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Abstract

Local polynomial fitting has many exciting statistical applications. Yet, the results
are rarely known for dependent data. However, the desire for nonlinear time series
modeling, constructing predictive intervals, understanding divergence of nonlinear time
series requires the theory and applications of local polynomial fitting for dependent
data. In this paper, we study the problem of estimating conditional mean functions and
their derivatives via a local polynomial fit. The functions include conditional moments,
conditional distribution as well as conditional density functions. Joint asymptotic nor-
mality for derivatives estimation is established for both strongly mixing and p-mixing

processes.

1 Introduction

Local polynomial fitting, systematically studied by Stone (1977), Cleveland (1979), Tsy-
bakov (1986) and Fan (1992, 93), has many exciting statistical applications, in particular

to statistical function estimation. It reduces the bias of the Nadaraya-Watson estimators
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and the variance of the Gasser-Miiller (1979) estimator (see Chu and Marron (1991) and
Fan (1992)). It adapts automatically to the boundary of design points (see Fan and Gijbels
(1992), Hastie and Loader (1993), Ruppert and Wand (1993)) — No boundary modification
is required. The design adaptation and the advantages of local polynomial fitting was made
clear in Fan (1992). Since then, many interesting statistical properties have been discovered.
See Ruppert and Wand (1993) and Fan, Gasser, Gijbels, Brockman and Engle (1993). In
particular, Ruppert and Wand (1993), Fan and Gijbels (1993) emphasize the superiority of
using local polynomial as a device for derivatives estimation. Since local polynomial fitting
is basically a regression problem, the choice of the local neighborhood is very easy. Fan and
Gijbels (1993) propose two procedures for bandwidth selection. See also Ruppert, Sheater
and Wand (1993) on the development of this subject. While the bandwidth selection for
the local polynomial fitting is simple and useful, it does not apply to the Nadaraya-Watson
estimator due to its inefficiency (See Fan and Gijbels (1993)). Interesting applications to
robust regression can be found in Tsybakov (1986) who discovered many exciting mini-
maxity and asymptotic normality results. The local polynomial fitting as useful statistical
graphical tools can be found in Cleveland (1993).

While the theory and applications of local polynomial regression are very well studied,
the focus of all of the above mentioned papers is on i.i.d. observations. Yet, the statistical
properties of local polynomial regression for dependent data have not been studied previ-
ously. The desire for nonlinear time series modeling, estimating time trend, constructing
predictive intervals, understanding divergence of nonlinear time series compels us to con-
sider the dependent data case. See Tong (1990) and Yao and Tong (1993 a,b) for these
problems and the use of the local polynomial fitting as a device to these important issues.

We now abstract our problem as follows: Suppose that we observe a stationary sequence

(X1, Y1), ,(Xn,Yn). Of interest is the estimation of the conditional mean function
m(z) = E(Y|X = z) (1.1)
and its derivative function m()(z) by using local polynomial regression. If the (p+ 1)t

2



derivative of m(z) at the point z exists, we approximate m(z) locally by a polynomial of
order p:

m(z) =~ m(z) +---+ m(p)(z)(z —2z)P/pl=Bo+ - + Bp(z — z)P. (1.2)

Thinking locally about the unknown function modeled by (1.1), one then carries a local

polynomial regression by minimizing

iZ:;(K—iﬂj(xi—x)j)zk'(xi’:z), (1.3)

7=0
where K'(-) denotes a nonnegative weight function and A — a smoothing parameter — deter-
mines the size of the neighborhood of z. If {8, } denotes the solution to the above weighted
least squares problem, then it is clear from (1.1) that V18, (z) estimates m®¥)(z),v = 0,---, p.
We remark that since we fit (1.3) locally, we do not need to know whether var(Y|X = z)
remains constant or not, because it is approximately the same in a local neighborhood. This
is another advantage of the local polynomial fitting.

The above setup is broad enough to include estimating functions of form my(z) =
E(¢(Y)| X = z) by using the new data set {(X1,Z1), - ,(Xn, Z,)} with Z; = ¥(Y;). These
functions include the conditional moment functions, conditional distribution functions as
well as conditional density functions, and their derivatives with respect to z. For simplicity
of notation, we do not explicitly treat these functions. The above setup can also be applied
to time series; in that case, by letting Y; = X;,4, we have the case of d-step prediction and
we are able to estimate d-step conditional moments and distribution functions.

Our goal is to establish the joint asymptotic normality of the vector B(x) = (ﬁl(x), e ,Bp(x))T.
The major technical difficulty of the local polynomial fitting for dependent data is that the
conditional arguments of Fan (1992) and Ruppert and Wand (1993) are no longer applica-
ble. Upon conditioning on the design vector (X1, -+, X,), the values of (Y;,:--,Y;,) could
be fixed, in particular in the time series context where Y¥; = X;,4 — d-step prediction.
Thus, the bias and variance of the estimator 3,(z) can not easily be obtained as in Fan and

Gijbels (1993).



In the case of a local constant fit, i.e. p = 0, minimizing (1.3) reduces to the Nadaraya-
Watson estimator. This estimator has been extensively studied in the literature by, for
example, Mack and Silverman (1982) and Hardle (1990) and references therein for i.i.d.
observations, and Rosenblatt (1969), Robinson (1983, 1986), Collomb and Hardle (1986),
Roussas (1990), Truong (1991) and Roussas and Tran (1991), among others for dependent
observations. Our technical devices are analogous to those, but are also quite different. The
‘classical’ arguments rely strongly on the simple form of the Nadaraya-Watson estimator.
However, for general polynomial fitting (minimizing (1.3) for arbitary p) the derivation of
the asymptotic distributions of the resulting estimators is considerably more involved.

The outline of the paper is as follows. Section 2 deals with the mean-square convergence
of the hat matrix of the regression problem (1.3) and of other related quantities. These
studies serve as a building block to our main result. The joint asymptotic normality and

its implications are presented in Section 3.

2 Mean Square Convergence

As indicated in the Introduction many statistical problems, such as the estimation of con-
ditional moment functions and conditional distributions, involve the same design matrix.
Thus, it is worthwhile to study its convergence properties. The study here also serves as a

building block to our main results and has applications elsewhere.

2.1 Preliminaries

We first introduce some notation. Denote K(t) = K(¢/h)/h. Let
1 (Xj-z) -+ (X1—2) Y,
x=|: ; coy=| |, W= diag(Kn(Xi - 2)).
1 (Xn—2z) -+ (Xp—2z)P Y.
Then, the solution to the problem (1.3) is B(z) = (XTWX)-1XTWy. The matrix

(XTW X) is positive definite as long as there are at least p + 1 local effective design
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points. This assumption is granted since we always assume that nh — co. Denote by

%Jziixxfz>hux :—Zx zYKmx—@n. (2.1)

i=1

Putting
Sno "¢ sn,p tn,O

S, = , th= ) (22)

Snp "0 Sn2p lnp

the solution to (1.3) can be expressed as (see Fan and Gijbels (1993))
B(.’E) = diag(lvh—la'"7h—p)S;1t'n' (23)
For the convenience of notation, we denote

+oo | +oo
i =/ v K(u)du, v; =/ w! K?(u)du.
-0 —o00

Bo tt Hp vo ot b Ko

S=| : .t ], §=| 1+t . |, p= e (249)

Bp -t H2p vp - V2p H2p+1
In the i.i.d. case, it can be easily seen via conditioning on (X;,---,X,) that B(z) is

estimating the vector
B(z) = (XTWX)' XTW(m(Xy), -, m(Xn))". (2.5)
Since the regression is conducted in the neighborhood of | X; —z| < h, by Taylor’s expansion,
m = (m(X1), -, m(Xn))T
PP (K=o (K = 2P 4+ 0p (YY), (26)

where B(z) = (m(z),---,mP)(z)/p)T. Substituting this into (2.5), using the fact that

P
Sn,; — S;, we have

s x (
B=) = Blz)+diag(h™, - )S7" {”('+ 1()“? (snpe1(@)ssmapra(2)) + op(n}
mP+H) (¢
= B(z)+ (—-_’;%dlag(h”+1 -+, h) {S‘lu + oP(l)} . (2.7)



Therefore, ,B(z) is asymptotically unbiased estimator to B(z). The order of bias is also
indicated in (2.7). For dependent data, we shall use the bias expressions (2.5) and (2.7) to
center our estimators even though they can not be obtained by conditioning arguments on
Xi1,++,Xn as in the i.i.d. case.

We now introduce the mixing coefficients. Let F* be the o-algebra of events generated
by the random variables {X;,Y;,i < j < k} and Ly(FF) denote the collection of all second-
order random variables which are Ff-measurable. The stationary processes {X;,Y;} are
called strongly mixing (Rosenblatt, 1956) if

sup |P(AB) — P(A)P(B)l=a(k) =0 as k— oo
A€eF?  BeF
and are called p-mixing (Kolmogorov and Rozanov, 1960) if

sup |cov(U, V)|
U€Ly(F2 ),VEL2(FP) varl/2(U)varl/2(V)

=p(k)->0 as k — oo.
It is well known that these mixing coefficients satisfy
1
a(k) < 2p(k).

2.2 Results

We make the following assumptions on the kernel function and the mixing processes:

Condition 1:
i) The kernel function K € L, is bounded and u*?*' K (u) — 0, as |u| — oo.

i) |f(u,v;€)— f(u)f(v)] £ M < 00,VE > 1, where f(u) and f(u,v;£) denote respectively
the density of X¢ and (Xo, X,).

iii) Either the processes {X;,Y;} are p-mixing with }" p(£) < oo; or are strongly mixing
with ¥ £%[a(€)]'~#¢ < oo for some § > 2 and @ > 1 — 2/6. In the latter case, we

assume further u?P+2 K (4) — 0 as |u| — oo.



Theorem 1. Under Condition 1 and the assumption that h, — 0, nh, — oo, as

n — 0o, we have at every continuily point of f,

Esn;j — f(z)u;, nh, var(s, ;) — f(z)ve;,

for each 0 < 7 < 2p and
S0 75 f(2)5
in the sense that each element converges in mean square.

To study the joint asymptotic normality of ﬂ(:c), we need to center the vector ¢, as

follows: Let

. le~/Xi—z i .
tnvj = ; Z ( h ) I"h(X‘i - .’L‘)(Y, - m(Xi))a tn = (tn,Oa e ,tn,p)T-
=1
Then consider the arbitrary linear combination of ¢, ..
P 13
Qn = cht:,,,j == ZZi (2.8)
7=0 i=1

0 cjuin'(u) and Cp(u) = C(u/h)/h,

where with C(u) = 3%

Z; = (Yi - m(X:))Cn(Xi - ). (2.9)

Once the joint asymptotic normality of ¢} . is established, by using (2.3) - (2.7), we can
easily obtain the joint asymptotic normality of ﬁ(a:) We need the following conditions.

Condition 2.

i) The kernel K is bounded with a bounded support.

i1) Assume that

Fxo.x40v0,¥,(T1,Tely1,92) < Ay < 00,VE 2> 1. (2.10)
iii) For p-mixing processes we assume that
Y p(f) < 00, EYF < oo
for strongly mixing processes, we assume that for some § > 2 and a > 1 — 2/6,

Y (O] < oo, EYl’ <00, fxw(zly) < A2 < oo. (2.11)



Put ¢%(z) = var(Y|X = z).
Theorem 2. Under Condition 2, if h, — 0 and nh, — oo, we have the following
convergence at every continuity point of o f:
a) hovar(Z;) = o¥(z)f(z) [ C¥(u)du.
b) hn Tpo) [cov(Z1, Zoga| = o(1);

¢) nhy var(@x) — 02(2)f(z) [*Z C*(u)du;

d) nhy cov(t:) — f(z)o*(z)S, where cov(t:) denotes the variance-convariance matriz

of t;.

2.3 Proofs

The proof of Theorem 1 is similar to that of Theorem 2. Since the proof of Theorem 2
is more involved, we only prove Theorem 2. In the following, we denote by D a generic
constant, which may take different values at different places. We suppress the dependence
of h, on n.

First of all, we have by conditioning on X1,

var(Z) = Eo*(X;)CH(X: - z)
- 2 (az(x)f(z) /_;w C(z)ds + 0(1)) , (2.12)
at a continuity point of o2 f. The result c) follows directly from a) and b) along with
var(Q) = ~var(Zy) + 37{2(1 — ¢/n)cov(Z1, Zey1)- (2.13)
n n &

Conclusion d) follows directly from conclusion c) and some simple algebra. So, it remains
to prove part b).

Let d,, — oo be a sequence of integers such that d,h, — 0. Define

dn—1 n—-1
J1 = Z lcov(Za, Zoy1)|, J2 = Z lcov(Z1, Zoy1)I-
£=1 £=dn



It remains to show that J; = o(1/h) and J; = o(1/h).
We remark that since K has a bounded support, m(X;) is bounded in the neighborhood
of X; €zt h. Let B = supxe,4p im(X)|. By conditioning on (¥1,Y;) and using (2.10), we

have for £ > 1,

cov(Z1, 20 = E(Yi - m(X0))(Ye - m(X)Cr(Xi - 2)Ch(Xe ~ )]
. 2
< MBI+ B+ B) ([ [Cu - 2)ldu)
< D. (2.14)

It follows that

J1 £dnD = o(1/h,),

by the choice of d,,.

Next, we consider the contribution of J;. For p-mixing process,
|cov(Zy, Zeyr1)| < p(£)var(Zy).

By using (2.12), we have
Ja <var(Z1) Y p(4) = o(1/h).

Jj=dn
For strongly mixing process, we have by using Davydov’s lemma [see Hall and Heyde (1980),

Corollary A2]
|cov(Z1, Zes1)| < 8la(O)] "/ E| 2, |P/°. (2.15)

By conditioning on Y; and using (2.11), we have

+o00
E|Z:f < A2E(1Y3] + B)S/ ICh(e — w))f < Dh=5+1, (2.16)

(e o]

The combination of (2.15) and (2.16) leads to
o0
Jo < DRV Y [a(q)]
{=d,

Dh2/6—2d;a Z ea[a(z)]1—2/6
b=dn

IA

= o(1/h)

by taking hl‘z/sai;‘1 = 1 so that the requirement that d,h, — 0 is satisfied.
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3 Joint asymptotic normality for mixing processes

3.1 Main results

We need the following conditions in order to establish the joint asymptotic normality of
{m®)(2)}2_.

Condition 3. Assume that h, — 0 and nh, — oo. For p-mixing and strongly mixing
processes, we assume respectively that there exists a sequence of positive integers satisfying

Sn, — 00 and s, = o((nh,)/?) such that
(n/ha)Y?p(sn) = 0 and (n/hy)Y2a(s,) — 0, as n — oo.

Theorem 3. Under Conditions 1 - 3, we have the following asymptotic normality as

n — 00,
VhaQn - N(0,6%(z)),

where Q is defined by (2.8) and 8%(z) = f(z)o?(z) [ C?(u)du.

The proof of Theorem 3 is given in Section 3.2. Before we give the implications of
Theorem 3, we make a few remarks on the mixing conditions and the applicability of the
theorem.

Remark 1. It can be shown that if h, = dn™,(0 < v < 1,d > 0), a sufficient
condition for Condition 3 is respectively a(n) = O(n~"') and p(n) = O(n™"") with v’ > E—},
for strongly mixing and p-mixing processes [with s, = (nh,)!/%/logn)]. In particular, if
7 = 1/5, then 4’ > 1.5. A sufficient condition for (2.11) is a(n) = O(n™""),y" > 265_—‘22.
Therefore, if h, ~ n~1/5 and EYy < o0, a sufficient condition for the mixing coefficients to
satisfy Conditions 1 - 3 is a(n) = O(n™"") with v* > 3, p(n) = O(n~"") with v* > 1.5.

Remark 2. Theorem 3 remains valid when one estimates a function of form my(z) =
E(¥(Y)|X = z). The only changes are that the moment conditions should now be either

E|$(Ys)|* < oo (for p-mixing processes) or E|y(Y;)|® < oo for some 6§ > 2 (for strongly

10



mixing processes). Under Conditions 1 — 3, Theorem 3 now reads as

Via/n 3 0(5) = ma(XDCH(K; - 2) £ N (0,03@1@) [ i), @)

where 03 (z) = var(y(Y )| X = z).

We now give some applications of Theorem 3. Since Theorem 3 holds for all linear

*

combinations of ¢;, ;, we have the joint asymptotic normality (see also part (d) of Theorem

2:)
Vnhets = Vaha(th -, 15T 5 N(0,0%(2) f(2)8),

where S is given by (2.4). Thus, by Theorem 1,
Vb, STt 55 N(0,02%(2)S71857Y/ f(2)) (3.2)
at continuity points of o2 f whenever f(z) > 0. By (2.3), (2.5) and (2.7), we have

Syl = diag(1, -, B2)[B(z) - B (z)]

- P+, (p+1) (4
diag(1,- -, h)[B(z) — B(a)] - "—G+—1),Q

S~ lp+ op(hEYY).

This and (3.2) give

Theorem 4. Under Conditions 1 - 3, if h, = 0(n1f(2p+1)), then, as n — oo,

: N7 hﬁ+1m(p+l)(3’) -
Vnhy (dlag(l,---,hn)[ﬂ(z) - B(z)] - _WS 1#)

£, N©,0¥(z)S"15571/f(z))

at continuity points of a*f whenever f(z) > 0.
Theorem 4 gives the joint asymptotic normality for the estimators ﬂ,,(a:) = m)(z)/v.
In particular, we have the following convergence for the individual components.

Theorem 5. Under Conditions 1 - 8, if hy, = O(n'/(?*+1)), then, as n — oo,

/ m®+)(2)v!B, _ )2V, 0?2
nh%u+1 (m(u)(z) _ m(y)(x) _ p(p -f_x]?)"B hﬁ+1 u)_‘c_’ N (0,( ') f‘zzo)' (17)> ,

at continuity points of o f with f(z) > 0, where B, and V, are, respectively, the v*" element

of S~ and the v** diagonal element of s-1§s-1,

11



Theorem 5 indicates that the local polynomial fit has the asymptotic bias and variance

respectively as:

m(P+)(z)v!B, pbl—v

(p+1)t 7

(v)?V,0%(z)
nh2t! f(z)
(3.3)

bias of m¥)(z) = “variance” of m()(z) =
The optimal bandwidth for estimating the v** derivative can be defined to be the one which
minimizes the squared bias plus variance. Assume that p — v is odd ( see Fan and Gijbels
(1993) for the reason why this assumption is needed and why this assumption is natural).

Then the optimal bandwidth is given by

huopt —_ ( [(P+ 1)!]2VVU2(-T)/f(.’E) )l/(2p+3).

2(p+ 1 - v)[mlr+1)(z)]2B2
By (3.1), we have the following generalized results.
Theorem 6. Let my(zx) be the estimator of my(z) = E(¢(Y)|X = z) by using a local

polynomial fit. Under Conditions 1 - 3 with suitable modification as indicated in Remark
2, if h, = O(nl/(2p+1)), then as n — oo
(p+1) 'B
2041 [ - (v) v) my (@B, N« 2¢, 2

Vb2 () (@) - mi)(z) - o) N (0w ele) 1)
at continuity points of o?f whenever f(z) > 0, where B, and V, are given in Theorem 5,
and o} (z) = var(p(Y)| X = z).

Example 1. a) When 9(Y) = I{Y < y}, the problem corresponds to estimating the
conditional distribution m,(z) = P(Y < y|X = z) and its derivative with respect to z. In
this case,

g(z) = my(z)(1 - my(2)).

b) If (Y) = Y%, then the problem corresponds to estimating conditional second moment.

In this case,

A(2)=E(Y X =z) - [E (v’ X =2)] .

12



3.2 Proof of Theorem 3

We employ the small-block and large-block argument. Partition the set {1,---,n} into

2k + 1 subsets with large blocks of size r = r,, and small block of size s = s,,. Put

n

Tn + Sn

k= k= | ——] (3.4)

In the following derivation, we suppress the dependence of h,, on n. Let Z,,; = \/EZ,-H,i =

0,---,n— 1. Then,

1 n—1
VnhQ, = ﬁ ; Zn,z
and by Theorem 2
n—1
var(Zn0) = 6*(z)(14 0(1)), Y |cov(Zn0,Zne)| = o(1). (3.5)
=1
Define the random variables
J(r+s)+r-1
= D, Zni, 0<j<k-1,
1=j(r+s)
(J+1)(r+s)-1
&= D>, Zng, 0<j<k-1,
t=j(r+s)+r
and
n—1
o= Y. Zni
1=k(r+s)
Then,
1 k-1 k-1
VnhQ, = 7 Somi+d i+ G
n 7=0 j=0
1 ! n m
= — . 3.6
We will show that as n — oo,
1 "y\2 1 "2
—-E(Q.)—0, —=E@Q,)—-0 (3.7)
n n
k-1
E [exp(itQ;,)] — 1 E [exp(itn;)]| — 0 (3.8)
J7=0

13



1 k-1

- Z_: E (7)]2) — 02(:1:) (3.9)
k=1"
=Y E(7I{Inj] 2 eB(z)a}) — 0 (3.10)
1=0

for every € > 0. (3.7) implies that Q}, and Q! are asymptotically negligible, (3.8) implies
that the summands {7;} in Q;, are asymptotically independent, and (3.9) and (3.10) are the
standard Lindeberg-Feller conditions for asymptotic normality of Q! under independence.

Expressions (3.7) — (3.10) entail the following asymptotic normality:
VnhQ, = N (0,6%(z)). (3.11)

We now establish (3.7) — (3.10). The proof concentrates on the strongly mixing case.
We remark on the difference for p-mixing processes.
We first choose the block sizes. Condition 3 implies that there exist constants q, — oo

such that
qndn = 0( \% nhn); ‘In(n/hn)ll2a(sn) — 0. (3'12)

[For p-mixing process, gn(n/hn)"/?p(s,) — 0]. Define the large block size 7, by

mn = [(7hn)'/?/gn].

Then, it can easily be shown that, as n — oo,
$nftn = 0, Ta/n—0, r/(nh,)/? =0, (3.13)

and

rla(sn) —0. (3.14)

[ For p-mixing processes, (3.14) is proved via the inequality a(s,) < p(s,)/4.]
We now establish (3.7). First of all, by stationarity and (3.5),

s=1

var(&;) = svar(Z,0) + 2s Z(l —j/8)cov(Zn 0, Zn ;) = s6%(z)(1 4 o(1)).
7=1

14



and

k—
Z var(§;) + Z Z cov(&, €)= Fy + Fa. (3.15)

=0 3=0
i#]

By (3.4) and (3.13), rpkn/n < 8p/(rn + $p) — 0 so that F} = O(k,s,) = o(n). Now, we
consider F,. We first note that with m; = j(r + s) + r,

s—1 s-1

k-1 k-
Fb‘— :E: }E: }E: :E: COV n1n.+€1,2217n1+12)

1=0 .7—0 11 =0 l2—0
i#)

but since i # j, [m; — m; + £; — €2| > r so that

n—-r-1 n-1
|Fy] <2 z Z |cov(Zneys Zne,)l -

=0 l=l1+r

By stationarity and (3.5)

n-1
|F3] < 2n Z lcov(Zn,0, Zn ;)| = o(n).
j=r

This together with (3.15) validate the first part of (3.7). For the second part of (3.7), using

a similar argument together with (3.5), we obtain that

n—-1
%E(QZ')z < —(n — k(r + s))var(Zno) + 2 E lcov(Zn 0, Zn ;)
i=1

Equation (3.8) is now proved as follows. Note that 7, is ff:‘-measurable with i, =
a(r +s)+ 1 and j, = a(r + s) + r. Hence, applying Lemma 1 (see the end of the proof)
with V; = exp(itn;), we have

k-1
Bexp(itQ") - [] Blexp(itn;)]| < 16ka(sn +1) ~ 16%(1(3" +1),
7=0
which tends to zero by (3.14).

We now show (3.9). By stationarity and (3.5),

var(n;) = var(mo) = ra0%(z)(1 + o(1)).

15



This implies that

Tn

1 &! knr
=Y E(n}) = 26 (z)(1 4 o(1)) ~ 6%(z) — 6%(z),

n Tn + Sn
since s, /r, — 0.

It remains to establish (3.10). We employ a truncation argument as follows. Let

er(y) = yI{ly| < L},

where L is a fixed truncation point. Correspondingly let

mr(z)=F (aL(Yj)|Xj = z) ,

and
+o00
VE() = E [(@u(¥y) - mu(X)P|X, =, 6 = VE@)(@) [ CRupdu.
Put
ZJL = (aL(Y;) = mp(X;))Ch(X; —z), and Z,;_1 = \/ir,—n_ZjL, j=1--,n.
and

Qr=nt>2zF,  QL=n"13(2-2z}). (3.16)
Using the fact that C(-) is bounded (since K is bounded with compact support), we have
12551 < D/wY?,

for some constant D. This entails that maxo<;j<k-1 |17]L|/\/ﬁ < Drn/v/nh, — 0, by (3.13).
Hence, when n is large the set {|nJL| > 01(z)ey/n} becomes an empty set, namely (3.10)

holds. Consequently, we have the following asymptotic normality:
Vnh,QE £, N(0,62). (3.17)

In order to complete the proof, namely to establish (3.11), it suffices to show that as first

n — oo and then L — oo we have
nhy,var (Qf{) — 0. (3.18)
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Indeed,

| B exp(ity/nhnQn) - exp(—t202(x)/2)|
| B expity/mhn(@% + GE)) — exp(~1263 /2) + exp(~1263 /2) - exp(~26%(2),2)|
}Eexp(it\/nth,I{) - exp(—tZG%/Q), +E ’exp(it\/nth,I;) - 1|

+ |exp(—263 /2) — exp(~1267 /2)|.

IN

Letting n — oo, the first term goes to zero by (3.17) for every L > 0; the second term
converges to zero by (3.18) as first n — oo and then L — oo; the third term goes to zero
as I — oo by the dominated convergence theorem. Therefore, it remains to prove (3.18).
Note that by (3.16) Qﬁ has the same structure as @,, except that the function Y; is replaced

by Y;I{|Y;| > L}. Hence, by part c) of Theorem 2, we have
- 400
Jim nh,var (Qﬁ) =var(YI[|Y| > L||X = z)f(z)/ C*(u)du.

By dominated convergence, the right hand side converges to 0 as L — oo. This establishes
(3.18) and completes the proof of Theorem 3. o

Lemma (Volkonskii and Rozanov, 1959). Let Vi, ---,Vy, be random variables measurable
with respect to the o-algebras }'ijl‘ yro e ,.7-'# respectively with 1 < 1 < j; < 12 < -+ < j, < n,

pr—fi2w>land|V;| <1 forj=1,---,L. Then

L L
E(ij) - [TEW)

i=1

< 16(L - 1a(w),

where a(w) is the strongly mizing coefficient.
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