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Abstract

Principal components are a well established tool in dimension reduction. The ex-

tension to principal curves allows for general smooth curves which pass through the

middle of a multidimensional data cloud. In this paper local principal curves are in-

troduced, which are based on the localization of principal component analysis. The

proposed algorithm is able to identify closed curves as well as multiple curves which

may or may not be connected. For the evaluation of the performance of principal

curves as tool for data reduction a measure of coverage is suggested. By use of simu-

lated and real data sets the approach is compared to various alternative concepts of

principal curves.

Key Words: Local smoothing, mean shift, principal components, principal curves.

∗jochen.einbeck@nuigalway.ie
†tutz@stat.uni-muenchen.de
‡evers@stats.ox.ac.uk

1



1 Introduction

The classical problem of how to find the best curve passing through data points (xi, yi), i =

1, . . . , n can be handled in two fundamentally different ways. Let us regard the data points

as realizations of i.i.d. random variables (Xi, Yi) drawn from a population (X, Y ). A

common approach is to regard X as an explanatory variable for the dependent variable

Y . This concept is used when the focus is on regression and is especially useful when the

objective is the prediction of the dependent variable from observations xi. Thereby X

and Y have an asymmetric relationship and cannot be interchanged without affecting the

results.

In contrast, X and Y may be regarded as symmetric, thus it is not assumed that one

variable depends on the other one. These approaches are useful when the focus is on

dimension reduction or simply description of the data. Representants are methods like the

ACE algorithm, canonical correlation or principal component analysis. Linear principal

components, introduced by Pearson (1901), are a common tool in multivariate analysis,

applied for example in feature extraction or dimension reduction. Jolliffe (2002) gave

an extensive overview on properties and applications of principal components. Nonlinear

principal components have been developed by Schölkopf & Smola (1998) and successfully

employed in pattern recognition.

A natural extension of principal components are principal curves, which are descrip-

tively defined as one-dimensional smooth curves that pass through the “middle” of a

d−dimensional data set. Although this concept is intuitively clear, there is much flexibil-

ity in how to define the “middle” of a distribution or data cloud. Hastie & Stuetzle (1989)

(hereafter HS), who did the groundbreaking work on principal curves, use the concept of

self-consistency (Tharpey & Flury, 1996), meaning that each point of the principal curve

is the average over all points that project there. A variety of other definitions of principal

curves have been given subsequently by Tibshirani (1992), Kégl, Krzyzak, Linder & Zeger

(2000) (hereafter KKLZ), and more recently Delicado (2001), which differ essentially in

how the “middle” of the distribution is found.

The existing principal curve algorithms can be divided into two families: Firstly, there is

one family of algorithms based on “top-down”- strategies. These algorithms start with

a straight line, which is mostly the first principal component of the data set, and try

to dwell out this line or concatenate other lines to the initial line until the resulting
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curve passes satisfactorily through the middle of the data. However, the dependence on

an initial line leads to some technical problems and a lack of flexibility. For instance,

principal curves according to HS are often strongly biased, they exclude by construction

the handling of crossings or branched curves, and they are not able to handle closed

curves. Banfield & Raftery (1992) provide a bias corrected version of the HS algorithm

which solves the latter problem. Chang & Ghosh (1998) combine the algorithms of HS

and Banfield/Raftery and show that this yields a smooth and unbiased principal curve,

at least for simple data situations. Tibshirani’s theoretically attractive approach seems to

have similar problems as HS, and in addition it seems to be not flexible enough to recover

curves with high curvature. These difficulties have been solved by Verbeek, Vlassis &

Kröse (2001), but at the expense of an apparently wiggly principal curve, since polygonal

lines are connected in a somehow unsmooth manner. KKLZ also work with polygonal lines

and obtain with high computational effort a smooth and flexible principal curve, which

only fails for very complicated data structures. None of these algorithms seems to be

able to handle curves which consist of multiple or disconnected parts, at least not directly

without some modifications or improvements. Recently, Kégl & Krzyzak (2002) provided

a promising algorithm to obtain principal graphs, i.e. multiple connected piecewise linear

curves, in the context of skeletonization of hand-written characters.

The aim to handle complex data structures like spirals or branched curves motivates a

concept that differs from the above mentioned ones. Instead of starting with a global initial

line, it often seems more appropriate to construct the principal curve in a “bottom-up”

manner by considering in every step only data in a local neighborhood of the currently

considered point. Recently, Delicado (2001) proposed the first principal curve approach

which can be assigned to this family.

Let X be a d-dimensional random vector and Xi ∈ R
d, i = 1, . . . , n denote an iid. sample

from X, where Xi = (Xi1, . . . , Xid). For each point x, Delicado considers the hyperplane

H(x, b) which contains x and is orthogonal to the vector b. The set of vectors b∗(x)

minimizing the total variance φ(x, b) = TV (X|X ∈ H(x, b)) defines a function µ∗(x) =

E(X|X ∈ H(x, b∗(x))). Principal oriented points (POPs) are introduced as fix points of

the function µ∗(·). For a suitable interval I ∈ R, α is called a principal curve of oriented

points (PCOP) if {α(s)|s ∈ I} is a subset of the fix point set of µ∗. Delicado shows that

POPs exist, and that in the case where b∗(x) is unique, for each POP exists a PCOP passing

through it. Since the hyperplanes H are sets of measure zero, it is necessary to employ

a kind of smoothing for calculating the conditional expectation on the hyperplane. This

3



is achieved by projecting all data points on H(x, b), obtaining points XH
i , and assigning

weights

w̄i = w̄(|(Xi − x)T b|), (1)

where w̄ is a decreasing positive function, e.g. w̄(·) = K(·/h), with a kernel function

K. Let µ̃(x, b) denote the weighted expectation of the XH
i with weights w̄i. Now µ∗(x)

is approximated by µ̃∗(x) = µ̃(x, b̃∗(x)), where b̃∗(x) (and hence H) is constructed such

that the variance of the projected sample, weighted with w̄i, is minimized. Localization

enters here twofold. Firstly, by using the weights (1), points near the hyperplane are

upweighted. Secondly, a cluster analysis is performed on the hyperplane, and only data

in the local cluster are considered for averaging. The algorithm searches the fix point

set of µ̃∗(·) as follows. Repeatedly, choose a point randomly from the sample X1, . . . , Xn

and call it x(0). Then iterate x(ℓ) = µ̃∗(x(ℓ−1)) until convergence. In this manner a finite

set of POPs is obtained. However, no fix point theorem guarantees convergence of this

algorithm, although Delicado reports quick convergence for some real data sets. In order

to obtain a PCOP from a set of POPs, Delicado proposes an idea which we will further

exploit. Assume an POP x1 has been calculated. From the set of principal directions

b̃∗(x1), choose one vector b1. Now take a step of length ∂ from x1 into the direction of b1,

i.e.

x0
2 = x1 + ∂b1, (2)

where ∂ is previously fixed. The point x0
2 serves as a new starting point for a new iterating

process, leading to a new point x2 of the principal curve. This is repeated k times until no

points Xi can be considered to be near the hyperplane H(x0
k, bk). Then return to (x1, b1)

and complete the principal curve in direction of −b1. Afterwards move on to another of

the previously chosen POPs and continue analogously.

Delicado’s concept is mathematically elegant and theoretically well elaborated. Delicado

& Huerta (2003) show that it works fine even for some complicated data structures, and

provide a method for selection of the parameter h. One might consider it as a drawback

that the concept is mathematically demanding and computationally extensive, since a

large number of cluster analyses has to be run. In this paper, we introduce a concept

similar to that of Delicado. However, we replace the fix points of µ̃∗ by local centers of

mass, and replace the principal direction b1 by a local principal component. We call the

resulting curve, which consists of a series of local centers of mass, local principal curve.

The crucial advantage of this concept is that calculation of the local principal component

results from a simple eigenvalue problem, making computation extremely fast and easy.
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In addition, we introduce the notion of coverage, which evaluates the performance of the

principal curve approximation and is a helpful tool to compare the performance of different

principal curve algorithms. The price to be paid for the computational advantages of

the concept is that in contrast to Delicado’s approach there is no statistical model and

consequently it is hard to derive theoretical results. However, in Section 5 we show that

our algorithm can be seen as a simple and fast approximation to Delicado’s algorithm.

The algorithm to construct local principal curves, hereafter LPC, will be presented in the

following section.

2 The LPC algorithm

Assume a d-dimensional data cloud Xi ∈ R
d, i = 1, . . . , n, where Xi = (Xi1, . . . , Xid). We

try to find a smooth curve which passes through the “middle” of the data cloud. The

curve will be calculated by means of a series of local centers of mass of the data, according

to the following strategy:

1. Choose a suitable starting point x(0). Set x = x(0).

2. Calculate the local center of mass µx around x.

3. Perform a principal component analysis locally at x.

4. Find the new value x by following the first local principal component γx starting at

µx.

5. Repeat steps 2 to 4 until µx remains (approximately) constant.

The series of the µx determines the local principal curve. In the sequel we will explain

these steps in detail:

1. Selection of the starting point

In principle, every point x(0) ∈ R
d which is in or close to the data cloud can be chosen as

starting point. There are two ideas which suggest themselves:

• Based on a density estimate the point with the highest density x(0) = maxx∈Rf̂(x)

is chosen.

• A point x(0) = Xi is chosen at random from the set of observations.
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The advantage of the density method is that one can be quite sure not to start in a blind

alley, whereas a randomly chosen point could be an outlier far from the data cloud which

stops the algorithm already in the first loop. However, in this case it is easy to draw

another starting point, and the computational costs of the second approach are much

lower. Moreover, for the handling of crossings a randomly chosen starting point is even

superior to a high density point.

2. Calculating the local center of mass

Let H be a bandwidth matrix and KH(·) a d− dimensional kernel function. Given that

all components of X are measured on the same scale, we set H = {h2 · I : h > 0}, with

I denoting the d-dimensional identity matrix. For a detailed description of multivariate

kernels and bandwidth matrices see Wand & Jones (1993). For some remarks on the

selection of h, see Section 6. The local center of mass around x is given by

µ(x) =

∑n
i=1 KH(Xi − x)Xi∑n
i=1 KH(Xi − x).

(3)

Comaniciu & Meer (2002) studied the properties of the mean shift, which is given by

µ(x) − x, and investigated the relation of µ(x) to the Nadaraya-Watson estimator. For

ease of notation, we will use the abbreviation µx = µ(x), and denote the j-th component

of µ(x) by µx
j .

3. Calculating the local principal component

Let Σx = (σx
jk) denote the local covariance matrix of x, whose (j, k)-th entry (1 ≤ j, k ≤ d)

is given by

σx
jk =

n∑

i=1

wi(Xij − µx
j )(Xik − µx

k) (4)

with weights wi = KH(Xi − x)/
∑n

i=1 KH(Xi − x), and H as in 2. Let γx be the first

eigenvector of Σx. Then γx is the first column of the loadings matrix Γx from the eigen

decomposition (Γx)T ΣxΓx = Λx, where Λx = diag(λx
1 , . . . , λx

d) is a diagonal matrix con-

taining the ordered eigenvalues of Σx, with λx
1 ≥ . . . ≥ λx

d.

It should be noted that the denotation “local principal components” has been previously

used for linear principal components which are localized in clusters (Skarbek, 1996; Kamb-

hatla & Leen, 1997) or based on contiguity relations (Aluja-Banet & Nonell-Torrent, 1991).

Here localization refers to the use of kernel functions that define a neighborhood.
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4. Obtaining an updated value

The local principal component line vx can now be parameterized by

vx(t) = µx + tγx (t ∈ R), (5)

and an updated value of x is obtained by setting

x := µx + t0γ
x, (6)

similar as in (2) of Delicado’s algorithm. A suitable value of t0 thereby has to be chosen

beforehand. In all examples in this paper we employ the simple rule t0 = h.

5. Stop when µx remains constant

When the margin of the data cloud is reached, the algorithm naturally gets stuck and

produces approximately constant values of µx. One might also stop before this state

occurs, e.g. when the difference between the previous and the current center of mass falls

below a certain threshold.

The mechanism is demonstrated in Fig. 1. The starting point x(0) is denoted by 0. The

radius of the circle equals the bandwidth h = 0.2. Calculating the local center of mass

around 0 yields the nearby point m. Moving along the first principal component with

t0 = 0.2 leads to the new point x denoted by “1”, and so on. The series of m’s represents the

local principal curve. Note that the algorithm is based on finding an equilibration between

opposing tendencies: On the one hand, the local principal components are oversteering,

i.e. tending “outside” to the concave side of the curvature of the data cloud. On the other

hand, the calculation of the local center of mass smoothes the data towards the interior

and thus in the opposite direction, effecting a small bias of the local principal curve.

We remark that principal curves by HS show a similar behavior: Theoretically, self-

consistent principal curves are biased outwards, as explained by Tibshirani (1992). Practi-

cally, they are often biased inwards due to smoothing as demonstrated by Chang & Ghosh

(1998). The often observed large bias of the HS principal curves is due to another reason:

An initial unsuitable assignment of projection indices cannot be corrected in the further

run of the algorithm.
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Figure 1: Demonstration of the local principal curve algorithm.

3 Technical details

3.1 Maintaining the direction

If the orientation of the eigenvector changes from one step to another, the algorithm

dangles between two points and will never escape. Therefore one should check in every

step that the local eigenvector has the same direction as in the previous step. This can be

done by simply calculating the angle αx
(i) between the eigenvectors γx

(i−1) and γx
(i) belonging

to the (i − 1)-th resp. i-th step , which is given by

cos(αx
(i)) = γx

(i−1) ◦ γx
(i),

where ◦ denotes the scalar product. If cos(αx
(i)) < 0, set γx

(i) := −γx
(i), and continue the

algorithm as usual. This “signum flipping” has been applied in the step from “2” to “3”

in Figure 1.
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3.2 Running backwards from x(0)

When one starts at a point x(0) and moves by means of local principal components to

one “end“ of the cloud, one has neglected that the opposite direction is equally adequate.

Similar as in Delicado (2001), an additional step has to be added to the algorithm in

practice:

6. For the starting direction −γx
(0) := −γx(0) , perform steps 4 and 5.

This step can be omitted when the data describe a closed curve, e.g. a spiral or an ellipse.

3.3 Angle penalization

If the data cloud locally forms crossings, at each crossing there are three possibilities

for the local principal curve where to move on. One often prefers that the curve passes

straight on at each crossing, and does not turn arbitrarily to the left or right. In order

to achieve this effect, we recommend to perform an angle penalization in addition to the

signum flipping in each step of the algorithm. This might be done as follows:

Let k be a positive number. For the angle αx
(i), set

ax
(i) := | cos(αx

(i))|
k

and correct the eigenvectors according to

γx
(i) := ax

(i) · γ
x
(i) + (1 − ax

(i)) · γ
x
(i−1)

Thus, the higher the value of k, the more the curve is forced to move straight on. We

recommend to set set k = 1 or 2. For higher values of k the local principal curve looses

too much flexibility. A similar angle penalty is used in the implementation of KKLZ’s

algorithm. We state explicitly that we do not introduce the angle penalty to improve the

smoothness of the curve - the local principal curve, computed with a suitable bandwidth,

is already sufficiently smooth. The motivation is mainly to handle data with crossings (see

Section 4.2).

3.4 Multiple initializations

Assume that the data cloud consists of several branches, which might or might not be

connected. Then one single local principal curve will fail to describe the whole data set.
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In our approach this problem can be solved by initializing more than once, i.e. we choose

subsequently a series of starting points, so that finally at least one starting point is situated

on each branch, and run the algorithm for each starting point. Following this procedure the

whole data cloud will be covered by the local principal curve. The starting points can be

imposed by hand on each of the branches, or, if this is not possible or too cumbersome, they

might be chosen at random. If one has for example two disconnected branches of the data

cloud, which contain more or less the same amount of data, then the application of four

randomly chosen starting points already effects that with a probability of 93.75% at least

one starting point is in each cloud. For an arbitrary number of branches, Borel-Cantelli’s

Lemma tells us that with the number of starting points increasing to infinity, each branch

is visited with probability 1. In practice this technique proves to work satisfactorily, even

for a high number of branches. To conclude, for a set of starting points S0, we add a 7th

step to the algorithm:

7. If S0 6= ∅, choose (without replacement) a new starting point x(0) ∈ S0 and start

again with step 1.

It should be noted that our algorithm is deterministic given the starting points, but yields

different principal curves for different starting points. However, since in each case the

local centers of mass of the same data are calculated, differences of principal curves on the

same branch are usually negligible.

4 Applications

4.1 2-dimensional data

Firstly, we compare the results of our algorithm with some simulated standard examples,

similar to those examined by Kégl, Krzyzak, Linder & Zeger (2000) and Delicado & Huerta

(2003). (In this and the following examples, the curves from KKLZ are obtained via the

Principal Curves Java program from Balázs Kégl, available at http://www.iro.umontreal.

ca/∼kegl/research/pcurves/. The HS curves were obtained by Hastie’s Splus func-

tion http://lib.stat.cmu.edu/S/principal.curve. Principal curves according to Del-

icado are computed with a C++ program, which is available at http://www-eio.upc.es/

∼delicado/PCOP.). We consider eight different scenarios: Firstly, n = 100 data points are

generated by means of an underlying circle of radius r = 1, contaminated with small noise

10



(σ = 0.01) and with large noise (σ = 0.2), respectively. Further, we consider four types

of spirals: a simple spiral with small (σ = 0.01) and large noise (σ = 0.06), a complex

spiral with small (σ = 0.01) and large noise (σ = 0.05), each for n = 1000. Finally, we

investigate a zigzag pattern with small (σ = 0.008) and large noise (σ = 0.05), where in

both cases n = 400 data points were generated. The given values of σ have to be under-

stood as Gaussian noise which is independently imposed on the x - and y- coordinate of

the corresponding underlying curves.

The results obtained by applying the “top-down” strategies from HS and KKLZ are pre-

sented in Fig. 2, and the principal curves constructed in a “bottom-up” manner (Delicado,

LPC) are shown in Fig. 3. Looking at the data with moderate noise on the left side of

Fig. 2 and 3, respectively, one notices that most algorithms yield satisfactory results,

except the HS algorithm. Delicado’s algorithm fails to handle the complex spiral. The

curve obtained by LPC is nearly indistinguishable from the true curve in all four cases,

except the peaks of the zigzag curve. Regarding the noisy data, one sees that the circle

is reconstructed quite differently by all four algorithms, whereby only LPC and Delicado

lead to a closed curve. HS and Delicado have serious problems with the small noisy spiral.

The result of KKLZ seems to be perfect in this case. The result of LPC is quite good,

but there are two artificial lines connecting different parts of the spiral. HS, Delicado, and

KKLZ fail for the complex noisy spiral. The local principal curve succeeds to follow the

spiral, although once again again some artificial loops appear. The noisy zigzag data are

fitted best by KKLZ and worst by HS. Delicado and LPC perform very similarly for these

data. In Section 6 we will evaluate the performance of the principal curves quantitatively.

Finally, we consider real data recorded by the Office of Remote Sensing for Earth Re-

sources, Pennsylvania State University, which show the location of floodplains in Beaver

County, PA, USA, 1996 (Fig. 4). For analyzing the data, we digitalized the map to a

grid of 106 × 70 = 7420 digits. Fig. 5 shows the result of a run of the LPC algorithm

using the digitalized floodplain data. We used 50 initializations and a bandwidth h = 1.5.

The principal curve uncovers nicely the principal courses of the floodplains. Taking a look

at maps from Beaver county, we see that our principal curve reconstructs the underlying

rivers resp. valleys in this district (The corresponding maps are available at PASDA -

Pennsylvania Spatial Data Access, www.pasda.psu.edu, and can be regarded with the

ArcExplorerWeb at www.esri.com/software/arcexplorer). Note that a quite big clus-

ter in the central bottom is not covered - this simply occurs because none of the randomly

chosen starting points is situated there, and this isolated cluster cannot be reached by an
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Figure 2: Principal curves according to HS and KKLZ for various data situations.
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Figure 3: Local principal curves compared with Delicado’s PCOPs.
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Figure 4: Floodplains in Beaver County, PA. (left: original, right: digitalized).

external principal curve. More initializations would be necessary to solve this.

4.2 3-dimensional data

We now consider a data set included in the S-Plus software package, namely the “ra-

dial velocity of galaxy NGC7531”. This data frame, recorded by Buta (1987), contains

the radial velocity of 323 points of that spiral galaxy covering about 200 arc seconds in

north-south and 135 arc seconds in east-west direction in the celestial sphere. All of the

measurements lie within seven slots crossing the origin. The x- and y-coordinate describe

the east-west resp. north-south coordinate, and the z-coordinate is the radial velocity

measured in km/sec. For simplicity, we only consider the first 61 data points of the data

set (this corresponds to two slots crossing the origin).

Since the data form two (connected) branches, more than one initialization is needed. We

choose to initialize four starting points. We apply an angle penalization using k = 2,

which serves to keep the curve on the correct slot at the crossing. The result is shown in

Fig. 6.

5 Theoretical background

In this section we compare our algorithm to that of Delicado in more depth. The analogy

between the two algorithms becomes clearer when the directions used in the two algo-
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Figure 5: Floodplain data (.) with principal curves (+).
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Figure 6: Galaxy data (o) with principal curves (+).

rithms are compared. Both can be shown to fulfil rather similar optimality properties.

The first local principal component γx as used in our algorithm is the eigenvector of Σx

corresponding to the largest eigenvalue, i.e. the γ maximizing γT Σxγ. Let Bγ be an or-

thonormal basis of the orthogonal complement of the subspace spanned by γ. As we have

for all γ ∈ R
d that tr(Σx) = γT Σxγ + tr

(
BT

γ ΣxBγ

)
, we can equivalently minimize

tr
(
BT

γ ΣxBγ

)
. (7)

Recalling the denotation from the introduction, we have

µ̃(x, b) =
n∑

i=1

w̃iX
H
i , with w̃i :=

w̄ici∑n
j=1 w̄jcj

,

where ci is an indicator taking the value 1 if XH
i is in the cluster of data around x.

Delicado defines his principal direction b̃∗(x) to be orthogonal to the (d − 1)-dimensional

subspace within which the (conditional) total variance is minimal, i.e. he seeks the b that
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minimizes

T̂ V (X|X ∈ H(x, b)) =

=
n∑

i=1

w̃i · (X
H
i )T XH

i − µ̃(x, b)T µ̃(x, b) =

= tr

(
n∑

i=1

w̃i

(
XH

i − µ̃(x, b)
) (

XH
i − µ̃(x, b)

)T
)

=

= tr

(
n∑

i=1

w̃i

(
x + BbB

T
b (Xi − x) − µ̃(x, b)

) (
x + BbB

T
b (Xi − x) − µ̃(x, b)

)T
)

=

= tr

(
BbB

T
b

(
n∑

i=1

w̃i(Xi − µ̃(x, b))(Xi − µ̃(x, b))T

)
BbB

T
b

)
=

= tr
(
BT

b Σ̃x(b)Bb

)
, (8)

with

Σ̃x(b) =

(
n∑

i=1

w̃i(Xi − µ̃(x, b))(Xi − µ̃(x, b))T

)
.

The semiorthogonal matrix Bb is defined in analogy to Bγ . When comparing expression

(7), which defines the local principal component, to expression (8) as used by Delicado,

one can observe that in both cases some sort of (“pseudo”) covariance matrix is involved.

The two matrices Σx and Σ̃x(b) differ in the type of centering and the type of weighting

used. But Delicado’s weights depend on b, as Delicado does not directly use the distance

between the Xi and x but only the part hereof which is parallel to b. Therefore the

“pseudo” covariance matrix Σ̃x(b) depends on b and the principal direction of Delicado

cannot be obtained using an eigen decomposition. This makes Delicado’s algorithm —

especially compared to the local principal curve algorithm, which is based on an eigen

decomposition — numerically quite complex. If a small cluster size is used in Delicado’s

algorithm, then the difference between the weights wi and w̃i gets small enough so that

the local principal curve algorithm can be seen as a simple and fast approximation to

Delicado’s nice, but complex algorithm. Compare for illustration Fig. 1 in this paper with

Fig. 3 in Delicado & Huerta (2003).
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6 Coverage

There is a need for some criterion that evaluates the performance of a principal curve.

This is usually done by means of a quantitative measure as the expected squared distance

△(m) = E
(
inf
t
||X − m(t)||2

)
(9)

between a random variable X and the curve m. Principal curves according to HS are

critical points of (9) (Duchamp & Stuetzle (1996) even show that they are always saddle-

points), whereas principal curves in the sense of KKLZ minimize (9) over a class of curves

with bounded length. Another quantitative measure, which is closely related to △(m), is

the proportion of the generalized total variance not explained by the principal curve (Del-

icado, 2001). Alternatively, one can consider the coverage of a principal curve m, being

defined by the fraction of all data points which are found in a certain neighborhood of the

principal curve. More precisely, let an algorithm select a principal curve m consisting of

a set of points Pm. Then

Cm(τ) = #{x ∈ {X1, . . . , Xn}|∃p ∈ Pm with ||x − p|| ≤ τ}/n

is the coverage of curve m with parameter τ . Obviously the coverage is a monotonically

increasing function of τ and will reach the value 1 for τ tending to infinity. Note that the

coverage can be interpreted as the empirical distribution function of the “residuals”, i.e.

the shortest distance between data and principal curve. For evaluating the performance

of a principal curve fit it is necessary to take a look at the whole coverage curve Cm(τ).

In Fig. 7 we provide the coverage plots for the examples given in Fig. 2 and 3. For data

with moderate noise, which are depicted in the left column, the results from KKLZ and

LPC are comparable, except for the big spiral, where LPC performs obviously better. In

the right column, where the noisy data are examined, LPC is always among the best, but

is slightly beaten twice by KKLZ (small spiral, zigzag).

Certainly a concave coverage curve is desirable, i.e. it is “best” when rising rapidly for

small τ . The better the principal curve, the smaller is the area in the left top above the

coverage curve, i.e. the area between Cm(τ), the line τ = 0 and the constant function

c(τ) = 1. This area, which corresponds to the mean length of the observed residuals, can

be seen as an estimator of

E
(
inf
t
||X − m(t)||

)
,

which is the L1 version of △(m). To obtain a quantitative measure for the performance of a

principal curve, we set this area in relation to the corresponding area obtained by standard

18
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Figure 7: Coverages for simulated data from Fig. 2 and 3.
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principal component analysis. The smaller this quotient AC , the smaller is the relative

mean length of the observed residuals and the better is the principal curve compared to

principal components. The following table provides the value RC = 1−AC for HS, KKLZ,

Delicado, and LPC, for all simulated examples treated above:

AC a) b) c) d) e) f) g) h)

HS 0.71 0.46 0.28 0.23 0.08 0.08 0.59 0.34

KKLZ 0.95 0.29 0.97 0.80 0.50 0.35 0.88 0.45

Delicado 0.95 0.47 0.95 0.15 0.13 0.08 0.92 0.38

LPC 0.92 0.54 0.95 0.76 0.92 0.71 0.87 0.37

Table 1: RC for scenarios a) to h) and various principal curve algorithms.

For the HS algorithm, the value RC frequently takes values near 0, which means a quite

bad performance. KKLZ wins in four of our examples, Delicado has the best performance

in two situations, while LPC is the best algorithm for three scenarios. Note that there are

two cases (e and f) where LPC is the only algorithm yielding an useful result, and that

in cases, when it is beaten by another algorithm, it performs only slightly worse than the

winner.

It should be remarked that the measure RC can be interpreted in the same spirit as the

coefficient of determination R2 used in regression analysis: Values near 1 indicate a good

fit, while values near 0 mean bad performance. Like R2, this criterion is certainly only a

suitable tool to compare (principal) curves which are sufficiently smooth, since a principal

curve interpolating the data has constant coverage 1, and thus RC = 1. In order to

obtain an objective criterion to compare the performance of principal curves of different

smoothness, some kind of penalization for RC has to be introduced. We will not follow this

direction further, but focus on a modified version of the coverage, where the fixed curve

m is replaced by principal curves m(τ) calculated by employing the coverage parameter τ

as bandwidth. In this manner one obtains the self-coverage

S(τ) = Cm(τ)(τ),

which compares different bandwidths for one specific algorithm rather than being a tool

for the comparison of different principal curve algorithms. For scenarios a) to h), we

calculate S(τ) over a grid from τ = 0.01 up to τ = 1.0 in steps of 0.01, where m(τ) is

obtained via the LPC algorithm. The results are presented in Fig. 8. One observes that

the self-coverage often has a typical behavior: It starts with small values, then increases
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rapidly until a local maximum is reached, where the best fit is achieved. Afterwards the

self-coverage curve falls again, possibly showing erratic behavior, or remains on a constant

level, but finally always reaches the value 1.

Intuitively, if a certain bandwidth τ is suitable for the calculation of m, then the same τ

should adequately cover the width of the data cloud around the principal curve m(τ), i.e.

lead to a high self-coverage at this value τ . The bandwidth h then may be selected as the

value where S(τ) achieves its first distinct local maximum, or, if no local maximum exists,

as the first value where the function S(τ) achieves the value 1.

Fig. 8 demonstrates how this parameter selection rule has to be interpreted: In cases

c) to g) the situation is obvious. If the first maximum is a plateau as in c) or e), one

simply has to choose the first value of this plateau. In situation a) obviously not the little

peak at the very beginning is the appropriate one, but h = 0.17. Most difficult are data

situations where the underlying structure is quite simple, but contaminated with large

noise as in b) or h). Then one usually does not get a clear distinguishable first maximum,

but rather a sequence of little plateaus, and one has to try with various bandwidths in

these cases. Generally speaking, the performance of this parameter selection rule increases

with decreasing noise and increasing complexity of the underlying structure.

In all these computations, we worked with one fixed starting point, since the data clouds

are connected and consist of only one branch. Applying this bandwidth selection method to

the floodplain data (with multiple initializations) yields h = 2.5. The resulting principal

curve (not depicted here) seems suitable, too, but knowing that the underlying curves

should be rivers, we decided for the smaller value h = 1.5 in this case. In practice, a

notion about the desired shape of the resulting fit should always permit to take a critical

look on the algorithmically selected bandwidths.

7 Discussion

We demonstrated that the concept of applying local principal components in connection

with the mean shift is a simple and useful tool for computing principal curves, which shows

superior performance in simulated data sets compared to most of the other principal curve

algorithms. We showed that the algorithm works in simulated and real data sets even

for highly complicated data structures. This includes data situations which by existing

methodology could only be handled unsatisfactorily, as data with multiple or disconnected
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Figure 8: Self-coverages for situations a) to h) and selected bandwidths.
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branches. Especially for noisy spatial data like the floodplain data the approach has a high

potential to detect the underlying structure. We further provided an approach to select the

necessary parameters in a data-adaptive way, but it has to be pointed out that bandwidth

selection still requires further attention, particularly for noisy data structures.

There is still need for further research concerning the theoretical background of the

method. Although working fine, we do not have much of a theoretical justification why

we move along the data cloud with local principal components. This choice is sensible but

in no way unique, and there seem to be many alternatives, such as the extrapolation of

the already estimated part of the curve. Due to the nice properties of the mean shift, it

might even work to use a line in an arbitrary direction, as long it is not orthogonal to the

principal curve in the observed point. It is crucial that a movement is made - the mean

shift will afterwards adjust the principal curve in direction of the “middle” of the data

cloud. However, by applying local principal components the algorithm is fastest, most

stable, and the results are as intuitively expected. We consider the first local principal

component to be a (biased) approximation of the tangent to the crest line of the estimated

density. One can easily derive from its definition that the first local principal component

around x is the line through µx which minimizes the weighted distance between the Xi and

the line, using the weights wi as in (4). The first local principal component is therefore

the line that locally gives the best fit.

Furthermore, it will be interesting to investigate if the proposed algorithm can be ex-

tended to obtain local principal surfaces or even local principal manifolds of higher di-

mensions. This might be quite difficult, since easy techniques as the signum flipping or

the mean shift are probably not transferable to higher dimensional curves without devel-

oping new concepts. The problem of assigning a low-dimensional coordinate system to a

high-dimensional sample space (“charting”) is currently discussed intensively in machine

learning, see e.g. Brand (2003).
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