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Abstract: The quality of unmanned surface vehicle (USV) local path planning directly affects its
safety and autonomy performance. The USV local path planning might easily be trapped into local
optima. The swarm intelligence optimization algorithm is a novel and effective method to solve the
path-planning problem. Aiming to address this problem, a hybrid bacterial foraging optimization
algorithm with a simulated annealing mechanism is proposed. The proposed algorithm preserves
a three-layer nested structure, and a simulated annealing mechanism is incorporated into the out-
ermost nested dispersal operator. The proposed algorithm can effectively escape the local optima.
Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) rules and
dynamic obstacles are considered as the constraints for the proposed algorithm to design different
obstacle avoidance strategies for USVs. The coastal port is selected as the working environment of
the USV in the visual test platform. The experimental results show the USV can successfully avoid
the various obstacles in the coastal port, and efficiently plan collision-free paths.

Keywords: unmanned surface vehicle; local path planning; COLREGs; bacterial foraging algorithm;
simulated annealing algorithm

1. Introduction

Unmanned surface vehicles (USVs) have been successfully used to replace humans
in a multitude of potentially dangerous tasks in the military field. With the proliferation
of Artificial Intelligence (AI) technology, the value of USVs in the civil field is becoming
increasingly evident [1,2]. Potential applications include checking submarine pipelines [3],
lake cruising [4], water quality testing [5], being a collaborative platform [6], water depth
testing [7], and more.

In the face of unexpected and unpredictable events, USVs must be able to quickly
and correctly reach their destination. To achieve this, they must be able to generate
both high-precision global paths and real-time local paths that avoid dynamic obstacles.
The algorithms for local path planning need to be robust and offer excellent real-time
performance. This is an important indicator to measure the quality of USV local path
planning. Local path planning is a comprehensive judgment of the unknown or partially
unknown dynamic obstacles that USVs obtain from surrounding ship information or
sensors based on AIS. Based on this information, the local path can be planned quickly and
correctly. The common algorithms for local path planning mainly include the following:
the neural network algorithm [8], artificial potential field method [9,10], dynamic window
method [11], artificial bee colony algorithm [12], random tree method [13], etc.
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Setting constraints on local path-planning methods can help ensure the safe navigation
of USVs. Many factors affect the quality of the local path, such as obstacle type, COLREGs
rules, working environment, path smoothness, algorithm efficiency, etc. For instance,
Ref. [14] proposed an adaptive USV dynamic path-planning algorithm. The safe boundary
model, tension boundary condition, and path smoothness are considered in the algorithm.
Ref. [15] designed a practical local path-planning method based on the dynamic window
approach, taking into account wave and current environmental factors. Ref. [16] presented a
solution to motion planning for USVs in a maritime environment, utilizing an A* approach
with a circular boundary as a safety distance constraint and accounting for moving obstacles
and different ocean current environments. Ref. [17] focused on the security applications
within a harbor, devising a simple avoidance algorithm that can be real-time implemented
for moving obstacle avoidance.

It is not enough to support the safe navigation of USVs in public waters by considering
only the above factors as constraints of local path-planning methods. Once a USV is
operating in public waters, it is not only a vehicle for the mission but also a part of many
water vehicles. Therefore, the local path-planning method considering traffic rules as
constraints is very important. The COLREGs rule is the basic rule of water vehicles, so it
must be considered an important constraint for the USV local path-planning algorithm to
prevent the USV from posing a safety threat to other ships and to ensure the navigation
safety of the USV in public waters. The researchers proposed several works on local path
planning considering the COLREGs rule. A COLREGs intelligent collision avoidance
algorithm based on deep reinforcement learning is proposed by [18]. The experimental
results show that the algorithm can make USVs successfully avoid dynamic obstacles and
reach the end point while following the COLREGs rule. Ref. [19] proposed an autonomous
navigation algorithm for USVs using fuzzy logic under COLREGs guidelines. An extensive
simulation study is used to verify the proposed method. The related research results
that only take the rules as constraints include [20–22]. Some research results focus on
the efficiency of path-planning algorithms while considering constraint rules. Ref. [23]
proposed a guidance strategy that has the functions of global guidance, local COLREGs-
compliant anti-collision, and heading control for underactuated USVs. The superiority of
the proposed algorithm is shown by comparing it with the comparison algorithms in terms
of success rate and voyage time. In summary, the study of local path-planning methods
with a fast solving ability and multiple constraints can enable USVs to better complete
aquatic tasks, thereby further enhancing its application value.

Intelligent optimization algorithms are an important method for solving the USV local
path-planning problem [24–26]. The bacterial foraging optimization (BFO) algorithm, as a
typical swarm intelligence optimization algorithm, has the advantages of fine search and
strong robustness [27]. In this paper, a simulated annealing-bacterial foraging optimization
algorithm (SA-BFO) is proposed, aiming at solving the local path-planning problem of
USVs. In the proposed SA-BFO algorithm, the simulated annealing mechanism is intro-
duced in the dispersal operation of the traditional BFO algorithm. The designed operator
calculates the fitness value of the dispersal individuals after evolution and accepts the new
solution according to the Metropolis criterion so that the proposed algorithm can better
escape from local optima and converge to the global optimum. The proposed method
considers the COLREGs rules and dynamic obstacles as constraints in designing different
collision avoidance strategies for USVs. The coastal port water is selected as the working
environment of the USV in the visualization platform with a high degree of simulation.
The simulation of the proposed USV local path planning based on the SA-BFO algorithm
is realized.

The rest of this paper is organized as follows: Section 2 introduces the structure of
the standard BFO and the proposed BFO with the simulated annealing mechanism. The
constraints for the USV local path-planning problem according to the encounter situation of
USVs are proposed in Section 3. The simulation results based on comparative experiments
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and the visual platform test experiments are presented and discussed in Section 4. Section 5
gives concluding remarks concerning our works.

2. Improved Bacterial Foraging Optimization Algorithm

BFO mimics the behavior of E. coli foraging in the environment. This physiological
property allows the bacteria to obtain food and survive. This algorithm is a bioinspired
search algorithm, which can produce the optimal or relative optimal solution through
modeling iterative optimization. BFO has good search efficiency because of its three-
layer nested structure. Dispersal operators are nested as the outermost layer to perform
dispersal operations on bacteria. However, the operator does not evolve iteratively for the
current solution. An improved BFO is proposed to improve the optimization efficiency in
this paper.

2.1. Bacterial Foraging Optimization Algorithm

BFO was proposed by K. M. Passino in 2002. The algorithm mimics the intelligent
behavior of E. coli foraging in the human gut. BFO is one of the important branches of
the swarm intelligence optimization algorithm. Because of its outstanding performance,
it has been successfully applied in many fields after nearly two decades of development.
The three-layer nested structure of BFO realizes the cooperation and competition among
individuals, which gives BFO powerful parallel processing ability, efficient search, and
good robustness.

The traditional BFO is iteratively optimized by an induction mechanism. The BFO
obtains optimal or suboptimal solutions by iterative execution of three main operators:
chemotaxis, reproduction, and elimination–dispersal. The basic steps of the algorithm are
described as follows:

• Step 1: The BFO parameters, maximum number of chemotaxis times Nc, number of
reproduction times Nre, number of elimination–dispersal times Ned, population size
M and number of swimming times Ns, were initialized.

• Step 2: Equation (1) is used to initialize the position of bacteria, and the initial fitness
value of bacteria is defined as J, where Rand is a random number uniformly distributed
in the interval [0, 1].

X = xmin + Rand(xmax − xmin) (1)

• Step 3: Elimination–dispersal cycle l = 1:Ned, reproduction cycle k = 1:Nre, and chemo-
taxis cycle j = 1:Nc.

• Step 4: Chemotaxis operation is performed.
• Step 5: Reproduction operation is performed. Half of the bacteria with poor fitness value

were eliminated, and half of the bacteria with good fitness value cloned themselves.
• Step 6: Elimination–dispersal operation is performed. Each bacterium generates a

random probability P. This step compares P with a fixed migration probability Ped. If
P < Ped, the elimination–dispersal operation is performed.

• Step 7: The termination conditions are tested. If the conditions are met, the result is
output. Otherwise, it returns to step 4.

The chemotaxis operation in Step 4 contains two basic operators, namely, tumble and
swim. The position of the bacteria after tumb is defined by Equation (2). The swim refers
to continuing the continuous movement in the direction of optimized fitness. The bacterial
adaptation value is represented by Jcc, as shown in Equation (3).

θi(j + 1, k, l) = θi(j, k, l) + c(i) ∆(i)√
∆T(i)∆(i)

. (2)
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Jcc(θ, P(j, k, l)) =
S
∑

i=1
Ji
cc
(
θ, θi(j, k, l)

)

=
S
∑

i=1

[
−dattract exp

(
−ωattract

D
∑

m=1

(
θm − θi

m
)2
)]

+
S
∑

i=1

[
hrepellant exp

(
−ωrepellant

D
∑

m=1

(
θm − θi

m
)2
)]

(3)

where c(i) represents the step length of swimming in the selected direction, and ∆(i) is
a vector in any direction. dattract, ωattract, hrepellant, and ωrepellant, respectively, represent
the depth of attraction, the width of attraction, the height of repellant, and the width
of repellant.

2.2. Simulated Annealing-Bacterial Foraging Optimization Algorithm

The simulated annealing (SA) algorithm performs a random search in the solution
space using the Metropolis criterion with probabilistic jump property. SA starts at a
high initial temperature and decreases at a constant rate. Every time the temperature
drops, the current solution is updated, and the global optimal solution is finally obtained.
The Metropolis criterion means that a new state with a large energy difference from the
current state can be accepted at high temperatures, while a new state with a small energy
difference from the current state can be accepted at low temperatures. Moreover, when the
temperature approaches zero, the new states with higher energy than the current state will
no longer be accepted. The SA-BFO proposed in this paper retains the three-layer nested
structure of the traditional BFO and introduces the simulated annealing mechanism into
the elimination–dispersal operation. The improved elimination–dispersal operator realizes
the iterative evolution of the current solution. The pseudocode of SA-BFO is shown in
Algorithm 1. SA-BFO accepts both the optimization solution and the deterioration solution
with a certain probability so that the algorithm can better escape from the local extremum
and converge to the global optimum.

Algorithm 1 SA-BFO

Input:
The set of population size, M;
The set of chemotaxis times, Nc;
The set of replication times, Nre;
The set of elimination–dispersal times, Ned;
The set of the initial temperature, T;
The set of the temperature iteration number, L.

Output:
Path planning length and trajectory.

1: while e < Ned do // e denotes the current times of elimination–dispersal
2: while r < Nre do // r denotes the current times of replication
3: while c < Nc do // c denotes the current times of chemotaxis
4: Execute chemotaxis operator;
5: end while
6: Execute replication operator;
7: end while
8: Select the first β×M bacteria in the order of fitness after replication;
9: while l < L do // l denotes the current value
10: Execute translocation operator;
11: if Kglobal − Knew > 0 then
12: Accept the new solution S with criterion Metropolis
13: end if
14: T ← (a× T) //a ∈ (0, 1)
15: end while
16: end while
17: return Path planning length and trajectory
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3. Path-Planning Model and Local Path Planning

The USV makes rapid actions in response to surface emergencies to ensure that it can
safely avoid dynamic obstacles. Moreover, its local path planning also needs to consider
the constraints to ensure the safety of USV navigation in public waters.

3.1. Path-Planning Model

The path-planning model is the basis of USVs to plan the global path and local path.
The grid method was used as the path-planning model of USVs in this paper. The two-
dimensional working environment of USVs can be established efficiently and intuitively by
the grid method. The shape, size, and position of obstacles can be set arbitrarily. The area
of the USV is expanded in the grid, as shown in Figure 1.
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In Figure 1, L is the length of the USV, Smin is the minimum area occupied by the USV,
and Sexpanded is the area occupied by the USV after expansion treatment. Its mathematical
relation is given in Equations (4) and (5).

Smin = π × L2
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The movement rule of the USV in the grid map is shown in Figure 2. In this figure, the
gray grids represent feasible grids, the black grids represent obstacles, and the blue grids
represent the optimal path chosen by the USV. Figure 2a describes the movable direction of
the USV at its position. Figure 2b shows the USV’s optimal selection of feasible grids. The
center points of the optimal grids are connected, representing the motion trajectory for the
USV, as shown in Figure 2c.
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Figure 2. Diagram of USV movement rules and optimal path. (a) The USV movement rules in the
feasible grids. (b) The optimal selection of feasible grids. (c) The optimal path.

Figure 1. Diagram of USV expansion area.

In Figure 1, L is the length of the USV, Smin is the minimum area occupied by the USV,
and Sexpanded is the area occupied by the USV after expansion treatment. Its mathematical
relation is given in Equations (4) and (5).

Smin = π × L2

4 (4)

Sexpanded = π × (L+2∆L)2

4
(5)

The movement rule of the USV in the grid map is shown in Figure 2. In this figure, the
gray grids represent feasible grids, the black grids represent obstacles, and the blue grids
represent the optimal path chosen by the USV. Figure 2a describes the movable direction of
the USV at its position. Figure 2b shows the USV’s optimal selection of feasible grids. The
center points of the optimal grids are connected, representing the motion trajectory for the
USV, as shown in Figure 2c.

J. Mar. Sci. Eng. 2023, 1, 0 5 of 13

3.1. Path-Planning Model

The path-planning model is the basis of USVs to plan the global path and local path.
The grid method was used as the path-planning model of USVs in this paper. The two-
dimensional working environment of USVs can be established efficiently and intuitively by
the grid method. The shape, size, and position of obstacles can be set arbitrarily. The area
of the USV is expanded in the grid, as shown in Figure 1.

Oc

Smin

Xc

Yc

Xi

Yi

L

ΔL

ΔL

L+2ΔL

Sexpanded

Figure 1. Diagram of USV expansion area.

In Figure 1, L is the length of the USV, Smin is the minimum area occupied by the USV,
and Sexpanded is the area occupied by the USV after expansion treatment. Its mathematical
relation is given in Equations (4) and (5).

Smin = π × L2

4
(4)

Sexpanded = π × (L + 2∆L)2

4
(5)

The movement rule of the USV in the grid map is shown in Figure 2. In this figure, the
gray grids represent feasible grids, the black grids represent obstacles, and the blue grids
represent the optimal path chosen by the USV. Figure 2a describes the movable direction of
the USV at its position. Figure 2b shows the USV’s optimal selection of feasible grids. The
center points of the optimal grids are connected, representing the motion trajectory for the
USV, as shown in Figure 2c.

(a) (b) (c)

Figure 2. Diagram of USV movement rules and optimal path. (a) The USV movement rules in the
feasible grids. (b) The optimal selection of feasible grids. (c) The optimal path.
Figure 2. Diagram of USV movement rules and optimal path. (a) The USV movement rules in the
feasible grids. (b) The optimal selection of feasible grids. (c) The optimal path.



J. Mar. Sci. Eng. 2023, 11, 489 6 of 13

3.2. The Constraint Conditions
3.2.1. COLREGs

COLREGs is the most important constraint for USV navigation in public waters.
COLREGs defines three encounter situations, which are cross, head-on, and overtaking.
The diagram of the encounter situation is shown in Figure 3.
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In Figure 3, TS represents other ships, DTS represents the initial direction of other ships,
and DOS represents the initial direction of the USV. The encounter situation determined
as the relative position between other ships and the USV was −5◦ to +5◦. The port side
crossing situation defined as the relative position between other ships and the USV’s port
side was 5◦ to 112◦. The starboard crossing situation was defined as the relative position
between other ships and the USV’s starboard and was at 5◦ to 112◦. The relative position of
other ships behind the USV or the USV behind other ships was 112◦ to 248◦, and there is a
certain speed difference between the two ships, which is called overtaking situation. The
action of a USV following COLREGs to avoid other ships is shown in Figure 4.
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3.2.2. Dynamic Obstacle Division

Dynamic obstacles encountered by USVs can be divided into maneuvering type
and non-motorized type according to their driving forms. When the USV encountered
motorized obstacles, its local path planning followed the COLREGs. The floating wood,
the ice, the rafts, etc., are dynamic obstacles that move and disorganize. Due to the
characteristics of strong maneuvering, the USV actively avoids non-motorized obstacles.
The action of a USV avoiding non-motorized obstacles in the grid map is shown in Figure 5.
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the USV local path. For the two scale maps, the local path planning in different situations
is simulated, respectively.

The experiments assumed that the USV would encounter mobile dynamic obstacles, as
shown in Figure 6. In this figure, the red ship represents the USV, the black ship represents
the mobile dynamic obstacle, the blue dotted line represents the USV global path, and
the solid red line is the USV local path. In the process of moving, the USV and the other
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obtained from 20 experiments, and D̃ is the average iteration number of 20 experiments.
According to the data in the above table, SA-BFO has fewer iterations and more times to
search the optimal path when solving the USV local path planning compared to the other
algorithms in all encounter situations.

Table 1. Statistical table of experimental results in Q = 40 × 40.

Algorithm
Crossing Situation Head-on Situation Overtaking Situation

ωt P̃ D̃ ωt P̃ D̃ ωt P̃ D̃

SA-BFO 10 8.3 2.3 19 10.2 2 9 13.6 4
BFO 6 8.6 5.7 19 10.2 5.6 4 14.3 4
GA 8 8.5 61 19 10.2 97.4 7 13.9 81.6
ACO 4 8.7 6.7 18 10.3 3.9 4 14.6 6

Table 2. Statistical table of experimental results in Q = 50 × 50.

Algorithm
Crossing Situation Head-on Situation Overtaking Situation

ωt P̃ D̃ ωt P̃ D̃ ωt P̃ D̃

SA-BFO 18 10.8 2.4 12 14.9 2.3 7 17.1 1.8
BFO 16 10.9 2.8 5 18.6 3 1 22.2 4
GA 12 11.1 46.8 6 15.6 47 1 19.8 45
ACO 10 13.4 7.5 5 18.9 6.2 1 27.3 8.2

To further illustrate the better efficiency of the SA-BFO algorithm, this section provides
a statistical analysis of the convergence of each algorithm at the same time under three
encounter situations in two environments. The convergence curves of the algorithms in
different scale environments are shown in Figures 7 and 8.
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4.2. Visual Platform Test Experiment

The path-planning algorithm must be tested on a real ship or simulation platform
before being applied in practice. There are some problems in real ship testing, such as
long experimental period, high cost, and high experimental risk. Therefore, this paper
verifies the proposed path-planning algorithm through a visual test platform. The visual
test platform used in this paper is developed based on C++ and Qt graphical interfaces,
which can load charts and satellite maps online. The simulation test platform can set the
USV’s speed and course, the static obstacle position, the dynamic obstacle course and
speed, the view mode, and other information.

A coastal port is selected as the working environment of USVs in the visual test
platform. The location information of the environment is shown in Table 3. The satellite map
and gray map of the environment are shown in Figure 9. The obstacles in environmental
information are rasterized. The orange grids are the static obstacles in global path planning.
The black grids are the obstacles detected by the moving USV in its perceptual range. The
diagram of the environment rasterization is shown in Figure 10.

Table 3. Geographic information of test environment.

Geographic Coordinate System GCS_WGS_1984
The Space Resolution 2.078396 m per Pixel

Latitude and longitude
of environment map
(unit: ◦)

Top left: 109.898912, 21.405020
Bottom left: 109.898912, 21.399936
Top right: 109.908224, 21.405030
Bottom right: 109.908224, 21.400006
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The experiment simulates the USV’s encounter with many ships and non-motorized
dynamic obstacles. The initial information about various obstacles and the USV is shown
in Table 4. The visual test platform shows the whole process of the USV driving from
the starting point to the destination. In the course of the experiment, the USV will cross
the uncontrollable raft (OS) first. After the USV completes the cross encounter, it forms
a head-on situation with the motorized ship (TS1). Finally, the USV overtook another
motorized vessel (TS2) at a lower speed until it reached its destination. The simulation
experiment records the specific position of the USV at six moments from the start point
to the destination. It reflects that the USV local path-planning method can make it safely
avoid dynamic obstacles, as shown in Figure 11.

Table 4. The initial information of various dynamic obstacles and USV in the test environment.

Longitude and Latitude of the Starting Point Longitude and Latitude of the Destination Course Speed

USV 109.90415955, 21.40023232 109.90238206, 21.40387451 315◦ 20 knots
OS 109.90269470, 21.40039444 109.90326691, 21.40114021 180◦ 3 knots
TS1 109.90003967, 21.40194321 109.90406879, 21.40019694 135◦ 12 knots
TS2 109.90116882, 21.40297318 109.90213699, 21.40409596 45◦ 4 knots
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4.3. Experimental Analysis

A local path-planning method based on SA-BFO is designed with dynamic obstacle
types and COLREGs rules as constraints in this paper. The comparison experiment selects
two environments of scale Q = 40 × 40 and Q = 50 × 50 for local path planning to verify
the efficiency of the proposed algorithm. In the Q = 40 × 40 scale working environment,
the number of iterations taken by the SA-BFO to find the optimal path in the cross situation
is 3.7% of that taken by the GA, 34% of that taken by the ACO, and 40% of that taken by
the BFO. The number of iterations taken by the SA-BFO in the head-on situation is 2%
of that taken by the GA, 51.3% of that taken by the ACO, and 35.7% of that taken by the
BFO. The number of iterations taken by the SA-BFO in the overtaking situation is 4.9%
of that taken by the GA, and 66.7% of that taken by the ACO. In the Q = 50 × 50 scale
working environment, the number of iterations taken by the SA-BFO in the cross situation
is 5.1% of that taken by the GA, 32% of that taken by the ACO, and 85.7% of that taken
by the BFO. The number of iterations taken by the SA-BFO in the head-on situation is
4.8% of that taken by the GA, 37.1% of that taken by the ACO, and 76.7% of that taken
by the BFO. The number of iterations taken by the SA-BFO in the overtaking situation is
4% of that taken by the GA, 22% of that taken by the ACO, and 45% of that taken by the
BFO. The above data indicate that the SA-BFO algorithm has obvious advantages over
the comparison algorithms in solving accuracy in the two environments. Moreover, the
comparative experiments show the convergence of each algorithm in different situations
within 10 s. The simulation results illustrate that SA-BFO can quickly converge to the global
optimum or relative optimum.

In the experiment of the visual test platform, the USV safely avoided all kinds of
obstacles from the starting point to the endpoint. It can be seen from the simulation
diagrams at different times of the experiment that the USV follows the constraints described
above, safely avoids dynamic obstacles, and plans a reasonable local path.

5. Conclusions

Aiming at the local path-planning problem of USVs, a solution method based on
the SA-BFO is proposed. The SA-BFO algorithm introduces the simulated annealing
mechanism into the elimination–dispersal operation. The improved elimination–dispersal
operator realizes the iterative evolution of the current solution. SA-BFO accepts both the
optimization solution and the deterioration solution with a certain probability so that the
algorithm can better escape from the local extremum and converge to the global optimum.
The simulation results show that the proposed method can make the USV make rapid and
reasonable obstacle avoidance actions when facing various obstacles. Furthermore, the
USV has simulated many encounter situations with various obstacles in public waters and
achieved a good obstacle avoidance effect in the visual test platform.

The research results of the USV path planning in this paper are all validated using
the numerical simulation analysis and the computer simulation experiment stage. The
proposed method and the experimental results can provide reference and technical support
for intelligent ships. In the future, the research results need to be verified by real ships.
Moreover, in future work, the USV energy consumption, channel constraints, multitask
planning, and other issues will be considered.
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