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Abstract

Nonparametric regression estimates a conditional expectation of a response given
a predictor variable without requiring parametric assumptions about this conditional
expectation. There are many methods of nonparametric regression including kernel
estimation, smoothing splines, regression splines, and orthogonal series. Local regression
fits parametric models locally by using kernel weights. Local regression is proving to be
a particularly simple and effective method of nonparametric regression.

This talk reviews recent work on local polynomial regression including estimation
of derivatives, multivariate predictors, and bandwidth selection. Three applications to
environmental science are discussed:

1. Estimation of the distribution of airborne mercury about an incinerator using
biomonitoring data.

2. Estimation of airborne pollutants from LIDAR (LIght Detection And Ranging)
data. Because of substantial heteroskedasticity, this example requires estimation
of the conditional variance function as well as the conditional expectation function.

3. Estimation of gradients from elevation data. The estimated gradients are used in
a model to predict soil movement during earthquakes. Data from Noshiro, Japan
are used.

The first and third examples use two-dimensional spatial data. Though these prob-
lems could be analyzed by geostatistics, local polynomial regression has the advantage
of modeling the heteroskedasticity in the first and second examples and being able to
estimate gradients in the third.
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1 Introduction

In nonparametric regression, also called curve and surface estimation, we observe data
{(X;,Yi)}, and attempt to estimate m(z) := E(Y;|X; = ). Here Y; is a univariate
response and X; is a vector of covariates or predictor variables. There are many possible
applications of nonparametric regression in the environmental sciences, and in this paper
we will focus on three examples: biomonitoring of airborne mercury, LIDAR measurement
of atmospheric pollutants, and estimation of soil gradient in geotechnical engineering.

An outline of the paper is as follows. In this Section, we will introduce the three
examples. Then in Section 2 we will look at local polynomial regression, a simple yet
powerful nonparametric regression methodology. In Section 3 we discuss the selection of
the bandwidth or smoothing parameter by minimizing an estimator of the mean squared
error. A common problem in environmental applications and elsewhere is the modeling
of heteroskedasticity. This problem is discussed in Section 4 where we introduce variance
function estimation, i.e., estimation of conditional variances. Finally, Section 5 returns to
the three examples, and Section 6 is discussion.

The first example comes from biomonitoring of airborne mercury about a solid waste in-
cinerator in New Jersey, USA. The data come from Opsomer, Agras, Carpi, and Rodrigues
(1995). Waste incineration is a major source of environmental mercury, and the researchers
wanted to know if elevated mercury concentrations could be detected near the incinerator.
Pots of sphaghum moss were placed at 16 sampling locations about the solid waste inciner-
ator and exposed to ambient conditions between July 9 and July 23, 1991. Then the moss
was collected, dried, and assayed for mercury. The goals of the study include estimating
the distribution of mercury about the incinerator and testing the null hypothesis that the
mean mercury concentration is constant. Possible approaches to this problem are geostatis-
tics, i.e., kriging (Cressie, 1991), smoothing splines such as thin-plate splines (Green and
Silverman, 1994), regression splines such as MARS (Friedman, 1991), and local regression.
We will pursue the last approach. Here X is bivariate spatial position and Y is measured
mercury concentration. In Figure 1(b) the sampling locations and the location of the in-
cinerator are shown. Also shown are the contours of mercury concentration, estimated by
the local regression method that is described in this paper.

The contours indicate that mercury concentration peaks a little south of the incinerator.
There are only 16 sampling locations, with replicate moss pots at 6 of these sites, for a total
of 22 observations. With so few data, only gross features of mercury deposition can be
resolved, but the nonparametric fit provides a nice image of these features.

The second example also involves measurement of atmospheric pollutants, but with
a different measuring technique, LIDAR (LIght Detection And Ranging); see Ragnarson
(1994) and Holst, Hossjer, Bjorklund, Ragnarson, and Edner (1994). The particular tech-
nique used was DIAL (DIfferential Absorption Lidar) where one measures reflected light

from lasers at two frequencies, one off and one on the resonance frequency of the chemical



species being measured. Here Y = log[P(on)/P(off)], where P(on) and P(off) are the power
of the reflected light on and off resonance, respectively, and the univariate X is range. In
this example one is primarily interested in estimating the first derivative since —m/'(z) is
proportional to mercury concentration at range z.

The raw data are shown in Figure 2. The steep negative slope when 550 < range < 600
corresponds to an emissions plume containing mercury. One can see that the variance of Y
is an increasing function of X. Local polynomial regression is particularly well suited to this
problem since it easily handles both derivative estimation and estimation of nonconstant
conditional variance.

The third example comes from a geotechnical engineering study of factors affecting
soil movement during earthquakes. Tremors during a major quake increase the pressure
of the water in the soil pores causing saturated sandy soil to liquefy by reducing friction
between sand particles. At least three factors are believed to contribute to soil movements:
thickness of the liquefiable layer, thickness of the top layer of nonliquefiable soil, and slope
or gradient of the ground. All three factors must be smoothed and interpolated from sample
data. Here we present only the results for soil gradient. As in the biomonitoring example,
we have two-dimensional spatial data with X being spatial location. Here Y is elevation.

As in the LIDAR example, our primary interest is not in m but a derivative, the gradient

(0/0x1m,0/0x2m).

2 Local Regression

This section is an introduction to local polynomial regression and a brief survey of some of
the literature. We will assume that the pairs {(X;,Y;)}-, satisfy

Y, = m(XZ')—I—U(XZ')Q, (1)

where €;,...,¢, are mutually independent, E(¢) = 0, Var(e;) = 1, and m and o are
smooth functions. Because of this smoothness, m(x) and o(x) can be estimated by fitting
a polynomial to observations (X;,Y;) with X; close to . To measure closeness, we use a
nonnegative kernel function K defined on ®¢, where d is the dimension of the X;’s, and
a symmetric, positive-definite d x d bandwidth matrix H. Typically, K(w) is spherically
contoured and decreasing in ||u||. All examples in this paper use the spherically-contoured
Epanechnikov kernel
K(w) = (1 - [Jul?)s.

This kernel is known to be optimal both for estimating m and for estimating derivatives of
m of any order (Fan et al., 1995). We define Ky(u) = |H|'K(H 'u). If K is spherically
contoured then the contours of Ky are ellipses of the form {t : t' H?t = k}, k > 0. Then
Ky(X; —x) is the weight given to X; when estimating m(z). For spatial data, it is often
reasonable for H to be a scalar multiple of the identity matrix. In other cases, H could

be a general diagonal matrix giving appropriate scaling to the different components of .



Nondiagonal H may be desirable when the X;’s are concentrated on a ridge not parallel to
a coordinate axis or when m has a ridge.

For concreteness, we will assume that the dimension of @ is d = 2. Let m(x; H, p) be our
estimate of m using bandwidth matrix H and local polynomials of degree p. First assume
that p = 0, i.e., that we are using local constant approximations. Then m(z; H,0) = 30

where (g minimizes:
n

D Y- B Ku(Xi— ).

=1
It is easy to see that
5, = Ziz Yi Ku(Xi — z)
Yo Ku(Xi— =)

This is the Nadaraya- Watson kernel regression estimator, which has been extensively studied

but is no longer recommended because of unsuitable bias properties. First, the Nadaraya-
Watson estimator may have large bias in the “boundary region” defined as the set of &’s
where the support of Ky (-— @) extends beyond the support of the X,;’s; see Fan and Gijbels
(1992) and Ruppert and Wand (1994). (If the X;’s are iid with density f, then their support
is the support of f. In other cases we might define their support to be their convex hull.)
Another problem is that the Nadaraya-Watson estimator may be badly biased at interior
points due to unequal spacing of the X;’s.

An improvement over the Nadaraya-Watson estimator is offered by the local linear
estimator which can “adapt” to unequal spacing and boundaries (Fan, 1992 and Ruppert
and Wand, 1994). This estimator is m(x; H,1) = 30 where (30,31,32) minimizes

n

Z{Yz — [Bo+ B1(Xi1 — z1) + B2(Xi2 — $2)]}QKH(XZ' —z),

=1
The local linear estimator may still be badly biased in regions of high curvature, e.g.,
where m has a sharp peak. A substantial reduction in this curvature-induced bias is pos-

sible if one uses the local quadratic estimator defined as m(z; H,2) = By where (307317

B2, B11, P12, B22) minimizes

Z{Yi — [Bo + B1(Xi1 — z1) + B2 Xz — z2) + B11(Xia — 901)2

=1
+012( X — 21)(Xig — @2) + Pa2(Xiz — $2)2]}2 Kp(X; —z).

Simulation studies generally show that local polynomial models of degree p = 3 and
higher offer little, if any, improvement over local quadratic models, unless one is estimating
second or higher derivatives.

Derivatives are easily estimated by using the appropriate derivative of the local poly-
nomial model. Thus, if p > 1, then we can estimate the gradient of m by (31,32), and for

p > 2 one estimates the Hessian matrix by

(O 2.



Bias considerations show that one should use local polynomials whose order is at least one
greater than the order of the derivative being estimated, e.g., at least local quadratics for
the gradient and at least local cubics for the Hessian.

Figure 4 illustrates local linear regression for univariate z’s. The true function m shown
as a dotted curve is m(z) = 5exp(—(z — 2)?). The raw data are denoted by asterisks. The
local linear estimate with a global bandwidth of A = 1 computed on an equally-spaced grid
of 31 points is shown as a dashed curve. Estimation at the grid points, = 2 and z = 5, is
illustrated. The kernels at these two points are shown as dot-and-dashed curves. The local
linear fits are shown as solid lines. Notice how these lines intersect m at # = 2 and z = 5,
respectively. To produce the dashed curve, m was computed by the same process at the

other 29 grid points and these 31 points were connected piecewise linearly.

3 Bandwidth Selection

The proper choice of H is crucial. If H is too small, meaning that the support of K
is too small, then the estimator will use too few data locally and will be highly variable
and rough. Conversely, if H is too large, then the estimator will be insufficiently local
and hence highly biased. The proper choice of H will depend on o2, the sample size, the
location of the X;’s, and p. Sometimes H is chosen subjectively by trial and error, but
data-based, automatic bandwidth selectors are desirable, at the very least for comparison
with user-selected bandwidths. Most bandwidth selectors attempt to minimize the mean
squared error (MSE) of the local regression estimator. For simplicity we will assume that
H is a scalar multiple of the identity matrix, i.e., H = hl, h > 0. Suppose that we are
estimating m(")(z) = 971172 /927 a2 m(x) where 7 = (r1,72) is a pair of nonnegative
integers. The estimator will be denoted by m(™)(z; h, p).

One has a choice between global bandwidths where A is independent of  and local
bandwidths where h depends on @. We will consider only local bandwidths since they are
more adaptable to unequally spaced @’s, heteroskedasticity, and regions of high curvature
of m, problems often encountered in practice. Let BIAS(h;2) and VAR(h;z) be the bias
and variance of (")(z; h, p) conditional on (X1,..., X,). Expressions for BIAS(h; z) and
VAR(h; ) and asymptotic approximations to these expressions can be found in Ruppert and
Wand (1994). A local bandwidth can be selected by minimizing an estimate of MSE(h; )
= BIAS?*(h;z) + VAR(h;z) at each . The estimate of MSE(h;z) will be developed by
estimating BIAS(h; ) and VAR(h; z) separately.

The simplest method of estimating VAR(h; x), the method used here, is to substitute
an estimate 02(-) into the exact expression for VAR(h; @), which depends only on o?(-)
and X1,...,X,. The estimation of o2 is discussed in the next section. This method is
somewhat computationally expensive, but is quite feasible with current hardware. Fan
and Gijbels (1995) and, following them, Ruppert (1995) use this idea. (Earlier work, e.g.,
Ruppert, Sheather, and Wand (1995) substitutes 52(-) and an estimate of the density of



the X;’s into an asymptotic formula. This type of bandwidth estimator was sensible with
the computing equipment (386 processors) of 1992 when the research in Ruppert, Sheather,
and Wand began. However, asymptotics may give only crude approximations to VAR(h; ),
particularly in boundary regions and it now seems better to avoid their use in bandwidth
selection when possible.)

Earlier methods of estimating BIAS(h;x) substituted estimates of appropriate higher
derivatives of m(z;h,p) into asymptotic expressions for the bias. See Ruppert, Sheather,
and Wand (1995) and Fan and Gijbels (1995). An alternative introduced by Ruppert (1995)
is EBBS (Empirical Bias Bandwidth Selection) where one computes m(z;h, p) for several
values of h and uses these “data” to estimate bias.

Here is a brief introduction to EBBS; for details the reader should see Ruppert (1995).
Fix , r, and p with p > r1 + r9. Asymptotic theory shows that as n — oo and h — 0

Eﬁz(r)(a:, hvp) = bCO + bcp-|—1—7’1—7’2 hp+1—7“1—7“2 +
+ bcp+t—r1—r2 pptt—ri—r2 + O(hp-H—Tl —7“2)‘ (2)
All expectations and variances in this paper, e.g., in (2), are conditional on X,..., X,

though this is not always made explicit by the notation. Here beo = m(™)(z) and {be;}i>0
represent bias and depend on higher derivatives of m and the density of the X’s and possibly
the derivatives of this density. For the estimation of bias, we use (2) as a model. We will
use { = 1 or 2 in (2) since these values have worked well in simulations.

Suppose that we wish to estimate the bias of m(")(z; h, p) for A in an interval (a,b). Here
the lower bound, a, might, for example, give a span of 30%, i.e., be the smallest bandwidth
such that at least 30% of the data get positive weight, while b might give a span of 90%.
(Although 30% and 90% are just examples, I use these values as defaults.) Fix M > ¢
and let @ = hy < hy < -+ < hyy = b. M in the range 10 to 20 and geometrically spaced
h;’s are recommended. For each jin {2,..., M — 1} we estimate the bias of ﬁz(r)(:c,hj,p)
as follows. First, fit model (2) to the “data” {(hl,ﬁz(r)(a:,hl,p)) cl=j—-1,7,74+ 1} by
least squares and let bAcO(j),bAcpH_Tl_T2 (7),-- .,bAcp_H_Tl_T2 (7) be the estimated coefficients.
Then the estimated bias of m(")(z, hj,p) is

{
BIAS(hj; @) = > beyyimpy—ry hi T2
=1

Now let V/A\R(hj;a:) be the estimated variance of ﬁz(r)(a:;hj,p), which, as we have
mentioned, is computed by plugging an estimate of the function o?(-) into an exact formula

for this variance. Finally, let
MSE(h;; z) = BIAS® (h;; =) + VAR(h;, ).

We then let our local bandwidth, A(z), be the smallest local minimum of MSE(h; ) on the

grid h = {hg,...,hpr—1}. The smallest local minimum is used since MS\E(h; x) is known to



have a global minimum at A = oo because the bias in not properly modeled by (2) for very
large h. The problem is that when A is too large, all features of m are smoothed away so
there is little change in m as h varies and therefore little apparent bias.

EBBS is illustrated in Figure 5 with simulated data using m(z) = 5exp(—(z — 2)%). In
(a) the raw data are shown, and in (b) the estimator m computed using global bandwidths of
1 (solid), 1.5 (dashed), and 2 (dotted) are shown. In (c), estimation of the bias of m(z;h, 1)
is shown for z = 2 and h = 1.5. The six asterisks are at m using h = 0.5, 1, 1.5, 2, 2.5,
and 3. The vertical dotted line goes through the value A = 1.5 where we are estimating
bias. The solid curve is a least squares fit of the model m = beg + begh? to the three middle
points corresponding to h = 1, 1.5, and 2. The horizontal dotted lines intersect this curve at
h =0 and h = 1.5, so that the vertical distance between these dotted lines is the empirical
estimate of bias. In (d) the same process is illustrated at z = 5. Notice that the estimated
bias at « = 5 is much less than at z = 2; the larger bias at = 2 is also quite evident in (b).
The solid curves at (c¢) and (d) do not appear to fit the “data” shown by asterisks. However,
these points have highly correlated random errors since they are six estimates at the same
z using the same data sets. This high correlation causes random deviation of m(z;h,p)
from m(x) as h varies to appear smooth rather than scattered as would be the case for
independent random deviation. In (e) the EBBS local bandwidth is shown. Notice how the
bandwidth is small for z between 2 and 4 where there is substantial curvature and increases
rapidly between z = 4 and # = 6 where m is very flat. In (f) we see the true m (dashed)
and m with the EBBS bandwidth (solid). The high variability near the boundary can be
seen. This high boundary variance is an unavoidable feature of nonparametric regression
due to the extrapolation inherent in estimation at the boundary; see Ruppert and Wand
(1994).

Several refinements of this methodology are discussed in Ruppert (1995). One is to
cubicly interpolate I\/TS\E(-; x) onto a finer grid of h-values before minimizing. This allows
a greater choice of bandwidths without increasing computational time by much. Typically
h(z) and m(")(z; h(z), p) are computed over some regularly spaced grid of z-values. A sec-
ond refinement is to smooth (z) over this grid after A(z) has been found by minimization,
but of course before computing (™) (z; h(z), p).

Computing h(z) is CPU intensive since it requires M computations of i, so h(z) is
generally found on a coarse z-grid. One can interpolate ﬁ(m) onto a finer grid before
computing m. This idea is particularly useful if we need fitted values, ﬁz(Xi;?L(Xi),p), at
the observed X;’s and n is large. For example, fitted values are used in the next section to
form residuals in order to estimate the conditional variance.

For the two-dimensional spatial data in this paper, B is computed on a regular 5 X 5
grid and then interpolated onto a regular 25 x 25 grid. Then m is computed on this finer

grid.



4 Estimation of Conditional Variance

One estimates the conditional variance of Y given X by calculating a preliminary estimate
of the mean, forming residuals, and then smoothing the squared residuals. As in parametric
modeling, there is a bias due to estimating the mean, but one can correct for this. A detailed
study of this method can be found in Ruppert, Wand, Holst, and Héssjer (1995), and here
we only present a synposis.

Let e; = Y; — m(X;; h,p) with A “small,” e.g., giving a 10 to 30% span, so that there
is little bias when estimating m(X;). Let Y = (Yi,...,Y,,)T and e = (ey,...,e,)T. Since
(X3 h(X;), p) is linear in Y for fixed A(X;), there is an n x n “smoother matrix,” S,
depending on X4,..., X, ﬁ(Xl), .. .,?L(Xn), and p such that

e = (I - Sl)Y
Sy will be n x n. Let e? be obtained by squaring each component of e. Let {®y,..., &}
be a grid of z-values. Suppose that we estimate {o*(z;) : j = 1,...,m} by smoothing

e? by local polynomial regression, which corresponds to a second smoother matrix S,. S5
will be m x n. Thus a naive estimator of o%(-) is Sye?, “naive” meaning that we have not
corrected for estimation of the mean function. Let A be the vector of diagonal elements of
518T — 251, Ruppert et al. (1995) show that the bias of %(z;) = (S2e?); is the sum of
a term from the bias of m(z;) plus o%(z;)A;. Because m uses a small bandwidth we will
ignore the first term. Then the bias-corrected estimate of the variance function in Ruppert

et al. (1995) is
5262
1+ SA°

where 1 is a vector of ones and where the division is coordinate-wise.

5 Examples

In this section, the examples introduced in Section 1 are continued. All computations were

performed using programs written in MATLAB by the author.

5.1 Biomonitoring of mercury

The conditional mean and variance of mercury concentration were estimated by local
quadratic and local linear regression, respectively, with bandwidths selected by EBBS. Be-
cause of the small sample sizes, local ridge regression, as discussed in Cleveland and Loader
(1995), was used to stabilize the estimators. Ridge regression shrinks the local pth degree
polynomial estimator towards the local (p — 1)th degree polynomial estimator and can be
viewed as a way of interpolating between integer values of p. Thus, in this example, ridge
regression shrunk the local quadratic estimate towards the local linear estimate in the case
of the mean. For estimation of the variance, ridge regression shrunk the local linear estima-

tor towards the local constant estimator. As explained in Ruppert (1995), EBBS bandwidth



selection is directly applicable to local ridge regression. However, the ridge coeflicient, which
determines the amount of shrinkage, was chosen by trial and error.

The conditional mean is plotted in Figure 1(a) and (b), and the conditional variance is
in Figure 6(a) and (b). The conditional variance does not appear to be constant. The log
transformation is somewhat variance stabilizing, but the estimated conditional variance of
log(Hg) still appears nonconstant, though with only 22 observations one cannot say anything
definitive.

The local bandwidths for estimating the mean and variance functions, respectively, are
plotted in Figure 6(c) and (d). The local bandwidth for the mean is relatively constant,
which seems to be common for local quadratic estimators.

One might try to analyze these data using geostatistics, but the heteroskedasticity makes
standard kriging methods inappropriate, since the variogram is not defined due to the
nonstationary variance. In Figure 7 we have the sample covariogram in (a) and the sample
variogram in (b). In (a), for each pair, (X;,Y;) and (X, Yy), we plot D; ;v = [| X; — X ||
against (Y; — Y)(Yy — Y). A curve is also fit to these points by local linear regression.

In (b) we plot Dy versus (Y; — Yy)? with a local linear fit. This empirical variogram
in (b) is not monotonically increasing in D as is typical of stationary data. The reason
for the nonmonotonicity is that the largest distances come from pairs where both Y’s have
low variability. The ability of local polynomial regression to model heteroskedasticity is a
distinct advantage here over standard geostatistical methods. Figure 7(c) and (d) shows
the sample covariogram and variogram for the residuals. There seems to be little evidence
of correlation among the residuals and again the heteroskedasticity is evident since the
variogram is not monotonically increasing; in fact, it is decreasing except at very small
distances.

The primary scientific question behind this study is whether the incinerator is contribut-

ing to mercury deposition. To test this we use the hypotheses
Hg: Y; is independent of X;
Hy: E(Y:|X;) is not constant

We will use a test statistic familiar in linear regression

i (Y — Vi)
Y (Yi-Y)2

The null distribution of R? is unknown, but this problem can be circumvented by a permu-

R*=1-

tation test. R? was computed for the original data and for 999 pseudo data sets obtained
by randomly permuting the Y;’s while keeping the X;’s fixed. For each pseudo data set,
the }Afi’s were obtained by applying EBBS to that data set, i.e., nol using the bandwidths
computed from the original data. Under the null hypothesis, all possible rankings of the
1,000 R? values are equally likely. Ranking from largest to smallest, the original data set
had rank 118 giving the p-value 0.118. Opsomer et al. (1995) tested these hypotheses by an



approximate F-test and obtained a p-value of 0.101. However, they were concerned because
their p-value was based on asymptotics but there were only 22 observations. Moreover, their
p-value did not account for the fact that the bandwidth was data-based. Since we compute
a separate bandwidth for each data set, the extra variability due to bandwidth selection is
taking fully into account by our test.

In Figure 1(c), mercury concentration (Y;) is plotted against distance from the inciner-
ator (D;) with a local linear smooth superimposed. The impression is that there is a flat
background concentration with a rise near the incinerator. The slight dip in the estimated
concentration when D is around 10 is likely due to random variation, or perhaps it is an
artifact of the way the sampling locations were located.

We also tested Hg as given above against a more specific alternative hypothesis,
Hy: E(Y;|X;) is a function of distance from the incinerator

This test used the test statistic R? as defined above, except now the fitted values, }A/Z-, were
found by regressing Y; on D; by local linear regression, both for the original data and for
the pseudo data sets creating by permuting the Y;’s. This time the original data set had an
R? value that was second largest among the 1000 data sets, giving a p-value of 0.002 when
testing Hg against Hs.

This p-value is of course far smaller than what Opsomer found when testing against
H;. This fact illustrates the general principle that one creates a more powerful test by
using a more specific alternative hypothesis. Of course, one must take care that the more
specific alternative was not formulated after examining the data. However, since Hj is the
alternative that the researchers were considering when designing their study, 0.002 is the
more appropriate p-value. Thus, the new finding in this paper is that the effect of the
incinerator on mercury deposition is not borderline significant as had been thought, but

rather highly significant.

5.2 LIDAR

As has been mentioned, the raw LIDAR data are plotted in Figure 2. The mean function,
m, and its first derivative, m’, were estimated by local linear and local quadratic regression,
respectively, and are plotted in Figure 8(a) and (c). The sharp trough in m’ when the range,
x, is slightly less than 600 indicates a peak in mercury concentration there.

The EBBS bandwidths for m and m' are plotted in Figure 8(b) and (d). The local band-
widths adapt to changes in curvature between range = 500 and range = 600 by becoming
smaller there. Also, EBBS optimizes the bandwidths for the order of the derivative being
estimated, and, as might be expected, uses a somewhat larger bandwidth for m’ than for

m.



5.3 Soil elevation and gradient

Now we continue the analysis of the soil gradient data illustrated in Figure 3. Elevation,
which is shown in that figure both as a surface plot and as a contour plot, shows a hill in the
center of the sampling region. Smaller hills in the boundary region are likely to be artifacts
due to lack of data in this region. This is not an issue, since estimates of the gradient are
only needed in the central region.

The partial derivatives of elevation with respect to z; and x5 were estimated separately,
though the separately estimated optimal bandwidths were rather similar. The EBBS band-
widths were calculated on a 5 x 5 grid and then interpolated onto a 25 x 25 grid where
the derivatives were estimated. We experimented with several methods of depicting the
estimated gradient. The best method seemed to be a quiver plot where the gradient at
each grid point is represented by an arrow pointing in the gradient direction wtih length
proportional to the gradient length.

These estimates will be used in further analyses such as modeling the relationship be-
tween the direction of the gradient and the direction of soil movement by angular regression
(Rivest, 1995).

6 Discussion

We have shown that local polynomial regression is a simple but powerful method of nonpara-
metric regression. Although not especially designed for environmental statistics or spatial
data, local polynomial regression is very useful in both areas. Two important features of
local regression are its ability to model nonconstant variance and the ease with which it can
estimate derivatives.

The degree of smoothing is controlled by the all important bandwidth matrix. By
using local bandwidth matrices, we can adapt to features typical of real data, e.g., unequal
spacing of the x’s. Because we have smoothed the local bandwidths, they might more
properly be called “partial local”—see Hall, Marron, and Titterington (1995). Data-based
bandwidth matrices can be found by several methods including Ruppert’s (1995) EBBS
that is illustrated in this paper. So far, EBBS has been implemented only when there is
a single bandwidth parameter, e.g., if the bandwidth matrix is a scalar multiple of the
identity. Another potentially useful method of bandwidth selection is “double smoothing,”
which so far has only been proposed for local constant smoothing of one-dimensional data;
see Hirdle, Hall, and Marron (1992).

We have illustrated local regression applied to two-dimensional spatial data. The ex-
tension to three dimensions is straightforward. A more interesting extension would be to
spatio-temporal data. The general theory extends immediately but selection of the band-
width matrix requires care, and clearly one needs more flexibility than a scalar multiple of
the identity matrix can provide.

In model (1) we have assumed that the ¢’s are mutually independent. Thus, any

10



association betwen nearby data is due to the smoothness of m. Another possibility would be
to assume some dependence between the ¢;’s. Then we would distinguish between long range
dependence due to m and short range dependence due to the errors. When estimating m,
typically a larger bandwidth is needed than under independence. Some work on data-based
bandwidth selection under correlation is found in Opsomer (1995), but one-dimensional z’s
are assumed.

Geostatistics models all association as due to a random process, except possibly for a
parametrically modeled trend. Altman (1995) compares kriging, nonparametric smoothing
(but not local polynomial regression), a combination of kriging and smoothing, and simple
interpolation.

Local polynomial estimation is being extended beyond estimation of mean and variance
functions. For example, most time series and spatial data models assume stationary cor-
relation structure. When this is absent, analysts may divide the data into blocks with, it
is hoped, nearly stationary behavior within blocks. However, the assumption that a corre-
lation function is piecewise constant can be a crude approximation. Hyndman and Wand
(1995) use local polynomial estimation to model slowly changing correlation structure in
univariate time series.

An interesting account of early work on local polynomial regression can be found in
Cleveland and Loader (1995). For a good introduction to kernel-based smoothing including
local polynomial regression, the reader should consult Wand and Jones (1995). The program
loess implements local polynomial regression but without automatic bandwidth selection.
Instead the user specifies the span used. See Cleveland, Grosse, and Shyu (1993). Some
interesting applications of local regression, including prediction of an air pollutant (ozone)
and another study on predicting NO, emissions from internal combustion engines, can be
found in Cleveland and Devlin (1988).
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Figure 1: Biomonitoring example.
by local quadratic ridge regression.

distance from incinerator

(a) Surface plot of mercury concentration estimated
(b) Sampling locations (circles) and location of the

incinerator (asterisk) with contours of mercury concentration as in (a). (c) Plot of mercury
concenlration versus distance from the incinerator with a local linear smooth added.
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Figure 3: Noshiro data. (a) and (b) Elevation. (c¢) Elevation and sampling locations.

16



Local linear smoothing of simulated data
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Figure 4: Illustration of local linear regression with simulated data. See text for explanation.
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Figure 5: Illustration of empirical bias estimation with simulated data. See text for expla-
nation.
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(a) variance of log(Hg) (b) variance of log(Hg)
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Figure 6: Biomonitoring example. (a) Estimated variance of log(Hg) by local linear ridge
regression. (b) Sampling locations (circles) and location of the incinerator (asterisk) with
contours of the variance of log(Hg) estimated by local linear regression. (c¢) Bandwidths used

in (a). (d) Bandwidths used in (b).
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(a) Covariogram - raw data
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Figure 7: Biomoniloring example. Sample covariograms and variograms of raw data and

residuals.
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Figure 8: LIDAR example. Raw data. (a) Local linear estimate of m. (b) Bandwidth for
estimating m. (c) Local quadratic estimate of m'. (d) Bandwidth for estimating m'.
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Elevation and gradient direction
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Figure 9: Noshiro data. Elevation (contours) and gradient (arrows).
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