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Abstract

During the inflammatory response that drives atherogenesis, macrophages accumulate

progressively in the expanding arterial wall1,2. The observation that circulating monocytes give

rise to lesional macrophages3–9 has reinforced the concept that monocyte infiltration dictates

macrophage build-up. Recent work indicates, however, that macrophages do not depend on

monocytes in some inflammatory contexts10. We therefore revisited the mechanism of

macrophage accumulation in atherosclerosis. We show that murine atherosclerotic lesions

experience a surprisingly rapid, 4-week, cell turnover. Replenishment of macrophages in these

experimental atheromata depends predominantly on local macrophage proliferation rather than

monocyte influx. The microenvironment orchestrates macrophage proliferation via the

involvement of scavenger receptor (SR)-A. Our study reveals macrophage proliferation as a key
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event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for

cardiovascular disease.

Over the last 30 years macrophages have emerged as protagonists of atherosclerosis and its

complications. Macrophages amass in lesions, ingest lipids, and produce a diverse repertoire

of inflammatory mediators that exacerbate disease1,2. In the mouse, lesional macrophages

arise predominantly from circulating Ly-6Chigh monocytes5–7,11–13. These insights have

contributed to the perception that macrophages gradually accrue in atherosclerotic lesions

whereby a single infiltrating monocyte yields one terminally-differentiated macrophage.

Recent observations that monocyte kinetics in acute injury are rapid14, that tissue

macrophages may not depend on monocytes10,15, and that the adventitia harbors

hematopoietic progenitors16 reveal potential alternative explanations for how atherosclerosis

evolves. The prevailing models, therefore, require reevaluation.

Do lesional macrophages in atherosclerosis accumulate gradually or turn over rapidly? To

answer, we subcutaneously implanted osmotic pumps containing the thymidine analogue 5-

bromo-2′-deoxyuridine (BrdU) in 4-month old apolipoprotein E-deficient (Apoe−/−) mice

consuming a high cholesterol diet (HCD) for 8 weeks. BrdU incorporates into newly

synthesized DNA and thus reports on a cell’s, or its progenitor’s, proliferative history.

Nearly all (92±1%) aortic macrophages, identified as Lin− CD11b+CD11clow-negF480high

cells by flow cytometry (Fig. 1a), stained for BrdU after 4 weeks (when mice were 5 months

old) (Fig. 1b and c). Immunofluorescence experiments identified Mac3+BrdU+ macrophages

within the plaque intima and adventitia (Fig. 1d–f). This low-level BrdU administration had

no intrinsic effect on macrophage turnover kinetics because the rate of BrdU signal decay

following pump removal closely approximated its rate of incorporation (Fig. 1c). Despite

observed increases in lesion size (Fig. 1g), aortic root macrophage burden did not change

significantly during BrdU labeling (Fig. 1h), suggesting that, at this stage of atherosclerosis,

cell loss processes counterbalance macrophage renewal. These data identify a previously

unrecognized dynamic in the mononuclear phagocytic response during atherosclerosis and

reveal remarkably rapid macrophage turnover in lesions.

Lesional macrophages could replenish either through the continuous recruitment of

circulating monocytes or through some other processes. We assessed lesional macrophage

accumulation in Apoe−/− HCD mice depleted of circulating monocytes for 5 d (Fig. 2a) and

found, unexpectedly, that monocyte depletion had no effect, not only on incorporation of

BrdU by lesional macrophages (Fig. 2b and c) but also on the number of total macrophages

(Fig. 2d) and total lesion area (Supplementary Fig. 1a). To examine the relationship between

blood monocytes and tissue macrophages in more detail, 4-month old CD45.1+ Apoe−/−

HCD and CD45.2+ Apoe−/−HCD mice (8 weeks of Western diet) were joined for 5 weeks by

parabiosis, a procedure that allows circulating cells to enter partner tissues17. The procedure

did not alter the frequency of monocytes in the blood (Supplementary Fig. 1b) and had no

effect on BrdU incorporation in lesional macrophages (Supplementary Fig. 1c). Whereas

Ly-6Chigh monocyte chimerism in the blood (30±5%), spleen (26±4%), and aorta (25±6%)

was high – and typical of monocyte chimerism at equilibrium18 – macrophage chimerism in

the aorta was low (5±2%) (Fig. 2e–g). Therefore, in established disease, the discrepancy

between monocyte and macrophage chimerism illustrates either slow macrophage

replenishment or macrophage replenishment that does not rely exclusively on monocyte

influx. Because macrophages replenish rapidly in established disease (~4 weeks, Fig. 1),

macrophage accumulation likely occurs through processes other than monocyte infiltration.

Surgical separation of parabionts provided complementary evidence in support of this

conclusion. Separation led to a decline in monocyte chimerism in blood, spleen and aorta,

but chimerism among lesional macrophages remained unchanged for at least 2 weeks (Fig.
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2h). Together, these data show that monocyte recruitment cannot fully account for lesional

macrophage accumulation in established atherosclerosis.

Macrophage turnover that is largely independent of monocytes does not preclude the initial

development of plaque macrophages from hematopoietic precursors. To determine when

monocytes and macrophages converge, relatively young (early atherosclerosis) mice were

joined in parabiosis for 1 and 4 weeks. Unlike established disease (Fig. 2e–g), monocyte and

macrophage chimerism in these mice was similar (Supplementary Figure 2a), which is

aligned with previous observations that early development of atherosclerotic lesions depends

on monocyte recruitment19. To determine if monocytes and macrophages converge in

established disease, we lethally irradiated and reconstituted 4-month old CD45.2+Apoe−/−

HCD mice with bone marrow from CD45.1+Apoe−/− mice. Over 5 months, lesional

macrophages in these animals with established plaques were eventually replenished by

donor-derived CD45.1+ cells (Supplementary Fig. 2b). These data suggest that, even though

rapid lesional macrophage turnover does not require constant monocyte influx, aortic

macrophages ultimately derive from a circulating precursor.

The recent identification of hematopoietic progenitors in the aortic adventitia16 raised the

possibility that lesional macrophages arise from circulating intima-seeded multipotent

hematopoietic stem and progenitor cells (HSPC). To address this, we performed

granulocyte-macrophage colony forming experiments on aortic tissue. As shown

previously11, HSPC were highly active in the bone marrow and spleen of Apoe−/− HCD

mice (Fig. 3a). The entire aorta, on the other hand, yielded no more than 2 macrophage

colonies per animal. These data accord with the recent study on HSPC activity in the

vascular wall16, and indicate that local hematopoiesis of a multiproliferative progenitor

contributes minimally to lesional macrophage accumulation in atherosclerosis.

Macrophage proliferation in atherosclerotic lesions has been identified in humans, rabbits

and mice20–26 but its importance relative to monocyte recruitment has not been evaluated.

We addressed this by several independent and complementary approaches. First, we

adoptively transferred Ly-6Chigh monocytes from GFP+ mice to Apoe−/− mice consuming

HCD. 24 h following transfer, we also injected BrdU to track proliferation. 2 d after BrdU

pulse, non-proliferating BrdU−GFP+ monocytes were detected in the recipient blood (Fig.

3b). In the aorta, GFP+ cells grouped into F480low BrdU− cells, representing a few

monocytes that had accumulated but neither differentiated nor proliferated, and F480high

cells, representing monocyte-derived macrophages, some of which had proliferated locally

(BrdU+) (Fig. 3b). The data indicate that proliferating lesional macrophages derive from

non-proliferating circulating monocytes. Future studies will need to determine whether

lesion-infiltrating monocytes, in addition to differentiation, die locally or exit. Second, we

performed a 2 h in vivo BrdU-pulse labeling experiment, used previously to detect

neointimal dendritic cell proliferation19. At a time when circulating monocytes had not yet

incorporated BrdU (Supplementary Fig. 3a), macrophages in both Apoe−/− (Fig. 3c) and

Low Density Lipoprotein Receptor-deficient (Ldlr−/−) (Supplementary Fig. 3b) mice were

already BrdU+, indicating local proliferation. Third, analysis of the S and G2/M phases of

the cell cycle using the intercalating dye 4′,6-diamidino-2-phenylindole (DAPI) revealed a

high percentage of proliferating aortic macrophages in Apoe−/−mice consuming a high

cholesterol diet (Fig. 3d). This finding contrasted with macrophages from wild type (WT)

and young (2 month old) chow-fed Apoe−/− mice, which proliferated less, and monocytes,

which did not proliferate under any circumstances (Fig. 3b, d, e). Fourth, positive staining of

gated G2/M-phase lesional macrophages for phospho-histone H3 confirmed mitosis (Fig.

3f). Fifth, to directly visualize cell division, we utilized the ImageStreamX™ Mark II

platform, an approach that links multi-parameter flow cytometry with single cell immuno-

fluorescence imaging. Analysis of Apoe−/− HCD mice showed G2/M-phase aortic
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macrophages in various phases of mitosis (Fig. 3g). Sixth, immunofluorescence of aortic

root sections showed numerous intimal Mac3+ macrophages staining positive for the nuclear

proliferation antigen Ki67 (Fig. 3h). The key to interpreting these last four experiments is

the ability of DAPI, phospho-histone H3, and Ki67 to identify currently – rather than

formerly – proliferating cells. The colocalization of markers of cell division with mature

macrophage markers (F480 by flow cytometry and Mac3 by immunofluorescence) indicates

that lesional macrophages proliferate. Finally, immunohistochemistry of atherosclerotic

plaques from human carotid arteries revealed Ki67-expressing oil red O+ and CD68+

lesional macrophages (Supplementary Fig. 3c), indicating that in situ proliferation of mature

intimal macrophages occurs in experimental and human atherosclerosis. While classic

studies have shown that the dominant proliferative cell type in the human intima is the

monocyte/macrophage in both early23 and advanced atherosclerosis21,22, it remains to be

determined whether local macrophage proliferation contributes substantially to human lesion

growth, turnover, and rupture.

To quantify the contribution of local proliferation to macrophage accumulation in

established atherosclerotic lesions, 4 month-old CD45.1+ Apoe−/− HCD and CD45.2+

Apoe−/− HCD (8 weeks on diet) mice were joined by parabiosis and implanted with BrdU-

containing osmotic pumps for 4 weeks (Fig. 3i). This experiment allowed assessment of

macrophage chimerism exclusively in newly accumulating BrdU+ macrophages. Among

newly accumulating macrophages in CD45.1+ aortas, only 4% were CD45.2+ (Fig. 3i),

which agrees with our previous observations and further argues against macrophage

residential longevity as the determining factor for low chimerism (Fig. 2e and f). Aortic

chimerism alone underestimates the overall contribution of circulating monocytes because

monocyte chimerism in the blood, even at equilibrium, is only ~30% (Fig. 3i). Therefore,

assuming that individual CD45.1+ and CD45.2+ cells can infiltrate lesions equally, for every

partner-derived (i.e., CD45.2+) monocyte that entered the CD45.1+ aorta, ~2 endogenous

(i.e., CD45.1+) monocytes also entered. Hence, the total contribution of the circulation

(CD45.1+ and CD45.2+) to macrophage accumulation in a 4-week period in established

disease can be, at most, ~13% (Fig. 3j). Local proliferation, which accounts for the

remaining ~87% of newly-labeled BrdU+ macrophages, dominates macrophage

accumulation in established atherosclerosis (Fig. 3j). Similar studies conducted during early

atherosclerosis, when lesional macrophage burden was still minimal (Supplementary Fig.

2a), demonstrated a larger contribution of recruited monocytes to macrophage accumulation

(Fig. 3j). Collectively, these data show that, as atherosclerosis progresses, macrophage

turnover becomes increasingly dependent on local proliferation of lesional macrophages.

Since lesional macrophages reside in a tissue context, macrophage proliferation might

depend on the local microenvironment. We addressed this possibility with several

approaches. First, we joined 4 month-old WT (C57BL6/J, CD45.1+) and Apoe−/−(CD45.2+)

HCD mice by parabiosis. The joined heterogenic partners consumed a high cholesterol diet

for 5 weeks. During this period, atherosclerotic lesions persisted in Apoe−/− partners but did

not develop in WT partners. Among the cells accumulating in aortas, lesional macrophage

chimerism remained low (Fig. 4a), although the WT aorta contained fewer total cells.

Whatever the cell’s origin (host or partner, Apoe−/− or WT) macrophages accumulating in

Apoe−/− mice were more likely to proliferate compared to macrophages accumulating in WT

mice (Fig. 4a and b). We also assessed macrophage proliferation in Apoe−/− HCD mice in

different aortic segments of the same animal. Proliferation was highest among macrophages

located in the aortic root and arch (where lesions are most abundant), intermediate among

macrophages located in the thoracic aorta (intermediate abundance), and lowest in the

abdominal aorta (least abundance) (Supplementary Fig. 4). To discriminate between lesional

and adventitial macrophage proliferation, the intima was separated from the vessel wall, as

previously described27. Whereas adventitial macrophages proliferated at a rate similar to
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that observed in young non-atherosclerotic mice, lesional macrophages proliferated at a high

rate (Fig. 4c). Thus, the microenvironment influences macrophage proliferation.

By what mechanism are lesional macrophages proliferating? Neither neutralizing antibody

nor genetic studies targeting GM-CSF affected macrophage proliferation (Supplementary

Fig. 5a and b), which was somewhat surprising given the growth factor’s known role in

macrophage differentiation and neointimal DC proliferation19. We turned our attention to

the type 1 scavenger receptor class A (SR-A, also known as Msr1), which is expressed on

lesional macrophages28,29, recognizes modified low-density lipoproteins30, and correlates

with macrophage proliferation31. We generated mixed chimeric mice by irradiating and

reconstituting Ldlr−/− mice with a mixture of WT CD45.1+ and Msr1−/− CD45.2+ bone

marrow cells (Fig. 4d). This approach allowed us to compare proliferation of Msr1-

competent and deficient macrophages in the same lesional microenvironment. After 16 wk

of HCD, bone marrow transplantation was associated with engraftment and circulation of

moderately fewer Msr1−/−CD45.2+ monocytes compared to WT CD45.1+ monocytes

(Supplementary Fig. 5c). In the aorta, we observed ~60% fewer Msr1−/−CD45.2+

macrophages compared to WT CD45.1+ cells (Supplementary Fig. 5d) When animals were

pulsed with BrdU for 2h, circulating monocytes were almost entirely BrdU− regardless of

genotype (Fig. 4e). Compared to WT cells, Msr1−/− macrophages proliferated less (Fig. 4f)

and BrdU+ Msr1−/− macrophages were far less abundant in lesions (Fig. 4g). These data

indicate that Msr1 contributes to the life cycle of proliferating macrophages in established

atherosclerosis. Future work will need to elucidate whether the effect is direct or indirect,

and investigate the mechanistic links between Msr1-mediated apoptosis, ER stress, and

proliferation31,32.

The finding that local macrophage proliferation contributes substantially to lesional

macrophage accumulation prompted us to test whether interference with proliferation can

reduce established atherosclerosis. Apoe−/− HCD mice received the cell cycle inhibitor

fluorouracil (5-FU). It is known that 5-FU decreases the production of monocytes33.

However, the drug was delivered for only 4 weeks, a period of time in which monocytes

contribute little to macrophage accumulation in established atherosclerosis. 5-FU

significantly decreased the rate (Supplementary Fig. 6a) and number (Supplementary Fig.

6b) of proliferating aortic macrophages. The overall effect of 5-FU resulted in fewer Mac3+

macrophages and smaller lesions (Supplementary Fig. 6 c–e). These data are consistent with

studies in which genetic disruption of tumor suppressor genes and cell cycle regulators

promoted macrophage proliferation and increased atherosclerosis34,35. These findings

demonstrate that cellular proliferation is a dominant feature of atherosclerotic development

and a potent therapeutic target.

Atherosclerosis is a lipid-driven inflammatory disease characterized by monocyte

recruitment and differentiation1. When lesions regress, monocyte recruitment is

suppressed13. Our study builds on this paradigm by providing evidence that, in addition to

monocyte recruitment and differentiation, monocyte-derived lesional macrophages

proliferate. Atherosclerosis develops, our data indicate, via a multiphasic numerical

escalation of the monocyte-macrophage lineage. Its sequence can be summarized as follows:

(1) hematopoietic stem cells proliferate in the bone marrow and spleen and give rise to

monocytes11,36,37; (2) Monocytes circulate, infiltrate, and differentiate to

macrophages5–7,13; (3) Lesional macrophages proliferate and locally augment their numbers

in plaques (Fig. 4h). The evidence for substantial local expansion of mononuclear

phagocytes resulting from proliferation within the intimal lesion adds a new dimension to

our understanding of lesional leukokinetics. Moving forward, it will be important to evaluate

the importance of local macrophage proliferation in human atherosclerosis, and to determine
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how interfering with monocyte recruitment and macrophage proliferation at various stages

of atherosclerosis affects plaque progression.

Online Methods

Animals

C57BL/6J (wild-type, WT), B6.SJL-PtprcaPep3b/BoyJ (CD45.1+), apolipoprotein E–

deficient (Apoe−/−; B6.129P2-Apoetm1Unc), low density lipoprotein-deficient (Ldlr−/−;

B6.129S7-Ldlrtm1Her/J) and macrophage scavenger receptor 1-deficient (Msr1−/−; B6.Cg-

Msr1tm1Csk/J) mice were purchased from The Jackson Laboratories. Mice deficient in the β-
subunit of the granulocyte-macrophage colony stimulating factor receptor (Csf2rb−/−) were

kindly provided by Dr. Jeffrey Whitsett at Cincinnati Children’s Hospital Medical Center.

Apoe−/−CD45.1+ were generated after backcrossing Apoe−/− mice to C57BL/6 CD45.1+. At

6–8 wk of age, Apoe−/− mice were placed on a “Western” diet (high cholesterol diet, HCD)

(21.2% fat weight−1; 0.2% cholesterol) (Harlan Teklad, Madison, WI) or remained on a

chow diet for durations listed in the manuscript. Ldlr−/− mice were fed a high fat/cholesterol

diet (D12108C: 20% fat/weight; 1.25% cholesterol) (Research Diets Inc., New Brunswick,

NJ). All mice were female except Ldlr−/−, which were male. All protocols were approved by

the Institutional Animal Care and Use Committee (IACUC), Subcommittee on Research

Animal Care (SRAC), Massachusetts General Hospital, Charlestown, MA.

Animal models and in vivo interventions

BrdU incorporation studies: BrdU was administered using osmotic mini-pumps implanted

subcutaneously (Alzet model 1002) at a dose of 50 μg day−1 or injected i.v. at 1mg mouse−1.

Monocyte depletion: Mice were i.v. injected daily with 200 μl clodronate loaded liposomes.

Clodronate was a gift from Roche and was incorporated into liposomes are described

previously38. Parabiosis: The procedure, adapted from17 was conducted as previously

described39. Briefly, after shaving the corresponding lateral aspects of each mouse,

matching skin incisions were made from behind the ear to the tail of each mouse, and the

subcutaneous fascia was bluntly dissected to create about 0.5 cm of free skin. The scapulas

were sutured using a mono-nylon 5.0 (Ethicon, Albuquerque, NM), and the dorsal and

ventral skins were approximated by continuous suture. Mice were joined for intervals of 4 to

5 weeks. In one set of experiments, after an interval of 5 weeks joined, parabiosed mice

were surgically separated by a reversal of the procedure. Percent chimerism in the blood and

aortic tissue was defined for either gated monocytes or macrophages as %CD45.1+

(%CD45.1+ & %CD45.2+)−1 in CD45.2+ mice, and as %CD45.2+ (%CD45.2+ &

%CD45.1+)−1 in CD45.1+ mice. Bone marrow chimeras: Ldlr−/− HCD mice with established

atherosclerosis were lethally irradiated (950cGy) and reconstituted with CD45.1+ wild type

(WT) bone marrow. For generation of mixed chimeras naive Ldlr−/− mice were lethally

irradiated and reconstituted with a 50:50 mix of bone marrow cells from CD45.1+ wild type

mice and CD45.2+ knockouts for SR-A I/II (Msr1−/−) and the GM-CSF receptor β-chain

(Csf2rb−/−) respectively. Adoptive transfer: Ly-6Chigh CD115+ monocytes were sorted from

GFP+ mice. 3 × 106 cells were injected i.v. into Apoe−/− mice consuming HCD for 12

weeks. Treatment: Fluorouracil (5-FU) (APP Pharmaceuticals, LLC, USA) was

administered via osmotic mini-pumps at a dose of 15 mg kg−1 per day for 4 weeks with two

intermittent boluses of 100 mg kg−1 iv. Anti-GM-CSF antibody (functional grade

MP1-22E9, eBioscience) was delivered i.v. at a dose of 100 μg (mouse day)−1.

Cells

Peripheral blood for flow cytometric analysis was collected by cardiac puncture, using a 50

mM EDTA solution as anticoagulant. Erythrocytes were lysed using BD FACS Lysing

Solution (BD Biosciences). Total white blood cell count was determined by preparing a 1:10
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dilution of (undiluted) peripheral blood obtained from the orbital sinus using heparin-coated

capillary tubes in RBC Lysis Buffer (BioLegend). After organ harvest, single cell

suspensions were obtained as follows: for bone marrow, femur and tibia of one leg were

flushed with PBS. Spleens were homogenized through a 40 μm-nylon mesh, after which

erythrocyte lysis was performed on the spleens using RBC Lysis Buffer (BioLegend). For

aortic tissue, the entire aorta was digested (from the root to the iliac bifurcation) according

to a method previously published40. The procedure involves perfusion of the aorta (20 ml

PBS) prior to digestion. Aortic tissue was cut in small pieces and subjected to enzymatic

digestion with 450 U ml−1 collagenase I, 125 U ml−1 collagenase XI, 60 U ml−1 DNase I

and 60 U ml−1 hyaluronidase (Sigma-Aldrich, St. Louis, MO) for 1 h at 37 °C while

shaking. Total viable cell numbers were obtained using Trypan Blue (Cellgro, Mediatech,

Inc, VA). To separate intimal lesions from the media and adventitia we adapted the method

previously described by Butcher et al27. In brief, aortas were cut open longitudinally and

pinned onto black wax with the intimal area facing upwards. A thin film of enzymatic

digestion mixture was applied directly onto the exposed intima. After 15 min of incubation

at room temperature lesions were scraped off the underlying media with a glass coverslip.

Lesional tissue and the remaining media and adventitia were cut into small pieces and

separately digested for 40 min at 37 °C while shaking as described above. Tissue colony

forming cell assay: To determine the number of myeloid colony-forming units, a single cell

suspension was prepared from bone marrow, spleens and aortic tissue and 1×105 cells were

plated in triplicates in complete methylcellulose medium (MethoCult GF M3434, Stemcell

Technologies). Counts were performed after 8 d of culture. At least three independent

samples per group were analyzed.

Flow Cytometry

The following antibodies were used for flow cytometric analyses: anti-CD90.2-PE, 53–2.1

(BD Biosciences); anti-B220-PE, RA3-6B2 (BD Biosciences); anti-CD49b-PE, DX5 (BD

Biosciences); anti-NK1.1-PE, PK136 (BD Biosciences); anti-Ly-6G-PE, 1A8 (BD

Biosciences); anti-TER119-PE, TER119 (BD Biosciences); anti-CD11b-APCcy7, M1/70

(BD Biosciences); anti-CD11c-Alexa Fluor 700, HL3 (BD Biosciences); anti-IAb-Percp

Cy5.5, AF6-120.1 (BD Biosciences); anti-F480-PE-Cy7, BM8 (BioLegend); anti-CD45.2-

FITC, 104 (BD Biosciences); anti-CD45.1-APC, A20 (BD Biosciences); anti-CD115-APC,

AFS98 (ebioscience). Antibody dilutions were 1:300 – 1:700. Cell cycle analysis was

carried out using FxCycle violet stain (Invitrogen). Contribution of newly-made cells to

different cell populations was determined by in vivo labeling with bromodeoxyuridine

(BrdU) (BD Biosciences). Incorporation was measured using either FITC or APC-

conjugated anti-BrdU antibodies according to the manufacturer’s instructions. Monocytes

and macrophages were identified similarly as described previously39. Specifically,

monocytes were identified as CD11bhi Lin− (Lin = CD90/B220/CD49b/NK1.1/Ly-6G/

Ter119) F480lo. Macrophages were identified as CD11bhi Linlo F480hi CD11clo-neg. Data

were acquired on an LSRII (BD Biosciences) and analyzed with FlowJo v8.8.6 (Tree Star,

Inc.). The ImageStreamX™ imaging flow cytometry platform was used to analyze the cell

cycle as per manufacturer’s instructions.

Histology

Atherosclerotic plaque specimens were obtained from patients undergoing carotid

endarterectomies. Carotid tissue was obtained from cardiac transplants by protocols

approved by the Human Investigation Review Committee at the Brigham and Women’s

Hospital. Specimens were immediately immersed in saline solution, transported to the

laboratory on ice (within 1 hr), embedded in OCT compound, and stored at −80°C freezer

until use. Serial cryostat sections (5 μm) are cut, air dried onto microscope slides (Fisher

Scientific, Pittsburgh, PA) and used for immunohistochemistry. Mouse aortae were excised,
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embedded in O.C.T. compound (Sakura Finetek), and flash-frozen in isopentane and dry ice.

Aortic roots were sectioned into 5 um slices, generating ~30–40 sections that spanned the

entirety of the aortic root. For comparison of lesion size between the groups, sections that

captured the maximum lesion area were used. Immunofluorescence double staining was

carried out using BrdU Flow Kits (BD Biosciences), Mac-3: clone M3/84 (BD Biosciences)

and FITC-Ki67: clone SP6 (Abcam). For BrdU immunofluorescence double staining, the

sections were stained with Mac-3 antibody followed by a biotinylated secondary antibody

and streptavidin-Texas Red (GE Healthcare). To denature DNA, the sections were incubated

with 2 N HCl for 10 min at room temperature and for 20 min at 37 °C. Acid neutralization

was achieved by immersing sections in 0.1M borate buffer. Cover slips were placed over

specimens using mounting medium containing DAPI (Vector Laboratories) to identify cell

nuclei. Images capture was performed using an epifluorescence microscope (Nikon Eclipse

80i, Nikon Instruments Inc.) equipped with a Cascade Model 512B camera (Roper

Scientific). For immunohistochemistry, anti-CD45.1: clone A20 (eBioscience), anti-CD45.2:

clone 104 (BioLegend), anti-Mac-3: clone M3/84 (BD Biosciences) was used for mouse

aortic root sections, and anti-Ki67 (abcam), anti-CD68: clone KP1 (Dako) were used to stain

human carotid arteries. In order to block endogenous peroxidase activity, tissue sections

were pre-treated with 0.3% hydrogen peroxide solution. Following application of the

appropriate biotinylated secondary antibodies, samples were developed using the Vectastain

ABC kit (Vector Laboratories) and either AEC (DakoCytomation) or DAB (Vector

Laboratories) substrates. Sections were counterstained with Harris Hematoxylin and

specificity of staining was confirmed using relevant isotype controls. Masson trichrome

(Sigma) and Oil Red O (Sigma) staining were performed to visualize collagen and lipid

content, respectively. Hematoxylin and eosin (H&E) staining was performed to assess

overall tissue morphology. Images were digitized using a Nanozoomer 2.0RS (Hamamatsu).

Statistics

Results were expressed as mean ± SEM. Statistical tests included unpaired Student’s t test

using Welch’s correction for unequal variances and 1-way ANOVA followed by Tukey’s or

Newman-Keuls Multiple Comparison Test. P values of 0.05 or less were considered to

denote significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Macrophages turn over rapidly in lesions
(a) Identification of aortic macrophages in established atherosclerosis. Contour plots

demonstrate gating scheme for aortic macrophages in Apoe−/− mice consuming HCD for 8

weeks. (b) BrdU-containing osmotic pumps were implanted in Apoe−/− mice consuming

HCD for 8 weeks. Data depict BrdU incorporation in aortic macrophages 1 and 4 weeks

following implantation of osmotic pumps. (c) Percentage of aortic macrophages that

incorporate BrdU. Shown is quantification of data in b as well as BrdU+ macrophages in

mice where pumps were removed for 4 weeks (mean ± SEM, n = 8 (week 1), n = 3 (week

4), n = 2 (week 4 removal)). (d) Immunofluorescence (IF) shows BrdU+ Mac3+

macrophages in aortic root lesions. (e) IF showing co-localization of BrdU and DAPI in

intimal and adventitial macrophages of aortic root sections following 4 weeks of BrdU

administration; 10x magnification. (f) Enumeration of BrdU+ Mac3+ macrophages by IF in

aortic root sections (mean ± SEM, n = 2–3). * P < 0.05. (g) Lesion growth during BrdU

labeling period. (h) Lesional macrophage content during BrdU labeling period. Data show

area staining for Mac-3.
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Figure 2. Lesional macrophage accumulation occurs largely independent of monocyte
recruitment
(a) Effect of repeated clodronate liposome administration on peripheral blood monocytes

(mean ± SEM, n = 4). (b) Effect of clodronate liposome treatment on BrdU incorporation by

aortic macrophages. Data show percentage of BrdU+ macrophages in aortic tissue following

5 d clodronate administration (mean ± SEM, n = 6–9). (c) Data show number of BrdU+

macrophages in aortic tissue following 5 d clodronate treatment (mean ± SEM, n = 6–9). (d)

Data show total number of macrophages in aortic tissue following 5 d clodronate treatment

(mean ± SEM, n = 6–9). (e) CD45.1+ and CD45.2+ Apoe−/− HCD mice were joined in

parabiosis for 5 weeks. Data show Ly-6Chigh monocyte chimerism in the blood, spleen, and

aorta and macrophage chimerism in the aortic tissue (mean ± SEM; n = 6–8). (f)
Representative contour plots demonstrate monocyte and macrophage chimerism in aortic

tissue. (g) Immunohistochemistry (IHC) of aortic root sections showing CD45.1 and CD45.2

staining in CD45.1+ parabionts. (h) CD45.1+ and CD45.2+ Apoe−/− HCD mice were joined

in parabiosis for 5 weeks, separated and assessed for chimerism 2 weeks later. Shown is

chimerism for monocytes in the blood, spleen, and aorta as well as macrophages in the aorta

(mean ± SEM; n = 4–8).* P < 0.05.
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Figure 3. In situ proliferation dominates macrophage accumulation in atherosclerosis
(a) Data show colony-forming units–granulocytes and macrophages (CFU-GM) in spleen,

bone marrow and aortic tissue of Apoe−/− HCD mice (mean ± SEM, n = 3). * P < 0.05. (b)

BrdU incorporation following adoptive transfer of GFP+ Ly6Chigh monocytes. One

representative experiment is shown. (c) BrdU pulse labeling of aortic macrophages (mean ±

SEM, n = 7). (d) Cell cycle analysis of aortic tissue macrophages. Histograms depict DAPI

staining (mean ± SEM, n = 7). * P < 0.05. (e) Percentage of aortic tissue macrophages in S

and G2/M phases of the cell cycle. (mean ± SEM, n = 3–7). * P < 0.05. (f) Phospho-histone

H3 staining of aortic macrophages in G2/M phases of the cell cycle. (g) Analysis of aortic

macrophages by ImageStreamX™ imaging flow cytometry platform. Data depict actively

dividing macrophages. (h) IF of aortic root sections demonstrating Ki-67 staining of Mac3+

intimal macrophages. (i) CD45.1+ and CD45.2+ Apoe−/− HCD mice were joined in

parabiosis and then implanted with BrdU containing osmotic pumps. Data show chimerism

in newly made (BrdU+) aortic tissue macrophages. One representative experiment of two is

shown. Monocyte chimerism in peripheral blood is also shown. (j) Relative contribution of

in situ proliferation and monocyte recruitment to macrophage accumulation in early (2–3

month old) and established (4–5 months old) atherosclerosis.
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Figure 4. Lesion microenvironment dictates macrophage proliferation
(a) WT (CD45.1+ C57BL6/J) and CD45.2+ Apoe−/− HCD mice were joined in parabiosis for

5 weeks. Data show DAPI staining in CD45.1+ and CD45.2+ aortic tissue macrophages in

each parabiont. One representative experiment of 3 is shown. (b) Enumeration of data in a.

(mean ± SEM, n = 8–9). * P < 0.05. (c) Cell cycle analysis of intimal versus adventitial

aortic macrophages. (d) WT/Msr1−/−mixed chimeras were generated by reconstituting

lethally irradiated Ldlr−/− mice with CD45.1+ wild type (Msr1+/+) and CD45.2+ Msr1–

deficient (Msr1−/−) bone marrow cells. (e) Data show number of BrdU+ Msr1+/+ (WT) and

BrdU+ Msr1−/−Ly6Chigh monocytes in blood 2 h following BrdU pulse labeling. (mean ±

SEM, n = 5). (f) Percentage of WT and Msr1−/− aortic macrophages that are BrdU+. (mean ±

SEM, n = 5).* P < 0.05. (g) Number of BrdU+ Msr1+/+and BrdU+ Msr1−/− macrophages in

aortic tissue of WT/Msr1−/− mixed chimeras. (mean ± SEM, n = 5).* P < 0.05. (h) Cartoon

depicting macrophage expansion in established atherosclerosis.
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