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Abstract: The problem of identifying and analyzing faces in images is a fundamental task in computer 

vision. Though great progress has been achieved in face detection, it is still difficult to obtain the pose 

estimation. In this paper we propose a pose estimation approach that is based on time series representation. 

We have converted input images of faces into big time series datasets, and we then used a dimensionality 

reduction method to convert the original series to a symbolic representation. Classification algorithms are 

then applied using the distances between the symbolic sequences of time series. Since external conditions 

when capturing images are not always optimal, pose estimation can become a challenge. In order to 

overcome such problems, we propose to use the gradient image and the Local Binary Pattern (LBP) 

combined with dynamic morphological quotient image (DMQI-LBP), where these descriptors are robust to 

changes in illumination. Classification algorithms such as K-means, SVM and KNN were evaluated to classify 

frontal vs profile faces poses, and the obtained experimental results show that the proposed method is very 

efficient.  
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1. Introduction 

Pose estimation has become one of the most attractive research topics in the field of computer vision. 

Indeed, for human it is easy to detect faces and know their poses, but it is difficult to do the same by a 

machine. It is an essential skill that is needed in face recognition, human computer interaction, faces and 

persons tracking. Facial pose estimation can improve the performance of face recognition system, and the 

choice of the frontal view reduces the search space of similarity between the facial image and the gallery 

images. In [1], we give an overview of different approaches for head pose estimation. Though great progress 

has been achieved in face detection, it is still difficult to obtain the best pose estimation. In this paper we 

propose a novel pose estimation approach that is based on time series representation. We have converted 

input images of faces to time series, and then we used the Symbolic Aggregate Approximation (SAX) 

technique to reduce dimensionality of data and represent the numeric time series as symbolic sequence. 

Classification algorithms are executed using the calculated pairwise distances between all symbolic 

sequences for classification purposes. Since the captured images are not always acquired in the most 

controlled illumination environments, we propose to use the gradient image and the Local Binary Pattern 
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(LBP), improved with dynamic morphological quotient image (DMQI-LBP), since these descriptors are 

robust against changes in illumination. The approach is efficient and easy to implement and the 

experimental results on several databases have shown very good classification rate. 

The remainder of this paper is organized as follows. Section 2 presents the related work on face pose 

estimation. Section 3 and 4 describe technical details of the proposed face pose estimation method. Section 

5 shows the experimental results on public databases. Section 6 concludes the paper. 

2. Related Works 

The head pose estimation is the most important step in diverse applications in face recognition, driver 

monitoring and human-computer interaction. That is why it made the subject of many recent works. The 

problem is how to increase the performance of any system for these applications. The pose, illumination, 

facial expressions, and subject variability are the factors affecting the accuracy of the process of pose 

estimation. Chutorian et al. in [1] give a good survey of the main techniques published in this domain. They 

classified these methods into eight categories: appearance template methods, detector array, nonlinear 

regression methods, manifold embedding methods, flexible models, geometric methods, tracking methods, 

hybrid methods. Each of these methods has its own strengths and limitations. 

In the first category of methods (i.e. appearance Template methods); the images are compared with a set 

of templates in order to find the similarity between them [2], [3]. In this case the resolution of image is not a 

challenge because the template is well adapted with any changes of face. However, the process takes more 

time than the Detector array methods [4], [5] in which is considered each pose as a class and each class as 

detector, and a numerous supervised learning algorithm can be used for training the classes on many 

images. However, it still sensitive to non-uniform sampled training data and the variations of illuminations. 

Non-linear regression and Manifold methods are based all both, on the dimensionality reduction. The Non-

linear regression methods look for a relationship between the mapping of features space and a space of 

poses in order to predict the pose of any new face. 

Different regressors have been suggested. Li et al. [5] used Support Vector Regressors (SVRs), Gaussian 

Progress Regression (GPR) [6] and Convex Regularized Sparse Regression (CRSR) [7]. 

 In Manifold embedding methods the reduction of dimension is obtained by creating a low dimensional 

that represents the continuous variation in head pose of the input images; than projecting the new image to 

the subspace and embed the features onto a pose manifold, that allows the estimation of orientation of the 

face [8], [9]. The results depend on the choice of the subspace, how to recover all the face pose without any 

other changes.  For this purpose, more works are suggested e.g. PCA [10], kernel PCA (KPCA) [8], multiclass 

linear discriminant analysis (LDA) or the kernelized version, KLDA [11], Locally Linear Embedding (LLE) 

[12], and Laplacian Eigen-maps (LE) [13], Locally Embedded Analysis (LEA) [14]. Balasubramanian et al. 

[15] used an approach Based on Manifold Embededding (BME). In [16] Wang et al. used Isometric feature 

mapping (Isomap) to supply a level of supervision to traditional manifold methods through the 

implementation of Local Fisher Discriminant Analysis (LFDA). Ben Abdelkader [17] employed supervised 

variants of Neighborhood Preserving Embedding (NPE) and Locality Preserving Projection (LPP). Huang et 

al. in [18] proposed Supervised Local Subspace Learning (SL2) that builds local linear models from a sparse 

and non-uniformly sampled training set. Foytik et al. [19] used supervised class based methods for a coarse 

assessment of manifold locality and rely on regressive methods for creating a fine estimation of head pose. 

Despite all these works it is still hard to find the optimal dimensions.  

Flexible models consist to use a deformable models of the human face, then to compare it with the shape 

and appearance of the new image to detect the location of the landmarks of this one. Among these models 

there are Active Shape Models (ASMs) that iteratively deform the image to fit to an example of the face in a 
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new image [20]. Active Appearance Models (AAMs) [21]-[23] combines the full shape model and texture 

variation that are learned from a training set. Constrained local models (CLMs) bring deformable model 

created from the local textures which are found around specific feature positions such as the eyes and 

mouth [24], [25]. In these methods the model adapts to the image and finds accurately the locations of 

feature points, which lead to a good invariance to head localization. As well as provide a high efficiency, 

especially for the head orientation where the outer corners of eyes are visible. 

Geometric methods are based on the identification of the positions of facial features such as eyes, mouth, 

nose, from their location on a chosen geometry to estimate the pose. Gee et al. [26] use nose tip and far 

corners of the eyes and mouth to estimate face pose. But generally in facial images, it is not easy to localize 

the nose precisely. In [27], [28] a triangle made by the centers of the two eyes and mouth has a distinct 

shape for estimate the face pose, by consequence the error in the location of these features degrade the 

performance. In tracking methods, for estimation the pose the different changes of image in consecutive 

frames of a video sequence are considered as criteria [29]. Hybrid methods combine one or more of 

different approaches to compensate the disadvantages [30]. 

Although there are many approaches and methods suggested to determine the pose of face in the image, 

the problem still exists where there are several disadvantages and limitations to each method used. Such as 

complexity of the models, sensitivity to noise and to images acquired in degraded conditions, and low speed 

of processing. 

The methods based on features, like flexible models, geometric and tracking methods, have a good 

invariance to head localization. But, these methods have the disadvantage, so that the facial feature 

locations should specify in all images manually in advance to make the training dataset. They are also 

computationally expensive. 

The approaches based on appearance such as template methods, detector array, nonlinear regression and 

manifold embedding methods, are altogether efficient in regards to computation time. Therefore, they have 

attracted more and more attentions especially the non-linear regression and manifold embedding 

techniques which have been extensively used at the recent study for head pose estimation [31]-[34]. The 

complexity of the non-linear and linear mappings of the facial images and pose labels make difficult to 

develop an exact function for robust head pose estimation. Also, it still helpless to effectively model the 

structure of the subspace. 

To address these limitations, we propose a new approach based on the use of dimensionality reduction 

with time series. The advantage of the approach is the easy way of the representation of the initial numeric 

matrix of the image as symbolic values, thus allowing us to avoid problems of noise, variation of 

illumination...etc. 

The other major point is the ability of using powerful symbolic data mining techniques to classify faces 

poses of any dataset, and thus efficient symbolic distances for classification purposes. 

3. Time Series Representations 

Times series (TS) techniques have been widely used during the two last decades. Time series data are 

occurring almost everywhere in various domains from medical [35] (electrocardiogram ECG, blood 

pressure), satellite image [36], finance and business [37] (stock market, profit-and-loss of a company etc.), 

meteorology (variation in temperature or pressure or wind speed daily, monthly, or yearly), entertainment 

(music, movies), sociology (crime figures number of arrests, etc.) [38], bioinformatics, pattern recognition, 

text mining [39], computer vision, … etc. 

In practice, numerical TS suffer from the high dimensionality, which is not convenient in the storage of 

this kind of data and the computational complexity when manipulating theme. These difficulties led us to 
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propose solutions involving dimensionality reduction of the data. Several time series based data mining 

algorithms use representations of reduced dimensionality. Among them: Discrete Fourier transform (DFT) 

[40], Discrete Wavelet Transform (DWT) [41], piecewise linear (Piecewise Aggregate Approximation PAA) 

[42], piecewise constant adaptive (Adaptive piecewise constant approximation APCA) [42], [43], and 

singular value decomposition (SVD singular Value Decomposition) [43]. Indeed, the use of these 

representations reduces the dimension but its most inconvenience is the fact that the distance between 

sequences has low correlations to the distance defined between the original time series (numerical values 

usually the Euclidean distance). To overcome this problem Lin et al. proposed in [44] an approach called 

Symbolic Aggregate Approximation (SAX). SAX representation solves both dimensionality reduction and the 

lower bounding for Euclidean distance with a very simple proposed distance [44].  

3.1. Symbolic Aggregate Approximation (SAX) 

The SAX method is a symbolic representation of time series with a dimensionality reduction and a lower 

bound of the Euclidean distance. SAX algorithm has three main steps to transform the TS form n dimensions 

to w dimension (w ≪ n). The time series itself must be at first normalized to achieve a mean of zero and a 

standard deviation of one. Then, the original TS is transformed into PAA (Piecewise Aggregate 

Approximation), while the data is divided into w} segments with equal length (frame also known as 

codeword (w)) and the average value of each codeword is calculated and a vector of these values becomes the data reduced representation. Next, from the “breakpoints” that divide the distribution space into a 
equiprobable regions are determined. Breakpoints are a sorted list of numbers B= β1 … βa-1 such that the 

area under a N(0; 1) Gaussian curve from βi - βi-1 = 1/a  (a is alphabet size also known as codebook) [44]. A 

lookup table that contains the breakpoints is shown in Table 1. 

Table 1. Lookup Table That Contains Statistical Breakpoints [44] 
a 3 4 5 6 

β1 -0.43 -0.63 -0.84 -0.97 
β2 0.43 0 -0.25 -0.43 
β3  0.63 0.25 0 
β4   0.84 0.43 
β5    0.97 

 

Fig. 1. Example of SAX representation of a time series with the number of segments w equal to 8 and the 

size of alphabetic symbols a is 5. 
 

Finally, the PAA representation is symbolized into a sequence of discrete string. The interval between two 

successive breakpoints is assigned to a symbol of the alphabet, and each segment of the PAA within this 

interval is discretized by this symbol. So all PAA coefficients that are below the lowest breakpoint are 
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encoded by the symbol "a", then all PAA coefficients that are above or equal the lowest breakpoint and 

lower than the second smallest breakpoint are encoded by the symbol " b", the following symbol is "c" etc. 

Then all PAA coefficients that are above or equal the lowest breakpoint and lower than the second 

smallest breakpoint are encoded by the symbol "b", the following symbol is "c" etc. 

Measuring the similarity is important task of the time series data mining. One of the most positive 

aspects of SAX, is that it represents lower bounding for Euclidean distance. To measure the similarity, they 

use the following formula:  𝑀𝐼𝑁𝐷𝐼𝑆𝑇 𝑄 ,𝐶  ≡  𝑛𝑤     𝑑𝑖𝑠𝑡 𝑞 𝑖 − 𝑐𝑖  2𝑤𝑖=1                                                      (1) 

where Q̂  and Ĉ are the symbolic representation of numerical time series Q and C respectively. The “dist” 

function is implemented using the lookup table for the particular set of the breakpoints as illustrated in 

Table 2 [44]. The distance “dist(r,c)”, between two SAX symbol values r and c is calculated by the following 

expression: 𝑑𝑖𝑠𝑡 𝑟, 𝑐 =  0              if 𝑟 − 𝑐 ≤ 1𝛽max  𝑟 ,𝑐 −1 − 𝛽𝑚𝑖𝑛  𝑟 ,𝑐   otherwise  
 

                             
                        (2) 

Thus, the distance between any successive symbols of the alphabet is zero. 
 

Table 2. A Lookup Table Used by the MINDIST Function for an Alphabet Size a = 4 [44] 

 

 

 

 

 

 

4. Overview of Our Approach    

As reported above, the main objective of our work is to estimate the pose of the face in an input image, 

using time series representation so that the dimensionality is reduced and consequently the complexity of 

the learning and time become low. 

Initially, the matrix representing the input image is converted to a vector which is considered as time 

series. In order to make faster the step of time series transformation, we have scanned the image line by line 

from left to right starting from the top left as Fig. 2 shows.  
 

 

Fig. 2. The conversion of an image into 1D time series sequence. 
 

After that, a transformation is applied to each generated time series by applying SAX symbolization 

technique which encodes the numerical series to a symbolic sequence. 

 a b c d 

a 0 0 1,34 0,67 

b  0 0 0 0,67 

c  0,67 0 0 0 

d   1,34 0,67 0 0 
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After this step, and having a set of symbolic time series that represent all the images in a learning dataset, 

a similarity matrix is produced by calculating all the pairwise “MINDIST “distances between all the 

sequences. Finally, classification algorithms are used to decide whether a face is in frontal view or not. Fig. 

3 presents the general steps of the approach. 

 

Fig. 3. The general steps of the approach. 
 

Note that the input images are cropped manually of each facial image with different poses, and are 

resized to size 100*100 then converted to gray-scale. Thus the length of the numerical time series is 10000 

(the total number of the pixels in image 100×100). Since the learning datasets are huge we adapted the 

classification algorithms on hadoop map reduce. 

4.1. Symbolic Aggregate Approximation (SAX) 

In order to transform the numerical time series of the image into a symbolic sequence, we used SAX 

approach [40]. SAX reduces the dimension of multivalued TS using the mean of the data on a sliding 

windows. Fig. 4 illustrates the principle of the approach. As detailed above, at each position of a frame 

(sliding window) the mean value is calculated over the points in that position, and a symbol is associated to 

the mean values at each window position by a codebook learning process. The symbols are defined by the 

user as the Gaussian quantiles points. SAX requires a good choice of parameters for efficient symbolic 

representation of the original TS to their SAX representation. Therefore, to determine the best size of the 

frame and the alphabet, we performed several experiments, by changing the frame size from 5 to 64 and 

size of alphabet 5 to 128. In each SAX resolution (frame size x alphabet size), we used k-means with map-

reduce version since the size of data is huge, SVM, KNN algorithms to classify the faces images in frontal vs 

non frontal poses. The results of our approach evaluation are shown in the next section. 

4.2. Images Filtering 

As in the real cases, the images are with different illumination; hence we use three categories of images 

during the learning of the model with three categories of images. Firstly, we use the images of the database 

as they are without processing. Secondly, we apply a gradient filter on images. Then, we use the LBP 

transformation of the image quotient filtered by a morphological filter. 

The gradient of an image measures the changes in the intensity of the same point in the original image in 

the horizontal and vertical directions. Mathematically, the gradient of a function of two variables is a vector 

in two dimensions. The modulus of the vector is the magnitude of the gradient which tells us how quickly 

the image is changing, while the direction of the vector tells us the direction in which the image is changing 

most rapidly. Fig. 5 shows that the gradient of the original image in low lighting is almost the same as the 

image in natural lighting, because the gradient operator is not very sensible to illumination changes, 
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therefore this allows us to increase the rate of classification. Because the gradient acts as a high-pass filter 

which renders it sensitive to noise, so the image gradient is filtered by Gaussian filter with Unsharp 

contrast enhancement filter which sharpened edges of the elements without increasing noise or blemish. 

 
Fig. 4. Conversion of an image in a SAX sequence. Having a learning dataset of images, they will be all 

converted to a collection of SAX sequences. 

 
Fig. 5. Example the gradient of the original image in low and natural illumination. 

 

Then we used the DMIQ-LBP image, as shown in Fig. 6 which is obtained after the application of Dynamic 

Morphological Quotient Image [45], combined with LBP (Local binary pattern) [46]. 

An image in certain lighting conditions can be represented by the produce of the illumination L and 

reflectance R. Such a module can be expressed as follows: 𝐼 𝑥, 𝑦 = 𝐿 𝑥,𝑦 ∗ 𝑅(𝑥,𝑦)                                                                (3) 

where I(x, y) is a value of each pixel in image, L(x,y) is dependent of the lighting source, while R(x,y) is 

determined by the characteristics of the surface of object. 

Using equation (3), the reflectance can be expressed as the quotient of the base image and the 

illumination L [47]. The filtering of the illumination will lead to invariance of the reflectance. A convenient 

filter can reach this aim. Motivated by the low complexity and the good performance of the morphological 

quotient image (MQI), the estimation of the illumination L(x,y) is done by  using a morphological close 

operator, which is a non-linear operator defined by a dilation followed by an erosion. 
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𝑅 𝑥, 𝑦 =
𝐼(𝑥, 𝑦)𝐿(𝑥, 𝑦)

=
𝐼(𝑥, 𝑦)𝐶𝑙𝑜𝑠𝑒(𝑥, 𝑦)

                                                                   (4) 

 
Fig. 6. Example DMQI-LBP image of the original image in low and natural illumination. 

 

The dilatation effect is to expand the image where the pixels of the expanded image are the sum of the 

pixels of the original image and the structuring element. This transformation tends to eliminate dark 

objects. Contrariwise, erosion is the effect of shrinking the image, where the pixels of the eroded image are 

the difference pixels of the original image and the structuring element. Erosion allows darken and spread 

the edges of the darkest objects. Therefore, with a suitable size of a structuring element the close operation 

can preserve some particulate pattern while it attenuated other. The close eliminates the dark areas that 

are smaller than the structuring element, keeps the edges of the object and connect the areas of the same 

light intensity. The way to make the illumination invariant is to use the close operator, which lead to a 

smooth version of the input image especially for images with low lighting. 

The size of the structuring element pays an important role for a good morphological filter. Wang et al. [45] 

have indicated that with a large structuring element the close operator keeps only the large scale features, 

but poor performance to compensate on local illumination especially in the case of images under dark zone. 

On the other hand, with a small size, it results in good local illumination normalization, but simultaneously 

misses large scale features. To overcome this problem Zhang et al. [48] proposed Dynamic Morphological 

Quotient Image (DMQI) using a structuring element with dynamically size according to the formula 5. DMQI 

is expressed by the equation 6. 

𝐷𝐶𝑙𝑜𝑠𝑒 𝑥, 𝑦 =  𝐶𝑙𝑜𝑠𝑒𝑙(𝑥, 𝑦)  𝐶𝑙𝑜𝑠𝑒𝑙 𝑥, 𝑦 > 𝛼.𝐶𝑙𝑜𝑠𝑒𝑠(𝑥, 𝑦)𝐶𝑙𝑜𝑠𝑒𝑚 (𝑥, 𝑦)  𝛼.𝐶𝑙𝑜𝑠𝑒𝑠 𝑥, 𝑦 > 𝐶𝑙𝑜𝑠𝑒𝑙 𝑥, 𝑦 > 𝛽.𝐶𝑙𝑜𝑠𝑒𝑠(𝑥, 𝑦)𝐶𝑙𝑜𝑠𝑒𝑠(𝑥, 𝑦)  𝛽.𝐶𝑙𝑜𝑠𝑒𝑠(𝑥, 𝑦) > 𝐶𝑙𝑜𝑠𝑒𝑙(𝑥, 𝑦)

                          (5) 

𝐷𝑀𝑄𝐼 𝑥, 𝑦 =
𝐼(𝑥, 𝑦)𝐿(𝑥, 𝑦)

=
𝐼(𝑥, 𝑦)𝐷𝐶𝑙𝑜𝑠𝑒(𝑥, 𝑦)

                                                                      (6) 

where α and β are the parameters of the feature scales, while α>β>1.0. l, m, and s are the optional sizes of 

templates, while l > m > s> 1 [48]. 
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In the regions of brow, eye, nose, mouth, or the boundary of changing light intensity, the grayscale is 

changing significantly. In this case the choice of close operator with large size is better to keep the features 

of these regions. So the DMQI image is calculated using the condition 𝐶𝑙𝑜𝑠𝑒𝑙 𝑥, 𝑦 > 𝛼.𝐶𝑙𝑜𝑠𝑒𝑠(𝑥, 𝑦), which 

shows that pixels of close operator with a large size is very different than the pixels of image obtained by 

close operator with small size. 

However, if the regions are under illumination or in a smooth region, such as cheek and forehead, the 

change of gray values in these regions is weak. So, in this case the use of close operator with small size is 

sufficient. Thus, DMQI image is calculated using the condition 𝛽.𝐶𝑙𝑜𝑠𝑒𝑠(𝑥,𝑦) > 𝐶𝑙𝑜𝑠𝑒𝑙(𝑥,𝑦) [48]. 

5. Experiments and Results 

To evaluate the performance of our approach, we tested it on three databases, namely GTAV [49], FEI [50] 

and FERET [51]. The first database (GTAV) includes a set of 44 persons with 27 pictures per person which 

correspond to different pose views (0°, ±30°, ±45°, ±60° and ±90°) under three different illuminations 

(environment or natural light, strong light source from an angle of 45°, and finally an almost frontal mid-

strong light source. Fig. 7 presents some example of this database.  

 

Fig. 7. Example of a face from the GTAV Face database (different illuminations). 
 

The second database (FEI) contains 2800 images of 100 men and 100 women; each individual has 14 

images in an upright frontal position with profile rotation of up to about 180°. In Fig. 8 some example of 

this dataset. It has 400 frontal images in natural light and 400 images in low lighting. In FEI database each 

person has 12 images in different pose with natural light and two images in frontal view with weak light.  

 

Fig. 8. Some examples of image variations from the FEI face database. 

 

Fig 9. Example of a person from the FERET Face database. 
 

The third FERET database consists of images that are collected in a semi-controlled environment, of 

different age, race, and sex distribution. With poses fa, fb for frontal pose, and ql, qr for the left and right 

respectively quarter pose (±22,5°),  hl, hr are the poses mid-left and mid-right respectively (±67.5°), and pl, 

Journal of Computers

26 Volume 13, Number 1, January 2018



  

pr are profile poses left and right respectively (±90 $°). Fig. 9 shows some example of this dataset. The 

global total of the used image is around 9180 images. 

In this section, we present the results of the experimental validation. They are reported for each database 

independently. 

We recall that at the learning step, they encode each image in a SAX symbolic time series. Since SAX 

requires two parameters, namely the size of the windows frame and the length of the alphabet, we 

performed as a first experiment, a tuning procedure using GTAV database to find out the best parameters “w” and “a” of SAX, that maximize the classification rate.  

We have conducted the experiments using the images as they are without any modification or processing, 

and we have applied our algorithm on this database. 

We calculated the classification rates with different values of “w” and “a”. 

In Table 3, we show the F-Score of classification for each frame size (w=5, 6, 7, 8, 9, 10, 15, 20, 25, 35, 45, 

55 and 64) and with different alphabet size (a=5, 6, 7, 8, 64, 128). We classified the poses using K-means 

algorithm into three main classes: class of frontal pose, class of the left view, and class of the right view that 

group poses in quarter profile (left or right) at full profile. We can observe that with SAX, and when 

maximizing the size of the window, the classification rate decreases. This is totally normal since the SAX 

symbolic encoding is lossless with great values of codeword (w). 

In order to ensure the best classification rates, we choose the smallest frame size (w=5), and applied it at 

the rest of the evaluations to represent the time series in the next experiments. 

After determining the frame size, we should determine the best alphabet size. We have fixed w at 5, while 

the alphabet size “a” varies in 5, 10, 15, 20, 64, and 128. To evaluate the classification rate, we have 

performed experiments using K nearest neighbor(K-NN) and support vector machine (SVM) with Gaussian 

kernel function for each database. 

These classification algorithms were repeated with the three categories of images: without filter (noted 

OUTPRS in the tables), with Gradient filter (noted GRAD in the tables), and with DMQ-LBP (noted DMQLBP 

in the tables). 

The classification results of GTAV database are listed in Tables 4 and 5. We can resume from these tables 

that: 

 Frontal poses have reached a classification rate of 100% (w=5, a=10...64 with gradient, a=5, 128 

with DMQ-LBP using KNN; and a=5, 10 without processing, a=10, 15, 64, 128 with Gradient, a=5, 10, 

15, 128 with DMQ-LPB using SVM). 

 For left and right classes almost poses have been well classified by the three approaches. 

 The classification with SVM algorithm allows us to achieve the best classification rate comparing to 

KNN algorithm. 

 Using images without processing all poses in frontal view were classified correctly (with SVM). 

 Using Gradient and DMQ-LBP, all poses were nearly classified successfully for each alphabet size. 
 

Table 3. F-Score of the Classification of Faces Poses on GTAV Database Using K-means Algorithm to 
Evaluate the Parameter w (Frame Size) 

Size Frame Size Alphabet View Left % Frontal % View Right % 

5 

5 81,76 45,70 87,24 
6 82,92 48,02 87,95 
7 82,02 47,22 88,55 
8 81,15 46,76 88,90 

64 86,32 54,11 90,60 
128 86,92 54,70 90,60 

10 
5 81,80 45,22 86,69 
6 82,19 46,18 87,40 
7 82,17 45,54 87,51 

Journal of Computers

27 Volume 13, Number 1, January 2018



  

8 81,33 46,30 88,21 
64 82,25 48,53 89,14 

128 82,25 48,72 89,37 

15 

5 81,70 44,76 88,16 
6 81,84 46,22 88,34 
7 81,67 46,52 88,57 
8 80,75 46,15 88,91 

64 80,31 46,99 89,18 
128 80,97 47,45 89,18 

20 

5 79,70 39,14 85,86 
6 80,90 40,08 86,19 
7 81,33 41,20 86,28 
8 80,39 42,44 87,24 

64 80,62 45,53 88,80 
128 81,72 46,55 88,87 

25 

5 79,96 40,94 86,78 
6 81,63 42,51 87,10 
7 81,74 44,00 87,68 
8 80,84 44,01 87,62 

64 81,55 46,85 89,09 
128 81,55 46,55 89,00 

35 

5 78,63 40,39 87,70 
6 78,62 42,39 87,82 
7 78,62 42,39 87,82 
8 76,96 42,13 88,44 

64 77,92 43,43 88,64 
128 77,97 43,59 88,64 

45 

5 79,57 40,74 88,26 
6 77,49 41,35 88,18 
7 78,44 41,49 87,89 
8 78,68 39,45 87,00 

64 77,70 41,92 87,83 
128 77,29 41,68 87,83 

55 

5 78,38 40,00 87,65 
6 77,17 41,50 88,29 
7 78,44 41,49 87,89 
8 76,40 39,15 87,45 

64 76,35 39,23 87,02 
128 76,44 39,69 86,84 

64 

5 78,23 40,98 88,31 
6 76,27 39,84 87,98 
7 78,19 39,28 86,93 
8 76,42 39,36 87,75 

64 76,01 38,30 86,29 
128 76,01 38,30 86,29 

 

Table 4. Classification Rate of the GTAV Database for Each Approach Using K-NN Algorithm to Determine 
the Best Alphabet Size 

Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 99,72 97,4 99,43 O 
U 
T 
P 
R 
S 

10 99,34 96,32 98,96 
15 99,24 95,88 99,34 
20 99,62 98,15 99,90 
64 99,62 98,89 99,53 

128 99,43 96,63 99,34 

5 

5 99,81 99,62 99,90 
G 
R 
A 
D 

10 100 100 100 
15 100 100 100 
20 99,91 100 99,91 
64 100 100 100 

128 99,91 99,63 100 

5 
5 100 100 100 D 

M 
Q 

10 99,53 98,50 99,15 
15 99,53 99,26 99,71 
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20 99,71 99,63 99,81 L 
B 
P 

64 99,62 99,62 99,72 
128 99,81 100 99,81 

 
Table 5. Classification Rate of the GTAV Database for Each Approach Using SVM Algorithm to Determine the 

Best Alphabet Size 
Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 99,72 100 99,72 O 
U 
T 
P 
R 
S 

10 99,72 100 99,72 
15 99,81 99,63 99,90 
20 99,25 99,62 99,34 
64 99,24 99,26 99,43 

128 99,81  99,81 99,63 

5 

5 99,90 100 99,90 
G 
R 
A 
D 

10 100 100 100 
15 99,90 100 99,90 
20 99,90 98,89 99,81 
64 100 100 100 

128 99,90 100 99,90 

5 

5 99,90 100 99,90 D 
M 
Q 
L 
B 
P 

10 99,81 100 99,81 
15 99,81 100 99,81 
20 99,72 99,25 99,90 
64 99,90 99,26 99,72 

128 100 100 100 

 

In Tables 6 and 7 we illustrate similar results using K-NN and SVM on FET database. The frontal poses 

were classified with the rate between 97% and 98%.  Almost all the poses from left or right are well 

classified. 
 

Table 6. Classification Rate of the FEI Database for Each Approach Using K-NN Algorithm to Determine the 
Best Alphabet Size 

Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 98,44 97,99 98,56 O 
U 
T 
P 
R 
S 

10 98,32 97,91 98,55 
15 98,19 97,60 98,26 
20 98,31 97,96 98,62 
64 98,26 97,67 98,22 

128 97,70 97,36 98,12 

5 

5 98,32 97,74 98,31 
G 
R 
A 
D 

10 98,31 97,92 98,56 
15 98,94 98,24 98,45 
20 98,01 97,61 98,44 
64 98,56 97,91 98,32 

128 98,31 97,99 98,31 

5 

5 98,25 98,04 98,81 D 
M 
Q 
L 
B 
P 

10 98,11 97,68 98,23 
15 98,00 98,08 98,93 
20 98,81 98,81 98,38 
64 98,05 97,92 98,81 

128 98,69 98,28 98,75 

  

Table 7. Classification Rate of the FEI Database for Each Approach Using SVM Algorithm to Determine the 
Best Alphabet Size 

Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 98,38 97,83 98,37 O 
U 
T 
P 
R 
S 

10 97,46 97,19 98,3 
15 98,70 97,80 98,00 
20 97,71 97,01 97,88 
64 98,38 97,73 98,38 

128 97,89 97,31 98,13 

 5 97,94 97,83 98,68 G 
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5 10 97,53 97,35 98,43 R 
A 
D 

15 98,38 98,21 98,93 
20 97,33 96,85 98,01 
64 97,20 97,11 98,38 

128 98,39 98,45 99,06 

5 

5 98,75 97,83 97,75 D 
M 
Q 
L 
B 
P 

10 98,82 98,91 99,31 
15 98,76 98,66 98,75 
20 98,75 98,79 98,81 
64 98,57 97,66 97,93 

128 98,88 98,33 99,12 

 

Table 8. Classification Rate of the FERT Database for Each Approach Using K-NN Algorithm to Determine 
the Best Alphabet Size 

Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 99,39 98,87 99,41 O 
U 
T 
P 
R 
S 

10 98,33 97,15 98,38 
15 98,41 97,29 98,28 
20 98,71 97,63 98,50 
64 98,71 97,46 98,52 

128 98,72 97,29 98,52 

5 

5 86,83 90,59 90,40 
G 
R 
A 
D 

10 86,86 91,00 90,20 
15 86,86 91,00 90,20 
20 86,12 90,78 89,60 
64 87,73 91,74 90,38 

128 86,43 91,75 89,91 

5 

5 99,39 98,89 99,19 D 
M 
Q 
L 
B 
P 

10 99,24 98,87 99,26 
15 99,16 98,70 99,23 
20 99,36 98,83 99,38 
64 99,30 98,76 99,17 

128 99,19 98,74 99,35 

  

Table 9. Classification Rate of the FERT Database for Each Approach Using SVM Algorithm to Determine the 
Best Alphabet Size 

Size Frame Size Alphabet View Left % Frontal % View Right %  

5 

5 99,42 99,15 99,46 O 
U 
T 
P 
R 
S 

10 99,13 98,61 99,18 
15 99,36 98,85 99,22 
20 99,21 98,48 99,00 
64 99,22 98,85 99,38 

128 99,16 98,24 98,76 

5 

5 84,21 89,12 92,74 
G 
R 
A 
D 

10 75,61 87,38 86,04 
15 81,74 87,37 91,13 
20 81,71 87,40 91,16 
64 77,44 87,37 87,46 

128 82,38 87,69 91,69 

5 

5 99,38 99,42 99,48 D 
M 
Q 
L 
B 
P 

10 99,35 99,28 99,34 
15 99,33 98,89 99,28 
20 99,27 98,98 99,11 
64 99,36 99,41 99,46 

128 99,16 98,87 99,25 

 

It can be deduced from these results, that if the images are under a natural environment, it is sufficient to 

apply SAX on time series of images with any treatment (FERT case), even in the case of images with 

different lighting (GTAV case). In case where the images are in weak or dark light (FEI case) it is preferable 

to use the images processed following the protocol of the second treatment (Gradient), or the third 

processing (DMQ-LBP) with high alphabet size. Therefore, the conditions in which the images were taken 
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are used to determine the necessary parameters to use the SAX encoding process. It is also clear that SVM 

classifiers are very efficient regarding k-means or KNN in our study. 

6. Conclusion 

In this paper, we presented a new technique for facial pose classification characterized by its simplicity, 

its speed in computation, and its robustness. The method uses dimensionality reduction through time 

series representation of the learning images. Each time series is encoded with SAX symbolic representation 

to transform the numerical series to a symbolic sequence with different frames and alphabet sizes. 

After that, we calculated the pairwise similarity matrices between images of different databases using an 

adapted distance. 

Several classifications methods throughout the generated big data sets of similarity matrices were used 

and very efficient results were obtained. The results have shown that our approach is robust and allows us 

to separately classify the poses even in degraded conditions. In our approach, we have reduced the space 

from 2D image to 1D representation by time series representation, thus with this approach we can assert 

that the time processing is considerably optimized. 

As perspective, we would like to explore other symbolic transformation techniques such as vector 

quantization [52], and subsequently other numerical and / or semantic distances measures [53]. In this 

work we used the k-means classification algorithm under hadoop map-reduce [54]. We would like to 

explore the recently proposed classification algorithms which have been proposed under Spark for 

comparison purposes. 
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