, until every such region that can be tiled,
is tiled in this worst case manner. (Note that our assumption that there are no pad
mismatches is intended to approximate the actual case where the likelihood of pad
mismatch is nonzero, but very low, by appropriate choice of key parameters such
as temperature and match lengths.)

Our idea is to provide control for the assembly in discrete steps ¢ = 1,2, .. ..
We add all the tiles (providing multiple copies of each type of tile) of depth ¢ on step
t and after sufficient time for the completion of this step’s further DNA assembly,
wash away the unattached tiles of step t. We will insure no blockage, as previously
described, can ever occur, in our worst case assembly model. As in the previous
assembly methods, we require no thermal cycling.

4.1 Emulation of a 1D Array Using Step-wise 2D Assembly

To illustrate the idea of step-wise assembly, we now refine Winfree’s [W96] direct
simulation of a cellular automaton running in time 7" > n and space S > n by



assembly of an S/2 x T array of A = ST'/2 tiles. We again assume the reader is
familiar with his construction.

We augment the pads of each of the tiles defined in Winfree’s construction by
including time stamps: that is for each t,0 < t < T — 1, and for each tile, the
bottom pads in1, ing are edited to contain a unique DNA time stamp encoding of
t (complemented to insure Watson-Crick complementary matching) and the top
pads out1, outy are edited to contain also a unique DNA time stamp encoding ¢+ 1
(non-complemented to insure Watson-Crick complementary matching). Thus, in
our intended assembly, the neighboring tiles (i — 1, — 1), (¢ + 1, — 1) have
both of their upper side pads outi, outs composed with time stamp encoding ¢,
and the neighboring tiles 7(i — 1, ¢), (i + 1, t) have both of their bottom side pads
in1,ing composed with time stamp encoding .

_________________________________________________________________

: [ :
=1 =2 TILES fOf.a:.tep 1 in- | ion

_______________________________

Figure 2: Step-wise assembly for step .

The assembly is controlled as follows: the tiles representing the initial config-
uration of the machine at time ¢ = 0 can be assume to be initially placed in correct
location, as w(1,0),...,m(S,0). Foreacht = 1,...,T we must add to the assem-
bly only the step ¢ tiles which are time-stamped with ¢ — 1 in pads iny,ing and
t in pads outy, outs. These time-stamped tiles can and must be uniquely placed
as {m(i,t)],1 < i < S where (i = ¢t) mod 2}, thus allowing the assembly to



advance from time ¢ — 1 to time ¢ on all the tape positions 1 < ¢ < .S where (i = t)
mod 2}. The resulting step ¢ addition to the assembly is in the shape of a 2D
rectangular tiling of length S and unit height (see Figure ??). The time-stamped
paddings of each of these tiles do not interfere with any other tiles at this time: the
assembly correctly places all tiles associated with each time step ¢ > 0. Thus, the
resulting tiling assembly is unique.

Note that we can somewhat simplify time stamping by using time stamps mod-
ulo 2. This requires us to use solid-support methodology [ZS92] for the assemblies
and to wash away all the tiles of previous steps t' < t before proceeding to step t.

4.2 Nanofabrication of the Tiling Assembly

We now breifly discuss how the tiling assembly is to be done via DNA self-assembly
methods for nanofabrication.

Nanofabrication of Tiles. The tiles need be made quite rigid, so the shape con-
forms with the intended multi-tile assembly. The tiles can be contructed by the
nanofabrication techniques of Seeman, et al. as surveyed in [SZC94, SWLQ96,
SQLYLI96] (see also Subsection 2.2). Interaction between tiles during their con-
struction can be avoided using solid-support methodology described in [ZS92].
Winfree, et al [W96, WY S96] made use of DX molecules [FS93] for nanofabrica-
tion of rigid tiles, and it may also be possible to make use of DNA polycrossover
molecules. It should be cautioned that considerable care must be made to insur-
ing the geometry is correct so that (i) the tiles are rigid as intended, (ii) the shape
conforms with the intended multi-tile assembly, (iii) the pads of matching tiles
are correctly aligned, and (iv) the helical twist of the doubly stranded DNA is re-
spected. Since the nanofabrication techniques of Seeman, et al. are at this time
more of an art than a science (see [SQLYL96]), considerable experimentation is
required.

Encoding Methods for Pads. Throughout this paper, we will assume distinct en-
coding functions such as F from tuples of small integers to short distinct sSDNA
words. We assume the ssDNA words are not degenerate (i.e., with repeated subse-
quences or reverse subsequences to avoid mismatching), and are chosen using the
DNA word design techniques as described in [A94, L95, BL95, B96, GFBCL96]
and [M96, KCL96, GFBCL96, DMGFS96, JK97a, DMRGF97].

These known ssDNA word design techniques have the dual goals of (i) mini-
mization of secondary structure (e.g., unwanted folding) and (ii) maximization of
binding specificity and discrimination efficiency. We let £(—) denote the Watson-
Crick complementation of these encodings.

Readout Methods After Assembly. The final configuration of the simulation ma-
chine is given by the linear sequence of pads on the bottom sides of the final tiles:



{m(i,T)|,1 <i < Swhere (i =T) mod 2} of step 7. This output might be con-
structed as a ssDNA in O(1) BMC steps by a variety of well known techniques:

1. By adding short segments of ssSDNA, each containing the composition of a
pair of ssDNA which are Watson-Crick complements of a consecutive pair of
pads on the top side of the final tiles, and then ligating these short segments
together to form the required output ssDNA.

2. By adding dangling ssDNA segments attached to the top ends of the final
tiles, ligating consecutive pairs of these together to form a single ssDNA,
and disconnecting (by appropriate use of restriction enzymes) the side edges
of the final tiles.

It should be cautioned again that in these constructions, considerable care must

be made (and experimentation), to insure the geometry is correct so that the readout
ssDNA is correctly aligned with the appropriate pads of the tiles, and the helical
twist of the dsDNA is respected.
Rigid Framing of the Initial Assembly. The assembly frame is one of the inno-
vations of this paper and is also employed in many of our other assembly construc-
tions given in this paper. An assembly frame is a rigid DNA nanostructure. The
purpose of the assembly frame is (i) to constrain the placement of the input ssSDNA
on the boundaries of the tiling assembly, and (ii) to initiate and further constrain
the geometry of the subsequent assembly. The input ssSDNA strand binds to the as-
sembly frame at prescribed places along the strand, conforming to the boundaries
of the assembly frame. The initial tiling assembly also binds to these input ssDNA
strands (at other prescribed places). In this way the assembly frame constrains the
initial tiling assembly, and thus constrains the geometry of the subsequent tiling
assembly.

For example, in our simulation of a 1D automaton, to insure the initial tiles
are placed as specified, i.e., as a S/2 x 1 rectangle, we can employ a rigid DNA
structure, which we call an assembly frame. In this case, this can be easily done by
adding additional pads on the left and right sides of each of the initial tiles for first
time step ¢ = 1. We then define these pads so that the left pad of each tile is the
same as the right pad of the tile intended on its right, and so that the right pad of
each tile is the same as the left pad of the tile intended on its left.

In general, a frame may constrain the assembly to a prescribed polygonal path,
e.g., a straight line, or constrain the assembly within a prescribed polygon, e.g., a
rectangle. (See Figures 6 and 23), giving a ssDNA encoding the input n-vector,
and see Figures 7 and 24, giving a possible DNA nanostructure for the rectangu-
lar frame.) The construction of an assembly frame in this case is less straight-
forward, but never-the-less can be done by known recombinant DNA techniques



and/or DNA nanofabrication techniques of Seeman et al [SZC94], as discussed in
subsection 2.2:

e We can make use of dsDNA, which is much more rigid than ssDNA for
moderate lengths.

e We can make use of the DNA junctions developed by Seeman, et al [SCK89,
DZS92] and the DX molecules of Fu and Seeman[FS93] which are quite
rigid, to form a DNA superstructure to hold the DNA strand in the required
initial position.

e We can insert into the input, which we generally assume is ssDNA, some
unique pads at regular distances, and then build a DNA superstructure (built
of DX molecules) containing a polygon of the required initial shape with
matching pads (provided by Watson-Crick complementation) to hold the in-
put ssDNA in place.

e Each initial assembly frame can be solid-supported using standard surface
biotechnology, to insure distinct assemblies to not interfere with each other.

3-way and 4-way Pairing of DNA Strands. The construction of an assembly
frame can be facilitated in certain cases by 3-way pairing of DNA strands. There
are number of known methodologies for 3-way pairing of DNA strands.

e The DNA triple helix can be constructed by the Dervan system [DD92].

e Another option is the use of a motif known as DX+J [LYQS96], which is
almost as stiff as DX, and provides the option of having DNA come out the
side of a tile.

e Seeman [S97] further suggests to ligate from the perpendicular arm a second
3-arm junction, which would provide a location for a complementary ssDNA
to bind, with 4-ary recognition.

4.3 Extensions to Emulation of 2D Processor Arrays

Our step-wise assembly techniques can also be extended to 3D DNA assembly to
simulate a 2D processor array where each processor is an FSA with the same finite
state control. Let a 2D cellular automaton be a Turing Machine with a single 2D
square tape of shape S’ x S’ such that disjoint pairs of adjacent cells are updated
in parallel by a transition function depending on those cells and the state of the
machine. We describe a 7" step 3D DNA array assembly of total size ST'/4, for
simulating T steps of a processor array with S = (5)? cells, refining a similar (but



unmediated) 3D assembly method briefly discussed in [W96] and also [WYS96].
In the intended assembly, for each ¢t,1 < ¢t < T and 7,1 < 4,5 < S’ where
(t =t) mod 2 and (j = t) mod 2 there will be a cubic tile 7 (¢, j, t) represent-
ing the transition from time ¢t — 1 to time ¢ at the four adjacent tape cells at positions
(1,7),(t+1,7), (i+1,5+1), (4, j+1) (we will adopt this rotational order for posi-
tioning of pads as well). We again adopt the convention of considering the bottom
of the tile to be associated with time ¢ — 1 and the top of the tile associated with
time ¢, via its pads in these positions. This requires the construction of 3D DNA
cubes using the nanotechnology developed by Seeman et al [SQLYL96]. Each cu-
bic tile 7 (i, 7, t) has (i) four distinguished pads in, ing, ins, in4 rotationally posi-
tioned at the four corners on its bottom side augmented with time stamps encoding
t — 1 (complemented to insure Watson-Crick complementary matching) and also
(i) four distinguished pads out1, outs, outs, out, similarly rotationally positioned
at the four corners on its bottom side augmented with time stamps encoding ¢ (non-
complemented to insure Watson-Crick complementary matching). This results in
an assembly that has tile 7 (7, j,t) abut and match its pads inq, ing, ing, in4 at the
outs, outy, outy, outy respective pads of the neighboring tile w(i — 1,7 — 1,¢ —
D,w(i+1,7—1,t—1),7n(i+1,j+1,t—1),7(i — 1,5+ 1,¢t — 1), which abut
just below 7 (i, j, t). Also, the assembly that has tile 7 (¢, 7, t) abut and match pads
outy, outo, outs, outy at the ing, ing, ing, ino respective pads of the at neighboring
tilesw(i—1,7—1,t+1), w(i+1,j—1,t+1), w(i+1, j+1,t+1), m(i—1, j+1,¢t+1),
which abut just atop 7 (4, 7, t). The size of the assembly is A = ST'/4.

It should be cautioned that such 3D assemblies may entail considerably more
difficulties than 2D assemblies. In particular: (i) the cubic tiles need to be designed
to be rigid (a multiple DX is suggested by [W96], but may not be rigid), and (ii)
the geometry of the assembly must be carefully designed to facilitate diffusion and
access of polyhedral tiles into the untiled locations adjacent to the 3D assembly
(this may be improved by our use of step-wise assembly).

5 A Linear Size and Depth Prefix Computation Assembly

One drawback of the step-wise assembly method, if applied using the standard
regular square tiling simulations of 7" step computations, is that it results in a large
assembly of A = ST tiles. In the rest of this paper we give our main results, which
are tilings that are much more compact, and have considerably smaller total size
which is linear in the input. We apply these tilings to solve some restricted, but
fundamental, problems that arise in parallel computation.

Monoid Sum and Prefix Computation. Let (D, -) be a monoid, that is D is a set
with an identity element A over the operation - and the operation - is associative.



Suppose we are given as input an n-vector (ay, .. ., a,) with elements from some

domain D. The monoid sum problem is given (aq, ..., a,), to compute aj - - - - - an.
The prefix computation problem is given (ay,...,ay), to compute each prefix:
b; = ay-----a; fori = 1,...,n. The monoid sum and prefix computation

problems occur in many applications, for example:

1. Prefix sums: in this case the domain D are assumed to be small b-bit num-
bers, the operation - represents integer addition, and n is the number of inte-
gers to be summed.

2. Integer arithmetic, including addition, subtraction, and multiplication times
a constant. In the case of n bit binary addition, the domain is D = {carry,
no-carry, carry-propagate } and the operation - represents carry-sums from a
bit position to the next higher bit position. Once the propagated carries are
determined at each bit position by the prefix computation, the output bits
giving the bits of the addition can be immediately determined.

3. Finite State Automaton (FSA) simulation: in this case the domain D is the set
of states of the FSA paired with the input symbols, the operation - represents
the finite state transitions, and n is the length of the input string. Once the
resulting states at each time step are determined by the prefix computation,
the output of the FSA can be immediately determined.

4. fingerprinting strings: given a length n string, the operation - represents is
defined to be an associative hash function, and the monoid sum gives a hash
encoding of the input string.

All these problems have obvious sequential algorithms with linear work for

many conventional models of computation such as circuits and random access ma-
chines.
Linear Assembly for Prefix Computation. To solve the prefix computation prob-
lem (aq,...,a,) by LP-BMC, we propose a linear size assembly. We assume
distinct encoding functions F, E’ from pairs in D x {1,...,n} to short distinct
ssDNA words, as briefly discussed in subsection 4.2. We let E(—), E'(—) denote
the Watson-Crick complementation of these encodings. We assume the input ss-
DNA encodes the vector (aq,...,a,) as a sequence of unit length ssDNA words
of the form E (a1, 1), ..., E(an,n). This input ssDNA is positioned into a straight
line of length n (see Figure 3) by the use of rigid framing techniques described in
subsection 4.2, e.g., the use of a DNA DX superstructure with pads.

Each tile in this case is a unit square as given in Figure 4. Each tile will have
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Figure 3: An ssDNA strand encoding input n-vector fixed in a straight line.
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Figure 4: Square tile for sequential prefix computation and a DNA DX nano-
structure for the tile.
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Figure 5: 2D assembly for sequential prefix computation.

pads, as defined below?. For each a,b € D,a’ =b-a € Dandt € {1,...,n}
(where if t = 1 then b = \), there is a step ¢ tile 7(a, b, t) with:

e the input pad E(a,t) on the bottom side (with the intent to match with the
tth input),

e the output pad E"(a’,t) on the top side (with the intent to match with the ¢th
output),

e the carry-in pad E'(b), on the left side (with the intent, for ¢ > 1, to match
with the (¢ — 1)-th prefix given by the carry-out pad on the left side of the
t — 1 tile), and

e the carry-out pad E’(a’) on the right side (with the intent to match with the
tth prefix given by the carry-in pad on the left side of the ¢ + 1 tile).

We use step-wise assembly, adding all step ¢ tiles at time ¢ = 1,...,n. Sup-
pose the prefix computation problem (a, ..., ay) has output (by, ..., by,), where
bi =ay-----a;. Foreacht = 1,...,n the tile 7(a¢, b, t) is the unique tile that

can be placed on the tth step, and that must be placed so its input pad matches
the tth element of the input, and for ¢ > 2, this tile also abuts the previous tile
T(a¢—1,bt—1,t — 1) matching the respective carry-in and carry-out pads. Thus, the
tiling is unique and there can be no blockages.

The resulting 2D assembly (see Figure 5) is in the shape of rectangular tiling of
length n and unit height, containing tiles 7(a1, b1, 1), 7(ag, b2,2), ..., 7(an, bn,n),
in this order, with the encoded input matched to the input pads on the bottom sides

?To reduce notation in this and all further Figures of this paper, we simply label each tile pad
within the Figures without use of the encoding notation E, and drop complementation notation.



of these tiles and the output pads on the top sides of the tiles giving the encoded
output sequence (E(by,1),..., E(b,,n)).

6 Application to Bit-Serial Integer Addition

Lipton et al. [BDLS95] developed circuit evaluation algorithms using BMC which
allow for binary addition at the cost of a number of steps linear in the size of
the circuit. Bancroft and Guarnieri [GFB96] demonstrated the first experimental
execution of a DNA-based arithmetic calculation on a single pair of bits. Their
methods, if extended to n-bit arithmetic, require at least n thermal cycles and a
considerable number of recombinant DNA operations per bit.

Here, we give a step-wise assembly method requiring no repeated thermal
cycling. The integer addition problem can be considered to have as input two
length n vectors (a1, a2, ...,an—1,a,) and (a},aq,...,al,_,,al) of bits repre-
senting the binary representation of two numbers; the output is a length n + 1
vector (81,82, - - ., Sn, Snt1) Of bits representing the sum of these two numbers.

We apply our proposed step-wise method for prefix computation to synthe-
size a step-wise method for n-bit binary addition. Our method will take n steps
and will construct an O(n) size assembly (the number of tiles in the assembly
can be further reduced to O(n/logn) by a somewhat more complex construc-
tion where we use a k-ary encoding on the input numbers, for k& = logn, and
define tiles to do the appropriate k-ary arithmetic). We assume the same distinct
encoding functions F, E’, E” and assume the input is a ssDNA encoding the vec-
tors (a1, a2, ...,an—1,ay) and (a},as,...,al,_4,al,) as a sequence of unit length
ssDNA words of the form E(ay,1),... E(ap,n),E(a},n +1),...,E(a,,2n). It
will be useful to define the n + 1 bits of the input a1 = 0,a;,,; = 0. For
technical reasons, we need to reverse the order of the encoding of the bits of
the second input number. Again by known recombinant DNA techniques (as de-
scribed in our Section 8 on assemblies for shuffle permutations), we can reverse
the latter part of the input ssDNA containing the latter n elements E(a},n +
1)...E(al,2n), yielding a ssDNA with a sequence of unit length ssDNA words of
the form E(ay, 1) ... E(an,n)E(0,n+1)3, E(0,2n+1)EE(d,, 2n)E, ... E(a}, n+
1)E.

Also, a unit length ssDNA dummy (distinct from all the other strings used in
DNA encodings) can easily be inserted into this sSDNA just after the n-th element.
This ssDNA is positioned into the shape of a rectangle (see Figure 6) of length n+1
and unit height by the use of rigid framing techniques described in subsection 4.2
(see Figure 7).

Each tile in this case is a unit square with a unit length internal middle segment
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Figure 6: Input ssDNA encoding two binary numbers.
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Figure 7: A DNA DX nano-structure for the rectangular frame.

as given in Figure 8.
For each a,a’,b € {0,1} and i € {1,...,n+ 1} (where if i = 1 then b = 0),
there is a tile 7*(a, d’, b, i) with:

e a unit square with

— inputy pad E(a, i) on the bottom side, (with the intent of giving the i-th
bit of the first input number),

— inputy pad E¥(a’,n + i) on the top side, (with the intent of giving the
i-th bit of the second input number),

— carry-in pad E'(b,i — 1) on the left side, (with the intent of giving the
Watson-Crick complement of the (i — 1)-th carry bit b), and
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Figure 8: Square tile with middle segment, used for bit-serial addition.

— carry-out pad E'(b', ) on the right side, for b = (a vV a') A (a V b) A
(b V a') (with the intent of giving the i-th carry bit '),

e an internal middle segment, running between the left and right sides, with an
output pad E" (s,1), where s = a @ a’ @ b (with the intent of giving the i-th
bit of the intended output).

Thus, 7*(a, a’, b, i) determines the carry-sum at the i-th position from both the in-
puts at the ¢-th position and the carry from the 7 —1 bit position, and then propagates
the carry-sum at the ¢-th position to the ¢ — 1 bit position.

We will use a step-wise mediated assembly, adding all tiles of the form 7*(a, a’, b, 7)
on distinct steps ¢ = 1,...,n + 1. Foreach i € {1,...,n}, the tile 7*(a;, a}, ) is
the unique tile that can be placed so

e the bottom side abuts (input; pad matches) the i-th element E'(a;, i) of the
input giving the i-th bit of the first input number,

e the top side abuts (inputy pad matches) the element £ (a;,n + 1) giving the
i-th bit of the second input number,

o the left side abuts (the carry-in pad matches)
E'(bj_1,i— 1), giving the (i — 1)-th carry bit b;_; (whichis 0 if i = 1),
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Figure 9: 2D assembly for bit-serial addition.

e the right side abuts (the carry-out pad matches) E’(b;, ), providing the i-th
carry bit b; = (a; V ai)A (a; V b;) A (b; V a}), and

e the middle segment has output pad E”(s;, ), where s; = a; ® a, & b;, giving
the i-th bit of the intended output.

The location of this tile does not interfere with the placement of any other tile.

The resulting 2D assembly (see Figure 9) is unique and contains tiles 7*(a1, a}, 1),
(a2, a5,2), ..., 7(an, ay,,n), 7" (any1, a1, n + 1) in this order, with the in-
puts matched to the top and bottom side input pads input;, inputs of these square
tiles, with the carry pads of consecutive tiles matched, and with the output pads
of the middle segment of the tiles giving the required encoded output sequence
E"(s1,1), E"(52,2), ..., E"(sp—1,n — 1), E"(sn,n), where s; = a; ® a; & b; is
the ¢-th bit of the sum of the input numbers. Again, this output can be constructed
as a ssDNA in O(1) BMC steps by a variety of known techniques, as described at
the end of Subsection 8.2.

(Alternatively, the output can again be facilitated by redefining each tile to be a
3D polyhedron resembling a pup tent as given in Figure 10, with the same square
base as the square tiles described above, and with sloping rectangular sides meeting
at a common segment with an output pad.)

7 Logarithmic Depth Assembly for Prefix Computation

A drawback of our proposed step-wise assembly method given in Section 5, if
applied using the standard regular square tiling simulations of 7" step computations,
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Figure 10: Alternative 3D polyhedral tile for bit-serial addition.

is that it involves 1" assembly steps, which is the depth of such a regular tiling.

We now consider tilings that are not regular, and thus can have considerably
smaller depth. We apply these tiling to some restricted, but fundamental, problems
that arise in parallel computation. The prefix computation problem has known op-
timal parallel algorithm (for circuits and parallel random access machines), with
O(log n) time and n work (the work bound is the product of the number of proces-
sors times the parallel time) due to Ladner and Fischer [LF80].

Fortune and Wyllie [FW78] developed a technique known as parallel pointer
jumping which contracts consecutive pairs of an input list £ = (ay,...,ap),
into single elements. Let us assume 7 is a power of 2. Let (D, -) be the monoid
associated with the problem. For example the sublist (a;, a;+1), for an odd i, is
contracted by pointer jumping into (a; - a;4+1). When executed in parallel on every

consecutive odd-even pair of an even length list (ay,as,...,a,—1,ay), parallel
pointer jumping contracts this list into the list £(}) = (a1-az,a3-a4,...,0Qn_1-ap)
of length n/2. The result of ¢ stages of parallel pointer jumping is the list L£LO =
@ o). ,aff()t>), where n(Y) = n/2!1, and foreachoddi € {1,...,n®}, we
have aEZiB /2= agt) . az(le. Repeating this parallel pointer jumping for 7' = logn

stages contracts a length n = 27 list to a single element.
To solve the monoid sum problem (a1, . .., a,), (computing output a; - - - - - an)
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Figure 11: Input ssDNA encoding an n-vector.
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Figure 12: A Rectangular tile for parallel monoid sum computation.

where n is a power of 2, we propose a linear size assembly by LP-BMC in logn
steps using self-assembling tiles to emulate parallel pointer jumping.

We slightly redefine the distinct encoding functions E, E’ from pairs in D X
{1,...,n} x{0,...,logn} to short distinct binary ssDNA words. We assume the
input ssDNA encodes the vector £(0) = (ai,...,ay) as a sequence of unit length
ssDNA words of the form E(ay,1,t) ... E(ap,n,t).

This ssDNA (see Figure 11) is initially positioned as a straight line (again, our
assembly may be facilitated by the use of rigid framing techniques described in
subsection 4.2).

The tiles are rectangular in shape of size 2! x 1, for stages t = 1,...,logn, as
given in Figure 12. The width of the rectangular tiles of step ¢ is 2¢, and the height
is 1.

Foreach a,a’ € Dandt € {1,...,logn}, and odd i € {1,... ,n")} there is
a step t tile 7(a, d’, i, t) with:

e on the lower side of the tile, they have two consecutive pads: the input,q
pad E(a,i,t — 1) followed by the inputeyer, pad E(a,i + 1, — 1) (with the
intent to match these pads with values a, a’ at consecutive positions i, + 1
of £{!=1) computed in a previous stage t — 1), and



(a,,,1,1) (a;,,2,1) - (a56,3,1) (a;,5,4,1)

t=1 t=1 t=1 t=1

(31!1!0] (32,2,0) (a3!3!0] (a4!4,0} (35,5!0} (36!6!0] (a?',?,o) (aE!B!OJ

Figure 13: Step ¢ = 1 of step-wise assembly for parallel monoid sum computes
Qji+1 = Qi - Q5 + 1 for odd :.
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Figure 14: Step ¢t = 2 of step-wise assembly for parallel monoid sum computes
b4 =14 = Qa1 - a2 ~a3-a4anda578 = ay - g * ay - asg.

e output pad E(a”, (i 4 1)/2,t) on the upper side of the rectanglar tile, where
a” = a-d € D (with the intent to match this pad with the composition
of the values at positions 7,4 + 1 and provide this resulting value a” to the

(i 4 1)/2-th position of £(*) on the subsequent step).

We have already noted that rigid square tiles have been nanofabricated in DNA,
and by composing these, we can construct rigid rectangular square tiles.

We use step-wise assembly, adding all step ¢ tiles attimes ¢ = 1, ..., logn. The
monoid sum problem £(©) = (ai,...,ay) hasintended output b,, = ap-- - --a,. Let
a; ; denote a; - a;y1 - - - - a;. The resulting assembly (see Figures ??) is a polyhedral
tiling of size O(n) and depth O(logn).

An inductive argument shows that in the ¢-th step of assembly, the unmatched
bases of the rectanglar tiles involved in the assembly at step ¢ form a unique (note
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(1,0 ,1,2) (5,5 ,2,2)
t=2 | =2
(5,0 ,1,1) (@0 ,2,1) (3s,3,1) (@75 ,4,1)
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Figure 15: Final step ¢ = 3 of assembly for parallel monoid sum computes bg =
a8 =ajy-az...as.

that the chain is uniquely determined since the pairing due to pointer jumping is
between only odd and even consecutive elements) length n® < n /2t chain of

output pads encoding the exactly the vector Lo = (agt), agt), ceey aS()t)) derived
from from the input vector £ = (ay,as, ..., a,_1,ay,) after ¢ stages of parallel

pointer jumping. This clearly holds on the 1st stage, and remains true after each
stage.
The step ¢ rectanglar tiles will form a sequence:
t—1) (t—1 t—1) (t—1 t—1 t—1
T(ag )7ag )717t)77-(ai('} )70’4(1 )737t)7"‘7 T(a’i(tfz)vafl(tfz)an(t%t)'

Z(tfl)’ az(rll) .1, ), of this sequence has

The i-th rectangle 7(a

e input,qg pad E (agt_l) ,i,t — 1) which uniquely matches the i-th element of
£t=1),

e inpute,., pad E(agi_ll),i + 1,t — 1) which uniquely matches the (i 4+ 1)-th
element of £~ and

1+1)/2,t), where PSR ) ®) which
7 i+1

e output pad E(a(t) = a1y

i,(i+1) /27
provides the i(i + 1) /2-th element of £,

The location of each of these tiles do not interfere with the placement of any other
tile at this step ¢, so the step-wise assembly insures no blockages.
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Figure 16: A 3D polyhedron tile for parallel prefix computation.

At each stage, the number of elements of the vector L®) decreases by a factor
of 1/2, so n® < n{t=1 /2. Since n1°8™ = 1, on the final stage T' = log n there
is only a single step 7T’ tile which is placed in the assembly and its output pad at its
upper side is unmatched, with encoded output E(aq - ag- - - - an, 1) giving the solu-
tion b, = a -ay-- - - - a,, of the monoid sum problem. We now extend this O(log n)
assembly depth solution of the monoid sum problem to solve prefix computation
in O(logn) assembly depth. (Note that this assembly can be simplified somewhat
by letting the index i of each tile 7(aq, az,4,t) be taken mod 2, if the input and
output values do not require indexing.)
3D Tiling for Prefix Computation. To solve the prefix computation problem
(a1,...,an) in O(logn) steps we propose an additional linear size assembly by
LP-BMC. We will use self-assembling 3D polyhedra tiles to do reverse propaga-
tion of intermediate values computed by the rectanglular tiles in the earlier monoid
sum assembly process. Recall the prefix computation problem (ay,...,ay) has
intended output (b, ..., b,), where b; = aj - - - - - a;. Alsolet by = \.

Each 3D polyhedron forming a tile in this case is given in Figure 16, consisting
of two horizontal rectangles (each with the same shape of the previously defined
2! x 1 rectangular tiles for parallel monoid sum: with a base of length 2! and
sides of length 1) connected by unit length line segments between each of their
corresponding vertices.

To allow matching of the polyhedra tiles defined here with the sides of the



rectangular tiles for parallel monoid sum, we can simply install additional pads
on the sides of those original rectangular tiles. Alternatively, we can assume a
known methodology for 3-way pairing of DNA strands, as discussed in subsection
4.2, obtained by restricting the encoding of DNA strands to two bases. We let
E(-), E (—) denote the (possibly 3-way) Watson-Crick complementation of these
encodings.

In this phase of the assembly, it is convenient to have the step numbers decrease
from logn to 1. For each a,a’,b € D, and t € {1,...,logn} (where if t =
logn then b = \), and odd i € {1,...,n")} there is a step t polyhedron tile
7 (a,d’,b,i,t) with:

e on the lower rectangle (which is intended to match with an already placed
rectanglar tile 7(a, a’, i,t) ) there are:

— monoid sum input g4, iINputeyen pads E(a, i,t—1), E(a,i +1,t—-1)
on the lower side of the lower rectangle, (with the intent to match onto
the previously placed rectanglar tile 7(a,a’,4,t) with values a,a’ at
consecutive locations 7,7 + 1 of £{!~1) computed in a previous stage
t—1),and

— monoid sum output pad E(a”, (i + 1)/2,t) on the upper side of the
lower rectangle, where a” = a - @’ € D (with the intent to match with
the composition of the values at locations 4,7 4+ 1 given by the upper
side pad of the previously placed rectanglar tile 7(a, a’, i, t)).

e on the upper rectangle (which is intended to propagate the partially computed
prefix sums backward) there are:

— propagate-in pad E'(b, (i + 1)/2,t) on the upper side of the upper
rectangle,

— on the lower side of the upper rectangle, two consecutive pads: propagate-
out,qq pad B (b,i,t— 1) (with the intent to match with b and propagate
it as the prefix-sum to the ¢-th tile of step ¢ — 1), followed by propagate-
Ot eyen, pad E' (b-a,i+1,t— 1) (with the intent to match with b- a and
propagate it as the prefix-sum to the to the (i + 1)-th tile of step ¢ — 1).

After completion of the step-wise assembly of the rectangular tiles for parallel
monoid sum, as described above, we next use a step-wise assembly, adding all
step ¢ polyhedron tiles in reverse order ¢ = logn,logn — 1,...,1. The prefix
computation problem (a1, ..., a,) has intended output a; - - - - - an. The resulting
3D assembly (see Figures 17,18, and 19) is a polyhedral tiling of size O(n) and
depth O(logn).
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Figure 17: Stage t = 3 of 3D parallel prefix assembly: computation of b,.

(by,1,3)
/ -3
| (»,1,2) (b,; ,2,2)
L t=2 t=2
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Figure 18: Stage t = 2 of 3D parallel prefix assembly: computation of by, by and
be.
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Figure 19: Final stage ¢ = 1 of 3D parallel prefix assembly: computation of
bi,..., by

To aid us in the analysis of our assembly, observe that if the result of ¢ stages

of parallel pointer jumping is the vector Lo = (agt), agt), e ,af?t)), then the
solution of the prefix problem for £(*) is given by (bgt), bg), cey b,(f()w ), with b[()t) =
(t-1)

A, where for each odd i € {1,...,n)}, and t = 2,...,logn we have b
5521)/2 and bgi_ll) = agt_l) . bg)fl)/T Hence each b; = b; 1 can be computed by
these recurrence equations; in fact we will determine them by matching pads of the
assembly of tiles.

The step ¢ polyhedral tiles will form a sequence:

T‘*‘(agtfl), aétil), bét), 1,1), T+(a§t71), aitil), bgt), 1L,t),..., T‘*‘(a(tfl) oty

i

By induction we have that the i-th tile 7 (agt_l), az(fr_ll), bg?q) /2> b t) has

e a lower rectangle with:
. . . =0 (1) = (1) .

— monoid sum inputeqq, inputeven, pads E(a; it —1),E(a; i+
1,¢ — 1) which match the (odd, even) i,(i + 1)-th elements of L¢~1),
and

- monoid sum output pad E(al(.t()iﬂ)ﬂ, (i41)/2,1t), since agt_l) .agi_ll) =

agll) /o Which provides the (i 4+ 1)/2-th element of £®).

e and an upper rectangle with:

n(t—1)7 nt=1p

(t)
n(t) —1

,n®) t).



t)

i1)/2° (i +1)/2,t) on the upper side, and

— on the lower side: propagate-out,gq pad £’ (bg)q) /oo b t—1)= E (bgt:ll), i,t—
1), since bg)_l) jo = bgt__ll), followed by propagate-outeye,, pad £’ (bEf:B so
a(f*l), i,t—1)= E’(bgtil), i,t — 1) on the left side, on the top right

side, since bgjgﬂ . az(»t_l) = bgt_l).

— propagate-in pad £’ (bg

This clearly holds on the 1st stage, and remains true after each stage.

The output to the prefix computation problem is provided by the upper rectan-
gle of the stage 1 polyhedral tiles, that give, for odd ¢, on their (left side) propagate-
out,gq pad E (bgt:ll) ,4,t — 1) encoding value b;_; = b;_11 and on their (left side)
propagate-out,,.,, pad E (bgt_l), i,t — 1) encoding value b; = b; 1. So, the poly-
hedral assembly provides (by, ..., b,—_1). Recall that we already have the monoid
sum value b,, given by the base pad of the last (step log n) previously placed rectan-
glular tiles. Thus, the assemblies together provide the entire solution (b, ..., by,)
of the prefix computation problem. Again, this output can be constructed as a ss-

DNA in O(1) BMC steps by a variety of known techniques given in subsection
4.2.

8 Emulating Shuffle-Exchange Networks

8.1 Pair-wise Exchange using Unmediated Assembly

Given an even length n vector (ay, ag, . .., a1, a,) of elements from any domain
D, the pair-wise exchange problem is to form a vector (a9, ai, . .., an, an—1), that
is exchange every odd-even pair. (This is an essential operation for emulating
Shuffle-Exchange Networks.)

We can use nearly the same assembly construction as used for sequential prefix
in Section 5 to solve this problem, but in this case we do not require control of the
assembly.

We assume distinct DNA encoding functions F, E’ and again assume the in-
put ssDNA encodes the vector (ay,...,a,) as a sequence of unit length ssDNA
words of the form E(aj, 1),..., E(ay,n). This input ssDNA is positioned into a
straight line of length n (see again Figure 3), by the use of rigid framing techniques
described in subsection 4.2.

Each tile is a 2 x 2 square as given in Figure 20. For each a,a’ € D and
i € {1,...,n} where i is odd, there is a tile 7/(a, a’, 7) with:

e the input pad E(a,i), E(a’,i + 1) on the bottom side (with the intent to
match the ,(¢z + 1)-th pair of inputs),
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(a,, 1) (a, ,i+1)
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(a, ,i+l) (a., 1)

(a; ,i) (a;,, ,i+1)
Input pads

Figure 20: A square tile for pair-wise exchange and a DNA DX nano-structure for
the tile.

e output pads E'(da’,i), E'(a,i 4+ 1) on the top side (with the intent to output
the 4, (¢ + 1)-th pair of outputs in reverse order).

We use unmediated assembly, adding all tiles at the same time. For each i €
{1,...,n} where 7 is odd, the tile 7/(a;, a;+1,1) is the unique tile that can be
placed so its bottom side abuts and its pad matches the i, (i + 1)-th pair of elements
E(aj, i), E(a;t+1,1+ 1) of the input. Its location and pad positions do not interfere
with any other tiles at this time, and the tiling is unique.

The resulting 2D assembly is unique and is in the shape of a rectangular tiling
(see Figure 21) of length n and height 2 containing tiles

(a1, az2,1),7'(as,a4,3),...,7 (an—_1,an,n — 1)

in this order, with the encoded input matched to the input pads on the bottom sides
of these tiles and the output pads on the bottom sides of the tiles giving the required
encoded output sequence

E(ag, 1), E(ay,2), E(as,3), E(a3,4), ..., E(an,n—1), E(an_1,n). Again,
this output can be constructed as a ssDNA in O(1) BMC steps by a variety of well
known techniques; see Subsection 4.2. (Note that this tiling assembly construction
can be simplified somewhat by taking the time stamps mod 2, but the integer
time stamps will in general be needed if we apply repeated pair-wise exchange and

perfect shuffle operations.)

8.2 Perfect Shuffle Operations

Given an even length n vector (a1, ag, ..., an—1, a,) of elements from any domain
D, the perfect shuffie problem is to form a vector (a1, ap /241, @2, An /2425 - - -, A /25 Gn)s
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Figure 21: The 2-D assembly for pair-wise exchange.

i.e., form a vector that shuffles the first n/2 elements with the last n/2 elements.
(This is another essential operation for emulating Shuffle-Exchange Networks.)
To solve the Perfect Shuffle problem we propose a linear size assembly, which
will be unmediated and will not require multiple steps in the assembly.
We assume distinct DNA encoding functions F/, E’ and again assume the input
ssDNA encodes the vector (ay, ..., ay) as a sequence of ssSDNA words of the form

E(a1,1),...,E(ap,n).

Without loss of generality, let position 1 be the 5’ end of the input ssDNA, position
n be the 3’ end.

For technical reasons, we need to reverse the order of the encoding in the
latter half of the input. By known recombinant DNA techniques we can reverse
the latter part of the ssDNA containing the latter n/2 elements E(ay,/p11,7/2 +
1)... E(an,n), by using the Watson-Crick complement, yielding a ssDNA with a
sequence of unit length ssDNA words of the form

E(a,1).. .E(an/g,n/Q)E(an,n)R . BE(ayo41,m/2 + D,

where the superscript R denotes string reversal 3.

3We can do the reversal (with refinements suggested by [W97]) as follows:
e Ligate a hairpin region H to the 3’ end.
e Use polymerase to extend the hairpin, and then denature; this yields F(a1,1),... E(an,n)

H E(an,n)®... E(a1,1)". ~
e Cut between E(anj211,n/2 + 1) E(an/2,n/2)", using an excess of complemen-
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Figure 22: An ssDNA encoding input n-vector.
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Figure 23: A DNA nano-structure for the rectangular frame.
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Figure 24: A square tile for perfect shuffle, with middle segment used for output.

By known techniques (via circularization and appropriate use of restriction en-
zymes), ssDNA is then edited so as to increase its length to n + 2, by insertion of
a dummy (distinct from all the other strings used in DNA encodings) ssDNA just
after the (n/2)-th element. The resulting ssDNA can be positioned in 2D into the
shape of a rectangle (the dummy ssDNA was inserted to form the right side of this
rectangle) with a missing left side (see Figure 22) of width n/2 and height 2 by the
use of rigid framing techniques described in subsection 4.2 (see Figure 23).

Each tile in this case is a rectangle of width 1 and height 2 with an internal
middle segment. The internal middle segment consists of two consecutive straight
segments each of length 1 forming a (raised upsidedown) V, and bridging between
the left and right sides of the tile, as given in Figure 24.

Foreacha,a’ € Dandi € {1,...,n/2}, there is a tile 7" (a, d’, 1) with:

e al x 2 rectangle with

tary oligos to form the dsDNA target site for the restriction enzyme; this yields
E(a1,1),... E(an,n) H E(an,n)%. .. E(anj241,n/2 + 1)&.

e Circularize and then cut between E(an/2,1/2) E(an/24+1,m/2 + 1) and between

H E(an,n)"™, so that the longer DNA is E(an,n)"... E(anj211,n/2 + 1)F
E(a1,1),... E(an/2,n/2).

e Circularizing again, and cutting between E(a,/211,n/2 + 1) E(ai,1), we get

E(a1,1)...E(an/2,n/2) E(an,n)® ... E(an/241,1/2 + 1), as required.



(a, 1) (ag, 2) (agg,n/2)

LOW INPUTS

Figure 25: 2D assembly for perfect shuffle. The middle segments give output.

— the inputyy,, pad E(a,i) on the bottom side (with the intent to match
the i-th input a;) and

— the inputp;g, pad E(a’,n/2 + i)® on the top side (with the intent to
match the (n/2 + i)-th input a,, /5;), and

e an internal middle section, bridging between the left and right sides, with an
output pad

E'(a,i)E'(a,n/2 + i) (with the intent to provide the outputs).

We will use unmediated assembly, adding all tiles at the same time. For each
i € {1,...,n/2}, the tile 7"(a;, a,, /244, 1) is the unique tile that can be placed so
the bottom side abuts (and its input;,,, pad matches) the i-th element E'(a;,?) of
the input and the top side abuts (and its inputy;g, pad matches) the (n/2 + 7)-th
element E(ay,/24;,n/2+1) of the input. The location of this tile does not interfere
with the placement of any other tile.

The resulting 2D assembly (see Figure 25) is unique and is a rectangle of
length n and height 2, containing tiles 7"(a1, a,/241,1), 7" (a2, @pj242,2), .- -,
7"(ap 2, an,n/2) in this order, with the inputs matched to pads on the bottom
and top sides of these tiles and the output pads of the middle segments of the
tiles giving the required encoded output sequence E' (a1, 1), E'(a,,/2,2),E' (a2, 3),
E'(an/241,4)5 -+, E'(apj2,n — 1), E'(an,n). This output can be constructed as
a ssDNA in O(1) BMC steps by a variety of known techniques; see subsection
4.2. For example, we may insert some matching ssDNA to the ends of the middle
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Figure 26: Alternative 3D polyhedral tile for perfect shuffie.

segments, ligate the consecutive middle segments to form a single ssDNA, then
cut out, by restriction enzymes, all but this middle segment ssDNA containing the
output pads. (Note that again this tiling assembly construction can be simplified
somewhat by taking the time stamps mod 2, but the integer time stamps will in
general be needed if we repeatedly apply pair-wise exchange operations in combi-
nation with these perfect shuffle operations.)

To further facilitate readout, each tile can be alternatively defined to be 3D
polyhedron in the shape given in Figure 26, resembling pup tent, with the same
rectangular base as the 1 x 2 tiles described above, and a top segment with an output
pad consisting of two consecutive straight segments each of length 1 forming a V,
and bridging between the left and right sides of the pup tent. These 3.D polyhedron
tiles might be fabricated the use of three-axis multiple DX molecules i.e., a DX
with one additional double helix axis stacked on top.

8.3 Shuffle-Exchange Networks

A shuffle-exchange network (Stone [S71]) is a graph with node set {1,...,n} and
with a set of edges that effect both

1. a perfect shuffle permutation on the nodes, and

2. a pair-wise exchange operation on the nodes.



See Ullman [U84] and Leighton [L92] for discussion of the the use of shuffle-
exchange network for emulations of other networks such as the butterfly and CCC
networks and see Schawbe [S90] for a proof of the computational equivalence of
hypercube-derived networks, such as the butterfly network.

In Subsections 8.1, 8.2 we have given constant assembly depth unmediated LP-
BMC algorithms for executing perfect shuffle and pair-wise exchange on length n
vectors encoded into DNA. By simple edits (insertion of short dummy sequences
to and reversal of subsequences) to the DNA as described in these subsections, the
output encoding (say from a shuffle-exchange step) is made compatible with the
input encoding required for the following step (say a pairwise exchange). By the
definition of a shuffle-exchange network, it follows that these LP-BMC algorithms
can be used to emulate a shuffle-exchange network, in constant assembly depth.
Furthermore, we can combine each shuffle-exchange with a computational step on
consecutive odd-even pairs of data, using one step of the step-wise tiling assembly
technique described in Section 4.

8.4 Normal Parallel Algorithms

Normal parallel algorithms are a well-known class of parallel algorithms; for de-
tails see Ullman [U84] and Leighton [L92] (note they are also sometimes called
ascend-descend algorithms). A normal parallel algorithms can be executed (see
details in [S71, U84, L92]) on an n-vector of data using n processors executing
in parallel in O(logn) stages. Each stage consists of the following parallel opera-
tions:

e a shuffle-exchange permutation and

e parallel execution of a computational step (costing each processor O(1) work)
on each of the n/2 consecutive odd-even pairs of data.

We can do each of these stages using LP-BMC within constant assembly depth, as
follows:

e The techniques of Subsection 8 executes the shuffle-exchange permutation
by LP-BMC in constant assembly depth.

e The parallel execution of an O(1) work computational step on n/2 consec-
utive odd-even pairs of data, can be done by LP-BMC in constant assembly
depth by emulation of one time step of an n processor 1D array, using a step-
wise tiling assembly as given in Subsection 4.1. In this assembly, which will
have constant depth, we use again square tiles, each with two input pads



which match to consecutive odd-even pairs of data, and two output pads pro-
viding these computed values to the next stage (we can apply the constant
time readout methods of Subsection 4.2, to provide these computed values
to the next stage).

Well known example applications of normal parallel algorithms are

e the O(logn) time, n processor bitonic merge algorithm of Batcher [B68],
which merges two length n vectors using a normal parallel algorithm and

e the O(log® n) time, n processor [B68] bitonic sort algorithm, which sorts a
vector of length n using O(log n) normal algorithm passes.

Assuming that the elements to be operated on are integers of b bits, we can use
tiles to effect a key comparison in one step of tiling. Thus, the bitonic merge
and sort algorithms can be executed by our LP-BMC methods with these same
assembly depth bounds and using O(n) size assemblies.
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8.5 Executing General Permutations and Parallel Evaluation of Cir-
cuits

A known parallel algorithm, known as the Benes network [B65], allows the exe-
cution of an (arbitrary) fixed permutation of n data elements by use of a normal
parallel algorithm (Waksman [W68]). This requires O(logn) LP-BMC steps by
our previous results in Subsection 8.4 for normal parallel algorithms.

This also implies LP-BMC can do parallel evaluation of a fixed, bounded de-
gree Boolean circuit of size n and of depth d. The LP-BMC assembly will have
size O(n) and depth O(dlogn). To do this, we evaluate the circuit in stages
t=1,...,d where in stage t we:

e apply, in O(logn) LP-BMC steps, the Benes technique (precomputed for
the permutations of each level of the fixed circuit) to move the data required
for inputs to each node of the circuit of level ¢,

o use the techniques of Subsection 4.1 to do by LP-BMC in constant assembly
depth, the parallel Boolean operations required to evaluate each level ¢ node
of the circuit (again, this is done by emulation of an n processor 1D array,
using a constant number of steps of our step-wise 2D assembly given in
Subsection 4.1), and

e after assembly, we apply the constant assembly depth methods of Subsection
4.2, to provide these node evaluation values to the next level of the circuit.



9 Conclusion

We summarize the advantages of our step-wise technique for LP-BMC:
e it requires no thermal cycling,
e it results in no blockages, and

e it provides greater flexibility and control over the chemical conditions under
which assembly occurs, as compared to unmediated self-assembly, and

e whereas the kinetic models of Winfree [W97] suggest that unmediated self-
assembly should proceed as slowly as possible, in step-wise self assembly,
we may be able to speed up considerably by washing over high concentra-
tions of tiles.

There are a number of insights provided by this paper that are new: (1) dif-
ferent geometrical sizes and shapes of tiles can have a very significant effect upon
computational speed, (2) DNA folding over on itself using rigid frames can allow
communication between memory bits in long strands of DNA, thus allowing fast
circuit simulation, and (3) stepwise methods in which the assembly is partially de-
constructed after completion (e.g. the rigid frame and tiles are removed, keeping
only the output strand), allowing for considerably greater flexibility in the compu-
tation.

Our main constructive results provided assemblies which are compact (O(n)
size) with small O(logn) assembly depth for a number of fundamental problems,
including prefix computation, integer addition, list merging, fixed permutations,
and many other normal parallel algorithms. This small depth and size may decrease
probability of errors in the assembly process.

Subsequent work in self assembly is described in [WLW98, WYS96, LYKO0,
LWR99, MMLRO00] and surveyed in [RLS00, RC12, H13]
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