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Abstract

Ultrasound shear wave elastography is an imaging modality for noninvasive evaluation of tissue 

mechanical properties. However, many current techniques overestimate a lesion’s dimension or 

shape especially when small inclusions are taken into account. In this study we propose a new 

method called local phase velocity based imaging (LPVI) as an alternative technique to measure 

tissue elasticity. Two separate acquisitions with ultrasound push beams focused once on the left 

side and once on the right side of the inclusion were generated. A local shear wave velocity is then 

recovered in the frequency domain (for a single frequency or frequency band) for both acquired 

data sets. Finally, a two-dimensional shear wave velocity map is reconstructed by combining maps 

from two separate acquisitions. Robust and accurate shear wave velocity maps are reconstructed 

using the proposed LPVI method in calibrated liver fibrosis tissue mimicking homogeneous 

phantoms, a calibrated elastography phantom with stepped cylinder inclusions and a homemade 

gelatin phantom with ex vivo porcine liver inclusion. Results are compared with an existing phase 

velocity based imaging approach and a group velocity based method considered as the state-of-

the-art. Results from the phantom study showed that increased frequency improved the shape of 

the reconstructed inclusions and contrast-to-noise ratio between the target and background.
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I. Introduction

Soft tissue pathology can cause changes in mechanical properties. Many methods for 

measurement of soft tissue mechanical properties have been developed over the past two 
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decades. One class of methods called shear wave elastography (SWE) encompasses various 

different implementations including supersonic shear imaging, comb-push ultrasound shear 

elastography, among others [1]–[5]. These methods use acoustic radiation force to generate 

shear waves and ultrasound techniques to measure the shear wave motion.

These methods have been employed for imaging various tissues including liver, breast, 

thyroid, skeletal muscle, kidney, and prostate [5]. Liver fibrosis staging has been a primary 

use of SWE techniques that has had good success [6]. SWE has also been widely used for 

characterizing tumors in breast, thyroid, and prostate [7]–[9]. In SWE applications related to 

cancer imaging in breast, thyroid, liver, it has been found that inclusions are typically stiffer 

than the normal surrounding tissue [10]–[13]. These methods have been used to characterize 

lesions as benign and malignant and have found that typically malignant lesions are stiffer 

than benign lesions [7], [9], [10], [12]. In clinically implemented versions of SWE a few 

assumptions are made about the medium. These include that the material is elastic, 

homogeneous, isotropic, and incompressible. In the case of imaging inhomogeneities that 

are finite-sized, resolution is an important factor to take into account.

Among the various methods used to implement SWE measurements, there are also 

numerous techniques for reconstructing the mechanical properties, particularly the shear 

wave velocity. Most of the methods are based on time-domain data and measuring the time-

of-flight of the shear wave in a local sense. Different features of the shear wave motion are 

used for estimation of the shear wave velocity including the peaks of the displacement or 

velocity waveforms [14]–[16]. Additionally, cross-correlation of time signals is used [2], [3], 

[17] and the size of the window used can affect the shear wave velocity results [15].

Another way to analyze the data for estimation of shear wave velocity is using frequency-

domain approaches. Typically, frequency-domain assessment of shear wave velocity has 

been performed with phase gradient or Fourier transform methods [18], [19]. These methods 

have been used to estimate phase velocity dispersion due to material viscoelasticity and 

geometry [20]–[23]. Most of these measurement techniques, as implemented, use a limited 

spatial extent both in the lateral and axial directions. To fill that void, efforts have been made 

to extend these methods to create images of the phase velocity or viscoelastic properties 

such as the shear wave attenuation and material viscosity [24], [25].

We are proposing to use a method called local wavenumber imaging for the purposes of 

creating images of phase velocity in soft tissues. This method has been effectively used in 

the field of non-destructive structural health monitoring to image structural features and 

defects [26], [27]. Local estimates of the wavenumber of propagating guided Lamb waves 

were utilized. Wavenumber changes as a function of spatial position were studied where a 

short space Fourier transform has been developed to obtain a space-frequency-wavenumber 

representation [28], [29]. New wavenumber components created by abrupt wave changes at 

the structural discontinuity were identified in the frequency-wavenumber spectra [27].

The rest of the article is organized as follows. First, we present the Local Phase Velocity 

based Imaging (LPVI) method as applied for the shear wave velocity mapping. This method 

employs techniques from local wavenumber imaging and applies them to shear waves in soft 
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tissues. In comparison to the local wavenumber imaging used in the non-destructive testing 

field the LPVI method does not require wavenumber filtering applied to guided waves since 

we are typically exciting only one wave mode (shear wave). The LPVI method was tested on 

data from numerical simulations and experimental measurements. The robustness of the 

method was tested in calibrated liver fibrosis tissue mimicking homogeneous phantoms and 

a calibrated elastography phantom with stepped cylinder inclusions. We also tested the 

method on data from a homemade gelatin phantom with an ex vivo porcine liver inclusion. 

In this paper we use simulations and phantoms that use inclusions that are softer and stiffer 

than the background material to address the clinically relevant problem of cancer lesion 

characterization. Results from these phantoms will be presented. The results will be 

followed with a discussion and conclusions.

II. Materials and Methods

In this section, the newly proposed LPVI method is adopted for shear wave phase velocity 

estimation. The resolution capabilities of LPVI are tested with the local interaction 

simulation approach (LISA) numerical elastic models, and experimentally using the CIRS 

elastic tissue-mimicking phantoms and a gelatin phantom. First, we provide the whole 

procedure for the LPVI method in Sec. II–A. Major steps of the technique are also presented 

in a flow chart, in Fig. 1 for clarity. A description of the numerical LISA elastic phantom is 

described in Sec. II–B. The experimental CIRS and gelatin phantoms used in our study are 

introduced in Secs. II–C, II–D and II–E, respectively. Appropriate examples are provided in 

order to show LPVI robustness in Sec. III.

A. Local-Phase-Velocity-based Imaging Approach

The newly proposed LPVI approach deals in a “k-space” (frequency-wavenumber) domain 

where additional information about shear wave modes and wavenumber distribution can be 

achieved in comparison to the time-space domain. Generally, the transformation of the 

spatio-temporal particle motion v(z, x, t) to the k-space domain is accomplished using the 

three-dimensional (3-D) Fourier transform ℱ3D

V kz, kx, f = ∫
−∞

+∞

∫
−∞

+∞

∫
−∞

+∞
υ(z, x, t) × e

i 2π f t − k
z
z − k

x
x

dzdxdt, (1)

where, V (kz, kx, f) is the resulting 3-D k-space representation in terms of the frequency and 

wavenumber vectors, kz and kx. It is well known that frequency, f, is a counterpart of time 

domain whereas, wavenumbers kz and kx are the counterparts of the spatial dimensions z 

and x, respectively. With the obtained spectrum data V(kz, kx, f), a wavenumber spectrum 

can be acquired for a particular frequency f0(V(kz, kx, f)).

In the proposed approach the transformation of the spatiotemporal particle motion υ (z, x, t) 

is done in progressive steps. In summary, the steps of LPVI used for shear wave phase 

velocity imaging can be summarized as follows:
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Step 1: The spatio-temporal particle motion υ (z, x, t) is transformed to the frequency 

domain using the one-dimensional Fourier transform ℱ1D
 as follows

V(z, x, f ) = ∫
−∞

+∞
υ(z, x, t)ei(2π f t)

dt, (2)

where V z, x, f  is the resulting particle velocity motion in the frequency-domain (marked as 

II in the flow chart in Fig. 1). Please note that at this step spatial domains of V z, x, f

remained unchanged. With the acquired spectrum data V z, x, f , a wavefield data can be 

obtained for a particular frequency f 0 V z, x, f 0 . This step is marked in flow chart the as 

(IIIa) in Fig. 1. A selected set of data (IIIb) shows the spatial spectrum at a specified 

frequency f0.

Step 2: Perform a short space two-dimensional (2-D) Fourier transform ℱ2D
 in space 

domains z and x [29], [30]. This step entails breaking down the V z, x, f 0  wavefield into 

small segments over the spatial dimensions before Fourier transformation and retain the 

spatial information. In order to do this, the V z, x, f 0  wavefield is multiplied by a window 

function W
z, x

(z, x) which is non-zero for only a small region in space while constant over the 

entire frequency domain, which can be described as follows

V * z, x, f 0 =  V z, x, f 0 ⋅ Wz, x(z, x), (3)

where W
z, x

(z, x) is a 2-D cosine-tapered window (i.e. Tukey window), which can be defined 

as

Wz, x(z, x) = wz(z) ⋅ wx(x), (4)

where w
ξ
(ξ) defines a 1-D window applied along the generic coordinate ξ. The 1-D cosine-

tapered window is used for two spatial directions in a form

wξ(ξ) =

0, ξ − ξ0 > h

1, 0 < ξ − ξ0 < αh

0.5 1 + cos
π ξ − ξ0 − αh

2(1 − α)h
, αh < ξ − ξ0 < h

(5)

where ξ0 and h denote the center and width of the window, respectively. ξ is the retained 

spatial vector of the windowed part. The parameter α defines the shape of the window. 

Particularly, for α = 1 the window becomes a rectangular window, while α = 0 leads to a 
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Hanning window. The Tukey window is specifically convenient in this matter as it provides 

the flexibility needed to avoid losing information near the window edges. At the same time 

this reduces truncation distortions and leakage errors associated with a sharp rectangular 

window. Based on trial and error analysis in our study we used α = 0.25 taper width across 

the spatial domains.

When the W
z, x

(z, x) window slides along the spatial dimensions, windowed wavefield 

regions, V * z, x, f 0 , are generated. This action is marked as (IV) in Fig. 1.

The ℱ2D
 is applied to the V * z, x, f 0  region, resulting in a set of 2-D wavenumber (kz, kx) 

spectra for the particular frequency f0 - (V) in the flow chart - which mathematically is given 

as

V
≈

kz, kx, f 0 = ∫
−∞

+∞

∫
−∞

+∞
V * z, x, f 0 × e

−i k
z
z + k

x
x

dzdx . (6)

The resulting spectra V
≈

k
z
, k

x
, f 0  are indexed by the locations of the window such that the 

spatial information is retained.

Step 3: The final step of LPVI approach is to calculate the spatial distribution of the phase 

velocity of the shear wave motion for the frequency f0 - (VI) in Fig. 1. From the V
≈

k
z
, k

x
, f 0

spectra, for all spatial parts, the phase velocity is calculated as

cph(z, x) f 0 =
2π f 0

k
, (7)

where |k| is a wavenumber magnitude described as

k = k(z:m)
2 + k(x:m)

2 , (8)

and k(z:m) and k(x:m) arguments are found using

k(z:m), k(x:m) = arg max
k
z
, k

x

V
≈

kz, kx, f 0 . (9)

Based on Eq. (7) the full field-of-view (FOV) of phase shear wave velocity image is 

reconstructed - (VII) in Fig. 1. It is worth noting that the frequency f0 can be a single 

frequency value as well as a frequency band (fband) centered about f0 (f0 − fb, …, f0, …, f0 + 

fb). When the frequency band is considered the phase velocity can be defined through an 

equation
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cph(z, x) f band =
1
N

∑
i = 1

N

cph(z, x) f i , (10)

where fi (i = 1, 2, …, N) is a frequency band centered about f0. Hence, Eq. 10 represents a 

phase shear wave velocity image at each location over selected frequency band. When fband 

= f0, Eq. 10 simplifies to Eq. 7.

The above procedure has been implemented in MATLAB to show and evaluate the principle 

and its basic performance. The FFT length in time and spatial dimensions z and x was 1024. 

We conducted tests using this new method on homogeneous phantoms as well as phantoms 

containing various types of cylindrical inclusions. For the inclusions study we used LISA 

numerical phantom data, as well as the CIRS and gelatin phantom experimental data. 

Results using LPVI for the CIRS with inclusions data were compared with the results 

obtained using phase velocity method described in [24] and the 2-D group velocity method 

with Anderssen-Hegland averaging [3]. Gelatin phantom data were compared with the 2-D 

group velocity method [3]. The results of these tests have demonstrated the potential of this 

approach for handling shear wave elastography with robust results.

1) The final image reconstruction: Figure 2 shows the 2-D shear wave phase velocity 

maps reconstructed from LISA numerical (top row) and CIRS experimental (bottom row) 

phantoms, for the inclusion with diameter of 6.49 mm, using the proposed LPVI technique. 

The 2-D spatial window W
z, x

(z, x), described by Eq. (4), used in this case was set to 4.5 × 4.5 

mm length. A single frequency, f0 = 903 Hz was chosen. Figure 2a shows the reconstructed 

shear wave phase velocity map (using Eq. (7)) for the push beam excitation generated on the 

left side of the L7–4 probe, using 32 active elements. Figure 2b displays a similar map 

however, for the push beam excitation generated on the right side of the same probe. A 

combined map from images 2a and 2b is presented in Fig. 2c. The combined image is 

formed by averaging two images, 2a and 2b. On each map the actual inclusion position, 

obtained from the numerical phantom definition or B-mode image, is marked by a dashed 

line. Rectangles with solid lines show the selected background region for mean and SD of 

phase velocity investigation.

In our study we used only two maps (with left and right push beam excitations) for the final 

image reconstruction. Nevertheless, for some cases use of more maps reconstructed from 

various data acquisitions could provide improvements.

B. Numerical LISA Elastic Phantom Description

It is well known that, in practice, soft tissues are almost incompressible (their volume is 

conserved under load) [31] and their shear modulus, μ, is commonly several orders of 

magnitude smaller than the second Lame constant, i.e., λ (μ≪λ). Hence, an isotropic, 

homogeneous elastic material, which can be expressed using a constitutive relation (the 

stress-strain relation) in terms of two independent moduli as
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σi j = λεi jδi j + 2μεi j, (11)

simplifies to [31]

σ = 3με = Eε, (12)

for the linear relationship between applied one-dimensional (1-D) stress and the axial strain 

along the same direction where the proportionality constant is the elastic modulus. The 

subscripts i and j represent the Cartesian coordinates, and δij is the Kronecker delta function. 

ε is a symmetric strain tensor and E is Young’s modulus.

To produce digital phantoms of elastic materials with circular inclusions for which the 

mechanical properties are known, we used a two-dimensional implementation of LISA. The 

LISA method has not been used for SWE applications before. Nevertheless, its advantages 

have been shown for guided wave propagation modeling in mechanical structures [32]–[36].

LISA is an algorithm that was proposed in physics for wave propagation in complex media 

with sharp impedance alterations. LISA was originally designed for use with a 

supercomputer with thousands of parallel processors and therefore it is well suited for 

parallel processing.

LISA can be used for wave propagation in any heterogeneous material of arbitrary shape and 

complexity. The method discretizes the structure under investigation into a grid of cells. The 

material properties are assumed to be constant within each cell but may vary between cells. 

If the cells are taken to be sufficiently small, this assumption represents a good 

approximation to realistic complex media. The same geometry of the phantom - as used in 

the experimental study in Sec. II–D - was modeled in numerical simulations. The entire 

model was discretized into square cells containing material data. A finite difference (FD) 

scheme is used to calculate spatial derivatives in these cells, leading to iterative principle 

displacement equations. The entire derivation scheme is described in detail in [32]–[34].

LISA has several advantageous. One of the major advantages of the LISA algorithm when 

used for wave propagation is the local interaction nature of boundaries in the model [37], 

[38]. The sharp interface model (SIM) was used to average physical properties at interface 

grid points which represent intersections of four elementary cells. In other words, the SIM 

imposes perfect contacts of displacements and stresses at interfaces and discontinuities. The 

SIM allows for a more physical and unequivocal treatment of interface discontinuities for 

different layers of material than standard FD schemes. The latter demands parameter 

smoothing across material interfaces, which depends on the applied scheme and severe 

errors or ambiguities may result. Therefore FD is not very precise for sharp interfaces of 

high impedance mismatch. In LISA physical parameter smoothing across material interfaces 

is applied, leading to more accurate results when treating wave propagation problems in 

complex media. This allows an exact treatment of any kind of discontinuity.
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Another main advantage of LISA is that the method is designed to take full advantage of 

parallel computing, such as provided by the Connection Machine [39]. With a proper 

adaptation of the formalism, the speed-up can be equal to the number of processors. From a 

conceptual point of view, the idea of LISA is to transfer the local interaction among the cells 

directly to the processors, without passing through a partial differential equation [32], [33]. 

An additional important difference between LISA and conventional FD method is that the 

former does not require the use of many points in the iteration procedures. In contrast FD 

requires many formulas to reduce the number of mesh points.

The acoustic radiation force push beam was simulated using Field II [40]. The array that was 

simulated was a linear array with element width of 0.283 mm, element height of 7 mm, 

element pitch of 0.308 mm, elevation focus of 25 mm, center frequency of 5.0 MHz, and 

using a medium attenuation, α, of 0.5 dB/cm/MHz and sound speed, c, of 1540 m/s. The 

intensity, I, was calculated by squaring the pressure to be used in the body force defined by 

F = 2αI/c [4]. A focal depth of 30 mm was used for the push beams with a fixed f-number 

(F/N) of 2.

The elastic domains were uniformly spatially sampled at 0.15 mm. The dimensions of the 

simulated domain are x = ±50 mm in the lateral direction and z = 50 mm in the axial 

dimension Material properties studied in this work corresponded to the mechanical 

properties of the CIRS phantom with an inclusion Type IV provided by the manufacturer 

(see Sec. II–D for more details). The background Young’s modulus was set to 25 kPa and 

the circular inclusion Young’s modulus was set to 80 kPa. The density was set to 1000 

kg/m3 and Poisson’s ratio was set to be 0.499 for both materials, i.e. background and the 

inclusion, respectively. In our study, with the numerical LISA phantom, we investigated an 

inclusion size of 6.49 mm diameter only.

In the LISA implementation, similar to the standard FD scheme, the future time step is 

calculated as a combination of the same quantities taken in the already calculated time steps. 

As a result, the algorithm can be parallelized very efficiently. We used parallel computation 

technology offered by modern graphics processing units (GPUs) and compute unified device 

architecture (CUDA) used in low-cost graphical cards for solving LISA numerical models. 

The entire process was implemented in MATLAB (Mathworks, Natick, MA) software.

C. Liver Fibrosis Tissue Mimicking Homogeneous Phantoms

Liver fibrosis tissue mimicking homogeneous, elastic phantoms (Model 039, CIRS Inc., 

Norfolk, VA, USA) were used in this examination to test the influence of the window size in 

the LPVI approach for shear wave phase velocity reconstruction. Phantoms have a sound 

speed of 1540 m/s and ultrasound attenuation of 0.5 dB/cm/MHz. Stiffnesses of all 

phantoms tested in this paper are 10, 25 and 45 kPa with a precision of ±4% (according to 

the information provided by manufacturer). The push duration was 400 μs and the push 

frequency was 4.09 MHz. The push beam was generated by 32 active elements shifted 

towards the end of the L7–4 probe. Two acquisitions were taken: (1) for the push beam 

located on the left side of the probe and (2) for the push beam located on the right side of the 

probe. Plane wave imaging was used for motion detection with a frame rate of 11.765 kHz. 

The data was reconstructed with axial and lateral resolution of 0.154 mm. The motion (shear 
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wave particle velocity) was calculated from the in-phase/quadrature data using an 

autocorrelation algorithm [41].

D. CIRS Phantom With Inclusions

The CIRS elastography phantom with inclusions (Model 049A, CIRS Inc., Norfolk, VA, 

USA) was used in this study to test robustness of LPVI approach for shear wave phase 

velocity measurement. The phantom has a sound speed of 1540 m/s, ultrasound attenuation 

of 0.5 dB/cm/MHz and 8 stepped cylinder masses with 6 different sizes and locations 

centered about 30 and 60 mm from the phantom surface. According to CIRS Inc., the 

stiffness of the background is 25 kPa and the stiffness of the inclusions are 8, 14, 45 and 80 

kPa for lesions Type I, Type II, Type III and Type IV, respectively. In this study we tested all 

types of lesions for acoustic radiation force push beams focused at 30 mm. The push 

duration was 400 μs and the push frequency was 4.09 MHz. The push beam was generated 

by 32 active elements shifted by 16 elements from the end of the L7–4 probe. Push beams 

were placed on each side of the inclusion. Data was acquired and processed in the same way 

as the liver fibrosis phantoms.

E. Gelatin Phantom With Ex Vivo Porcine Liver Inclusion

A gelatin phantom with an excised porcine liver inclusion was also used to test the 

robustness of LPVI approach. The gelatin phantom was made first and a cylinder was cored 

from the gelatin background. Then, the porcine liver (after placing in 10% formalin for 1 

hour) was situated inside the gelatin phantom in a form of cylinder with an approximate 10 

mm diameter. In order to ensure mechanical coupling between the tissue cylinder and the 

gelatin the tissue diameter was prepared to be slightly larger than previously made hole in 

gelatin. The acoustic radiation force push beams were focused at 20 mm with 32 active 

elements. The push duration was 400 μs and the push frequency was 4.09 MHz. A plane 

wave imaging compounding method was used to improve the signal-to-noise of shear wave 

tracking [42]. Three frames at different steering angles (−3°, 0°, +3°) were used to obtain 

each imaging frame, giving an effective frame rate of 4.166 kHz.

III. Results

A. The Local Phase Velocity based Imaging method investigation - Homogeneous Case 
Study

Figure 3 presents final 2-D shear wave velocity images for the homogeneous liver fibrosis 

tissue mimicking phantoms reconstructed using the LPVI approach. The final images were 

obtained by averaging reconstructed intermediate maps from two acquisition (as described in 

Sec. II–C). The spatial window size of 3.5 × 3.5 mm was used. Maps for three different 

frequencies are presented. We did not expect any changes in reconstructed images in Fig. 3 

with varying frequency because the phantoms are considered to be elastic. For comparison 

dispersion phase velocity curves for the focal depth of 29.6 mm calculated using classical 

2D-FT method are shown in Fig. 4. For each phantom a mean shear wave velocity and 

standard deviation (SD) were calculated within ROIs marked in Fig. 3. Results are presented 

in Fig. 5. These metrics were calculated for various frequencies from 100 to 500 Hz for E = 

10 kPa and from 500 to 1000 Hz for E = 25 and 45 kPa phantoms, respectively and the 
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spatial window, Wz,x, dimensions varying from 3.0 × 3.0 to 6.0 × 6.0 mm. It can be seen that 

with increasing the spatial window SD decreases for all phantoms. Larger window size 

contains data from a larger spatial area whereby reconstructed images are smoother 

compared to smaller Wz,x. Additional ROI metrics (bias, mean, median, SD, variance, 

minimum, and maximum) are tabulated in Tables S1, S2 and S3 and presented in Fig. S1 in 

the Supplementary Material.

B. The Local Phase Velocity based Imaging method investigation - Inclusion Study

1) A mean and SD of phase velocity investigation: Figure 6 shows the mean, 

c
ph

(z, x), (top row) and SD (bottom row) of shear wave velocity calculated within the 

inclusion of 6.49 mm diameter size. The mean velocity and SD were computed separately 

for various frequencies from 450 to 1000 Hz with a frequency step of 50 Hz and for different 

sizes of the spatial window Wz,x (from 3.0 ×3.0 to 6.0 × 6.0 mm). Figure 6a shows results 

for the numerical phantom data whereas, Fig. 6b represents data for the experimental CIRS 

phantom. For both cases progressive c
ph

(z, x) increase with increasing frequency was 

observed. This behavior is observed for all spatial windows dimensions investigated. Smooth 

trends are present for the numerical data. The experimental results exhibit a drop in c
ph

(z, x)

for the frequency of 550 Hz. The progressive mean phase velocity increase in the 

investigated frequency range could be attributed to the change of wavelength. For higher 

frequencies shorter wavelengths exist whereby, more wavelengths or a higher fraction of a 

wavelength are present within the inclusion.

Increasing the spatial window size causes a decrease in the mean phase velocity. This 

behavior is caused by smoothing at the edges of the inclusion. The phase velocity is 

smoothed to a greater extent when larger spatial windows are used. Moreover, the SD 

decreases with increasing spatial window size for LISA and CIRS phantoms data.

Figure 7 shows the mean (top row) and SD (bottom row) of shear wave phase velocity 

computed for the background material, for the numerical LISA data (Fig. 7a) and the 

experimental CIRS phantom (Fig. 7b), respectively. The mean and SD of phase velocity are 

presented for the frequency range from 450 to 1000 Hz, as in a case of the inclusion. Results 

for seven different spatial window dimensions, as in the previous case varying from 3.0 × 3.0 

to 6.0 × 6.0 mm, are depicted. In contrast to the inclusion (Fig. 6), the mean shear wave 

phase velocity for the background decreases with the increase of the frequency. Similar 

behavior was observed for the homogeneous phantom data with elasticity of 45 kPa shown 

in Fig. 5a, bottom row. A greater drop in mean wave velocity is observed when a smaller 

window size is used for LISA numerical (Fig. 7a) and CIRS experimental (Fig. 7b) data. 

Again, the measured shear wave phase velocity magnitude slightly decreases with increasing 

spatial window dimension. The SD also decreases with larger spatial window size. 

Analogous behavior was observed for experimental liver fibrosis tissue mimicking phantoms 

in Sec. III–A, Fig. 5. Additional bias investigation for the inclusion and background for 

LISA and CIRS data are presented in Figs. S2 and S3, respectively, in the Supplementary 

Material.
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2) Window size and frequency selections investigation: Figure 8 shows the k-

space and the phase velocity curves for the background and within the inclusion that were 

investigated in Figs. 6 and 7 for LISA (top row) and CIRS (bottom row) phantoms data, i.e. 

the inclusion diameter of 6.49 mm. The dispersion curves for the background were 

calculated for 27.7 mm of the lateral extent whereas, within the inclusion for 6.3 mm, 

respectively.

A main shear wave mode exists up to approximately 1500 Hz for both, the background and 

the inclusion Type IV materials. For the higher frequencies the difference between 

wavenumbers (resulting phase velocities) is larger. Faster shear wave velocity is observed 

within the investigated inclusion in comparison to the surrounding background material.

Figure 9 shows the final reconstructed 2-D images (merged from the left and right excitation 

maps of the CIRS phantom data) of the shear wave phase velocity for the inclusion size of 

6.49 mm, calculated for 996 Hz and various spatial window dimensions starting from 2.5 × 

2.5 (Fig. 9a) to 5.0 × 5.0 (Fig. 9f) mm, respectively. Here, only a region-of-interest (ROI) is 

presented instead of the full FOV since we are exclusively interested in inclusions shape and 

their mechanical properties evaluation in this paper.

The inclusion shape reconstructed becomes more circular with increasing the spatial window 

size. When the spatial window dimension is small (2.5 × 2.5 or 3.0 × 3.0 mm for the 

investigated case) shape distortions are observed in 9a and 9b. Nevertheless, these distortions 

are very small, approximately 0.5 mm, and still the shape of the inclusion is preserved. 

Additionally, higher shear wave phase velocity magnitude is observed in the middle of the 

inclusion. It is not entirely uniform inside the imaged region in Figs. 9a and 9b. The 

aforementioned drawbacks give way when larger spatial window dimensions are used (Figs. 

9c-9f). For the investigated data, the best image is provided for the 4.0 × 4.0 (Fig. 9d) and 

4.5× 4.5 (Fig. 9e) mm window sizes, respectively. If the spatial window becomes large in 

comparison to the inclusion size, i.e. 5.0 × 5.0 mm (Fig. 9f), the edges of the reconstructed 

inclusion becomes smoother. The effective size of the inclusion becomes smaller. Small 

shape distortions are observed at the level of approximately 0.5 mm, for the investigated 

inclusion phantom type.

Figure 10 shows 2-D shear wave phase velocity images for the CIRS data, reconstructed for 

the inclusion size of 6.49 mm diameter. In this case a constant spatial window dimension 

was used in a size of 4.5 × 4.5 mm. Various frequencies, i.e. 446, 556, 654, 751, 849 and 947 

Hz, for the shear wave velocity imaging were selected and presented in Figs. 10a – 10f. For 

the lowest frequency investigated (Fig. 10a), the reconstructed inclusion image is the least 

robust in a sense that the reconstructed shape is not circular. With increase in the selected 

frequency (up to the investigated 947 Hz in this paper, Fig. 10f) image quality improves in 

the sense of phase velocity is more uniform and shape of the inclusion is reconstructed 

properly. An oval shape is observed in Figs. 10a and 10b. Moreover, the magnitude of the 

shear wave velocity increases with increasing frequency, which was presented in Fig. 6 and 

can be estimated from Fig. 8, providing better contrast in the final results. Outcomes for the 

higher frequencies, investigated in this study, also eliminate the shape distortions as seen in 

Fig. 10f.
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Figure 11 shows the 2-D shear wave phase velocity images, reconstructed for the inclusion 

size of 6.49 mm, calculated for a constant spatial window dimension of 4.5 × 4.5 mm and 

various frequency bands(fband) instead of just using a single f0 frequency, as it was the case 

in Fig. 10. Use of the fband for the shear wave phase velocity image reconstruction, using Eq. 

(10), causes flattening of the reconstructed shear wave velocity within the inclusion. It can 

be seen for example, when Fig. 11a is compared with Fig. 10a. The f0 = 446 Hz used for the 

image reconstruction in Fig. 10a is a center frequency applied for the fband in Fig. 11a. The 

fband used for the image reconstruction was equal to 397–495 Hz. Similar phase velocity 

images improvements are observed for the remaining cases, Figs. 11b–11f.

Figure 12 shows the 2-D shear wave phase (Fig. 12a) and group (Fig. 12b) velocity 

reconstructions for an irregularly shaped inclusion from LISA simulation data. The inclusion 

had a E = 48 kPa and the background had E = 12 kPa. The LPVI reconstruction done with a 

frequency band from 700–1100 Hz shows good contrast with a uniform background. The 

reconstructed mean and standard deviations in the inclusion and background were 3.62±0.55 

m/s and 1.98±0.04 m/s, respectively, for the LPVI. Corresponding the signal-to-noise ratio 

(CNR) [43] was 32.26 dB. This demonstrates that LPVI can be used to reconstruct 

inclusions that deviate from a perfect circle that may be found in vivo. The group velocity 

method instead demonstrated mean and standard deviations in the inclusion and background 

at the level of 3.55±0.43 m/s and 2.42 ± 0.11 m/s, respectively. The CNR was 20.08 dB.

C. LPVI vs Other Existing Techniques

In this section we present a comparison of the proposed LPVI technique with the group 

velocity based method developed in [3], as well as the phase velocity method described in 

[24]. In the latter method only lateral shear waves are assumed and reconstructed through a 

curve fitting approach. All methods were used for the same experimental data where only a 

single focused push beam was used once on the left and once on the right side of the probe, 

to capture two acquisitions data, as described in Sec. II–D. The CIRS phantom with four 

different, Type IV cylindrical inclusion dimensions, i.e.10.40, 6.49, 4.05 and 2.53 mm 

diameter was tested. Results are presented in Fig. 13. Table I summarizes the measured 

mean and SD values of shear wave velocity. In addition, the contrast-to-noise ratio between 

the inclusion and background was calculated for the group velocity and LPVI methods. The 

CNR was computed as CNR =
μ

I
− μ

B

S
b

 where, μ
I
 and μ

B
 are the mean shear wave of velocity 

of the inclusion and background, respectively [3], [43], [44]. The parameter Sb is the 

standard deviation of the shear wave velocity of the background. A region for the CNR 

calculations of the background was selected on the right side of the inclusion.

Only the selected ROI is shown in Fig. 13. Dashed circles present true positions and profiles 

of the individual inclusions. Each inclusion was reconstructed with different spatial window 

size using LPVI, phase velocity and group velocity methods. For all techniques these 

windows were the same for a given inclusion. The largest inclusion, 10.40 mm, was imaged 

with Wz,x = 6.0 × 6.0 mm. Succeeding 6.49 and 4.05 mm inclusions were reconstructed with 

Wz,x = 4.5 × 4.5 and Wz,x = 2.8 ×2.8 mm, respectively. A Wz,x = 1.7 × 1.7 mm was applied 

for the smallest inclusion, 2.53 mm. Images for the examined inclusions using LPVI were 

Kijanka and Urban Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed for a single frequency equal to 1057, 996, 1080 and 1020 Hz, for the inclusions 

diameter of 10.40, 6.49, 4.05 and 2.53 mm, respectively (second column of Fig. 13b). 

Figures presented in the third column of Fig. 13 are based on the LPVI method where the 

fband was used instead of the single frequency, f0. For all four inclusions investigated the 

spatial window was kept the same as above and the fband was equal to 702–1106 Hz, 

resulting in 34 intermediate frequencies with a frequency step equal to 12.219 Hz. Fig. 13d 

show results reconstructed using the phase velocity method presented in [24]. The phase 

velocity maps were reconstructed for f0 = 800 Hz. The reconstructions as higher frequencies 

encountered more substantial noise. The first column of Fig. 13 presents results for the 

group velocity method used as a state-of-the-art for comparison.

In the group velocity image for the inclusion size of 10.40 mm (Fig. 13a, first row) the size 

of the inclusion is overestimated around the entirety of the inclusion. In contrast to the phase 

velocity maps (first row of Figs. 13b and 13c) smaller distortions are observed outside the 

dashed circles. LPVI maps for the inclusion 6.49 mm (second row of Figs. 13b and 13c) are 

nearly ideal, with no spatial distortions. The reconstructed inclusion images are located 

entirely within the dashed circles. The group velocity map instead, for the same inclusion 

size, exhibits blur in the axial direction as is visible in the first row of Fig. 13a. The 

reconstructed shape is overestimated in the lateral orientation. The poorest reconstructed 

image quality was observed for the phase velocity method presented in Fig. 13d where the 

lateral direction of the inclusion is highly underestimated. Moreover, generally better 

contrast of the reconstructed inclusion is present for LPVI (fband)in comparison to the group 

velocity and phase velocity approaches, as summarized in Table I. The CNRs for the group 

velocity and LPVI, f0, (fband) methods, for the inclusion 10.40 mm, are approximately 22 

and 24 (23) dB. However, the phase velocity algorithm provided a CNR of approximately 10 

(5) dB. The CNRs for the inclusion 6.49 mm, are approximately 29 and 25 (27) dB for the 

group velocity and LPVI techniques, respectively. The phase velocity algorithm provided a 

CNR of 9 (1) dB. With the inclusion size of 4.05 mm all techniques exhibit some flaws. 

Nevertheless, the LPVI method reflects inclusion shape to a better extent (the shape is more 

uniform) in comparison to the group velocity and phase velocity methods (third row of Fig. 

13). Here, the CNR is in a range from 20 to 22 dB for LPVI and the group velocity methods. 

At the same time phase velocity method exhibits CNR in a range from approximately 2–7 

dB.

The fourth row of Fig. 13 shows results for the smallest CIRS inclusion investigated in this 

study, i.e. diameter of 2.53 mm. All techniques have difficulties to properly reconstruct the 

inclusion profile. However, as in the previous cases, the proposed LPVI technique was able 

to depict the inclusion with higher contrast. The CNR for the smallest inclusion is 16 dB for 

the group velocity and 11 (16) dB for the LPVI technique. The phase velocity algorithm 

produced CNR of 5 (−1) dB. The shape of the reconstructed images is not identical to the 

expected circular shape. However, it more closely resembles the exact shape (fourth row of 

Figs. 13b and 13c) in comparison to the time-domain and phase velocity methods (fourth 

row of Figs. 13a and 13d). Moreover, the proposed LPVI approach exhibits lower 

background noise, caused by selection of small spatial window size, in comparison to other 

techniques. Application of the fband instead of using just only a single frequency, f0 in LPVI 

method, reduces this noise to an even greater extent. The difference can be seen in Figs. 13b 
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and 13c fourth row, respectively, where smaller background noise is observed. More 

reconstructed 2-D phase velocity images for other frequencies are presented in the 

Supplementary Material in Figs. S6 and S7. Additionally, mean, median, standard deviation, 

variance, maximum and minimum values of shear wave velocity are tabulated in the 

Supplementary Material in Tables S4 and S5.

Figure 14 presents a horizontal (lateral, Fig. 14a) and vertical (axial, Fig. 14b) cross-section 

profiles for three of the largest inclusions presented in Fig. 13, i.e. 10.40, 6.49 and 4.05 mm, 

respectively. The edge reconstruction can be observed in Fig. 14 and compared with Fig. 13. 

Each figure presents reconstructed cross-section profiles based on the LPVI method for the 

single f0 frequency and the frequency band, fband. The f0 and fband are the same as used for 

the velocity images reconstructed in Fig. 13. Results for the group velocity method are also 

included. Vertical dotted, black lines correspond to the edges of the inclusions estimated 

based on the B-mode images.

The reconstructed profiles for the LPVI results where f0 or fband were used are very similar. 

The group velocity method reconstructed edges with less sharpness in the horizontal 

direction for the inclusion of 10.40 mm (first row of Fig. 14a). The remaining two inclusions 

are reconstructed with nearly the same sharpness as by LPVI method in the horizontal 

direction. However, the inclusions’ profiles in the vertical direction are wider for the group 

velocity method. For the inclusions of 10.40 and 6.49 mm diameter the transition 

representing the edges of the shear wave velocity is broad for the group velocity method. 

The LPVI method provides a shorter transition region. The 4.05 mm inclusion profiles in the 

vertical direction are similar for the LPVI and the group velocity techniques.

Figure 15 shows 2-D shear wave phase velocity images for the inclusions Type I, Type II 

and Type III, respectively. Results for inclusion size of 10.40 (top row), 6.49 (middle row) 

and 4.05 (bottom row) mm diameter are presented. Results obtained using LPVI are 

compared with the phase velocity method presented in [24]. The same window sizes were 

used as for the inclusion Type IV investigated in Fig. 13. Reconstructed images are 

presented for a single frequency of 800 Hz. We did not show results for the inclusion size of 

2.53 mm diameter, as for the inclusion Type IV in Fig. 13, because we were not able to 

estimate true inclusions position using B-mode imaging. It can be clearly seen that the 

reconstructed wave velocity maps using LPVI (Figs. 15a, 15c and 15e) do not exhibit much 

noise in comparison to the phase velocity method [24] (Figs. 15b, 15d and 15f). Spurious 

high velocity values are pronounced when Type I and Type II inclusions are investigated 

using [24] method. One of the reasons for that behavior might be that this technique is based 

on a phase gradient search which is susceptible to any changes observed in measured shear 

wave signal. Secondly, only the lateral direction is taken into account when reconstructing 

shear wave velocity maps. At the same time LPVI takes into account information from both 

lateral and axial directions. LPVI is capable to properly reconstruct softer inclusions (Type I 

and II).

2-D shear wave phase velocity images for more frequency values are shown in the 

Supplementary Material in Figs. S8–S12. The Supplementary Material also includes mean, 

median, standard deviation, variance, maximum and minimum values of shear wave velocity 
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calculated for all inclusion types (I-IV) and various sizes for LPVI (Tables S4, S6, S8 and 

S10) and phase velocity approach described in [24] (Tables S5, S7, S9 and S11).

D. Gelatin Phantom with Excised Porcine Liver Inclusion Results

Figure 16 presents a reconstructed 2-D shear wave phase velocity image for the gelatin 

phantom with the cylindrical porcine liver inclusion. Six different f0 frequencies were 

chosen for the shear wave velocity reconstruction using LPVI within a selected ROI, i.e. 498 

(Fig. 16a), 600 (Fig. 16b), 700 (Fig. 16c), 800 (Fig. 16d), 900 (Fig. 16e) and 1000 (Fig. 16f) 

Hz, respectively. Fig. 16h shows the ROI reconstructed using the group velocity method. A 

spatial window size was set to be constant and equal to 5 × 5 mm for all reconstructions. 

Superimposed, dashed lines show the true position of the liver lesion, estimated based on the 

B-mode image presented in Fig. 16g.

The reconstructed lesion demonstrates good contrast with respect to the background as can 

be seen in Figs. 16a–16d. Shape changes of the image are observed for various frequencies, 

as in the case of the CIRS phantom presented in Fig. 10. The reconstructed shear wave 

velocity did not become as uniform within the lesion with increasing frequency, as it was 

observed in the CIRS phantom. Similarly for the group velocity method the reconstructed 

shear wave velocity is not uniform within the inclusion, as can be seen in Fig. 16h. The 

reason for that might be that the ex vivo liver inclusion placed in the gelatin phantom is 

more heterogeneous, due to tissue heterogeneity and formalin diffusion, than the inclusion in 

the CIRS phantom. Hence, the liver stiffness may not be uniform within whole cross section 

as it is visible in Fig. 16. In the Supplementary Material CNR for various frequencies and 

window sizes is shown in Fig. S13.

E. Discussion

In this study we present a new technique called LPVI for the shear wave velocity imaging in 

soft tissues. The approach is based on a frequency-domain approach unlike most other 

techniques which operate in the time-domain. The study shows promising results of using 

LPVI to reconstruct 2-D shear wave phase velocity maps with high contrast and accurate 

shape representation. The proposed technique is capable of reconstruction of shear velocity 

images based on one data acquisition only (Figs. 2a and 2b). However, utilization of two 

acquisition data improves the inclusion shape reconstruction (Fig. 2c). We did not study in 

this paper LPVI feasibility for a scenario where multiple shear waves were produced and 

processed simultaneously. This is a separate, interesting topic that will be investigated in 

future work.

The inclusion phantom experiments show that LPVI is able to provide a more robust contrast 

between an inclusion and surrounding background in comparison to the group velocity 

method. The results indicate that LPVI is robust for small inclusions of size smaller than 5 

mm as well. Tested inclusions were designed to be cylindrical and thus image cross sections 

should be circular. The reconstructed inclusions are circular for investigated dimensions 

10.40 and 6.49 mm (first and second rows of Figs. 13b–13c), and nearly circular for 4.05 

mm (third row of Figs. 13b–13c). There were small or no spatial distortions for these 

inclusions. LPVI is also able to detect very small inclusions, like 2.53 mm (fourth row of 
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Figs. 13b–13c). The time-domain technique had reduced sensitivity to detecting this type of 

inclusion.

The spatial resolution of the proposed method is determined by the spatial wavelengths 

which are shorter at the higher frequencies. This is important for resolving small inclusions 

with high contrast. However, using a single frequency may not provide adequate signal-to-

noise levels. Using a frequency band can preserve the general spatial wavelength but 

improve the signal-to-noise.

The LPVI algorithm ideally requires one or more wavelengths to precisely estimate the shear 

wave velocity of inclusions. In our study the inclusions have a shear wave speed of about 

5.16 m/s (for E = 80 kPa). This corresponds to a wavelength of about 6.45 mm at 800 Hz. At 

849 Hz and 947 Hz, the inclusion in a diameter of 6.49 mm has a more than one wavelength 

and the reconstructed inclusion profiles are very close to a true inclusion location estimated 

from B-mode (Figs. 10e and 10f).

The inclusion 4.05 mm diameter reconstructed at 1050 Hz, presented in Fig. 13b, is biased 

since it contains less than one shear wavelength. The ideal frequency for the image 

reconstruction, for this size of the inclusion, would be about 1300 Hz or higher.

Ideally, high frequency is preferred for LPVI because the shorter wavelength of shear waves 

at higher frequencies is beneficial for resolving small inclusions and providing more 

accurate quantitative results.

The LPVI algorithm assumes local homogeneity by selecting a spatial window size. This is 

violated near boundaries between regions with different stiffness. The shear wave velocity 

gradually transitions between regions [45], leading to elevated shear wave velocities in the 

background and diminished shear wave velocity inside the inclusion near the boundary. The 

shear wave wavelength decreases over the frequency leading to a reduced transition region 

and a reduction of underestimation bias for the inclusion.

A smaller spatial window (Wz,x) size gives better spatial resolution of shear wave velocity 

estimates. However, choosing a Wz,x that is too small provides a noisier image in the form of 

blur (fourth row of Fig. 13b, where Wz,x = 1.7 × 1.7 mm). Thus, the choice of the spatial 

window size should depend on the inclusion size that is evaluated. One approach is to 

gradually increase Wz,x for image reconstruction. This approach could be used to choose an 

optimal window size, which should be smaller than the investigated inclusion in order to 

avoid excessive flattening and blurring of the edges.

There are two ways that can improve noise reduction in the reconstructed images. One is 

selection of the appropriate window size. Larger Wz,x makes the reconstructed shear wave 

phase velocity image smoother and hence reduces noise more. However, at the same time 

small lesions may be concealed by noise. Consequently, this action should be taken only 

when larger lesions are investigated (larger than approximately 4 mm diameter, based on the 

authors’ investigation provided in this paper). The second way to reduce the background 

noise is to use a frequency band (fband) instead of using just a single f0 frequency for the 

shear wave velocity image reconstruction. This step has a grater impact when at the same 
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time small spatial window size is used for very small lesions examination, e.g. 2.53 mm 

diameter as presented in the fourth row of Fig. 13c.

Figure 17 presents the CNR of the LPVI method for various spatial windows used and for 

different frequencies. It is shown that with increasing the spatial window Wz,x from 3 × 3 to 

6 × 6 mm the CNR increases about 5 dB. This happens because a larger Wz,x will average 

wave velocity from a larger area. Consequently this reduces local discontinuities and makes 

the reconstructed shear wave velocity maps smoother. In a frequency range from 400 to 600 

Hz the CNR oscillates between 16.5 dB for Wz,x = 3 × 3 mm and 24.2 dB for Wz,x = 6 × 6 

mm. Above 600 Hz the CNR increases up to approximately 26 dB for window size of 6 × 6 

mm.

The optimal window size could be determined based on several different metrics with user 

interaction. These metrics could include contrast between two regions, or reducing the 

coefficient of variation (ratio of standard deviation to the mean) or interquartile to median 

ratio. Regions or inclusions could be defined by a user and the window size could be 

optimized to meet a user-defined threshold to preserve resolution with smaller windows, but 

reduce the variation in the images.

One important finding in this paper is depicted in Fig. 6, where, regardless of the window 

size used, the measured velocity in the inclusion varied with frequency and seemed to 

plateau at higher frequencies (> 850 Hz). The level of variation was 0.1–0.3 m/s in the CIRS 

phantom data and about 0.1–0.2 m/s in the simulated data. If these phantoms were not 

known to be elastic, one might interpret this as dispersion due to viscoelasticity. This raises 

the need to perhaps choose a frequency or band of frequencies to create images so that 

reporting of shear wave velocities is standardized across different ultrasound scanners.

Using a frequency domain approach could provide a way to standardize shear wave velocity 

reconstructions. Some issues have arisen in SWE practice because different techniques 

utilize different acoustic radiation force push geometries and reconstruction strategies which 

produce differences in measured wave velocities [46]. This has been investigated by the 

Radiological Society of North America Quantitative Imaging Biomarker Alliance work by 

the Shear Wave Speed Committee in phantom studies, where it was found that 

measurements using scanners from different manufacturers gave different values and 

different levels of variation [47].

There are other methods that have used harmonic excitations such as magnetic resonance 

elastography (MRE) and probe oscillation shear elastography (PROSE), typically with 

mechanical actuation, that reconstruct images of the wave velocity at specific frequencies 

[48], [49]. The method in this paper could be compared with local frequency estimation or 

direct inversion techniques to evaluate reconstruction results [50], and could be used for 

reconstructions with these methods that use mechanical vibration.

The phantoms used in this study are assumed to be elastic, but this method could also be 

used to conduct studies in viscoelastic media to examine velocity dispersion caused by 

viscoelasticity and geometry. This will be explored in future work, particularly using LISA 

simulations so that ground truth is known and we can explore variations with the frequency 
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of the reconstruction. There are two other methods that have been proposed to create maps 

of the phase velocity and viscoelastic parameters. In the work presented in [24] a local 

estimation of the shear wave velocity, c(f), was done by a linear fitting of the phase delay 

with a lateral distance over sliding a spatial window at a fixed axial depth. This procedure is 

repeated for each frequency and axial depth. This method was implemented and compared in 

this study in Fig. 13, where the results were not as good as LPVI due to only taking the 

lateral shear waves into account. The frequency-dependent phase velocity presented in [25] 

was computed from the median estimates of shear wave velocities and a material viscosities 

distributions, respectively. These measurements were analyzed by fitting c(f) with a linear 

dispersion model of the form c( f ) = c0 + dc

d f
f . These two methods use data fitting to 

reconstruct a final shear wave velocity maps. The LPVI method instead is a data driven 

based approach. A fitting of additional dispersion model does not occur.

There are some limitations of this method. The reconstructions are computationally 

expensive and scale with the window size and the number of frequencies. Optimization of 

the step size of the moving window will be pursued in future studies. The method is also 

limited to the bandwidth in the shear wave motion, which is determined by the medium as 

well as the acoustic radiation force push beam geometry and push duration [46].

Future work will be directed towards using the LPVI method with different combinations of 

background and inclusion moduli as well as size. We need to systematically explore the 

performance of the LPVI method which may also lead to a standardization of the window 

size and frequency for reconstruction. This could also be compared against the 

aforementioned optimization approach to evaluate the robustness of either method for in 

vivo imaging.

F. Conclusions

This paper introduces a novel shear wave phase velocity imaging technique termed LPVI 

and demonstrates the feasibility of using LPVI to reconstruct a 2-D shear wave phase 

velocity map. Results from inclusion phantoms show that LPVI is able to accurately 

reconstruct 2-D shear wave velocity maps and provide good contrast between the inclusion 

and surrounding background without artifacts. In addition, the proposed technique is capable 

to reconstruct very small inclusions like 4.05 and 2.53 mm of diameter whereas, the time-

domain method has difficulties with it. Further work includes in vitro and in vivo 

experiments of viscoelastic tissues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 

Flow chart of the proposed LPVI approach presented in this study. Main steps of the LPVI 

can be summarized as follow: (I) acquire a 3-D shear wave motion data (z,x,t); (II) transform 

spatio-temporal data into a frequency domain; (III) select the spatial spectrum at a specified 

frequency f0; (IV) perform a short space 2-D FT in space domains; (V) perform 2-D FT on 

the windowed wavefield regions; (VI) calculate spatial distribution of the phase velocity of 

the shear wave motion for a particular frequency or frequency band; (VII) select ROI.
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Fig. 2: 

Two-dimensional shear wave phase velocity image reconstruction based on two separate 

excitation push beams, using the proposed LPVI technique. Used spatial window size was 

4.5 × 4.5 mm and selected frequency, f0 = 903 Hz. Results for the (a) left and (b) right 

excitations. (c) final image map obtained based on combined results from (a) and (b). 

Presented results are for the CIRS phantom with an inclusion Type IV.
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Fig. 3: 

Two-dimensional shear wave phase velocity images for the homogeneous liver fibrosis 

tissue mimicking phantoms. Phase velocity images were calculated based on LPVI approach 

for the spatial window size of 3.5 × 3.5 mm. Dashed lines present a ROI selected for all 

statistics calculations.
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Fig. 4: 

Dispersion phase velocity curves calculated for the homogeneous liver fibrosis tissue 

mimicking phantoms using the 2D-FT method for the focal depth of 29.6 mm.
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Fig. 5: 

Mean and standard deviation of the phase velocity computed for the homogeneous liver 

fibrosis tissue mimicking phantoms for various frequencies and the spatial window 

dimensions. The mean and SD were calculated for ROIs presented in Fig. 3.
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Fig. 6: 

Mean (top row) and standard deviation (bottom row) of phase velocity computed within an 

inclusion size of 6.49 mm diameter for various frequencies and the spatial window 

dimensions, calculated for the (a) LISA numerical and (b) CIRS experimental data.

Kijanka and Urban Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 

Mean (top row) and standard deviation (bottom row) of phase velocity of the background 

computed for various frequencies and the spatial window dimensions, calculated for the (a) 

LISA numerical and (b) CIRS experimental data.
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Fig. 8: 

The k-space spectra computed for the LISA (top row) and CIRS (bottom row) phantoms for 

a (a) background and (b) within 6.49 mm Type IV inclusion, calculated along lateral 

direction at a single axial point. (c) phase velocities for corresponding the k-space spectra 

presented in (a) and(b), respectively.
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Fig. 9: 

Two-dimensional shear wave phase velocity images, reconstructed for the inclusion size of 

6.49 mm calculated for a selected frequency of 996 Hz and various spatial window 

dimensions equal to (a) 2.5 × 2.5, (b) 3.0 × 3.0,(c) 3.5 × 3.5, (d) 4.0 × 4.0, (e) 4.5 × 4.5 and 

(f) 5.0 × 5.0, respectively. Presented results are computed for the CIRS phantom with an 

inclusion Type IV. Dashed lines present a true inclusion location estimated from B-mode.
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Fig. 10: 

Two-dimensional shear wave phase velocity images, reconstructed for the inclusion size of 

6.49 mm, calculated for a constant spatial window dimension of 4.5 × 4.5 mm and various, 

selected frequencies (f0) (a) 446, (b) 556, (c) 654, (d) 751, (e) 849 and (f) 947 Hz, 

respectively. Presented images are computed for the CIRS phantom with an inclusion Type 

IV. Dashed lines present a true inclusion location estimated from B-mode.
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Fig. 11: 

Two-dimensional shear wave phase velocity images, reconstructed for the inclusion size of 

6.49 mm, calculated for a constant spatial window dimension of 4.5 × 4.5 mm and various 

frequency bands (fband) (a) 397–495, (b) 495–604, (c) 604–702, (d) 702–800, (e) 800–898 

and (f) 898–996 Hz, respectively. Presented images are computed for the CIRS phantom 

with an inclusion Type IV. Dashed lines present a true inclusion location estimated from B-

mode.
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Fig. 12: 

Two-dimensional shear wave (a) phase and (b) group velocity images, reconstructed for an 

asymmetric inclusion, calculated for a constant spatial window dimension of 4.5×4.5 mm. 

Fig. (a) was reconstructed for a frequency band from 900 to 1100 Hz. Presented images 

were computed for LISA numerical data.
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Fig. 13: 

Two-dimensional shear wave group (a) and phase (b) (e) velocity images for the inclusion 

size of 10.40, 6.49, 4.05 and 2.53 mm diameter, respectively. Group velocity maps (a) are 

obtained from the group velocity method described in [3]. Phase velocity images (b)-(c) 

were calculated based on the approach developed in this manuscript. The f0 used for the 

calculations was equal to 1050 Hz, whereas fband was selected from 702 to 1106 Hz, 

respectively. Phase velocity maps for f0 = 800 Hz in (d) were calculated based on the 

approach presented in [24]. The fband in (e) was chosen the same as for LPVI approach. 

Presented images are computed for the CIRS phantom with an inclusion Type IV. Dashed 

lines present a true inclusion location estimated from B-mode. Reconstructed images for 

additional frequencies can be found in the Supplementary Material in Figs. S4 and S5.
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Fig. 14: 

Cross section profiles for the three inclusions presented in Fig. 13, in a (a) horizontal and (b) 

vertical directions, respectively. Vertical dotted, black lines correspond to the edges of the 

inclusions estimated based on the B-mode images.
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Fig. 15: 

Two-dimensional shear wave phase velocity images for the inclusion size of 10.40, 6.49 and 

4.05 diameter, respectively. Phase velocity images were calculated based on (a), (c), (e) 

LPVI method and (b), (d), (f) the phase velocity approach presented in [24] for f0 = 800 Hz. 

Presented images are computed for the CIRS phantom with an inclusion Types III (E = 45 

kPa), II (E = 14 kPa) and I (E = 8 kPa). Dashed lines present a true inclusion location and 

size estimated from B-modes. Reconstructed images for additional frequencies can be found 

in the Supplementary Material in Figs S6–S12.
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Fig. 16: 

Two-dimensional shear wave velocity images, reconstructed for the liver lesion surrounded 

by gelatin phantom, calculated for a selected spatial window of 5 × 5 mm. Results for the 

LPVI method, reconstructed for various frequencies, are presented in (a) 498, (b) 600, (c) 

700, (d) 800, (e) 900 and (f) 1000 Hz, respectively. B-mode is presented in (g). Image 

reconstructed by the group velocity method is presented in (h). Dashed lines present a true 

inclusion location estimated from the B-mode. In the Supplementary Material CNR for 

various frequencies and window sizes is shown in Fig. S13.
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Fig. 17: 

The contrast-to-noise ratio (CNR) estimated for the LPVI, computed for various frequencies 

and the spatial window dimensions, calculated for the CIRS experimental data with the 

inclusion diameter of 6.49 mm.
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