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Abstract 
The evolution of local plastic deformation in a dual-phase (DP) steel has been 

studied using Digital Image Correlation (DIC) and in-situ tensile testing inside a scanning 

electron microscope.   Tests were performed using specially designed samples to study the 

initiation and evolution of damage in DP1000 steel by measuring the strains at the scale of 

the microstructure. Micrographs have been analysed using DIC at different stages 

throughout a tensile test to measure local strain distributions within the ferrite–martensite 

microstructure.  The results show progressive localisation of deformation into bands 

orientated at 45° with respect to the loading direction. Strain magnitudes are higher in the 

ferrite phase with local values reaching up to 120%. Several mechanisms for damage 

initiation are identified and related to the local strains in this steel. The procedure used and 

the results obtained in this work may help the development of models aimed at predicting 

the properties of new generation automotive steels. 

Keywords: Steel,  Failure,  Micromechanics,  Mechanical characterization, Electron 

microscopy, Strain measurement  

 

 

1 Introduction 
Advanced high strength steels (AHSS) deliver greater ductility and formability for 

equivalent strength levels compared to conventional carbon steels and high-strength low 

alloy (HSLA) grades. The combination of higher strength and better formability provides 

greater energy absorption capability that improves the crashworthiness of structures made 

from these steels.  

The most common type of AHSS are the dual-phase (DP) steels that are widely used 

in the automotive industry [1]. DP steels consist of hard martensite islands embedded in a 

relatively soft ferrite matrix. Damage initiation and development in such two-phase 

material is not well understood and this is a limiting factor in the development and 

application of future generation automotive steels.  

There have been several attempts to investigate the local deformation and its effect 

on damage of DP and other advanced high strength steels. Ososkov et al [2] have used in-

situ tensile tests to measure local strain partitioning in a DP600 steel before the onset of 

necking using both Digital Image Correlation (DIC) and a microgrid technique. They 

interrupted the test regularly in a Scanning Electron Microscope (SEM) to take images and 

analysed a relatively small area of the microstructure located away from the region of the 
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neck. Following a small number of discrete points located either in the ferrite or in the 

martensite-rich regions, they also estimated the evolution of local deformation within each 

region at different locations along the gauge length. They found that the deformation 

within the martensite-rich regions reached a maximum strain value of 30% while strain 

values in the ferrite phase increased continuously to over 70% close to the fracture surface. 

Gerbase et al [3] investigated  the mechanical behaviour of several DP steels with different 

chemical compositions to study the mechanisms of damage initiation and final failure in 

these materials.  Large plastic strains up to 50% were found in the martensite phase before 

final fracture by measuring the change of average dimensions of several martensite islands. 

They reported that damage initiation in these DP steels does not simply occur through void 

nucleation, but also by decohesion at the interface between the two phases; the latter 

mechanism playing an important role in the final fracture of the specimens. Kang et al [4] 

used DIC to measure strain partitioning in DP600 steel with different tempering 

conditions. They produced strain maps for the deformed microstructure although the 

observed covered area was relatively small compared to the scale of the microstructure and 

some correlation problems occurred at strains above 24%.  They studied damage initiation 

in the two-phase microstructures in relation to the average local plastic strain value 

measured using DIC. However, the area for strain measurements was not large enough to 

include any damage nucleation sites and therefore local strain values could not be related 

to the damage initiation sites directly.  

The major problem with the microgrid method, despite its accuracy, is its limitation 

in terms of minimum grid size as it is experimentally challenging to produce microgrids 

with a sub-micron pitch.  Image correlation techniques have therefore been preferred [5, 6] 

when plastic strains are measured over small gauge lengths.  

In this work in-situ micro-tensile tests have been conducted in a SEM chamber to 

investigate damage evolution in a DP1000 steel in relation to local strain distributions 

measured using DIC.  

2 Experiments 
A commercial DP1000 steel grade with 50% ferrite and 50% martensite has been 

used in this study. The chemical composition of the material is given in Table 1.  

 

 

Table 1. Chemical composition of the DP1000 steel studied. 

wt% C wt% Mn wt% Si wt% Cr wt% V wt% Ni wt% Nb 

0.152 1.53 0.474 0.028 0.011 0.033 0.014 

 

The specimen geometry shown in Fig.1a has been used to obtain the required strain 

levels given the capacity of the in-situ SEM load frame. Observation of damage initiation 

is made easier by the small gauge length of the specimen that can be viewed at relatively 
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high magnification of about 50×. All the specimens were manufactured from a 1.5 mm 

thick sheet with the loading direction parallel to the rolling direction. The samples were 

mechanically polished and etched first for 5 seconds in a 2% Nital solution and then for 15 

seconds in a 10% aqueous  solution of sodium meta-bisulfite (SMB). The revealed 

microstructure shows a dark ferrite phase with embedded white martensite islands (Fig. 

1b).  

 

(a) 

 

(b) 

Fig. 1. (a) Micro-tensile test sample and (b) microstructure of DP1000 steel  

A Deben MICROTEST tensile stage with a capacity of 5 kN was used to carry out 

tensile tests. The test machine is loaded in a CAMSCAN SEM. The test was interrupted 

regularly during loading to take images of a pre-selected area of the microstructure. This 

area was located as close as possible to the centre of the gauge length where necking was 

likely to take place.  The tensile test was carried out at a very low strain rate (ȑ ≈ 0.001s
-1

) 

to give sufficient time to capture the deformation of the microstructure and the fracture 

micro-mechanisms taking place during plastic deformation. Load and displacement of the 

machine cross head were recorded to produce a stress-strain curve. 

DIC was used to analyse the local plastic deformation at the microstructure length 

scale using micrographs taken during the test. The micrographs were analysed using the 

commercial image analysis software, DaVIS 7.0, by LAVision [7] to determine the in-

plane displacement field from which plastic strain values were calculated. In the current 

study, the microstructural features of the material have been directly used as the pattern 

from which to correlate the images between two successive loading steps. Micrographs 

covering an area of 57 µm by 45µm were used for the DIC analysis. A multi-pass 

algorithm [7] leading to a 2.2 µm by 2.2 µm final interrogation window with 75% overlap 

between windows has been used to make the correlation work. A displacement accuracy of 

0.01 pixels was obtained with a strain resolution of about 0.1% [7]. 

This configuration for the DIC analysis ensures that correlation is found throughout 

of the selected area.  

Correlation results are affected by variations in contrast and brightness as well as by 

large shape changes of the microstructural features between two successive images.  An 
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optimal displacement interval of about 3 µm measured with the LVDT of the tensile stage 

was finally selected between two loading steps in order to obtain successful results. The 

test was stopped prior to the final fracture of the specimen as a result of increased surface 

roughness due to inhomogenous out of plane deformation of the ferrite and martensite 

regions leading to a loss of correlation.   

3 Results  

Fig. 2 shows the engineering stress–strain curve obtained from the test. Average 

engineering strain values within the gauge section were determined using the displacement 

measured using a LVDT and the initial gauge length. Point A corresponds to the onset of 

softening and Point B corresponds to the last micrograph taken before fracture of the 

specimen that took place at a strain value of 52%. The small stress variations along this 

curve correspond to the interruption of the test needed to take the micrographs for DIC 

analysis. 

 
Fig. 2. Engineering stress-strain curve of material tested in-situ. Note that the large amount of post-

uniform elongation is due to the tensile geometry 

 

3.1 Damage evolution 
The recorded micrographs have been used to study the development of localised 

deformation as well as damage initiation and propagation. An example of this is shown in 

Fig. 3 by comparing the micrographs taken before and after deformation. The first 

appearance of non-uniform deformation was clearly observed on these micrographs after 

an applied strain value of 22% with the formation of localised deformation bands detected 

within large ferrite grains (Fig. 3d), as opposed to the smaller ferrite regions trapped 

between martensite islands. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Area analysed with DIC. (a) deformed microstructure after an applied strain of 18%, (b) close-up 
view of the area within rectangle in (a), (c) deformed microstructure after an applied strain of 22% and (d) 
formation of deformation bands in the same rectangular area (the tensile direction is vertical on these 
pictures)  

Localisation of plastic deformation at the ferrite-martensite interface was noticed at 

larger applied strain values. Fig. 4a and 4b show such localisation leading to progressive 

damage formation (within the triangle) for an applied strain of 29% and 42%, respectively. 

These areas are enlarged in Fig. 4c and 4d show more clearly the propagation of damage 

through both the ferrite and martensite phases. Localised deformation bands within large 

ferrite phases (areas in rectangle shown in Fig. 4) were also more intense as the applied 

strain increased. Separation of two martensite islands was also observed in the region 

within the circle in Fig. 4b as a result of localised deformation in the ferrite phase.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. Deformed microstructure (a) after 29% and (b) 42% applied strain with (c) and (d) showing a 
close-up view of the area within the triangle shown in (a) and (b) respectively 

3.2 Strain Measurement 

Distribution of the microscale strain component εyy, in the loading direction, is 

shown in Fig. 5 for increasing applied strain values. The maps on this figure are 

superimposed onto the SEM micrographs of the deformed microstructure. Localisation of 

deformation in the microstructure starts to be clearly observed for an applied strain of 22% 

with the formation of deformation bands within the rectangle shown in Fig.5a (light blue 

regions). The bands initiate inside the ferrite, but then cross martensite islands as they 

develop.  Strain magnitude within the bands as well as the band density increases as the 

applied strain increases (Fig. 5b-d). The highest strain intensities within these bands are 

shown in the highlighted areas of Fig. 5d with values up to 130% locally for an applied 

strain of 42%.  These values are located in the ferrite phase, but very close to the interface 

with the martensite. A detailed analysis was then carried out to quantify strain distribution 

within each phase in the selected area for DIC analysis. A plot of the distribution of strain 

values is shown for each phase in Fig. 6a. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5. Plastic strain evolution within the microstructure of DP1000 during the tensile test  

The frequency of strain values normalised by the total number of data points in each 

phase shows a bell-shaped distribution with mean values of 35% in the ferrite phase and 

25% in the martensite phase.  In these graphs, the pixels located along the phase 

boundaries have been removed from the analysis to minimise errors. These results show 

that the martensite phase experiences large plastic deformation during the tensile test with 

local strain values up to 110% for an applied strain of 42%. The evolution of strain 

partitioning within the two phases during the test has also been quantified. Results are 

shown in Fig. 6b where the strain values measured from the overall deformation of the 

selected area for DIC analysis has been considered as the local average strain.  Results 

show that even though the ferrite phase deforms slightly more than the martensite phase, 

strain partitioning is very similar between the two phases throughout the test. 
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(a) 
 

(b) 

Fig. 6. (a) Distribution of plastic strain in each phase before final fracture and (b) evolution of strain 
partitioning during the test 

The large plastic deformation of martensite has been verified by estimating the 

overall shape change of two martensite islands shown in the highlighted squares of Fig. 3 

and Fig. 4. Fig. 7a and 7b show the highlighted boundaries of these martensite islands in 

the undeformed and deformed configurations respectively. The boundaries of the deformed 

and undeformed martensite islands (M1 and M2) are superimposed in Fig. 7c in order to 

estimate the overall elongation. Measurement results show that the islands M1 and M2 

elongate by 51% and 30% respectively which is in agreement with the large strain values 

measured with DIC. 

 

(a) 

 

(b) 
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(c) 

Fig. 7. Highlighted martensite islands in the (a) undeformed and (b) deformed microstructures and (c) 
superimposition of the boundaries for quantification of the phase elongation 

4 Discussion 

Results from the micro-tensile test carried out on DP1000 have shown the evolution 

of local deformation taking place at the scale of the microstructure up to the final fracture 

of the specimen. Local strain heterogeneity starts to be clearly visible using DIC after 22% 

applied strain and becomes more pronounced up until the end of the test (Fig. 5). Fig. 5a 

shows that localised bands of deformation start forming with the highest strain values 

located either inside large ferrite islands or very close to the interface between ferrite and 

martensite for small ferrite islands trapped between several islands of martensite.  These 

bands orientated at about 45
o
 with respect to the loading direction follow a path lying 

mostly within ferrite areas, but also crossing martensite islands. As the applied strain 

increases the localisation of deformation within these bands becomes more intense 

reaching values up to 130% (Fig. 5d). The orientation of these bands corresponds to the 

orientation of slip bands clearly observed in the ferrite phase in Fig. 3d and Fig. 4b, which 

seems to indicate that the initial phase of the formation of these bands is related to the 

plastic deformation mechanisms that operate within the ferrite grains.  

Results from Fig. 4 and 5 show the large deformation experienced by the 

microstructure at the surface of the specimen with relatively few damage sites visible by 

the end of the test. As clearly shown in [8] the volume fraction of voids is much higher at 

mid-thickness of the specimen due to higher stress triaxiality at that location. This explains 

why the fracture of the specimen is suddenly observed due to the emergence of a large 

crack which initiated below the surface. The results therefore show that the interface 

between ferrite and martensite is very strong, probably due to its cohesive nature as 

reported in [9] for DP steels. The high strain values measured in areas close to the interface 

between the two phases (Fig. 5d) are in line with values of 100% measured at the interface 

of the two phases in [4].  

Several mechanisms have been observed for the early stages of damage appearance 

in the analysed microstructure. Fig. 8a shows a close-up view of the square area in Fig. 4b 
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with damage taking place in the ferrite phase after large plastic deformation and a 

corresponding local strain value of 120%. This particular void growth mechanism has also 

been reported in [4] for DP600. A detailed observation of the microstructure and its 

evolution during the test reveals that a more frequent damage mechanism corresponds to 

crack initiation at the interface between ferrite and martensite (Fig 8b) due to the 

incompatibility of plastic deformation locally between the two phases. The crack, then, 

propagates nearly perpendicular to the interface through the martensite phase then follows 

at or near the narrowest part of a martensite ligament (Fig. 8c). Propagation may then 

extend into the neighbouring ferrite phase as shown in Fig. 4d. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8.(a) Enlarged micrograph of the square area of Fig. 4 showing damage nucleation in the ferrite 
phase, (b) damage initiation at the  ferrite-martensite interface and (c) crack propagation into the martensite 
island 

 Fracture of the martensite phase has also been reported in other studies on DP steels  

[10, 11,12]. However the mechanism of fracture by decohesion at the interface between 

ferrite and martensite reported in [3,4, 12] has not been observed in this work. Fig 4b also 

shows the separation of two initially connected martensite islands in the highlighted 

circular area, which is a mechanism reported in [4] and [12]. This mechanism might be due 

to either the failure of a prior austenite grain boundary or the fracture of martensite islands 

following the mechanism previously mentioned. 

The graphs shown in Fig. 6 quantify the distributions of strain values within the two 

phases measured with DIC during the test. Both phases show similar strain distributions 

(Fig. 6a) with a slightly higher mean value for the ferrite phase and local strain magnitudes 

up to 110% after removing the pixels located along the interfaces to minimize errors. The 

martensite islands in DP1000 can therefore accommodate very large deformation without 

failure with a mean value which is comparable to the value of 30% reported in [4] for 

DP600. However local strain values as high as 110% have not been reported elsewhere. 

The strain distributions between ferrite and martensite remain similar throughout the test 

with a slightly higher average strain value in the ferrite (Fig 6b). Given the errors 

introduced in the calculation of average strain values per phase by removing the pixels 
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located along the phase boundaries in the strain analysis, the results show almost one to 

one correspondence with the local average strain up until the end of the test. 

Our finding differ from the results reported by Ososkov et al [2] for DP600 with the 

martensite-rich regions saturating at a strain value of 30% while the ferrite phase reached 

strain values of 80% at the end of the test.  This is likely to be due to the different 

microstructures and carbon contents of the phases for these two DP steels. The differences 

may also be influenced by the methods used in characterising strain partitioning since the 

average strain values shown in Fig. 6b are statistically more meaningful than the single 

point measurements reported in [2]  at various locations along the gauge length. 

The combination of DIC results obtained over a relatively large area of the 

microstructure combined with the observation of damage development on the same area 

therefore provides new insight into the effect of the heterogeneity of deformation that takes 

place at the scale of the microstructure on the formation of damage for DP steels.  Strain 

analysis results for this representative area of the microstructure can also be used to 

develop and validate physically-based scale-transition models of these two-phase materials 

with the aim of predicting the properties of new generation automotive steels from their 

local behaviour. 

5 Conclusion 

An in-situ micro tensile test has been carried out on a DP1000 grade steel in order to 

measure the local plastic strain distributions in the ferrite and martensite phases and their 

evolution for a better understanding of damage nucleation. Digital Image Correlation has 

been used to quantify the local strain values using a sequence of successive images 

recorded during the test. Results have shown a very heterogeneous strain distribution 

within the microstructure with a localisation of deformation into bands orientated at 45
o
 

with respect to the loading direction and maximum strain values up to 130% for an applied 

strain of 42%. Several damage mechanisms have been observed depending on the local 

configuration of the microstructure: damage in the ferrite by void nucleation and growth 

for strain values of about 120%, fracture and separation of martensite islands and 

decohesion at the interface between ferrite and martensite after strain values as high as 

130%.  
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