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Let F be a class of measurable functions f :S �→ [0,1] defined on a
probability space (S,A,P ). Given a sample (X1, . . . ,Xn) of i.i.d. random
variables taking values in S with common distribution P , let Pn denote the
empirical measure based on (X1, . . . ,Xn). We study an empirical risk mini-
mization problem Pnf → min, f ∈ F . Given a solution f̂n of this problem,
the goal is to obtain very general upper bounds on its excess risk

EP (f̂n) := P f̂n − inf
f ∈F

Pf,

expressed in terms of relevant geometric parameters of the class F . Using
concentration inequalities and other empirical processes tools, we obtain both
distribution-dependent and data-dependent upper bounds on the excess risk
that are of asymptotically correct order in many examples. The bounds in-
volve localized sup-norms of empirical and Rademacher processes indexed
by functions from the class. We use these bounds to develop model selection
techniques in abstract risk minimization problems that can be applied to more
specialized frameworks of regression and classification.

1. Introduction. Let (S,A,P ) be a probability space and let F be a class of
measurable functions f :S �→ [0,1]. Let (X1, . . . ,Xn) be a sample of i.i.d. random
variables defined on a probability space (�,�,P) and taking values in S with
common distribution P . Let Pn denote the empirical measure based on the sample
(X1, . . . ,Xn).

We consider the problem of risk minimization

Pf → min, f ∈ F(1.1)

under the assumption that the distribution P is unknown and has to be replaced by
its estimate, Pn. Thus, the true risk minimization is replaced by the empirical risk

Received September 2003; revised July 2005.
1Supported in part by NSF Grant DMS-03-04861 and NSA Grant MDA904-02-1-0075.
2Discussed in 10.1214/009053606000001028, 10.1214/009053606000001037,

10.1214/009053606000001046, 10.1214/009053606000001055, 10.1214/009053606000001064
and 10.1214/009053606000001073; rejoinder at 10.1214/009053606000001082.

AMS 2000 subject classifications. Primary 62H30, 60B99, 68Q32; secondary 62G08, 68T05,
68T10.

Key words and phrases. Rademacher complexities, empirical risk minimization, oracle inequali-
ties, model selection, concentration inequalities, classification.

2593

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053606000001019
http://www.imstat.org
http://dx.doi.org/10.1214/009053606000001028
http://dx.doi.org/10.1214/009053606000001037
http://dx.doi.org/10.1214/009053606000001046
http://dx.doi.org/10.1214/009053606000001055
http://dx.doi.org/10.1214/009053606000001064
http://dx.doi.org/10.1214/009053606000001073
http://dx.doi.org/10.1214/009053606000001082
http://www.ams.org/msc/


2594 V. KOLTCHINSKII

minimization

Pnf → min, f ∈ F .(1.2)

DEFINITION. Let

E(f ) := EP (f ) := EP (F ;f ) := Pf − inf
g∈F

Pg.

This quantity will be called the excess risk of f ∈ F . The set FP (δ) := {f ∈
F :EP (f ) ≤ δ} will be called the δ-minimal set of P . In particular, FP (0) is the
minimal set of P .

Given a solution (or an approximate solution) f̂ = f̂n of (1.2), the first problem
of interest is to provide very general upper confidence bounds on the excess risk
EP (f̂n) of f̂n that take into account some relevant geometric parameters of the
class F as well as some measures of accuracy of approximation of P by Pn locally
in the class. Namely, based on the L2(P )-diameter DP (F ; δ) of the δ-minimal set
F (δ) and the function

φn(F ; δ) := E sup
f,g∈F (δ)

|(Pn − P)(f − g)|,

we construct a quantity δ̄n(F ; t) such that inequalities of the following type hold:

P{EP (f̂n) ≥ δ̄n(F ; t)} ≤ log
n

t
e−t , t > 0

(see Section 3). The bound δ̄n(F ; t) has an asymptotically correct order (with
respect to n) in many particular examples of risk minimization problems occur-
ring in regression, classification and machine learning. However, if the diameter
DP (F ; δ) does not tend to 0 as δ → 0 (which is the case when the risk mini-
mization problem has multiple solutions), it happens that the bound δ̄n(F ; t) is no
longer tight, and one has to redefine it using more subtle characteristics of geome-
try of the class than DP (F ; δ) (see Section 4).

We will now describe a heuristic way to derive such bounds. It is based on
iterative localization of the bound and it can be made precise (see the remark after
the proof of Theorem 2 in Section 9, and also [27] where this type of argument
was introduced in a more specialized setting). Define

Ūn(δ; t) := K

(
φn(F ; δ) + D(F ; δ)

√
t

n
+ t

n

)
.

It follows from Talagrand’s concentration inequality (see Section 2.1) that with
some constant K > 0 for all t > 0

P

{
sup

f,g∈F (δ)

|(Pn − P)(f − g)| ≥ Ūn(δ; t)
}

≤ e−t .



LOCAL RADEMACHER COMPLEXITIES 2595

Take δ(0) = 1, so that F (δ(0)) = F (recall that functions in F take values
in [0,1]). Assume, for simplicity, that the minimum of Pf is attained at f̄ ∈ F .
Since f̂ , f̄ ∈ F (δ(0)) and Pnf̂ ≤ Pnf̄ , we have with probability at least 1 − e−t

EP (f̂ ) = P f̂ − P f̄ = Pnf̂ − Pnf̄ + (P − Pn)(f̂ − f̄ )

≤ sup
f,g∈F (δ)

|(Pn − P)(f − g)| ≤ Ūn(δ
(0); t) ∧ 1 =: δ(1).

This implies that f̂ , f̄ ∈ F (δ(1)) and we can repeat the above argument to show
that with probability at least 1 − 2e−t , EP (f̂ ) ≤ Ūn(δ

(1); t) ∧ 1 =: δ(2). Iterat-
ing the argument N times shows that with probability at least 1 − Ne−t we have
EP (f̂ ) ≤ δ(N), where δ(N) := Ūn(δ

(N−1); t) ∧ 1. If the sequence δ(N) converges to
the solution δ̄ of the fixed point equation δ = Ūn(δ; t)∧1 and if the convergence is
fast enough so that with some C > 1 for relatively small N we have δ(N) ≤ Cδ̄, the
above argument shows that EP (f̂ ) ≤ Cδ̄ with probability at least 1 − Ne−t . Both
with and without this iterative argument, we show in Section 3 (and prove in Sec-
tion 9) that the construction of good upper bounds on the excess risk of f̂ is related
to fixed point-type equations for the function Ūn(δ; t). The fixed point method has
been developed in recent years in Massart [36], Koltchinskii and Panchenko [27]
and Bartlett, Bousquet and Mendelson [5] (and in several other papers of these
authors).

The second problem is to develop ratio-type inequalities for the excess risk,
namely, to bound the probabilities

P

{
sup

f ∈F ,EP (f )≥δ

∣∣∣∣EPn(f )

EP (f )
− 1

∣∣∣∣ ≥ ε

}

(see Section 3). This problem is an important ingredient of the analysis of empirical
risk minimization [in particular, we will use inequalities for such probabilities in
our construction of data-dependent bounds on the excess risk EP (f̂ )] and it is
related to the study of ratio-type empirical processes (see [19, 20] for recent results
on this subject).

The third problem is to construct data-dependent upper confidence bounds
on EP (f̂n). To this end, we replace the geometric parameters of the class [such
as DP (F ; δ)] by their empirical versions and the empirical process involved in
the definition of data-dependent bounds by the Rademacher process (Section 3).
The idea to use sup-norms or localized sup-norms of the Rademacher process
as bootstrap-type estimates of the size of corresponding suprema of the empirical
process has originated in the machine learning literature (see [4, 5, 14, 26, 27, 34]).
The current paper continues this line of research. Very recently, Bartlett and
Mendelson [7] developed an interesting new definition of localized Rademacher
complexities and gave a curious example in which this complexity provides a
sharper bound on the risk of empirical risk minimizers than the complexities stud-
ied so far. It is not clear yet whether the phenomenon they studied occurs in actual
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machine learning or statistical problems. Because of this, we do not pursue this
approach in the current paper.

The fourth problem is to develop rather general model selection techniques in
risk minimization that utilize our data-dependent bounds on the excess risk (Sec-
tions 5 and 6). More precisely, we study a version of structural risk minimization
in which the class F is approximated by a family of classes Fk , k ≥ 1 (they are
often associated with certain models, e.g., in regression or classification) and the
empirical risk minimization problem (1.2) is replaced by a family of problems

Pnf → min, f ∈ Fk, k ≥ 1.(1.3)

The goal now is, based on solutions f̂n,k of problems (1.3) and on the data, to
construct an estimate k̂ of the index k(P ) of the “correct” model (i.e., a value of
k such that the solution of the risk minimization problem (1.1) belongs to Fk , or
at least is well approximated by this class) and an “adaptive” solution f̂ = f̂

n,k̂
whose excess risk is close to being “optimal.” The optimality of the solution is
typically expressed by so-called oracle inequalities which, very roughly, show that
the excess risk of f̂ is within a constant from the excess risk of the solution one
would have obtained with the help of an “oracle” who knows precisely to which of
the classes Fk the true risk minimizer belongs [knows k(P )]. This way of thinking
has become rather common in the nonparametric statistics literature where various
types of oracle inequalities have been proved, most often in specialized settings
(see [23] for a discussion on the subject).

The first general theory of empirical risk minimization was systematically de-
veloped by Vapnik and Chervonenkis [49] (see also [48] and references therein)
in the late 1970s and early 1980s (although a number of more special results had
been obtained much earlier, in particular, in connection with the development of
the theory of maximum likelihood and M-estimation). They obtained a number of
bounds on EP (f̂n) based on the inequality EP (f̂n) ≤ 2‖Pn − P‖F and on further
bounding the sup-norm ‖Pn − P‖F in terms of random entropies or, now famous,
VC-dimensions of the class F [here and in what follows ‖Y‖F := supf ∈F |Y(f )|
for Y :F �→ R]. They also developed more subtle bounds that provide an improve-
ment in the case of small (in particular, zero) risk. These results played a significant
role in the development of the general theory of empirical processes (see [16, 47]).

New developments in nonparametric statistics and, especially, in machine learn-
ing have motivated a number of improvements in the Vapnik–Chervonenkis theory
of empirical risk minimization. Our approach largely relies on well-known papers
of Birgé and Massart [8], Barron, Birgé and Massart [3] and on the more recent
paper of Massart [36]. These authors proved a number of oracle inequalities for re-
gression, density estimation and other nonparametric problems. More importantly,
they suggested a rather general methodology of dealing with model selection for
minimum contrast estimators that is based on Talagrand’s concentration and de-
viation inequalities for empirical processes [42, 43], a new probabilistic tool at
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the time when these papers were written. Despite the fact that in many special
statistical problems the use of Talagrand’s inequalities can be avoided and oracle
inequalities can be proved relying on more elementary probabilistic methods, one
can hardly deny that concentration inequalities are the only universal tool in prob-
ability that suits the needs of model selection and oracle inequalities problems ex-
tremely well and are, probably, unavoidable when these problems are being dealt
with in their full generality (e.g., in a machine learning setting). Talagrand’s in-
equalities will be the main tool in this paper. Another important piece of work is
the paper by Shen and Wong [39] where empirical processes methods were used
to analyze empirical risk minimization on sieves (and, in particular, a version of
iterative localization of excess risk bounds close to the approach discussed above
was developed in a more specialized framework).

One of our main motivations was to understand better the results of Mammen
and Tsybakov [35] on fast convergence rates in classification as well as more re-
cent results of Tsybakov [44] and Tsybakov and van de Geer [45] on adaptation
strategies for which these rates are attained. Our goal is to include these types of
results in a more general framework of abstract empirical risk minimization (see
Section 6). Another goal is to include into the same framework some other re-
cent model selection results, especially in learning theory, where there is a definite
need to develop general data-driven complexity penalization techniques suitable
for neural networks, kernel machines and ensemble methods (see [28–30]). The
analysis of convergence rates and the development of adaptive strategies for clas-
sification are currently at early stages (even consistency of boosting and kernel
machines classification algorithms was established only recently; see [33, 40, 50]).
Very recently, Bartlett, Jordan and McAuliffe [6] and Blanchard, Lugosi and Vay-
atis [10] obtained convergence rates of boosting-type classification methods based
on convex risk minimization. Blanchard, Bousquet and Massart [9] obtained in-
teresting oracle inequalities for penalized empirical risk minimization in kernel
machines. It is of importance to develop better general ingredients of the proofs
of such results so that it will be possible to concentrate on more specific difficul-
ties related to the nature of the classification problem. These types of problems as
well as a somewhat more general framework of convex risk minimization, includ-
ing regression problems, are also within the scope of the methods of this paper
(Sections 7 and 8).

The proofs of all main results in the paper are given in Section 9.

2. Preliminaries.

2.1. Talagrand’s concentration inequalities. Most of the results of this paper
are based on famous concentration inequalities for empirical processes due to Tala-
grand [42, 43] (that provide uniform versions of classical Bernstein-type inequali-
ties for sums of i.i.d. random variables). We use the versions of these inequalities
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proved by Bousquet [13] and Klein [24] (see [11] for some other relevant inequal-
ities). Namely, for a class F of measurable functions from S into [0,1] (by a sim-
ple rescaling [0,1] can be replaced by any bounded interval) the following bounds
hold for all t > 0:

• Bousquet’s bound:

P

{
‖Pn −P‖F ≥ E‖Pn −P‖F +

√
2

t

n

(
σ 2

P (F ) + 2E‖Pn − P‖F
)+ t

3n

}
≤ e−t .

• Klein’s bound:

P

{
‖Pn −P‖F ≤ E‖Pn −P‖F −

√
2

t

n

(
σ 2

P (F ) + 2E‖Pn − P‖F
)− 8t

3n

}
≤ e−t

(we modified Klein’s bound slightly). Here σ 2
P (F ) := supf ∈F (Pf 2 − (Pf )2).

2.2. Empirical and Rademacher processes. The empirical process is com-
monly defined as n1/2(Pn − P) and it is most often viewed as a stochastic process
indexed by a function class F :n1/2(Pn − P)(f ), f ∈ F (see [16] or [47]). The
Rademacher process indexed by a class F is defined as

Rn(f ) := n−1
n∑

i=1

εif (Xi), f ∈ F ,

{εi} being i.i.d. Rademacher random variables (i.e., εi takes the values +1 and −1
with probability 1/2 each) independent of {Xi}. Roughly, Rn(f ) is the value of
the empirical correlation coefficient between f (Xi), i = 1, . . . , n and Rademacher
random noise. If ‖Rn‖F is large, it means that there exists f ∈ F for which f (Xi)

fits the noise well. Using such a class F in empirical risk minimization is likely to
result in overfitting, which provides an intuitive explanation of the role of ‖Rn‖F

as a complexity penalty in empirical risk minimization problems.
Rademacher processes have been widely used in the theory of empirical

processes because of the important inequality

1

2
E‖Rn‖Fc ≤ E‖Pn − P‖F ≤ 2E‖Rn‖F ,

where Fc := {f − Pf : f ∈ F }. The upper bound is often referred to as a sym-
metrization inequality and the lower bound as a desymmetrization inequality. We
will use this terminology in the future. These inequalities were brought into the
theory of empirical processes by Giné and Zinn [21]. It is often convenient to use
the desymmetrization inequality in combination with the elementary lower bound
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E‖Rn‖Fc ≥ E‖Rn‖F − sup
f ∈F

|Pf | E|Rn(1)|

≥ E‖Rn‖F − sup
f ∈F

|Pf |E1/2

∣∣∣∣∣n−1
n∑

j=1

εj

∣∣∣∣∣
2

≥ E‖Rn‖F − supf ∈F |Pf |√
n

.

Rademacher processes possess many remarkable properties. In particular, they
satisfy the following beautiful contraction inequality: if F is a class of functions
with values in [−1,1], ϕ is a function on [−1,1] with ϕ(0) = 0 and of Lipschitz
norm bounded by 1, and ϕ ◦ F := {ϕ ◦ f :f ∈ F }, then E‖Rn‖ϕ◦F ≤ 2E‖Rn‖F

(follows from [31], Theorem 4.12). This implies, for instance, that

E sup
f ∈F

∣∣∣∣∣n−1
n∑

i=1

εif
2(Xi)

∣∣∣∣∣ ≤ 4E sup
f ∈F

∣∣∣∣∣n−1
n∑

i=1

εif (Xi)

∣∣∣∣∣.
Concentration inequalities also apply to the Rademacher process since it can be

viewed as an empirical process based on the sample (X1, ε1), . . . , (Xn, εn).
Often one needs to bound expected suprema of empirical and Rademacher

processes. This can be done using various types of covering numbers (such as
uniform covering numbers, random covering numbers, bracketing numbers, etc.)
and the corresponding Dudley entropy integrals. For instance, let N(F ;L2(Pn); ε)
denote the minimal number of L2(Pn)-balls of radius ε covering F . Suppose that
∀f ∈ F , ∀x ∈ S : |f (x)| ≤ F(x) ≤ U , where U > 0 and F is a measurable func-
tion (called an envelope of F ). Let σ 2 := supf ∈F Pf 2. If for some A > 0, V > 0

∀ε > 0 N(F ;L2(Pn); ε) ≤
(

A‖F‖L2(Pn)

ε

)V

,(2.1)

then with some universal constant C > 0 (for σ 2 ≥ const n−1)

E‖Rn‖F ≤ C

[√
V

n
σ

√
log

A‖F‖L2(P )

σ
∨ V U

n
log

A‖F‖L2(P )

σ

]
.(2.2)

If for some A > 0, ρ ∈ (0,1)

∀ε > 0 logN(F ;L2(Pn); ε) ≤
(

A‖F‖L2(Pn)

ε

)2ρ

,(2.3)

then

E‖Rn‖F ≤ C

[Aρ‖F‖ρ
L2(P )√
n

σ 1−ρ ∨ A2ρ/(ρ+1)‖F‖2ρ/(ρ+1)
L2(P ) U(1−ρ)/(1+ρ)

n1/(1+ρ)

]
.(2.4)

The proofs of these types of bounds can be found in [17, 18, 20, 37, 41]; the current
version of (2.4) is due to Giné and Koltchinskii [19]).
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In particular, if F is a VC-subgraph class, then the condition (2.1) holds (in fact,
the condition holds even for the uniform covering numbers) and one can use the
bound (2.2). We will call the function classes satisfying (2.1) VC-type classes. If H
is VC-type, then its convex hull conv(H) satisfies (2.3) with ρ := V

V +2 (see [47]),
so one can use the bound (2.4) for F ⊂ conv(H) (note that one should use the
envelope F of the class H itself for its convex hull as well). Many other useful
bounds on expected suprema of empirical and Rademacher processes (in particu-
lar, in terms of bracketing numbers) can be found in [47] and [16].

2.3. The 	-transform and related questions. In this section, we introduce and
discuss some useful transformations involved in the definitions of various com-
plexity measures of function classes in empirical risk minimization. As has been
already pointed out in the Introduction, the excess risk bounds are often based
on solving the fixed point equation, or, more generally, equations of the type
ψ(δ) = εδ, for ψ(·) = Un(·; t). This naturally leads to the following definitions.

For a function ψ : R+ �→ R+, define

ψ�(δ) := sup
σ≥δ

ψ(σ )

σ
and ψ	(ε) := inf{δ > 0 :ψ�(δ) ≤ ε}.

We will call these transformations, respectively, the �-transform and the 	-trans-
form of ψ . We are mainly interested in the 	-transform. It has the following prop-
erties whose proofs are elementary and straightforward:

1. Suppose that ψ(u) = o(u) as u → ∞. Then the function ψ	 is defined on
(0,+∞) and is a nonincreasing function on this interval.

2. If ψ1 ≤ ψ2, then ψ
	
1 ≤ ψ

	
2 . Moreover, it is enough to assume that ψ1(δ) ≤

ψ2(δ) either for all δ ≥ ψ
	
2(ε), or for all δ ≥ ψ

	
1(ε) − τ with an arbitrary τ > 0, to

conclude that ψ
	
1(ε) ≤ ψ

	
2(ε).

3. For a > 0, (aψ)	(ε) = ψ	(ε/a).
4. If ε = ε1 + · · · + εm, then

ψ
	
1(ε) ∨ · · · ∨ ψ	

m(ε) ≤ (ψ1 + · · · + ψm)	(ε) ≤ ψ
	
1(ε1) ∨ · · · ∨ ψ	

m(εm).

5. If ψ(u) ≡ c, then ψ	(ε) = c/ε.
6. If ψ(u) := uα with α ≤ 1, then ψ	(ε) := ε−1/(1−α).
7. For c > 0, let ψc(δ) := ψ(cδ). Then ψ

	
c (ε) = 1

c
ψ	(ε/c). If ψ is nondecreas-

ing and c ≥ 1, then this easily implies that cψ	(u) ≤ ψ	(u/c).
8. For c > 0, let now ψc(δ) := ψ(δ +c). Then for all u > 0, ε ∈ (0,1], ψ	

c (u) ≤
ψ	(εu/2) − c ∨ cε.

Let us call ψ : R+ �→ R+ a function of concave type if it is nondecreasing and
u �→ ψ(u)

u
is decreasing. If, in addition, for some γ ∈ (0,1), u �→ ψ(u)

uγ is decreas-
ing, ψ will be called a function of strictly concave type (with exponent γ ). In par-
ticular, if ψ(u) := ϕ(uγ ), or ψ(u) := ϕγ (u), where ϕ is a nondecreasing strictly
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concave function with ϕ(0) = 0, then ψ is of concave type for γ = 1 and of strictly
concave type for γ < 1.

9. If ψ is of concave type, then ψ	 is the inverse of the function δ �→ ψ(δ)
δ

. In
this case, ψ	(cu) ≥ ψ	(u)/c for c ≤ 1 and ψ	(cu) ≤ ψ	(u)/c for c ≥ 1.

10. If ψ is of strictly concave type with exponent γ , then for c ≤ 1, ψ	(cu) ≤
ψ	(u)c

− 1
1−γ .

It will be convenient sometimes to discretize the supremum in the definition
of ψ�. Namely, let q > 1 and δj := q−j , j ∈ Z. Define

ψ�,q(δ) := sup
δj≥δ

ψ(δj )

δj

, ψ	,q(ε) := inf{δ > 0 :ψ�,q(δ) ≤ ε}

and

ψ
�,q
[0,1](δ) := sup

1≥δj≥δ

ψ(δj )

δj

, ψ
	,q
[0,1](ε) := inf

{
δ ∈ (0,1] :ψ�,q

[0,1](δ) ≤ ε
}

(if in the last definition ψ
�,q
[0,1](δ) is larger than ε for all δ ≤ 1, then we set

ψ
	,q
[0,1](ε) := 1).
Properties 1–4 and 7 hold for ψ	,q with the following obvious changes. In prop-

erty 2, it is enough to assume that ψ1(δ) ≤ ψ2(δ) only for δ = δj and the second
part of this property should be formulated as follows: if ψ1(δ) ≤ ψ2(δ) either for
all δ ≥ ψ

	,q
2 (ε), or for all δ ≥ q−1ψ

	,q
1 (ε), then ψ

	,q
1 (ε) ≤ ψ

	,q
2 (ε). Property 7

holds with c = qj for any j . We will refer to these properties as 1′–4′ and 7′ in
what follows.

Also, the following simple fact is true:

11. If ψ is nondecreasing, then ψ�,q(ε) ≤ ψ	,q(ε) ≤ ψ	(ε) ≤ ψ	,q(ε/q). In
addition, if ψ(δ) = const for δ ≥ 1 (which will be the case in many situations),
then ψ

	,q
[0,1](ε) = ψ	,q(ε).

We conclude this section with a simple proposition describing useful properties
of functions of strictly concave type.

PROPOSITION 1. (i) If ψ is a function of strictly concave type with some ex-
ponent γ ∈ (0,1), then ∑

j : δj≥δ

ψ(δj )

δj

≤ cγ,q

ψ(δ)

δ
,

where cγ,q is a constant depending only on q, γ .
(ii) Under the same assumptions, the equation ψ(δ) = δ has unique solution δ̄.

Suppose δ̄ ≤ 1 and define δ̄0 := 1, δ̄k+1 := ψ(δ̄k)∧ 1. Then {δ̄k} is a nonincreasing
sequence converging to δ̄ and, for all k, δ̄k − δ̄ ≤ δ̄1−γ k

(1 − δ̄)γ
k
.
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2.4. Empirical and Rademacher complexities. The most natural complexity
penalties in risk minimization problems are based on expected sup-norms of the
empirical process over the whole class F or its subsets. However, such complex-
ities are distribution dependent, so it is hard to use them in model selection. The
idea to use Rademacher processes to construct data-dependent complexity penal-
ties in model selection problems of learning theory was suggested independently
by Koltchinskii [26] and Bartlett, Boucheron and Lugosi [4]. It is based on the
following simple observation: if one combines the symmetrization inequality with
concentration inequalities for empirical and Rademacher processes (in fact, with
simpler Hoeffding-type concentration inequalities based on the martingale differ-
ence approach), one can get the bound

P

{
‖Pn − P‖F ≥ 2‖Rn‖F + 3t√

n

}
≤ exp

{
−2t2

3

}
, t > 0.

Quite similarly, using instead the desymmetrization inequality one can get a simple
lower confidence bound on ‖Pn −P‖F in terms of ‖Rn‖F . Since the Rademacher
process does not involve the unknown distribution directly and can be computed
based only on the data, one can use ‖Rn‖F as a data-dependent measure of the
accuracy of approximation of the true distribution P by the empirical distribution
Pn uniformly over the class. Essentially, this justifies using ‖Rn‖F as a bootstrap-
type complexity penalty associated with the class F (although the Rademacher
bootstrap is not asymptotically correct). The main problem, however, is that such
global complexities as ‖Rn‖F do not allow one to recover the convergence rates
in risk minimization problems. Typically, ‖Rn‖F would be of the order O(n−1/2)

(this is the case, e.g., for VC-classes and, more generally, for Donsker classes of
functions). The convergence rates in many risk minimization problems are often
faster than this and they are related to the behavior of the continuity modulus of
the empirical process n1/2(Pn − P) rather than to the behavior of its sup-norm
(see [36]). Thus, relevant data-dependent complexities could be based on the con-
tinuity modulus of the Rademacher process that mimics the properties of the em-
pirical process. As we will see later, the complexities of this type are defined as
the 	-transform of the corresponding (expected) continuity modulus.

Let ρP :L2(P ) × L2(P ) �→ [0,+∞) be a function such that

ρ2
P (f, g) ≥ P(f − g)2 − (P (f − g))2, f, g ∈ L2(P ).

Typically ρP will be also a (pseudo)metric, for instance, ρ2
P (f, g) = P(f − g)2 or

ρ2
P (f, g) = P(f − g)2 − (P (f − g))2.

Given a function Y :F �→ R, define its continuity moduli (local and global) as

ωρP
(Y ;f ; δ) := sup

g∈F ,ρP (g,f )≤δ

|Y(g) − Y(f )| and

ωρP
(Y ; δ) := sup

f,g∈F ,ρP (f,g)≤δ

|Y(f ) − Y(g)|.
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Assume for simplicity that the infimum of Pf over F is attained at a function
f̄ ∈ F (we are assuming this in what follows whenever it is needed; otherwise, the
definitions can be easily modified). Let

θn(δ) := θn(F ; f̄ ; δ) := EωρP
(Pn − P ; f̄ ;√δ).

The empirical complexity, such as the ones previously used in [5, 14, 27, 36],
can be now defined as θ

	
n(ε) where ε is a numerical constant (often, ε = 1,

which corresponds to the fixed point equation, but sometimes the dependence
on ε is of importance). The function θn(δ) in this definition can be replaced by
supf ∈F EωρP

(Pn − P ;f ;√δ), or even by EωρP
(Pn − P ;√δ), without increas-

ing the complexity significantly (at least, in most of the relevant examples).
It will be shown in the next sections how to use these types of quantities to

provide upper bounds on the excess risk. Now, we utilize the Rademacher process
to construct data-dependent bounds on θ

	
n(ε). Suppose that ρ2

P (f, g) := P(f −g)2.
Define

ω̄n(δ) := EωρP
(Rn;

√
δ), ω̂n(δ) := ωρPn

(Rn;
√

δ),

ω̂n,r (δ) := EεωρPn
(Rn;

√
δ),

where Eε denotes the expectation only with respect to the Rademacher se-
quence {εi}.

The next lemma is pretty much akin to some statements in [5]. Koltchinskii and
Panchenko [27] proved some results in this direction in a more specialized setting
of function learning (in the zero error case). We give its proof in Section 9 for
completeness and also because a similar approach is used in the proofs of several
other results given below.

LEMMA 1. For q > 1, there exist constants C,c > 0 (depending only on q)
such that

∀ε > 0 θ	
n(ε) ≤ ω̄	

n(ε/2)

and for all ε ∈ (0,1]

P

{
ω̄	

n(ε) ≥ C

(
ω̂	

n(cε) + t

nε2

)}
≤ 2 logq

qn

t
e−t ,

P

{
ω̂	

n(ε) ≥ C

(
ω̄	

n(cε) + t

nε2

)}
≤ 2 logq

qn

t
e−t .

The same is true with ω̂
	
n replaced by ω̂

	
n,r .
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2.5. Examples. We give below several simple bounds on local Rademacher
complexities θ

	
n(ε), ε ∈ (0,1] that are of interest in applications and have been

discussed, for example, in [5, 6, 10, 36].

EXAMPLE 1 (Finite-dimensional classes). Suppose that F is a subset of
a finite-dimensional subspace L of L2(P ) with dim(L) = d . Then θn(δ) ≤
(δd/n)1/2 and θ

	
n(ε) ≤ d/(nε2). Indeed, if e1, . . . , ed is an orthonormal basis of L,

and g, ḡ ∈ L, g = ∑d
i=1 αiei , ḡ = ∑d

i=1 ᾱiei , then ‖g− ḡ‖2
L2(�) = ∑d

i=1(αi − ᾱi)
2.

Therefore, using the Cauchy–Schwarz inequality,

θn(δ) = E sup
g∈F ,‖g−ḡ‖L2(P )≤

√
δ

|(Pn − P)(g − ḡ)|

≤ E sup∑d
i=1(αi−ᾱi )

2≤δ

∣∣∣∣∣
d∑

i=1

(αi − ᾱi)(Pn − P)(ei)

∣∣∣∣∣

≤ √
δ

(
d∑

i=1

E(Pn − P)2(ei)

)1/2

≤
√

δd

n
,

and the second bound on θ
	
n(ε) is now immediate due to the properties of the

	-transform.

EXAMPLE 2 (Ellipsoids in L2). This is a simple generalization of the previous
example. Suppose that F := {T g :‖g‖L2(P ) ≤ 1}, where T :L2(P ) �→ L2(P ) is a
Hilbert–Schmidt operator with Hilbert–Schmidt norm ‖T ‖HS and such that its
operator norm ‖T ‖ ≤ 1. Thus, F is an ellipsoid in Hilbert space L2(P ). Suppose
also that Ker(T ) = {0}, and, for f1 = T g1, f2 = T g2, we define ρP (f1, f2) =
‖g1 −g2‖L2(P ). Then the same argument as in the previous example yields θn(δ) ≤
(δ‖T ‖2

HS/n)1/2 and θ
	
n(ε) ≤ ‖T ‖2

HS/(nε2).
Often it is natural to use Dudley’s entropy integral to bound the function θn(δ)

and then to derive a bound on θ
	
n(ε). Various notions of the entropy of the func-

tion class F can be used for this purpose (entropy with bracketing, random en-
tropy, uniform entropy, etc.). This technique is standard in the theory of empirical
processes and can be found, for example, in the book of van der Vaart and Well-
ner [47]. Here are some examples of the bounds based on this approach.

EXAMPLE 3 (VC-type classes). Suppose that F is a VC-type class, that is,
the condition (2.1) is satisfied (in particular, F might be a VC-subgraph class).
Assume for simplicity that F ≡ U = 1. Then it follows from (2.2) that

θn(δ) ≤ K

(√
V δ

n

√
log

1

δ
∨ V

n
log

1

δ

)
,

which leads to the bound θ
	
n(ε) ≤ CV/(nε2) log(nε2/V ).
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EXAMPLE 4 (Entropy conditions). In the case when the entropy of the class
(uniform, bracketing, etc.) is bounded by O(ε−2ρ) for some ρ ∈ (0,1), we typ-
ically have θ

	
n(ε) = O(n−1/(1+ρ)). For instance, if (2.3) holds, then it follows

from (2.4) (with F ≡ U = 1 for simplicity) that

θn(δ) ≤ K

(
Aρ

√
n
δ(1−ρ)/2 ∨ A2ρ/(ρ+1)

n1/(1+ρ)

)
.

Therefore, θ
	
n(ε) ≤ CA2ρ/(1+ρ)/(nε2)1/(1+ρ).

EXAMPLE 5 (Convex hulls). If F := conv(H) := {∑j λjhj :
∑

j |λj | ≤
1, hj ∈ H} is the symmetric convex hull of a given VC-type class H of mea-
surable functions from S into [0,1], then the condition of the previous example is

satisfied with ρ := V
V +2 . This yields θ

	
n(ε) ≤ (K(V )/(nε2))

1
2

2+V
1+V .

EXAMPLE 6 (Shattering numbers for classes of binary functions). Let F be a
class of binary functions, that is, functions f :S �→ {0,1}. Let

�F (X1, . . . ,Xn) := card
({(f (X1), . . . , f (Xn)) :f ∈ F })

be the shattering number of the class F on the sample (X1, . . . ,Xn). Using a
bound that can be found in [36], we get

θn(δ) ≤ K

[√
δ
E log�F (X1, . . . ,Xn)

n
+ E log�F (X1, . . . ,Xn)

n

]
,

which easily yields

θ	
n(ε) ≤ C

E log�F (X1, . . . ,Xn)

nε2 .

EXAMPLE 7 (Mendelson’s complexities for kernel machines). Let K be a
symmetric nonnegative definite kernel on S × S and let HK be the correspond-
ing reproducing kernel Hilbert space, that is, HK is the closure of the set of linear
combinations

∑
i αiK(xi, ·), xi ∈ S, αi ∈ R with respect to the norm ‖ · ‖K defined

as ∥∥∥∥∑
i

αiK(xi, ·)
∥∥∥∥

2

K

= ∑
i,j

αiαjK(xi, xj ).

Suppose that F := BK is the unit ball in HK . Such classes are frequently used
in learning theory for kernel machines. Let λi be the eigenvalues of the integral
operator generated by K in the space L2(P ). The following is a version of bounds
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of Mendelson [37]:

C1

(
n−1

∞∑
j=1

λj ∧ δ

)1/2

≤ ω̄n(δ) = E sup
P(f −g)2≤δ,f,g∈F

|Rn(f − g)|

≤ C2

(
n−1

∞∑
j=1

λj ∧ δ

)1/2

with some numerical constants C1,C2 > 0. Similarly, if λ
(n)
i , i = 1, . . . , n are the

eigenvalues of the matrix (n−1K(Xi,Xj ) : 1 ≤ i, j ≤ n), then Mendelson’s argu-
ment also gives

C1

(
n−1

n∑
j=1

λ
(n)
j ∧ δ

)1/2

≤ ω̂n,r (δ) = Eε sup
Pn(f −g)2≤δ,f,g∈F

|Rn(f − g)|

≤ C2

(
n−1

n∑
j=1

λ
(n)
j ∧ δ

)1/2

.

Denote the true and empirical Mendelson complexities by

γ̄n(δ) = γn(F ; δ) =
(
n−1

∞∑
j=1

λj ∧ δ

)1/2

and

γ̂n(δ) = γ̂n(F ; δ) =
(
n−1

n∑
j=1

λ
(n)
j ∧ δ

)1/2

.

Note that these functions are strictly concave, nondecreasing and are equal to 0
for δ = 0. Moreover, they are both square roots of concave functions and, hence,
they are of strictly concave type. The properties of the 	-transform imply that with
some constants c1, c2

γ̄ 	
n (c1ε) ≤ ω̄	

n(ε) ≤ γ̄ 	
n (c2ε) and γ̂ 	

n (c1ε) ≤ ω̂	
n,r (ε) ≤ γ̂ 	

n (c2ε).

Together with Lemma 1, this allows one to use the empirical Mendelson complex-
ity as an estimate of the true Mendelson complexity.

3. First excess risk bounds. The idea to express excess risk bounds in terms
of solutions of fixed point equations for the continuity modulus of empirical
or Rademacher processes and also to relate them to ratio-type inequalities has
been around for a while (see [5, 27, 36]). Comparing with the recent work of
Bartlett, Bousquet and Mendelson [5], our approach in this section relates the
excess risk bounds more directly to the diameter of the δ-minimal set of P (re-
call the definitions in Section 1) and also provides ratio-type inequalities for
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the empirical excess risk expressed in terms of the 	-transform of the function
Ūn(δ; t) involved in Talagrand’s inequality. The excess empirical risk is defined as
Ên(f ) := EPn(f ) and the δ-minimal set of Pn as F̂n(δ) := FPn(δ). Also, denote
F (s, r] := FP (s, r] := F (r) \ F (s).

Let f̂n := argminf ∈F Pnf be an empirical risk minimizer [i.e., a solution
of (1.2)]. For simplicity, we assume that it exists, although the results can be eas-
ily modified for approximate solutions of (1.2). Recall that D(δ) := DP (F ; δ) :=
supf,g∈F (δ) ρP (f, g) denotes the ρP -diameter of the δ-minimal set and also that

φn(δ) := φn(F ;P ; δ) := E sup
f,g∈F (δ)

|(Pn − P)(f − g)|.

Let

Un(δ; t) := Un,t (δ) := φn(δ) +
√

2
t

n

(
D2(δ) + 2φn(δ)

) + t

2n
.

Finally, let us fix q > 1 and define Vn and δn(t) as

Vn(δ; t) := Vn,t (δ) := U
�,q
n,t (δ) and δn(t) := U

	,q
n,t

(
1

2q

)
.

Whenever it is needed, we will write δn(F ; t) or δn(F ;P ; t) to emphasize the
dependence of these types of quantities on function class and on distribution. The
following result gives an upper bound on the excess risk of f̂n and also provides
uniform bounds on the ratios of the empirical excess risk of a function f ∈ F to
its true excess risk.

THEOREM 1. For all t > 0 and all δ ≥ δn(t)

P{E(f̂n) ≥ δ} ≤ logq

q

δ
e−t and

P

{
sup

f ∈F ,E(f )≥δ

∣∣∣∣ Ên(f )

E(f )
− 1

∣∣∣∣ ≥ qVn(δ; t)
}

≤ logq

q

δ
e−t .

Almost as in Section 2, define the expected continuity modulus

ωn(F ; δ) := E sup
ρP (f,g)≤δ,f,g∈F

|(Pn − P)(f − g)|.

Since φn(δ) ≤ ωn(F ;D(δ)), the behavior of φn can be determined by ωn and D. If
F is a P -Donsker class, then, by asymptotic equicontinuity of empirical processes,

lim
δ→0

lim sup
n

n1/2ωn(F ; δ) = 0.

This fact and the definition of δn(t) immediately imply that δn(t) = o(n−1/2) as
soon as F is P -Donsker and D(δ) → 0. The last condition is natural if the risk
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minimization problem (1.1) has a unique solution. Moreover, there exists a se-
quence tn → ∞ such that δn(tn) = o(n−1/2). Thus, by Theorem 1, we can con-
clude that EP (f̂n) = oP (n−1/2) whenever the empirical risk minimization occurs
over a P -Donsker class and D(δ) → 0. This observation shows that convergence
rates of the excess risk faster than n−1/2 (that came as a surprise in classification
problems in the nonzero error case several years ago) are, in fact, typical in general
empirical risk minimization over Donsker classes.

In the case when the function f �→ Pf has the unique minimum in F (i.e., the
minimal set F (0) consists precisely of one element), the quantity δn(t) often gives
the correct (in a minimax sense) convergence rate in risk minimization problems
(see Section 6.1). However, if F (0) consists of more than one function, then the
diameter D(δ) of the δ-minimal set becomes bounded away from 0 and as a re-

sult δn(t) cannot be smaller than c
√

t
n

(and the optimal convergence rate is often
better than this, e.g., in classification problems). In the next section, we study more
subtle geometric characteristics of the class F that might be used in such cases to
recover the correct convergence rates.

An important consequence of Theorem 1 is the following lemma that shows that
δ-minimal sets can be estimated by empirical δ-minimal sets provided that δ is not
too small.

LEMMA 2. For all t > 0, there exists an event of probability at least

1 − logq
q2

δn(t)
e−t such that on this event ∀δ ≥ δn(t) :F (δ) ⊂ F̂n(3δ/2) and

F̂n(δ) ⊂ F (2δ).

Note that, as follows from the definition, δn(t) ≥ t
n

, so the probabilities in The-
orem 1 are, in fact, upper bounded by logq

n
t

exp{−t} (which depends neither on
the class F nor on P ). The logarithmic factor in front of the exponent, most often,
does not spoil the bound since in typical applications δn(t) is upper bounded by
δn + t

n
, where δn is larger than log logn

n
. Adding log logn to t is enough to eliminate

the influence of the logarithm. However, if δn = O(n−1), the logarithmic factor
would create a problem. It is good to know that it can be eliminated under ex-
tra conditions on φn(δ) and D(δ). More precisely, assume that φn(δ) ≤ φ̌n(δ) and
D(δ) ≤ Ď(δ), δ > 0, where φ̌n is a function of strictly concave type with some
exponent γ ∈ (0,1) and Ď is a concave-type function (see the definitions in Sec-
tion 2.3). Define

Ǔn(δ; t) := Ǔn,t (δ) := Ǩ

(
φ̌n(δ) + Ď(δ)

√
t

n
+ t

n

)

with some numerical constant Ǩ . Then Ǔn(·; t) is a concave-type function. In this
case, it is natural to define

V̌n(δ; t) := Ǔ
�
n,t (δ) = Ǔn(δ; t)

δ
and δ̌n(t) := Ǔ

	
n,t

(
1

q

)
.
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THEOREM 2. There exists a constant Ǩ such that for all t > 0 and for all
δ ≥ δ̌n(t),

P{E(f̂n) ≥ δ} ≤ e−t and P

{
sup

f ∈F ,E(f )≥δ

∣∣∣∣ Ên(f )

E(f )
− 1

∣∣∣∣ ≥ qV̌n(δ; t)
}

≤ e−t .

In what follows we do not use this refinement except in several cases when it is
really needed.

Now we outline a way to define the empirical version of δn(t). To this end, it
will be convenient to choose ρ2

P (f, g) := P(f − g)2. Note that

Un(δ; t) ≤ Ūn(δ; t) := Ūn,t (δ) := K̄

(
φn(δ) + D(δ)

√
t

n
+ t

n

)
,

where K̄ = 2. Hence, if we define δ̄n(t) := Ū
	,q
n,t (1/2q3), then it follows from the

definitions that δn(t) ≤ δ̄n(t).
Define the empirical versions of the functions D and φn as

D̂n(δ) := sup
f,g∈F̂n(δ)

ρPn(f, g) and φ̂n(δ) := sup
f,g∈F̂n(δ)

|Rn(f − g)|.

Let

Ûn(δ; t) := Ûn,t (δ) := K̂

(
φ̂n(ĉδ) + D̂n(ĉδ)

√
t

n
+ t

n

)
,

Ũn(δ; t) := Ũn,t (δ) := K̃

(
φn(c̃δ) + D(c̃δ)

√
t

n
+ t

n

)
,

where 2 ≤ K̂ ≤ K̃ , ĉ, c̃ ≥ 1 are numerical constants. It happens that Ûn is a
data-dependent function that upper bounds Ūn with a high probability. Ũn is
a distribution-dependent function that provides an upper bound on Ûn (again,
with a high probability). We now construct V̄n, V̂n, Ṽn from Ūn, Ûn, Ũn the same
way as we have constructed Vn from Un and set δ̂n(t) := Û

	,q
n,t (1/2q3), δ̃n(t) :=

Ũ
	,q
n,t (1/2q3).
We will prove the following theorem.

THEOREM 3. For all t > 0

P{δ̄n(t) ≤ δ̂n(t) ≤ δ̃n(t)} ≥ 1 −
(

logq

q2

δn(t)
+ 4 logq

q

δn(t)

)
exp{−t}.

In many situations, δn(t) and δ̃n(t) are asymptotically within a constant one
from another as n → ∞. The above theorem suggests that δ̂n(t) can be used as an
estimate (up to a constant) of δn(t) and this allows one to use this quantity as a
data-dependent penalty in a model selection setting.
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4. Toward sharper inequalities for excess risk. Suppose that the risk mini-
mization problem (1.1) has multiple solutions. This is a possibility, for instance, in
risk minimization with nonconvex loss functions. Also, in a model selection frame-
work (see Section 5) one deals with a family of risk minimization problems over
classes Fk ⊂ F that approximate problem (1.1). It is possible then that the global
minimum of risk over the class F is attained at a number of different competing
classes (models) Fk . Anyway, the multiple minima case has to be understood as
a part of the comprehensive theory of empirical risk minimization. In such cases,
the diameter D(δ) = DP (F ; δ) of the δ-minimal set does not tend to 0 as δ → 0,
and it is easy to see that the quantity δn(t) defined in the previous section is going
to be at least as large as O(n−1/2). As a result, the bounds we have proved so far
are not necessarily optimal. The question is whether it is possible to replace the di-
ameter D(δ) by a more sophisticated geometric characteristic that will allow us to
construct tighter bounds on the excess risk. We explore in this section one possible
approach to this problem. Namely, we define the quantity

r̆(σ ; δ) := sup
f ∈F (δ)

inf
g∈F (σ )

ρP (f, g), 0 < σ ≤ δ,

that characterizes the accuracy of approximation of the functions from the
δ-minimal sets by the functions from the σ -minimal set for two different lev-
els δ and σ . If F (0) �= ∅ (i.e., the minimum of Pf is attained on F ), r̆ is also well
defined for σ = 0, δ ≥ σ .

The function r̆(σ, δ) is nondecreasing in δ, nonincreasing in σ and r̆(δ, δ) = 0.
If we extend r̆ to σ > δ by setting r̆(σ ; δ) := r̆(δ;σ), then, using the triangle
inequality for ρP , it is easy to check that r̆ is a pseudometric. Clearly, r̆(σ, δ) ≤
D(δ). Moreover, it is not hard to imagine the situations when r̆(0; δ) is significantly
smaller than D(δ) [say, r̆(0; δ) → 0 as δ → 0 whereas D(δ) is bounded away
from 0]. Suppose, for instance, that F := ⋃

j Fj , where Fj are classes of functions
such that ∀k, j : minFj

Pf = minFk
Pf (we assume that the minima are attained).

Then it is easy to check that r̆(0; δ) ≤ supj DP (Fj ; δ). Of course, one can come
up with examples of this sort in which r̆(0, δ) → 0 as δ → 0, but D(δ) is bounded
away from 0.

It is not completely unnatural to expect that the function r̆ satisfies the condition
of the type

r̆(0; c1δ) ≤ c2r̆(0; δ), δ ∈ (0,1](4.1)

for some constants c1, c2 < 1. Since r̆(0; δ) ≤ r̆(0; c1δ) + r̆(c1δ, δ), we get for all
σ ≤ c1δ

r̆(σ ; δ) ≤ r̆(0; δ) ≤ (1 − c2)
−1r̆(σ ; δ),

which means that the values of r̆(σ ; δ) are within a constant one from another for
all σ that are not too close to δ (σ ≤ c1δ).
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Let

ψ̆n(σ, δ) := lim
ε→0

E sup
g∈F (σ )

sup
f ∈F (δ),ρP (f,g)≤r̆(σ,δ)+ε

|(Pn − P)(f − g)|

and

Ŭn(σ ; δ; t) := ψ̆n(σ, δ) +
√

2
t

n

(
r̆2(σ, δ) + 2ψ̆n(σ, δ)

) + t

2n
.

Almost as before, we will need

V̆n(σ ; δ; t) := sup
j : δj≥δ

Ŭn(σ ; δj ; t) + σ

δj

.

Finally, we define δ̆n(σ ; t) := inf{δ : V̆n(σ ; δ; t) ≤ 1/2q}. Clearly, δ̆n(σ ; t) is the
	, q-transform of the function δ �→ Ŭn(σ ; δ; t) + σ computed at the point 1/2q .
We obtain the following version of Theorem 1.

THEOREM 4. For all σ ∈ (0,1], all t > 0 and all δ ≥ δ̆n(σ ; t),
P{E(f̂n) ≥ δ} ≤ logq

q

δ
exp{−t}

and

P

{
∃f ∈ F :E(f ) ≥ δ and

Ên(f )

E(f )
≤ 1 − qV̆n(σ ; δ; t)

}
≤ logq

q

δ
exp{−t}.

Note that, unlike the inequalities of Theorem 1, we have here only a one-sided

bound for the ratio Ên(f )
E(f )

. As a result, it is easy to show that, for all σ ∈ (0,1]
and all t > 0, there exists an event of probability at least 1 − logq

q2

δ̆n(σ ;t) e
−t such

that on this event ∀δ ≥ δ̆n(σ, t) the inclusion F̂n(δ) ⊂ F (2δ) holds, but not the
other inclusion of Lemma 2. The following proposition shows that this difficulty
is unavoidable and the set F̂n(δ) does not include even F (0) for the values of δ

of the order δ̆n(σ ; t), or even larger. For this reason, the estimation of the quantity
r̆(σ ; δ) based on the data is a much harder problem than the estimation of the
diameter DP (F ; δ). The discussion of this problem goes beyond the scope of this
paper.

PROPOSITION 2. Let S := {0,1}N+1 and P be the uniform distribution on
{0,1}N+1. Let F := {fj : 1 ≤ j ≤ N +1}, where fj (x) = xj , x = (x1, . . . , xN+1) ∈
{0,1}N+1. Then the following statements hold:

(i) EP (f̂ ) = 0;
(ii) with some C > 0, δ̆n(σ ; t) ≤ Ct/n;

(iii) with some c > 0, δn(t) ≥ c((logN/n)1/2 + (t/n)1/2);
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(iv) for any ε > 0 there exists N0 such that, for N0 ≤ N ≤ √
n and for δ =

0.25(logN/n)1/2, the inclusion F (0) ⊂ F̂n(δ) does not hold with probability at
least 1 − ε.

5. Model selection. Consider a family of function classes {Fk} such that ∀k,
Fk ⊂ F . In applications, the classes {Fk} are used to find an approximate solution
of the risk minimization problem on the bigger class F of functions of interest.
Let f̂k := f̂n,k := argminf ∈Fk

Pnf be the corresponding empirical risk minimiz-
ers (we assume for simplicity that they exist). The goal is to construct, based on
{f̂n,k}, a function f̂ ∈ F for which the excess risk EP (F ; f̂ ) is small. To for-
mulate the problem more precisely, suppose that there exists an index k(P ) such
that infFk(P )

Pf = infF Pf , that is, a risk minimizer over the large class F can be

found in a smaller class Fk(P ). Let δ̃n(k) be an upper bound on the excess risk (with
respect to the class Fk) of f̂n,k that provides the optimal solution (in a minimax
sense), or just a desirable accuracy of the solution, of the empirical risk minimiza-
tion problem on the class Fk . If there were an oracle who could tell a statistician
that k(P ) = k is the right index of the class to be used, then the risk minimization
problem could be solved with the accuracy δ̃n(k). The model selection problem
deals with constructing a data-dependent index k̂ = k̂(X1, . . . ,Xn) of the model
such that the excess risk of f̂ := f̂

n,k̂
is within constant from δ̃n(k(P )) with high

probability. More generally, in the case when the global minimum over F is not
attained precisely in any of the classes Fk , one can still hope to show that with a
high probability

EP (F ; f̂ ) ≤ C inf
k

[
inf
Fk

Pf − Pf∗ + π̃n(k)
]
,

where f∗ := argminf ∈F Pf (its existence will be assumed in what follows), π̃n(k)

are “ideal” distribution-dependent complexity penalties associated with risk mini-
mization over Fk and C is a constant (preferably, C = 1 or is at least close to 1).
The inequalities that express such a property are often referred to as oracle in-
equalities.

Among the most popular approaches to model selection are penalization meth-
ods, in which k̂ is defined as a solution of the minimization problem

k̂ := argmin
k≥1

{Pnf̂k + π̂(k)},(5.1)

where π̂(k) is a complexity penalty (generally, data dependent) associated with
the class (the model) Fk . In other words, instead of minimizing the empirical risk
on the whole class F we now minimize a penalized empirical risk. We discuss
below two penalization methods (one in the spirit of [34], another one more in
the spirit of [36]) with the penalties based on data-dependent bounds on excess
risk developed the in previous sections. Penalization methods have proved to be
very useful in a variety of statistical problems, including nonparametric regres-
sion. However, there are substantial difficulties in implementing model selection
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techniques based on penalization in nonparametric classification problems. To our
best knowledge, this approach has failed so far to produce adaptive classification
rules with fast Tsybakov-type convergence rates (an exception is the recent result
in [45] that achieves this goal, but only in a very special and somewhat artificial
framework). As an alternative, we discuss a general model selection technique
based on comparing the minima of empirical risk for different models with certain
data-dependent thresholds (defined in terms of excess risk confidence bounds of
the previous sections) that allows one to recover Tsybakov’s convergence rates in
very general risk minimization problems, including classification (note that Tsy-
bakov [44] also used a version of the comparison method in a specialized classifi-
cation framework).

To provide some motivation for the approaches discussed below, note that
ideally one would want to find k̂ by minimizing over k the global excess risk
EP (F ; f̂n,k) of the solutions. This is impossible without an oracle’s help, so one
has to develop some data-dependent upper confidence bounds on the excess risk.
The following trivial representation (that plays the role of “bias-variance decom-
position”)

EP (F ; f̂n,k) = inf
Fk

Pf − Pf∗ + EP (Fk; f̂n,k)

shows that part of the problem is to come up with data-dependent upper bounds
on the local excess risk EP (Fk; f̂n,k), which is precisely what we considered
in the previous sections. Another part is to bound infFk

Pf − Pf∗ in terms of
infFk

Pnf − Pnf∗, which is what we do in Lemma 4 below. Combining these two
bounds provides an upper bound on the global excess risk that can be now min-
imized with respect to k (Pnf∗ can be dropped since it does not depend on k).
Another approach is to use the representation

EP (F ; f̂n,k) − EP (F ; f̂n,l) = inf
Fk

Pf − inf
Fl

Pf + EP (Fk; f̂n,k) − EP (Fl; f̂n,l)

and data-dependent bounds on local excess risk to develop a model selection tech-
nique based on comparison of the difference between infFk

Pnf and infFl
Pnf

with certain data-dependent thresholds (which is done in Section 5.3 below).
For G ⊂ F , the distribution-dependent complexity δ̄n(G; t) is defined as in Sec-

tion 3 [δ̄n(t) = Ū
	
n,t (1/2q3)]. Let tk ≥ 0 and let δ̂n(Fk; tk) and δ̃n(Fk; tk) be, re-

spectively, data-dependent and distribution-dependent complexities such that

∀k P{δ̄n(Fk; tk) ≤ δ̂n(Fk; tk) ≤ δ̃n(Fk; tk)} ≥ 1 − pk.(5.2)

In particular, one can use the version of these complexities constructed in Sec-

tion 3, in which case pk := logq
q2n
tk

e−tk + 4 logq
qn
tk

e−tk , by Theorem 3. We use
this notation throughout the section.
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5.1. Penalization method: version 1. Define the following penalties:

π̂(k) := K̂

[
δ̂n(Fk, tk) +

√
tk

n
inf
Fk

Pnf + tk

n

]
and

π̃(k) := K̃

[
δ̃n(Fk, tk) +

√
tk

n
inf
Fk

Pf + tk

n

]
,

where K̂, K̃ are sufficiently large numerical constants. Here π̃(k) represents a “de-
sirable accuracy” of risk minimization on the class Fk . The index estimate k̂ is
defined according to the standard penalization method (5.1) and we set f̂ := f̂

n,k̂
.

THEOREM 5. There exists a choice of K̂, K̃ such that for any sequence {tk} of
positive numbers,

P

{
P f̂ ≥ inf

k≥1
{Pnf̂n,k + π̂(k)}

}
≤

∞∑
k=1

(
pk + logq

q3n

tk
e−tk

)

and

P

{
EP (F ; f̂ ) ≥ inf

k≥1

{
inf

f ∈Fk

Pf − inf
f ∈F

Pf + π̃(k)
}}

≤
∞∑

k=1

(
pk + logq

q3n

tk
e−tk

)
.

The first bound of the theorem is an upper confidence bound on the risk of
f̂ in terms of minimal penalized empirical risk. The second bound is an oracle
inequality showing that the excess risk of the function f̂ is nearly optimal (up to
complexity penalty terms).

The proof relies on the following lemma, which might be of independent inter-
est.

LEMMA 3. Given a class F of measurable functions from S into [0,1], sup-
pose that, for some t > 0 and p ∈ (0,1), P{δ̄n(F ; t) ≤ δ̂n(F ; t)} ≥ 1 − p. Then
the following inequalities hold:

P

{∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≥ 2δ̄n(F ; t) +

√
2t

n
inf
F

Pf + t

n

}
≤ logq

q3

δ̄n(t)
e−t

and

P

{∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≥ 4δ̂n(F ; t) + 2

√
2t

n
inf
F

Pnf + 8t

n

}
≤ p + logq

q3

δ̄n(t)
e−t .

5.2. Penalization method: version 2. For this version of the penalization
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method, the following assumption is crucial:

∀f ∈ F Pf − Pf∗ ≥ ϕ
(√

VarP (f − f∗)
)
,(5.3)

where ϕ is a convex nondecreasing function on [0,+∞) with ϕ(0) = 0. We also
assume that ϕ(uv) ≤ ϕ(u)ϕ(v), u, v ≥ 0. The function ϕ is supposed to be known
and is involved in the definition of the penalties. This is the case, for instance, in
least squares regression where one can use ϕ(u) = u2/2 (see Section 8). However,
in classification problems ϕ is typically unknown, but it has a significant impact
on the convergence rates. Adapting to the unknown function ϕ is a challenge for
model selection in the classification setting.

Denote ϕ∗(v) := supu≥0[uv − ϕ(u)], the conjugate of ϕ. We have uv ≤ ϕ(u) +
ϕ∗(v), u, v ≥ 0. For a fixed ε > 0, define the penalties as

π̂(k) := A(ε)δ̂n(Fk; tk) + ϕ∗
(√

2tk

εn

)
+ tk

n

and

π̃(k) := A(ε)

1 + ϕ(
√

ε)
δ̃n(Fk; tk) + 2

1 + ϕ(
√

ε)
ϕ∗

(√
2tk

εn

)
+ 2

(1 + ϕ(
√

ε))

tk

n
,

where A(ε) := 5
2 − ϕ(

√
ε). As before, k̂ is defined by (5.1) and f̂ := f̂

n,k̂
.

THEOREM 6. For any sequence {tk} of positive numbers,

P

{
EP (F ; f̂ ) ≥ C(ε) inf

k≥1

{
inf

f ∈Fk

Pf − inf
f ∈F

Pf + π̃(k)
}}

≤
∞∑

k=1

(
pk + 2 logq

q2n

tk
e−tk

)
,

where C(ε) := 1+ϕ(
√

ε)

1−ϕ(
√

ε)
.

The following lemma is used in the proof.

LEMMA 4. Let G ⊂ F . For all t > 0, there exists an event E with probability

at least 1 − logq
q3n
t

e−t such that on this event

inf
G

Pnf − Pnf∗ ≤ (
1 + ϕ(

√
ε)

)(
inf
G

Pf − Pf∗
)

+ ϕ∗
(√

2t

εn

)
+ t

n
(5.4)

and

inf
G

Pf − Pf∗ ≤ (
1 − ϕ(

√
ε)

)−1

×
[

inf
G

Pnf − Pnf∗ + 3

2
δ̄n(G; t) + ϕ∗

(√
2t

εn

)
+ t

n

]
.

(5.5)
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In addition, if there exists δ̄n(G; ε; t) such that

δ̄n(G; t) ≤ ε
(
inf
G

Pf − Pf∗
)

+ δ̄n(G; ε; t),
then

inf
G

Pf − Pf∗ ≤
(

1 − ϕ(
√

ε) − 3

2
ε

)−1

×
[

inf
G

Pnf − Pnf∗ + 3

2
δ̄n(G; ε; t) + ϕ∗

(√
2t

εn

)
+ t

n

]
.

(5.6)

REMARKS. 1. It is easily seen from the proofs that the same inequality holds
for arbitrary penalties π̂(k) and π̃(k) such that with probability at least 1 − pk

π̂(k) ≥ A(ε)δ̄n(Fk; tk) + ϕ∗
(√

2tk

εn

)
+ tk

n

and

π̃(k) ≥ π̂(k)

1 + ϕ(
√

ε)
+ ϕ∗(√2tk

εn

)
1 + ϕ(

√
ε)

+ tk

(1 + ϕ(
√

ε))n
.

2. Suppose that the condition

δ̄n(Fk; t) ≤ ε
(
inf
Fk

Pf − Pf∗
)

+ δ̄n(Fk; ε; t)

holds, as is the case in Lemma 5 below. Suppose also that there exist δ̂n(Fk; ε; tk),
δ̃n(Fk; ε; tk) such that

∀k P{δ̄n(Fk; ε; tk) ≤ δ̂n(Fk; ε; tk) ≤ δ̃n(Fk; ε; tk)} ≥ 1 − pk.

Then, using the bound (5.6) of Lemma 4, one can easily modify Theorem 6, replac-
ing in the definition of the penalties the quantities δ̄n(Fk; tk), δ̂n(Fk; tk), δ̃n(Fk; tk),
by δ̄n(Fk; ε; tk), δ̂n(Fk; ε; tk), δ̃n(Fk; ε; tk) and also defining

A(ε) := 3
2 + (

1 − ϕ(
√

ε) − 3
2ε

)/
(1 + ε) and

C(ε) := (
1 + ϕ(

√
ε)

)
(1 + ε)/

(
1 − ϕ(

√
ε) − 3

2ε
)
.

3. Note also that if δ̄n(Fk; tk) is replaced by δ̌n(Fk; tk), defined as in Theorem 2,
the result of Theorem 6 is also true, and, moreover, the logarithmic factor in the
oracle inequality can be dropped: the expression in the right-hand side of the bound
of Theorem 6 becomes

∑∞
k=1(pk + 4e−tk ).

4. The result also holds if condition (5.3) holds for each k and for all f ∈ Fk with
its own function ϕk (but with the same function f∗) and the sequence of functions
{ϕk} is nonincreasing: ∀k ϕk ≥ ϕk+1. In this case, one should use the function ϕk

in the definitions of π̂(k), π̃(k). C(ε) is defined as before with ϕ = ϕ1.



LOCAL RADEMACHER COMPLEXITIES 2617

5.3. Comparison method. The version of the comparison method presented
here relies on the assumption F1 ⊂ F2 ⊂ · · ·. Denote

δ̄n(k) := max
1≤j≤k

δ̄n(Fj ; tj ), δ̂n(k) := max
1≤j≤k

δ̂n(Fj ; tj ),

δ̃n(k) := max
1≤j≤k

δ̃n(Fj ; tj )

and define with some numerical constants c̄, ĉ, c̃ and with inf being ∞ if the set of
k’s is empty:

k∗ := k∗(P ) := inf
{
k :∀l > k inf

Fk

Pf = inf
Fl

Pf
}
,

k̄ := k̄(P ) := inf
{
k :∀l > k inf

Fk

Pf − inf
Fl

Pf ≤ c̄δ̄n(l)
}
,

k̂ := inf
{
k :∀l > k inf

Fk

Pnf − inf
Fl

Pnf ≤ ĉδ̂n(l)
}
,

k̃ := k̃(P ) := inf
{
k :∀l > k inf

Fk

Pf − inf
Fl

Pf ≤ c̃δ̃n(l)
}
.

Finally, let f̂ := f̂
n,k̂

(if k̂ = ∞, f̂ can be defined in an arbitrary way, say, f̂ =
f̂n,1).

THEOREM 7. There exists a choice of constants c̄, ĉ, c̃ such that with some
constant C > 0 for any sequence {tk}, tk > 0

P

{
P f̂ − inf

k
inf
Fk

Pf ≥ inf
k≥k̄(P )

[
inf
Fk

Pf − inf
k

inf
Fk

Pf + Cδ̃n(k)
]}

≤
∞∑

k=1

(
pk + logq

q2n

tk
e−tk

)
.

In particular, if k∗(P ) < ∞, then

P

{
P f̂ − inf

k
inf
Fk

Pf ≥ Cδ̃n(k
∗(P ))

}
≤

∞∑
k=1

(
pk + logq

q2n

tk
e−tk

)
.

REMARKS. 1. If k̄(P ) = ∞, assume that the infimum over k ≥ k̄(P ) is equal
to 1, which makes the first bound trivial. If k̄(P ) < ∞, it follows from the proof
that so is k̂ (with an exception of the event whose probability is controlled in the
theorem).

2. If δ̄n(Fk; tk) is replaced by δ̌n(Fk; tk) (as defined in Theorem 2), then the
logarithmic factor in the oracle inequality can be dropped and the expression in
the right-hand side of the bounds becomes

∑∞
k=1(pk + 2e−tk ).
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6. Connection to several recent results. In this section, we discuss the con-
nection of our main results to some other recent work on model selection in risk
minimization problems, including [44, 34, 36].

6.1. Tsybakov. Our first example is motivated by the recent work of Tsy-
bakov [44] (see also the earlier paper by Mammen and Tsybakov [35]) on fast
convergence rates in classification. Let ρ2

P (f, g) := P(f − g)2. Define the ex-
pected continuity modulus ωn(F ; δ) as in Section 3. For ρ ∈ (0,1), κ ≥ 1 and
C > 0, let Pρ,κ,C(F ) denote the class of probability measures P such that the
following two conditions hold:

(i) ωn(F ; δ) ≤ Cδ1−ρn−1/2;
(ii) DP (F ; δ) ≤ Cδ

1
2κ .

THEOREM 8. Under conditions (i) and (ii), supP∈Pρ,κ,C(F ) EEP (F ; f̂n) =
O(n

− κ
2κ+ρ−1 ).

This result generalizes Theorem 1 in [44]. Namely, using the standard Dud-
ley entropy integral bound on the expected continuity modulus of the empirical
process under the condition that the L2(P )-entropy with bracketing of the class F
grows as O(ε−2ρ) (see, e.g., [47], Theorem 2.14.2) yields condition (i). If

f∗ := f∗,P := argmin
f ∈F

Pf and Pf − Pf∗ ≥ c0ρ
2κ
P (f, f∗),(6.1)

then condition (ii) is also satisfied. The conditions above, being translated to
the case of classes of sets (which was the case considered by Tsybakov whose
paper dealt with the binary classification problem), are precisely the assump-
tions (A1) and (A2) in Tsybakov [44] and the rate of convergence (n

− κ
2κ+ρ−1 ) is

the one obtained by Tsybakov. Of course, condition (i) will be also satisfied un-
der many other assumptions common in empirical processes theory; for example,
it can be expressed in terms of random entropies of the class. Also, the diameter
DP (F ; δ) in condition (ii) can be replaced by a more subtle geometric character-
istic r̆(0; δ) = r̆P (F ;0, δ) defined in Section 4. In other words, condition (6.1) can
be replaced by

∀f ∈ F ∃f∗ ∈ argmin
f ∈F

Pf = F (0): Pf − Pf∗ ≥ c0ρ
2κ
P (f, f∗),(6.2)

including the case when the risk Pf has multiple minima on F . Theorem 8 holds
in this case with only minor changes in the proof.

Next we turn to model selection.

THEOREM 9. Consider a family {(Fj ,Pj )}1≤j≤N , such that Fj ⊂ F ,
Pj := Pρj ,κj ,C(Fj ) and for all P ∈ Pj we have f∗,P ∈ Fj . Moreover, assume
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that F1 ⊂ F2 ⊂ · · · ⊂ FN , that for all P ∈ Pj , k∗(P ) = j (with k∗(P ) defined in
Section 5.3) and that the numbers βj := κj/(2κj + ρj − 1) satisfy the condition
β1 ≥ β2 ≥ · · · ≥ βN . Define k̂ and f̂ as in Theorem 7 (with tk := logN + 3 logn,
k = 1, . . . , n). Then

max
1≤j≤N

sup
P∈Pj

nβj E(P f̂ − Pf∗) = O(1) as n → ∞.

Note that the result is also true if N = Nn, where Nn grows not too fast, say,
so that for all δ > 0, logNn = o(nδ) as n → ∞. This should be compared with
Theorem 3 in [44] where another method of constructing an adaptive empirical
risk minimizer was suggested in a more special classification framework and it
was proved that the optimal convergence rate is attained at this estimate up to a
logarithmic factor. Our Theorem 9 extends these types of results to a more general
framework of abstract empirical risk minimization and refines them by removing
the logarithmic factor.

6.2. Lugosi and Wegkamp. Next we turn to the results of a recent paper of
Lugosi and Wegkamp [34]. Suppose that F is a class of measurable functions
on S taking values in {0,1} (binary functions). As in Section 2, Example 6,
�F (X1, . . . ,Xn) denotes the shattering number of the class F on the sample
(X1, . . . ,Xn).

Given a sequence {Fk}, Fk ⊂ F , of classes of binary functions, define the penal-
ties

π̂(k) := K̂

[√
inf

f ∈Fk

Pnf
log�Fk (X1, . . . ,Xn) + tk

n

+ log�Fk (X1, . . . ,Xn) + tk

n

]

and

π̃(k) := K̃

[√
inf

f ∈Fk

Pf
E log�Fk (X1, . . . ,Xn) + tk

n

+ E log�Fk (X1, . . . ,Xn) + tk

n

]
,

and let k̂ solve the penalized empirical risk minimization problem (5.1), f̂ := f̂
n,k̂

.

THEOREM 10. There exists a choice of K̂, K̃ such that for all tk > 0,

P

{
EP (F ; f̂ ) ≥ inf

k≥1

{
inf

f ∈Fk

Pf − inf
f ∈F

Pf + π̃(k)
}}

≤ 2
∞∑

k=1

logq

q4n

tk
e−tk .



2620 V. KOLTCHINSKII

The development of penalization techniques that lead to these types of oracle
inequalities was one of the major goals of the paper of Lugosi and Wegkamp [34].
Slightly sharper results obtained in this paper (involving the shattering numbers or
Rademacher complexities of the classes F̂k(δk) for suitably chosen δk instead of
the global shattering numbers) can also be recovered from Theorem 7 relatively
easily (using Lemma 2).

6.3. Massart. We consider now some recent results of Massart [36] that we
formulate in a somewhat different form. Suppose that F is a class of measurable
functions from S into [0,1] and f∗ :S �→ [0,1] is a measurable function such that
with some numerical constant D > 0

D(Pf − Pf∗) ≥ ρ2
P (f,f∗) ≥ P(f − f∗)2 − (P (f − f∗))2,(6.3)

where ρP is a (pseudo)metric. We will assume, for simplicity, that the infimum of
Pf over F is attained at a function f̄ ∈ F (the result can be easily modified if this
is not the case). Recall the definition of θn(δ) in Section 2. The following lemma
will be crucial.

LEMMA 5. There exists a large enough numerical constant K > 0 such that
for all ε ∈ (0,1] and for all t > 0

δ̄n(F ; t) ≤ ε
(
inf
F

Pf − Pf∗
)

+ 1

D
θ	
n

(
ε

KD

)
+ KD

ε

t

n
.

It immediately follows from the lemma and Theorem 1 that

P

{
P f̂ − Pf∗ ≥ (1 + ε)

(
inf
F

Pf − Pf∗
)

+ 1

D
θ	
n

(
ε

KD

)
+ KD

ε

t

n

}
≤ logq

qn

t
e−t

(and, due to Theorem 2, a version without the logarithmic factor holds with θn

replaced by an upper bound θ̌n of strictly concave type).
Now suppose that {Fj } is a sequence of function classes such that condition

(6.3) holds for each class Fj with some constant Dj ≥ 1 (and with the same f∗).
Assume also that the sequence {Dj } is nondecreasing. We denote δ̄n(ε; j) :=
D−1

j θ
	
n(ε/KDj) and suppose that for any j there exist a data-dependent quantity

δ̂n(ε; j) and a distribution-dependent quantity δ̃n(ε; j) such that ∀j , P{δ̄n(ε; j) ≤
δ̂n(ε; j) ≤ δ̃n(ε; j)} ≥ 1 − pj . Now we define the penalties

π̂(ε; j) := 3δ̂n(ε; j) + K̂Dj tj

εn
and π̃(ε; j) := 3δ̃n(ε; j) + K̃Dj tj

εn
,

with some numerical constants K̂, K̃ . Define k̂ according to (5.1), f̂ := f̂
k̂
.

The next result follows from Lemma 5 and Theorem 6.
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THEOREM 11. There exist numerical constants K̂, K̃ such that for any se-
quence {tk} of positive numbers,

P

{
P f̂ − Pf∗ ≥ 1 + ε

1 − ε
inf
k≥1

{
inf

f ∈Fk

Pf − Pf∗ + π̃(ε;k)
}}

≤
∞∑

k=1

(
pk + 2 logq

q2n

tk
e−tk

)
.

If, in addition, ∀j , ∀δ > 0 : θn(Fj ; δ) ≤ θ̌n(Fj ; δ), where θ̌n(Fj ; ·) = θ̌n,Fj
(·) is

a function of strictly concave type, then one can replace δ̄n(ε; j) by δ̌n(ε; j) :=
D−1

j θ̌
	
n,Fj

(ε/KDj), the right-hand side of the bound being in this case
∑∞

k=1(pk +
4e−tk ).

This result has a number of applications. In a sense, most of the important com-
plexity penalties used in learning theory can be derived as its consequence. For
example (pointed out already in [36]), if Fk are classes of binary functions and

π̂(k) := 6 log�Fk (X1, . . . ,Xn) + Ktk

n
,

one can use Theorem 11, the bounds of Example 6, Section 2 and the deviation
inequalities for shattering numbers [12] to get very easily the oracle inequality

P

{
P f̂ − Pf∗ ≥ C inf

k≥1

{
inf

f ∈Fk

Pf − Pf∗ + E log�Fk (X1, . . . ,Xn) + tk

n

}}

≤ 5
∞∑

k=1

e−tk ,

with some constant C > 1. One can also combine Theorem 11 with Lemma 1
to obtain oracle inequalities for the penalization method based on localized
Rademacher complexities (defined in terms of the continuity modulus of the
Rademacher process).

7. Loss functions and empirical risk minimization. Let T be a measur-
able space with σ -algebra T , and let (X,Y ) be a random couple in S × T with
joint distribution P . The distribution of X will be denoted �. Consider a sample
(X1, Y1), . . . , (Xn,Yn) of independent copies of (X,Y ) and let Pn be the empiri-
cal distribution in S × T based on this sample, while �n will denote the empirical
distribution in S based on the sample (X1, . . . ,Xn). Let � :T × R �→ R+ be a loss
function. Given a class G of measurable functions from S into R, consider the risk
minimization problem

E�(Y, g(X)) → min, g ∈ G.
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If we denote (� • g)(x, y) := �(y;g(x)), then we can rewrite this problem as
P(� • g) → min, g ∈ G, or

Pf → min, f ∈ F := � • G := {� • g :g ∈ G},
so we are dealing with the problem (1.1) for a class F of special structure (the
“loss class”) and the results of previous sections can be specialized in this case.

Let µx denote a version of the conditional distribution of Y given X = x. Then
the following representation of the risk holds under some mild regularity assump-
tions:

P(� • g) =
∫
S

∫
T

�(y;g(x))µx(dy)�(dx).

Given a probability measure µ on (T ,T ), let uµ ∈ argminu∈R̄

∫
T �(y;u)µ(dy). If

g∗(x) := uµx = argmin
u∈R̄

∫
T

�(y;u)µx(dy),

then we have (assuming that the function g∗ is well defined and measurable) ∀g,
P(� • g) ≥ P(� • g∗), so g∗ is a global minimal point of P(� • g).

The corresponding empirical risk minimization problem is

Pn(� • g) = n−1
n∑

j=1

�(Yj ;g(Xj )) → min, g ∈ G,

and ĝn will denote its solution (we assume its existence for simplicity). The follow-
ing assumption on the loss function � is very useful in the analysis of this problem.
Suppose there exists a function D(u,µ) ≥ 0 such that for any measure µ = µx ,
x ∈ S ∫

T

(
�(y,u) − �(y,uµ)

)2
µ(dy) ≤ D(u,µ)

∫
T

(
�(y,u) − �(y,uµ)

)
µ(dy).(7.1)

In the case when the functions in the class G take their values in the interval
[−M/2,M/2] and D(u,µx), |u| ≤ M/2, x ∈ S is uniformly bounded by a con-
stant D > 0, it immediately follows from (7.1) [by plugging in u = g(x), µ = µx

and integrating with respect to �(dx)] that for all g ∈ G

P(� • g − � • g∗)2 ≤ DP(� • g − � • g∗).(7.2)

As a result, if g∗ ∈ G, then the L2(P )-diameter of the δ-minimal set of F ,
D(F ; δ) ≤ 2(Dδ)1/2. Moreover, even if g∗ /∈ G, the condition (6.3) still holds for
the loss class F with f∗ = � • g∗, opening the way for Massart’s penalization
method in these types of problems. The idea to control variance in terms of ex-
pectation has been extensively used in [36] (and even in earlier work of Birgé and
Massart) and in the learning theory literature [5–8, 10, 37].

The analysis of risk minimization problems [in particular, proving the existence
of g∗, checking condition (7.1), etc.] becomes much simpler under the convexity
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of the loss, that is, when for all y ∈ T , �(y, ·) is a convex function. The problems
of this type are called convex risk minimization. Both least squares regression and
L1-regression as well as some of the methods of large margin classification (such
as boosting) can be viewed as versions of convex risk minimization.

Assuming again that the functions in G take values in [−M/2,M/2], we will
introduce some even stricter assumptions on the loss function �. Namely, assume
that � satisfies the Lipschitz condition with some L > 0:

∀y ∈ T , ∀u, v ∈ [−M/2,M/2] ∣∣�(y,u) − �(y, v)
∣∣ ≤ L|u − v|,(7.3)

and also that the following assumption on the convexity modulus of � holds with
some � > 0:

∀y ∈ T , ∀u, v ∈ [−M/2,M/2] �(y,u) + �(y, v)

2
− �

(
y; u + v

2

)
≥ �|u − v|2.

(7.4)

Note that if g∗ is bounded by M/2, conditions (7.3) and (7.4) imply (7.1) with
D(u,µ) ≤ L2

2�
. To see this, it is enough to use (7.4) with v = uµ, µ = µx and

integrate it with respect to µ to get for L(u) := ∫
T �(y,u)µ(dy) (the minimum

of L is at uµ)

L(u) − L(uµ)

2
= L(u) + L(uµ)

2
− L(uµ)

≥ L(u) + L(uµ)

2
− L

(
u + uµ

2

)
≥ �|u − uµ|2,

and then to use the Lipschitz condition to get∫
T

|�(y,u) − �(y,uµ)|2µ(dy) ≤ L2|u − uµ|2.
This nice and simple trick, based on strict convexity, has been used repeatedly in
the theory (see, e.g., [6]). We will use it again in the proof of Lemma 6. Sometimes
a more general version of condition (7.4) is needed. It can be formulated as

∀y ∈ T , ∀u, v ∈ [−M/2,M/2] �(y,u) + �(y, v)

2
− �

(
y; u + v

2

)
≥ ψ(|u − v|r ),

(7.5)

where ψ is a convex nondecreasing function and r ∈ (0,2]. The following lemma
will allow us to bound the local complexities of the loss class F = � • G in terms
of local complexities of the class G, which is often needed in applications. Let

W̄n(δ; t) = W̄n,t (δ) := W̄n(G; δ; t)

:= C

[
Lθn(G; ḡ;M2−rψ−1(δ/2)) + L

√
M2−rψ−1(δ/2)(t + 1)

n
+ t

n

]
,

where C > 0 is a numerical constant and θn is defined in Section 2.4.
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LEMMA 6. Suppose that G is a convex class of functions taking values in
[−M/2,M/2]. Assume that the minimum of P(� • g) over G is attained at ḡ ∈ G.
Under the conditions (7.3) and (7.5), there is a choice of numerical constants C

and κW such that ∀δ, t , Ūn(F ; δ; t) ≤ W̄n(G; δ; t) and δ̄n(F ; t) ≤ δ̄W
n (G; t) :=

W̄
	
n,t (κW ).

We are especially interested in the case when G := M conv(H), where H is a
base class of functions from S into [−1/2,1/2] (see Example 5, Section 2.5). In
this case, there are a number of powerful functional gradient descent-type algo-
rithms (boosting algorithms) that allow one to implement convex empirical risk
minimization over such classes. Assume that condition (2.1) holds for the class H
with some V > 0. Define

πn(M,L,�; t) := C

[
�MV/(V +1)

(
L

�
∨ 1

)(V +2)/(V +1)

n− 1
2

V +2
V +1 + L2

�

t + 1

n

]

with some numerical constant C. The next result is essentially a slightly general-
ized version of a theorem due to Bartlett, Jordan and McAuliffe [6]. We will derive
it as a corollary of our Theorem 2, using several nice observations of Bartlett, Jor-
dan and McAuliffe [6] (contained in the proof of Lemma 6).

THEOREM 12. Under conditions (7.3) and (7.4), δ̄n(F ; t) ≤ πn(M,L,�; t)
and as a result

P

{
P(� • ĝn) ≥ min

g∈G
P(� • g) + πn(M,L,�; t)

}
≤ e−t .

Because of the generality of the methods, the results can be easily extended to
other examples of convex risk minimization problems. For instance, let K be a
symmetric nonnegative definite kernel on S × S such that |K(x,x)| ≤ 1 for all
x ∈ S. As in Example 7, Section 2.5, HK is the reproducing kernel Hilbert space
and BK is its unit ball. Let G := GM := M

2 BK . This example is of importance in
the theory of kernel machines. Clearly, GM is a convex class of functions and,
by elementary properties of reproducing kernel spaces, ∀g ∈ GM,x ∈ S : |g(x)| ≤
M/2. We will use now slightly rescaled Mendelson complexities of Example 8. It
is easy to check (using Mendelson inequalities of Example 8, Lemma 6 and the
argument used at the beginning of the proof of Theorem 12) that

δ̄n(F ; t) ≤ δ̄W
n (GM; t) ≤ C

[
M2�γ̄ 	

n

(
M�

L

)
+ L2

�

t + 1

n

]
=: π̄n(M,L,�, t).

With this new definition, the assertion of Theorem 12 still holds, and, more-
over, based on the discussion in Example 7, one can replace in the bound the
distribution-dependent Mendelson complexity by its data-dependent version.

An alternative to the approach of Lemma 6, exploited, for instance, in the paper
of Blanchard, Lugosi and Vayatis [10], is based on a straightforward comparison of
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L2(Pn)-distances and the corresponding entropies for the classes G and F = � • G
(which is easy under the Lipschitz assumption on �) and then bounding localized
complexities of F using inequality (2.4). It is not hard to combine the bounds of
this type with model selection results of Section 5 to obtain various oracle inequal-
ities for model selection in convex risk minimization problems. In particular, in
the case of model selection for a sequence of function classes Gk := Mk conv(H),
where H is a VC-class, one would easily obtain a slight generalization of a recent
result of Blanchard, Lugosi and Vayatis [10] on convergence rates of a regularized
boosting algorithm.

8. Comments on regression and classification. General least squares regres-
sion is among statistical problems for which the penalization techniques have been
very successful so far. In addition to already mentioned papers by Birgé and Mas-
sart [8], Barron, Birgé and Massart [3] and Massart [36], we refer the reader to the
book by van de Geer [46], the book by Györfi, Kohler, Krzyzak and Walk [22] and
papers by Baraud [2] and Kohler [25]. Our goal here is only to outline the connec-
tion of regression problems to a more general theory considered in the previous
sections.

To simplify the matter, we consider only the case of least squares regression
with bounded noise, that is, T = [0,1], �(y,u) := (y − u)2. Thus, the regression
problem is a convex risk minimization problem and it is well known and straight-
forward that in this case g∗ is the regression function: g∗(x) := E(Y |X = x). Given
a class G of functions g :S �→ [0,1], a solution ĝn of the empirical risk minimiza-
tion problem (over the class G) is the well-known least squares estimate of the
regression function. The first problem of interest is to provide upper bounds on
‖ĝn − g∗‖L2(�).

To relate this to the general framework of convex risk minimization, note that in
this case uµ := argminu

∫ 1
0 (y −u)2µ(dy) = ∫ 1

0 yµ(dy) and by very simple algebra(
�(y,u) − �(y,uµ)

)2 = (
(y − u)2 − (y − uµ)2)2

= (u − uµ)2(2y − u − uµ)2 ≤ 4(u − uµ)2

and ∫ 1

0

(
�(y,u) − �(y,uµ)

)
µ(dy) =

∫ 1

0
[(y − u)2 − (y − uµ)2]µ(dy)

= (u − uµ)2.

(8.1)

As a result, condition (7.1) holds with D(u,µ) ≡ 4. Note also that the identity (8.1)
also implies (by integration) the formula P(� • g) − P(� • g∗) = ‖g − g∗‖2 that
immediately reduces the study of ‖ĝn − g∗‖2

L2(�) to excess risk bounds.
These observations allow one to simplify the arguments used in the previ-

ous section and to obtain the following result, using Theorem 1 and Lemma 5,
more precisely; see the bound right after this lemma. In the case when the class
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G is convex, there is a way to improve the bound of the lemma. The key ob-
servation is that under the convexity assumption for all g ∈ G, ‖g − ḡ‖2

L2(�) ≤
‖g − g∗‖2

L2(�) − ‖ḡ − g∗‖2
L2(�) (see, e.g., [1], Lemma 20.9), which is a sim-

plification and a specialization of the convexity inequalities used in the proof of
Lemma 6.

THEOREM 13. Let θn(δ) := θn(G; δ) := θn,G(δ). There exists a constant K

such that for all ε ∈ (0,1]
P

{
‖ĝn − g∗‖2

L2(�) ≥ (1 + ε) inf
h∈G

‖h − g∗‖2
L2(�) + K

(
θ	
n

(
ε

K

)
+ t + 1

εn

)}

≤ logq

qn

t
e−t .

If G is convex, then

P

{
‖ĝn − g∗‖2 ≥ inf

g∈G
‖g − g∗‖2 + K

(
θ	
n

(
1

K

)
+ t + 1

n

)}
≤ logq

qn

t
e−t .

Moreover, if θn can be upper bounded by a function θ̌n which is of strictly concave
type, then one can replace θn by θ̌n and drop the logarithmic factor in the bound.

The significance of the above inequalities is related to the fact that in many
particular cases of the regression problem they allow one to recover asymptotically
correct convergence rates. This follows from computations of local Rademacher
complexities in particular examples, given in Section 2.5.

In the model selection framework, it is assumed that there exists a sequence Gk

of classes of functions (models) available for least squares regression estimation.
Let ĝn,k denote a least squares estimate in the class Gk . Given data-dependent
complexity penalties π̂n(k) associated with classes Gk , we define the penalized
least squares estimator as

k̂ := argmin

[
n−1

n∑
j=1

(
Yj − ĝn,k(Xj )

)2 + π̂(k)

]
, ĝn := ĝ

n,k̂
.

It is very natural to use penalization techniques of Theorems 6 and 11 to design
complexity penalties and to establish oracle inequalities for the corresponding pe-
nalized least squares estimators.

EXAMPLE 1 (Dimension-based penalization). Suppose that for each k, Gk is
a subset of a finite-dimensional subspace of L2(�) of dimension dk and define
π̂(k) := K̂ dk+tk+1

n
where K̂ is some numerical constant (see Example 1 of Sec-

tion 2.5). The following oracle inequality holds with some constant C > 0:

P

{
‖ĝn − g∗‖2

L2(�) ≥ C inf
k≥1

{
inf

g∈Gk

‖g − g∗‖2
L2(�) + dk + tk + 1

n

}}
≤ 4

∞∑
k=1

e−tk .
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EXAMPLE 2 (Kernel selection with Mendelson’s complexities). In this ex-
ample, one is given a sequence {Kj } of symmetric nonnegative definite kernels
on S × S, Gj being the unit ball in the reproducing kernel Hilbert space HKj

(see Example 7 of Section 2.5). For each j , one can define empirical Mendelson
complexity and true Mendelson complexity of the class Gj as in Section 2.5. We
use the notation γ̄n,j (·) = γ̄n(Gj ; ·) and γ̂n,j (·) = γ̂n(Gj ; ·) and define π̂ (j) :=
K̂(γ̂

	
n,j (1) + tj+1

n
), where K̂ is a numerical constant. Then the following oracle

inequality holds:

P

{
‖ĝn − g∗‖2

L2(�) ≥ C inf
k≥1

{
inf

g∈Gk

‖g − g∗‖2
L2(�) +

(
γ̄

	
n,k(1) + tk + 1

n

)}}

≤ 4
∞∑

k=1

logq

q2n

tk
e−tk .

EXAMPLE 3 (Penalization based on Rademacher complexities). One can also
use localized Rademacher complexities, defined in Section 2.4 (see Lemma 1),
as general penalties for model selection in regression problems. Namely, given a
sequence of classes Gk , we set

π̂(k) := K̂

(
ω̂

	
n,k

(
1

K̂

)
+ tk + 1

n

)
and π̃(k) := K̃

(
ω̄

	
n,k

(
1

K̃

)
+ tk + 1

n

)

with some (large enough) numerical constants K̂, K̃ . Here ω̄n,k(·) = ω̄n(Gk; ·) and
ω̂n,k(·) = ω̂n(Gk; ·). Then we have (for a penalized least squares estimator ĝn) with
some constant C

P

{
‖ĝn − g∗‖2

L2(�) ≥ C inf
k≥1

{
inf

g∈Gk

‖g − g∗‖2
L2(�) + π̃(k)

}}
≤ 4

∞∑
k=1

logq

q2n

tk
e−tk .

We turn now to binary classification problems. In this case, T := {−1,1} and
the loss function is chosen as �(y,u) := I (y �= u). The variable Y is interpreted
as an unobservable label associated with an observable instance X. Binary mea-
surable functions g :S �→ {−1,1} are called classifiers. The goal of classification
is to find a classifier that minimizes the generalization error (the probability of
misclassification)

P{Y �= g(X)} = P {(x, y) :y �= g(x)} = P(� • g),

so the classification problem becomes a version of a risk minimization prob-
lem with a binary loss function. Its solution always exists and is given by the
following classifier (Bayes classifier): g∗(x) := g∗,P (x) = I (η(x) ≥ 0), where
η(x) := E(Y |X = x) is the regression function (see [15]). However, the distrib-
ution P of (X,Y ) and the regression function η are unknown and the Bayes classi-
fier is to be estimated based on the training data (X1, Y1), . . . , (Xn,Yn) consisting
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of n i.i.d. copies of (X,Y ). This is done by minimizing the so-called training error

n−1
n∑

j=1

I
(
Yj �= g(Xj )

) = Pn{(x, y) :y �= g(x)} = Pn(� • g)

over a suitable class of G of binary classifiers, which is equivalent to empirical risk
minimization over the loss class F = � • G, and all the theory developed in the
previous sections applies to classification problems.

It is straightforward to check that condition (7.1) holds for binary loss � with
D(u,µx) = 1

|η(x)| (moreover, the inequality in this case becomes an equality). If
for some C > 0, α > 0

∀t > 0: �{x : 0 < |η(x)| ≤ t} ≤ Ctα,

then it easily follows that

P(� • g) − P(� • g∗) ≥ c0ρ
2κ
P (� • g, � • g∗),(8.2)

where ρP (� • g1, � • g2) := �1/2{x :g1(x) �= g2(x)} = �1/2(g1 − g2)
2, and κ =

1+α
α

(see [44]). To get κ = 1, one can assume that for some t0 > 0, �{x : 0 <

|η(x)| ≤ t0} = 0. Roughly, the assumptions of this type describe the degree of
separation of two classes in classification problem, or the level of the “noise” in
the labels (“low noise assumption”). Now one can use Theorem 8 of Section 6.1
to get the convergence rates in classification obtained first by Mammen and Tsy-
bakov [35] and Tsybakov [44]. Namely, if P denotes a class of probability distrib-
utions on S ×{−1,1} and G is a class of binary classifiers such that, for all P ∈ P ,
g∗,P ∈ G, condition (8.2) holds (with the same κ and c0) and the L2(�) bracketing
entropy of the class G is of the order O(ε−2ρ) as ε → 0 uniformly in P ∈ P for
some ρ ∈ (0,1), then for a classifier ĝn that minimizes the training error over G
we have

sup
P∈P

[
P {(x, y) :y �= ĝn(x)} − P {(x, y) :y �= g∗,P (x)}] = O(n

− κ
2κ+ρ−1 ).

This was the result originally proved by Mammen and Tsybakov [35]. They also
showed the convergence rate to be optimal in a minimax sense [35, 44]. As a
consequence of Theorem 9, it is also easy to get an improvement of the model se-
lection result of Tsybakov [44] (see Theorem 3 there) in the sense that our version
of adaptation gives the precise convergence rates (Tsybakov’s bounds involve an
extra logarithmic factor).

Unfortunately, minimization of the training error over huge classes of binary
functions (with entropy growing as ε−ρ) is most often a computationally in-
tractable problem. In so-called large margin classification algorithms (such as
boosting and many algorithms for kernel machines) this difficulty is avoided by
replacing the binary loss by a smooth (often, convex) loss function that domi-
nates the binary loss, and using a version of functional gradient descent to min-
imize the corresponding empirical risk. In this setting, it is common to use real-
valued functions g as classifiers. In the end, sign(g(x)) is computed to predict
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the label of an instance x. Let φ be a nonnegative convex function such that
φ(u) ≥ I (u ≤ 0). We set �(y,u) := φ(yu) and look at a convex risk minimiza-
tion problem P(� • g) → min and its empirical version Pn(� • g) → min. Re-
cently, Bartlett, Jordan and McAuliffe [6] and Blanchard, Lugosi and Vayatis [10]
obtained reasonably good convergence rates for these types of algorithms. Their
analysis is, essentially, a special version of somewhat more general analysis of the
convex risk minimization problems given in the previous sections.

9. Main Proofs.

PROOF OF PROPOSITION 1. For the first part, note that

∑
j : δj≥δ

ψ(δj )

δj

= ∑
j : δj≥δ

ψ(δj )

δ
γ
j δ

1−γ
j

≤ ψ(δ)

δγ

∑
j : δj≥δ

1

δ
1−γ
j

= ψ(δ)

δ

∑
j : δj≥δ

(
δ

δj

)1−γ

≤ ψ(δ)

δ

∑
j≥0

q−j (1−γ ) = cγ,q

ψ(δ)

δ
.

To prove the second part, note that by induction δ̄k is nonincreasing and takes
values in [δ̄,1]. Denote dk := δ̄k − δ̄. We have

dk+1 = δ̄k+1 − δ̄ ≤ ψ(δ̄k) − ψ(δ̄) = ψ(δ̄k)

δ̄
γ
k

δ̄
γ
k − ψ(δ̄)

δ̄γ
δ̄γ ,

and since ψ is of strictly concave type with exponent γ and δ̄k ≥ δ̄, we get

dk+1 ≤ ψ(δ̄)

δ̄γ
(δ̄

γ
k − δ̄γ ) ≤ ψ(δ̄)

δ̄
δ̄1−γ (δ̄k − δ̄)γ = δ̄1−γ d

γ
k .

The result now follows by induction. �

PROOF OF LEMMA 1. The first bound trivially follows from the symmetriza-
tion inequality θn(δ) ≤ 2ω̄n(δ) and the definition of the 	-transform. Let δj := q−j .
In what follows δ = δi for some i. To prove the second bound, define

E(δ) :=
{
ω̄n(δ) ≤ sup

P(f −g)2≤δ

|Rn(f − g)| +
√

2
t

n

(
δ + 2ω̄n(δ)

) + 8t

3n

}

∩
{

sup
P(f −g)2≤δ

|(Pn − P)((f − g)2)| ≤ E sup
P(f −g)2≤δ

|(Pn − P)((f − g)2)|

+
√√√√2

t

n

(
δ + 2E sup

P(f −g)2≤δ

|(Pn − P)((f − g)2)|
)

+ t

3n

}
.
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It follows from Talagrand’s concentration inequalities that P(E(δ)) ≥ 1 − 2e−t .
By symmetrization and contraction inequalities,

E sup
P(f −g)2≤δ

|(Pn − P)((f − g)2)| ≤ 2E sup
P(f −g)2≤δ

|Rn((f − g)2)| ≤ 8ω̄n(δ).

Therefore, on the event E(δ),

P(f −g)2 ≤ δ �⇒ Pn(f −g)2 ≤ δ +8ω̄n(δ)+2

√
t

2n
δ +2

√
t

n
8ω̄n(δ)+ t

3n
,

and using the inequality 2ab ≤ a2 + b2 the right-hand side can be further
bounded by 2δ + 16ω̄n(δ) + 2t

n
. Assuming that δ ≥ q−1ω̄

	,q
n (ε) ≥ t

n
, and using

the monotonicity of ω̄n, we get

ω̄n(δ) ≤ δ sup
δj≥q−1ω̄

	,q
n (ε)

ω̄n(δj )

δj

≤ δ sup
δj≥q−1ω̄

	,q
n (ε)

ω̄n(qδj )

δj

≤ qδ sup
δj≥ω̄

	,q
n (ε)

ω̄n(δj )

δj

≤ qεδ.

Therefore, for ε ∈ (0,1] and δ ≥ q−1ω̄
	,q
n (ε) ≥ t/n, on the event E(δ)

P (f − g)2 ≤ δ �⇒ Pn(f − g)2 ≤ 2δ + 16ω̄n(δ) + 2t

n
≤ (4 + 16q)δ.

Also, on the same event and under the same conditions,

ω̄n(δ) ≤ sup
P(f −g)2≤δ

|Rn(f − g)| +
√

2
t

n

(
δ + 2ω̄n(δ)

) + 8t

3n

≤ sup
Pn(f −g)2≤(4+16q)δ

|Rn(f − g)| +
√

2
t

n
δ + 2

√
ω̄n(δ)

2

2t

n
+ 8t

3n

≤ sup
Pn(f −g)2≤(4+16q)δ

|Rn(f − g)| +
√

2
t

n
δ + 8t

3n
+ 2t

n
+ ω̄n(δ)

2
,

where we again have used the inequality 2ab ≤ a2 + b2. Therefore, on the event
E(δ)

ω̄n(δ) ≤ 2 sup
Pn(f −g)2≤(4+16q)δ

|Rn(f − g)| + 2
√

2

√
t

n
δ + 10t

n

= 2ω̂n((4 + 16q)δ) + 2
√

2

√
t

n
δ + 10t

n
=: ψ(δ)

as soon as δ ≥ q−1ω̄
	,q
n (ε) ≥ t

n
.
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Note that if q−1ω̄
	,q
n (ε) < t

n
, then the second bound of the lemma is trivially

satisfied. Otherwise, denote

E := ⋂
j : δj≥q−1ω̄

	,q
n (ε)≥ t

n

E(δj ).

Clearly, P(E) ≥ 1 − 2 logq
qn
t

e−t , and, on the event E, we have ω̄n(δj ) ≤ ψ(δj )

for all δj ≥ q−1ω̄
	,q
n (ε), which implies that (see Property 2′ in Section 2.3)

ω̄
	,q
n (ε) ≤ ψ	,q(ε). Using the properties of this 	-transform, this yields by a simple

computation that

ω̄	
n(ε) ≤ C

(
ω̂	

n(cε) + t

nε2

)

with some constants C,c depending only on q .
To prove the third bound, we introduce the event F := ⋂

δj≥ t
n
F (δj ), where

F(δ) :=
{

sup
P(f −g)2≤cqδ

|Rn(f − g)| ≤ ω̄n(cqδ) +
√

2
t

n

(
cqδ + 2ω̄n(cqδ)

) + t

3n

}

∩
{

sup
P(f −g)2≤δ

|(Pn − P)((f − g)2)| ≤ E sup
P(f −g)2≤δ

|(Pn − P)((f − g)2)|

+
√√√√2

t

n

(
δ + 2E sup

P(f −g)2≤δ

|(Pn − P)((f − g)2)|
)

+ t

3n

}

with a constant cq depending only on q to be chosen later on. It follows from
Talagrand’s concentration inequalities that P(F ) ≥ 1 − 2 logq

qn
t

e−t . Let δ = δi

for some i and δi ≥ t
n

. On the event F the following implication holds:

Pn(f − g)2 ≤ δ and P(f − g)2 ∈ (δj+1, δj ]
�⇒ δj

q
= δj+1 ≤ P(f − g)2 ≤ δ + sup

P(f −g)2≤δj

|(Pn − P)((f − g)2)|

≤ δ + 16ω̄n(δj ) + δj

q2 + (4/3 + q2/2)t

n
,

where we have used the same computation as in the previous part of the proof with
minor modifications. If δj ≥ ω̄

	,q
n (ε), then ω̄n(δj ) ≤ εδj , and we can get

δj (q
−1 − q−2 − 16ε) ≤ δ + (4/3 + q2/2)t

n
.

If ε < 1
32(q−1 − q−2) (note that it is enough to prove the bound under this re-

striction and the general case will follow by changing the constants), then we get
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that

δj ≤ 2(q−1 − q−2)−1
(
δ + (4/3 + q2/2)t

n

)
.

What we have proved so far can be formulated as follows: on the event F , for
δ = δi ≥ t

n
,

Pn(f − g)2 ≤ δ

�⇒ P(f − g)2 ≤ 2(q−1 − q−2)−1
(
δ + (4/3 + q2/2)t

n

)
∨ ω̄	,q

n (ε),

which means that for δ ≥ ω̄
	,q
n (ε), Pn(f −g)2 ≤ δ ⇒ P(f −g)2 ≤ cqδ with a con-

stant cq > 1 depending only on q . This allows us to conclude that on the event F

for all δ = δi ≥ ω̄
	,q
n (ε) ∨ t

n

ω̂n(δ) ≤ sup
P(f −g)2≤cqδ

|Rn(f − g)| ≤ ω̄n(cqδ) +
√

2
t

n

(
cqδ + 2ω̄n(cqδ)

) + t

3n

≤ 2ω̄n(cqδ) +
√

2cqδ
t

n
+ 2t

n
=: ψ(δ).

Next we use the basic properties of the 	-transform to conclude the proof. Since
ψ(δ) ≥ ω̄n(δ) ∨ t

n
, we get for all ε ∈ (0,1], ψ	,q(ε) ≥ ω̄

	,q
n (ε) ∨ t

n
. Thus, for all

δ ≥ ψ	,q(ε), ω̂n(δ) ≤ ψ(δ), implying that ω̂
	,q
n (ε) ≤ ψ	,q(ε). Now it is easy to

conclude that on the event F

ω̂	
n(ε) ≤ C

(
ω̄	

n(cε) + t

nε2

)

with some constants C,c depending only on q .
The proof for ω

	
n,r is similar. �

PROOF OF THEOREM 1. Let

En,j (t) :=
{

sup
f,g∈F (δj )

|(Pn − P)(f − g)| ≤ Un(δj ; t)
}
.

By Talagrand’s concentration inequality, P((En,j (t))
c) ≤ e−t . Let δj ≥ δ. Since

on the event En,j (t),

f̂n ∈ F (δj+1, δj ]
�⇒ ∀ε ∈ (0, δj+1) ∀g ∈ F (ε)

δj+1 < E(f̂n) ≤ P f̂n − Pg + ε

≤ Pnf̂n − Png + (P − Pn)(f̂n − g) + ε
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≤ Ên(f̂n) + sup
f,g∈F (δj )

|(Pn − P)(f − g)| + ε

≤ Un(δj ; t) + ε ≤ Vn(δ; t)δj + ε

�⇒ Vn(δ; t) ≥ 1

q
>

1

2q

�⇒ δ ≤ U
	,q
n,t

(
1

2q

)
= δn(t),

we can conclude that, for δj ≥ δ ≥ δn(t), {f̂n ∈ F (δj+1, δj ]} ⊂ (En,j (t))
c. There-

fore, for δ ≥ δn(t), on the event En(t) := ⋂
j : δj≥δ En,j (t) we have E(f̂n) ≤ δ,

implying that

P{E(f̂n) > δ} ≤ ∑
j : δj≥δ

P((En,j (t))
c) ≤ logq

q

δ
e−t .

Now, on the event En(t), we have f̂n ∈ F (δ) and for all j such that δj ≥ δ

f ∈ F (δj+1, δj ]
�⇒ ∀ε ∈ (0, δj ) ∀g ∈ F (ε)

E(f ) ≤ Pf − Pg + ε ≤ Pnf − Png + (P − Pn)(f − g) + ε

≤ Ên(f ) + Un(δj ; t) + ε ≤ Ên(f ) + Vn(δ; t)δj + ε

≤ Ên(f ) + qVn(δ; t)E(f ) + ε,

which means that on this event E(f ) ≥ δ ⇒ Ên(f ) ≥ (1 − qVn(δ; t))E(f ). Simi-
larly, we have on En(t)

f ∈ F (δj+1, δj ]
�⇒ Ên(f ) = Pnf − Pnf̂n ≤ Pf − P f̂n + (Pn − P)(f − f̂n)

≤ E(f ) + Un(δj ; t) ≤ E(f ) + Vn(δ; t)δj

≤ E(f ) + qVn(δ; t)E(f ) = (
1 + qVn(δ; t))E(f ),

so that E(f ) > δ ⇒ Ên(f ) ≤ (1+qVn(δ; t))E(f ). Since P((En(t))
c) ≤ logq

q
δ
e−t ,

the result follows. �

PROOF OF LEMMA 2. Consider the event

E :=
{
∀f ∈ F with E(f ) ≥ δn(t) :

1

2
≤ Ên(f )

E(f )
≤ 3

2

}
.

It follows from Theorem 1 and the definition of δn(t) that P(E) ≥ 1− logq
q

δn(t)
e−t .

Consider also

F :=
{

sup
f,g∈F (δn(t))

|(Pn − P)(f − g)| ≤ Un(δn(t); t)
}
.



2634 V. KOLTCHINSKII

It follows from the concentration inequality that P(F ) ≥ 1 − e−t . Therefore,

P(E ∩ F) ≥ 1 − logq

q2

δn(t)
e−t .

On the event E, we have

∀f ∈ F : E(f ) ≤ 2Ên(f ) ∨ δn(t),(9.1)

which implies that for all δ ≥ δn(t), F̂n(δ) ⊂ F (2δ). On the other hand, on the
same event E, ∀f ∈ F :E(f ) ≥ δn(t) ⇒ Ên(f ) ≤ 3

2E(f ).
On the event F ,

E(f ) ≤ δn(t) �⇒ Ên(f ) ≤ E(f ) + sup
f,g∈F (δn(t))

|(Pn − P)(f − g)|

≤ E(f ) + Un(δn(t); t)
≤ δn(t) + qVn(δn(t); t)δn(t) ≤ 3

2
δn(t).

Thus, on the event E ∩ F

∀f ∈ F : Ên(f ) ≤ 3

2

(
E(f ) ∨ δn(t)

)
,(9.2)

which implies that ∀δ ≥ δn(t) :F (δ) ⊂ F̂n(3δ/2). �

PROOF OF THEOREM 2. The proof is similar to the proof of Theorem 1,
but now our goal is to avoid using the concentration inequality many times (for
each δj ) since this leads to a logarithmic factor. The trick was previously used
in [36] and in the Ph.D. dissertation of Bousquet (see also [5]). Define

Gδ := ⋃
j : δj≥δ

δ

δj

{f − g :f,g ∈ F (δj )}.

Then the functions in Gδ are bounded by 1 and

σP (Gδ) ≤ sup
j : δj≥δ

δ

δj

sup
f,g∈F (δj )

σP (f − g) ≤ δ sup
j : δj≥δ

Ď(δj )

δj

≤ Ď(δ),

since Ď is of concave type. Also, since φ̌n is of strictly concave type, Proposition 1
gives

E‖Pn − P‖Gδ = E sup
j : δj≥δ

δ

δj

sup
f,g∈F (δj )

|(Pn − P)(f − g)|

≤ ∑
j : δj≥δ

δ

δj

E sup
f,g∈F (δj )

|(Pn − P)(f − g)|

≤ δ
∑

j : δj≥δ

φ̌n(δj )

δj

≤ cγ,q φ̌n(δ).
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Now Talagrand’s concentration inequality implies that there exists an event E of
probability P(E) ≥ 1 − e−t such that on this event ‖Pn − P‖Gδ ≤ Ǔn(δ; t) (the
constant Ǩ in the definition of Ǔn(δ; t) should be chosen properly). Then on the
event E

∀j with δj ≥ δ: sup
f,g∈F (δj )

|(Pn − P)(f − g)| ≤ δj

δ
Ǔn(δ; t) ≤ V̌n(δ; t)δj .

The rest repeats the proof of Theorem 1. �

REMARK. There is also a way to prove a bound on EP (f̂ ) based on the it-
erative localization method described in the Introduction and in the second state-
ment of Proposition 1. Namely, one can assume that both φ̌n and Ď are of strictly
concave type with exponent γ ∈ (0,1). As a result, the function Ǔn,t is also of
strictly concave type with the same exponent. If now δ̌n(t) denotes its fixed point,
then by Proposition 1(ii), the number N of iterations needed to achieve the bound
δ̄N ≤ 2δ̌n(t) is smaller than log log2((1 − δ̌n(t))/δ̌n(t))/ log(1/γ ) + 1 in the case
when δ̌n(t) < 1/2 and N = 1 otherwise. Thus, the argument described in the In-
troduction immediately shows that P{EP (f̂ ) ≥ δ̌n(t)} ≤ Ne−t . This approach was
first used in [27] (and later also in some of the arguments of [5]).

PROOF OF THEOREM 3. The proof consists of several steps. Throughout, H

will denote the event introduced in Lemma 2. According to this lemma, we have

P(H) ≥ 1 − logq
q2

δn(t)
e−t .

Step 1. Bounding the Rademacher complexity. Using Talagrand’s concentration
inequality, we get (for δ > 0 and t > 0) on an event F = F(δ) with probability at
least 1 − e−t

E sup
f,g∈F (δ)

|Rn(f − g)| ≤ sup
f,g∈F (δ)

|Rn(f − g)|

+
√√√√2t

n

(
D2(δ) + 2E sup

f,g∈F (δ)

|Rn(f − g)|
)

+ 8t

3n
,

which implies that

E sup
f,g∈F (δ)

|Rn(f − g)| ≤ sup
f,g∈F (δ)

|Rn(f − g)| + D(δ)

√
2t

n
+ 8t

3n

+ 2

√√√√1

2
E sup

f,g∈F (δ)

|Rn(f − g)|2t

n
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≤ sup
f,g∈F (δ)

|Rn(f − g)| + D(δ)

√
2t

n
+ 8t

3n

+ 1

2
E sup

f,g∈F (δ)

|Rn(f − g)| + 2t

n
,

or

E sup
f,g∈F (δ)

|Rn(f − g)| ≤ 2 sup
f,g∈F (δ)

|Rn(f − g)| + 2
√

2D(δ)

√
t

n
+ 28t

3n
.

This can be further bounded using Lemma 2. Namely, for all δ ≥ δn(t), we have
on the event H ∩ F that

E sup
f,g∈F (δ)

|Rn(f − g)| ≤ 2 sup
f,g∈F̂n( 3

2 δ)

|Rn(f − g)| + 2
√

2D(δ)

√
t

n
+ 28t

3n
.

Step 2. Bounding the diameter D(δ). Again, we apply Talagrand’s concentration
inequality to get on an event G = G(δ) with probability at least 1 − e−t

D2(δ) = sup
f,g∈F (δ)

P (f − g)2

≤ sup
f,g∈F (δ)

Pn(f − g)2 + sup
f,g∈F (δ)

|(Pn − P)((f − g)2)|

≤ sup
f,g∈F (δ)

Pn(f − g)2 + E sup
f,g∈F (δ)

|(Pn − P)((f − g)2)|

+
√√√√2t

n

(
D2(δ) + 2E sup

f,g∈F (δ)

|(Pn − P)((f − g)2)|
)

+ t

3n
,

where we also have used the result that supf,g∈F (δ) VarP ((f − g)2) ≤
supf,g∈F (δ) P (f − g)2 = D2(δ), since the functions from F take their values
in [0,1]. Using the symmetrization inequality and then the contraction inequality
for Rademacher processes, we get

E sup
f,g∈F (δ)

|(Pn − P)(f − g)2| ≤ 2E sup
f,g∈F (δ)

|Rn((f − g)2)|

≤ 8E sup
f,g∈F (δ)

|Rn(f − g)|.

It follows from Lemma 2 that for all δ ≥ δ̄n(t) on the event H we have

sup
f,g∈F (δ)

Pn(f − g)2 ≤ sup
f,g∈F̂n(3δ/2)

Pn(f − g)2 = D̂2
n

(
3

2
δ

)
.
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Hence, on the event H ∩ G

D2(δ) ≤ D̂2
n

(
3

2
δ

)
+ 8E sup

f,g∈F (δ)

|Rn(f − g)| + D(δ)

√
2t

n

+ 2

√√√√8t

n
E sup

f,g∈F (δ)

|Rn(f − g)| + t

3n

≤ D̂2
n

(
3

2
δ

)
+ 9E sup

f,g∈F (δ)

|Rn(f − g)| + D(δ)

√
2t

n
+ 9t

n
,

where we have applied the inequality 2
√

ab ≤ a + b, a, b ≥ 0. Next we use the
resulting bound of Step 1 to get on H ∩ F ∩ G

D2(δ) ≤ D̂2
n

(
3

2
δ

)
+ 18 sup

f,g∈F̂n(3δ/2)

|Rn(f − g)| + 19D(δ)

√
2t

n
+ 100t

n
.

As before, we bound the term 19D(δ)
√

2t
n

= 2 × 19D(δ)√
2

√
t
n

using the inequality

2ab ≤ a2 + b2 and this yields

D2(δ) ≤ 1

2
D2(δ) + D̂2

n

(
3

2
δ

)
+ 18 sup

f,g∈F̂n(3δ/2)

|Rn(f − g)| + 500t

n
.

As a result, we get the following bound holding on the event H ∩ F ∩ G:

D2(δ) ≤ 2D̂2
n

(
3

2
δ

)
+ 36 sup

f,g∈F̂n(3δ/2)

|Rn(f − g)| + 1000t

n
,

which also implies

D(δ) ≤ √
2D̂n

(
3

2
δ

)
+ 6

√
sup

f,g∈F̂n(3δ/2)

|Rn(f − g)| + 32t

n
.

Step 3. Bounding Ūn in terms of Ûn. We use the bound on D(δ) in terms of
D̂n(

3
2δ) (Step 2) to derive from the bound of Step 1 that

E sup
f,g∈F (δ)

|Rn(f − g)| ≤ 2 sup
f,g∈F̂n(3δ/2)

|Rn(f − g)| + 4D̂n

(
3

2
δ

)√
t

n

+ 12
√

2
√

sup
f,g∈F̂n(3δ/2)

|Rn(f − g)|
√

t

n
+ 100t

n

≤ 3 sup
f,g∈F̂n(3δ/2)

|Rn(f − g)| + 4D̂n

(
3

2
δ

)√
t

n
+ 172t

n
,
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which holds on the event H ∩ F ∩ G. By the symmetrization inequality, we also
have

E sup
f,g∈F (δ)

|(Pn −P)(f −g)| ≤ 6 sup
f,g∈F̂n(3δ/2)

|Rn(f −g)|+8D̂n

(
3

2
δ

)√
t

n
+ 344t

n
,

which holds on the same event. Recalling the definitions of Ūn and Ûn, the last
bound together with the bound of Step 2 shows that with a straightforward choice
of numerical constants K̂, ĉ the following bound is true on the event H ∩ F ∩ G:
Ūn(δ; t) ≤ Ûn(δ; t).

Step 4. Bounding Ûn in terms of Ũn. The derivation is similar to the previous
one. First, by Lemma 2 and Talagrand’s concentration inequality, for all δ ≥ δn(t),

sup
f,g∈F̂n(δ)

|Rn(f − g)| ≤ sup
f,g∈F (2δ)

|Rn(f − g)| ≤ E sup
f,g∈F (2δ)

|Rn(f − g)|

+
√

2
t

n

(
D2(2δ) + E sup

f,g∈F (2δ)

|Rn(f − g)|
)

+ 8t

3n

on the event H ∩ F ′, where F ′ = F ′(δ) is such that P(F ′) ≥ 1 − e−t . Next, using
the desymmetrization inequality,

E sup
f,g∈F (2δ)

|Rn(f − g)|

≤ E sup
f,g∈F (2δ)

|Rn(f − g − P(f − g))| + sup
f,g∈F (2δ)

|P(f − g)|E|Rn(1)|

≤ 2E sup
f,g∈F (2δ)

|(Pn − P)(f − g)| + n−1/2 sup
f,g∈F (2δ)

P 1/2(f − g)2

≤ 2φn(2δ) + n−1/2D(2δ).

Therefore, we get (by getting rid of φn under the square root)

sup
f,g∈F̂n(δ)

|Rn(f − g)| ≤ 4φn(2δ) + D(2δ)

(
1√
n

+ √
2

√
t

n

)
+ 4t

n
.

We turn now to bounding the empirical diameter D̂n(δ). Again, by Lemma 2
and Talagrand’s concentration inequality, we have for all δ ≥ δ̄n(t) on the event
H ∩ G′, where G′ = G′(δ) is such that P(G′) ≥ 1 − e−t ,

D̂2
n(δ) := sup

f,g∈F̂n(δ)

Pn(f − g)2 ≤ sup
f,g∈F (2δ)

Pn(f − g)2

≤ sup
f,g∈F (2δ)

P (f − g)2 + sup
f,g∈F (2δ)

|(Pn − P)((f − g)2)|
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≤ D2(2δ) + E sup
f,g∈F (2δ)

|(Pn − P)((f − g)2)|

+
√

2
t

n

(
D2(2δ) + 2E sup

f,g∈F (2δ)

|(Pn − P)((f − g)2)|
)

+ t

3n
.

As in Step 2, we use symmetrization and contraction inequalities to get

E sup
f,g∈F (2δ)

|(Pn − P)((f − g)2)| ≤ 8E sup
f,g∈F (2δ)

|Rn(f − g)|,
and then using the desymmetrization bound, as in Step 3, we get

E sup
f,g∈F (2δ)

|(Pn − P)((f − g)2)| ≤ 16φn(2δ) + 8
D(2δ)√

n
.

By a simple computation this implies that

D̂2
n(δ) ≤ D2(2δ) + 32φn(2δ) + D(2δ)

(√
2t

n
+ 16√

n

)
+ 2t

n
.

The same algebra we already used in Step 3 yields the inequality Ûn(δ; t) ≤
Ũn(δ; t) that holds on the event H ∩ F ′ ∩ G′ with properly chosen numerical con-
stants K̃, c̃ in the definition of Ũn.

Step 5. Conclusion. Using the inequalities of Steps 4 and 5 for δ = δj ≥ δn(t)

gives

P(E) ≥ 1 −
(

logq

q2

δn(t)
+ 4 logq

q

δn(t)

)
exp{−t},

where

E := {∀δj ≥ δ̄n(t) : Ūn(δj ; t) ≤ Ûn(δj ; t) ≤ Ũn(δj ; t)},
since

E ⊃ ⋃
j : δj≥δ̄n(t)

(
H ∩ F(δj ) ∩ G(δj ) ∩ F ′(δj ) ∩ G′(δj )

)
.

Applying to ψ(δ) := Ūn,t (δ) property 7′ of the 	, q-transform, we get with c = q2

q2δn(t) = q2U
	,q
n,t

(
1

2q

)
≤ q2Ū

	,q
n,t

(
1

2q

)
≤ Ū

	,q
n,t

(
1

2q3

)
= δ̄n(t).

Therefore, using property 2′ of the 	, q-transform, we get on the event E

δ̄n(t) = Ū
	,q
n,t

(
1

2q3

)
≤ δ̂n(t) = Û

	,q
n,t

(
1

2q3

)

and then, repeating the same argument for δ̂n(t), that

δ̂n(t) = Û
	,q
n,t

(
1

2q3

)
≤ δ̃n(t) = Ũ

	,q
n,t

(
1

2q3

)
,

implying the result. �
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PROOF OF THEOREM 4. Denote

ψ̆ε
n(σ, δ) := E sup

g∈F (σ )

sup
f ∈F (δ),ρP (f,g)<r̆(σ,δ)+ε

|(Pn − P)(f − g)|.

Clearly, ψ̆ε
n(σ, δ) ↓ ψ̆n(σ, δ) as ε ↓ 0. Define

Ŭ ε
n(σ ; δ; t) := ψ̆ε

n(σ, δ) +
√

2
t

n

((
r̆(σ, δ) + ε

)2 + 2ψ̆ε
n(σ, δ)

) + t

3n
.

We also have Ŭ ε
n(σ ; δ; t) ↓ Ŭn(σ ; δ; t) as ε ↓ 0. Let

En,j (t; ε) :=
{

sup
g∈F (σ )

sup
f ∈F (δj ),ρP (f,g)<r̆(σ,δj )+ε

|(Pn − P)(f − g)| ≤ Ŭ ε
n(σ, δj ; t)

}
.

By Talagrand’s concentration inequality, P((En,j (t; ε))c) ≤ e−t . Hence, for

En(t; ε) := ⋂
j : δj≥δ

En,j (t; ε),

we have P((En(t; ε))c) ≤ logq
q
δ
e−t . On the event En(t; ε), for all j such that

δj ≥ δ,

f ∈ F (δj+1, δj ] �⇒ ∃g ∈ F (σ ): ρP (f, g) < r̆(σ, δj ) + ε

�⇒ E(f ) ≤ Pf − Pg + σ

≤ Pnf − Png + (P − Pn)(f − g) + σ

≤ Ên(f ) + Ŭ ε
n(σ, δj ; t) + σ.

Therefore,

P
{∃j :∃f ∈ F (δj+1, δj ] : δj ≥ δ, E(f ) > Ên(f )+ Ŭ ε

n(σ, δj ; t)+σ
} ≤ logq

q

δ
e−t .

Let

F := {∃f ∈ F :E(f ) ≥ δ and Ên(f ) <
(
1 − qV̆n(σ, δ; t))E(f )

}
.

Then

F ⊂ {∃j ∃f ∈ F (δj+1, δj ] : δj ≥ δ, E(f ) > Ên(f ) + V̆n(σ, δ; t)δj

}
⊂ {∃j ∃f ∈ F (δj+1, δj ] : δj ≥ δ, E(f ) > Ên(f ) + Ŭn(σ, δj ; t) + σ

}
.

Because of the monotonicity of Ŭ ε
n with respect to ε,

P
{∃j ∃f ∈ F (δj+1, δj ] : δj ≥ δ, E(f ) > Ên(f ) + Ŭn(σ, δj ; t) + σ

}
= lim

ε→0
P
{∃j ∃f ∈ F (δj+1, δj ] : δj ≥ δ, E(f ) > Ên(f ) + Ŭ ε

n(σ, δj ; t) + σ
}

≤ lim sup
ε→0

P
(
(En(t; ε))c) ≤ logq

q

δ
e−t ,
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implying P(F ) ≤ logq
q
δ
e−t . This proves the second bound of the theorem and it

also implies the first bound since on the event Fc, E(f̂n) ≤ δ; otherwise, we would
have

0 = Ên(f̂n) ≥ (
1 − qV̆n(σ, δ; t))E(f̂n) ≥ δ/2,

a contradiction. �

PROOF OF PROPOSITION 2. We have Pf = 1/2 for all f ∈ F and as a result
F (δ) = F for all δ ≥ 0. This implies ∀0 < σ ≤ δ : r̆(σ ; δ) = 0 and also ψ̆n(σ ; δ) =
0. Therefore, δ̆n(σ ; t) is of the order Ct/n. Note also that ∀k �= j : P(fk − fj )

2 =
1/2, so, DP (F ; δ) = 1/2. On the other hand,

φn(δ) = E sup
f,g∈F

|(Pn − P)(f − g)| = E max
1≤k,j≤N

|(Pn − P)(fk − fj )|,

which can be shown to be of the order c(logN/n)1/2. This easily yields the value
of δn(t) to be of the order c((logN/n)1/2 + (t/n)1/2). The excess risk of f̂n (and,
as a matter of fact, of any f ∈ F ) is 0, so the bound δn(t) is not at all sharp. Next
we show that (iv) also holds. To this end, note that

P{F (0) ⊂ F̂n(δ)} = P{F̂n(δ) = F }
= P

{
∀j,1 ≤ j ≤ N + 1 :Pnfj ≤ min

1≤k≤N+1
Pnfk + δ

}
≤ P{∀j,1 ≤ j ≤ N :Pnfj ≤ PnfN+1 + δ}
= P{∀j,1 ≤ j ≤ N :νn,j ≤ νn + δn},

where νn, νn,j , 1 ≤ j ≤ N , are i.i.d. binomial random variables with parameters n

and 1/2. Thus, we get

P{F (0) ⊂ F̂n(δ)} ≤
n∑

k=0

P{νn = k}P{∀j,1 ≤ j ≤ N :νn,j ≤ k + δn|νn = k}

=
n∑

k=0

P{νn = k}
N∏

j=1

P{νn,j ≤ k + δn}

=
n∑

k=0

P{νn = k}PN {νn ≤ k + δn}

≤ P{νn > k̄} + P
N {νn ≤ k̄ + δn},

where 0 ≤ k̄ ≤ n. Let k̄ = n
2 + nδ. Then, using Bernstein’s inequality, we get

P{νn > k̄} ≤ exp
{
−nδ2

4

}
= (logN)−2−6

.
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On the other hand, using the normal approximation of binomial distribution we get
(with � denoting the standard normal distribution function)

P{νn ≤ k̄ + δn} ≤ �(4δ
√

n) + n−1/2 = �
(√

logN
) + n−1/2.

Under the condition N0 ≤ N ≤ √
n this easily gives (for a large enough N0)

P{F (0) ⊂ F̂n(δ)} ≤ ε, which implies the claim. �

PROOF OF LEMMA 3. First note that by Theorem 1 the event {E(f̂n) ≤ δ̄n(t)}
holds with probability at least 1 − logq

q

δ̄n(t)
e−t . On this event, we have for all

g ∈ F (ε) with ε < δ̄n(t)∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ = ∣∣∣Pnf̂n − inf

F
Pf

∣∣∣
≤ P f̂n − inf

F
Pf + |(Pn − P)(f̂n − g)| + |(Pn − P)(g)|

≤ δ̄n(t) + sup
f,g∈F (δ̄n(t))

|(Pn − P)(f − g)| + |(Pn − P)(g)|.
(9.3)

By Talagrand’s inequality with probability at least 1 − e−t

sup
f,g∈F (δ̄n(t))

|(Pn −P)(f −g)| ≤ Ūn(δ̄n(t); t) ≤ qV̄n(δ̄n(t); t)δ̄n(t) ≤ δ̄n(t).(9.4)

On the other hand, by Bernstein’s inequality, also with probability at least 1 − e−t

|(Pn − P)(g)| ≤
√

2
t

n
VarP g + 2t

3n
≤

√
2

t

n

(
inf
F

Pf + ε
)

+ 2t

3n
,(9.5)

since g takes values in [0,1], g ∈ F (ε), and hence VarP g ≤ Pg2 ≤ Pg ≤
infF Pf + ε. It follows from (9.3), (9.4) and (9.5) that on some event E(ε) with

probability at least 1 − logq
q3

δ̄n(t)
e−t the following inequality holds:

∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≤ 2δ̄n(t) +

√
2

t

n

(
inf
F

Pf + ε
)

+ t

n
.(9.6)

Since the events E(ε) are monotone in ε, one can let ε → 0, which yields the first
bound of the lemma.

To prove the second bound, note that on the same event on which (9.6) with
ε = 0 holds we also have

∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≤

√
2

t

n

∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣+2δ̄n(t)+

√
2

t

n
inf
F

Pnf + t

n
.(9.7)

We either have∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≤ 8t

n
or

2t

n
≤ | infF Pnf − infF Pf |

4
,
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and in the latter case (9.7) implies that

∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≤ 4δ̄n(t) + 2

√
2

t

n
inf
F

Pnf + 2t

n
.

We can use now the condition of the lemma to replace δ̄n(t) by δ̂n(t) and get that

with probability at least 1 − p − logq
q3

δ̄n(t)
e−t the following bound holds:

∣∣∣inf
F

Pnf − inf
F

Pf
∣∣∣ ≤ 4δ̂n(t)+2

√
2

t

n
inf
F

Pnf + 8t

n
. �

PROOF OF THEOREM 5. We will use the following consequence of Theorem 1
and of Lemma 3 (and its proof): there exists an event E of probability at least

1 −
∞∑

k=1

(
pk + logq

q3n

tk
e−tk

)

such that on the event E, ∀k ≥ 1:

P f̂k − inf
f ∈Fk

Pf ≤ δ̄n(Fk; tk) ≤ δ̂n(Fk; tk) ≤ δ̃n(Fk; tk)

and

∣∣∣inf
Fk

Pnf − inf
Fk

Pf
∣∣∣ ≤ 2δ̄n(Fk; tk) +

√
2tk

n
inf
Fk

Pf + tk

n
,

∣∣∣inf
Fk

Pnf − inf
Fk

Pf
∣∣∣ ≤ 4δ̂n(Fk; tk) + 2

√
2tk

n
inf
Fk

Pnf + 8tk

n
.

Note also that the events involved in the proof of Lemma 3 are the same that
are involved in the bound of Theorem 1; because of this, we do not have to add
probabilities here. On the event E, we have

P f̂ = P f̂
k̂
≤ inf

F
k̂

Pf + δ̄n(Fk̂
; t

k̂
)

≤ inf
F

k̂

Pnf + 5δ̂n(Fk̂
; t

k̂
) + 2

√√√√2t
k̂

n
inf
F

k̂

Pnf + 8t
k̂

n

≤ inf
F

k̂

Pnf + π̂(k̂) = inf
k

[
inf
Fk

Pnf + π̂(k)
]
,

provided that the constant K̂ in the definition of π̂ is chosen properly. This proves
the first bound of the theorem.
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To prove the second bound, note that since√
tk

n
inf
Fk

Pnf ≤
√

tk

n
inf
Fk

Pf +
√

tk

n

∣∣∣inf
Fk

Pnf − inf
Fk

Pf
∣∣∣

≤
√

tk

n
inf
Fk

Pf + tk

2n
+ 1

2

∣∣∣inf
Fk

Pnf − inf
Fk

Pf
∣∣∣,

we also have on the event E for all k

π̂(k) = K̂

[
δ̂n(Fk; tk) +

√
tk

n
inf
Fk

Pnf + tk

n

]

≤ K̃

2

[
δ̃n(Fk; tk) +

√
tk

n
inf
Fk

Pf + tk

n

]
= π̃(k)/2

and

∣∣∣inf
Fk

Pnf − inf
Fk

Pf
∣∣∣ ≤ 2δ̄n(Fk; tk) +

√
2tk

n
inf
Fk

Pf + tk

3n

≤ K̃

2

[
δ̃n(Fk; tk) +

√
tk

n
inf
Fk

Pf + tk

n

]
= π̃ (k)/2,

provided that the constant K̃ in the definition of π̃(k) is chosen to be large enough.
This yields on the event E

P f̂ ≤ inf
k

[
inf
Fk

Pnf + π̂(k)
]
≤ inf

k

[
inf
Fk

Pf + π̃(k)
]
,

proving the second bound. �

PROOF OF LEMMA 4. We assume, for simplicity, that Pf attains its minimum
over G at some f̄ ∈ G (the proof can be easily modified if the minimum is not
attained). Let E be the event such that the following inequalities hold:

|(Pn − P)(f̄ − f∗)| ≤
√

2t

n
VarP (f̄ − f∗) + t

n
and

∀f ∈ G : Ên(G;f ) ≤ 3

2

(
EP (G;f ) ∨ δ̄n(G; t)).

The first of these inequalities holds with probability at least 1 − e−t by Bern-
stein’s inequality; the second inequality takes place with probability at least

1− logq
q2n
t

e−t by (9.2) in the proof of Lemma 2. Hence, P(E) ≥ 1− logq
q3n
t

e−t .
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We also have Var1/2
P (f̄ − f∗) ≤ ϕ−1(P f̄ − Pf∗) and hence, on the event E,

|(P − Pn)(f̄ − f∗)| ≤ ϕ
(√

εϕ−1(P f̄ − Pf∗)
) + ϕ∗

(√
2t

εn

)
+ t

n

≤ ϕ(
√

ε)(P f̄ − Pf∗) + ϕ∗
(√

2t

εn

)
+ t

n
,

implying

Pn(f̄ − f∗) ≤ (
1 + ϕ(

√
ε)

)
P(f̄ − f∗) + ϕ∗

(√
2t

εn

)
+ t

n
(9.8)

and

P(f̄ − f∗) ≤ (
1 − ϕ(

√
ε)

)−1
[
Pn(f̄ − f∗) + ϕ∗

(√
2t

εn

)
+ t

n

]
.(9.9)

Equation (9.8) immediately yields the first bound of the lemma. Since on the
event E

Pn(f̄ − f∗) = Pnf̄ − inf
G

Pnf + inf
G

Pnf − Pnf∗ = Ên(G; f̄ ) + inf
G

Pnf − Pnf∗

≤ inf
G

Pnf − Pnf∗ + 3

2

(
EP (G; f̄ ) ∨ δ̄n(G; t)),

and since EP (G; f̄ ) = 0, we get

Pn(f̄ − f∗) ≤ inf
G

Pnf − Pnf∗ + 3

2
δ̄n(G; t).

Along with (9.9), this implies

inf
G

Pf − Pf∗ = P(f̄ − f∗) ≤ (
1 − ϕ(

√
ε)

)−1
[

inf
G

Pnf − Pnf∗ + 3

2
δ̄n(G; t)

+ ϕ∗
(√

2t

εn

)
+ t

n

]
,

which is the second bound of the lemma.
Finally, to prove the third bound plug into (5.5) the bound on δ̄n(G; t) and solve

the resulting inequality with respect to infG Pf − Pf∗. �

PROOF OF THEOREM 6. Let Ek be the event defined in Lemma 4 for G = Fk

and t = tk . Let E be the event such that the following inequalities and events Ek

hold for all k:

EP (Fk; f̂k) = P f̂k − inf
Fk

Pf ≤ δ̄n(Fk; tk)
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and δ̄n(Fk; tk) ≤ δ̂n(Fk; tk) ≤ δ̃n(Fk; tk). The first of the inequalities holds with
probability at least 1 − logq

qn
tk

e−tk either by Theorem 1 or by Theorem 4; the

second one holds with probability at least 1−pk by assumptions. Therefore, using
Lemma 4,

P(E) ≥ 1 −
∞∑

k=1

(
pk + 2 logq

q2n

tk
e−tk

)
.

On the event E, using the first bound (5.5) and then (5.4) of Lemma 4, we get

EP (F ; f̂ ) = P f̂ − inf
F

Pf = P f̂
k̂
− Pf∗ = P f̂

k̂
− inf

F
k̂

Pf + inf
F

k̂

Pf − Pf∗

≤ δ̄n(Fk̂
; t

k̂
) + inf

F
k̂

Pf − Pf∗

≤ (
1 − ϕ(

√
ε)

)−1
[(

1 − ϕ(
√

ε)
)
δ̄n(Fk̂

; t
k̂
) + inf

F
k̂

Pnf − Pnf∗

+ 3

2
δ̄n(Fk̂

; t
k̂
) + ϕ∗

(√
2t

k̂

εn

)
+ t

k̂

n

]

≤ (
1 − ϕ(

√
ε)

)−1
{

inf
k

[
inf
Fk

Pnf + (
5/2 − ϕ(

√
ε)

)
δ̂n(Fk; tk)

+ ϕ∗
(√

2tk

εn

)
+ tk

n

]
− Pnf∗

}

= (
1 − ϕ(

√
ε)

)−1
{
inf
k

[
inf
Fk

Pnf + π̂(k)
]
− Pnf∗

}

≤ 1 + ϕ(
√

ε)

1 − ϕ(
√

ε)
inf
k

[
inf
Fk

Pf − inf
F

Pf + 5/2 − ϕ(
√

ε)

1 + ϕ(
√

ε)
δ̃n(Fk; tk)

+ 2

1 + ϕ(
√

ε)
ϕ∗

(√
2tk

εn

)
+ 2

(1 + ϕ(
√

ε))

tk

n

]

= inf
k

1 + ϕ(
√

ε)

1 − ϕ(
√

ε)

[
inf
Fk

Pf − inf
F

Pf + π̃ (k)
]
,

and the result follows. �

PROOF OF THEOREM 7. Let us define the event E such that on this event ∀l

and ∀k ≤ l

inf
f ∈Fk

Ên(Fl , f ) ≤ 2
(

inf
f ∈Fk

EP (Fl , f ) ∨ δ̄n(Fl , tl)
)
,(9.10)

inf
f ∈Fk

EP (Fl , f ) ≤ 2 inf
f ∈Fk

Ên(Fl , f ) ∨ δ̄n(Fl , tl),(9.11)



LOCAL RADEMACHER COMPLEXITIES 2647

and

δ̄n(Fl; tl) ≤ δ̂n(Fl; tl) ≤ δ̃n(Fl; tl).(9.12)

Then we have

P(E) ≥ 1 −
∞∑

k=1

(
pk + logq

q2n

tk
e−tk

)
,

which is true for the following reasons. First, for any l, we have with probability

at least 1 − logq
q2

δn(Fl ,tl )
e−tl that for all f ∈ Fl

Ên(Fl , f ) ≤ 2
(
EP (Fl , f )∨ δ̄n(Fl , tl)

)
and EP (Fl , f ) ≤ 2Ên(Fl , f )∨ δ̄n(Fl , tl)

[see the proof of Lemma 2, specifically, (9.1) and (9.2)]. Then, by assumptions, for
all l with probability at least 1 − pl , δ̄n(Fl; tl) ≤ δ̂n(Fl; tl) ≤ δ̃n(Fl; tl). It remains
to use the union bound to get the above lower bound on P(E).

Clearly, on the event E, ∀l : δ̄n(l) ≤ δ̂n(l) ≤ δ̃n(l). We will show that on the same
event E, k̃ ≤ k̂ ≤ k̄ ≤ k∗. The inequality k̄ ≤ k∗ is obvious from the definitions. If
k < k̂, then there exists l > k such that

inf
Fk

Ên(Fl , f ) = inf
Fk

Pnf − inf
Fl

Pnf > ĉδ̂n(l).

We will use the result that, due to (9.10), on the event E

inf
Fk

Ên(Fl , f ) ≤ 2
(
inf
Fk

EP (Fl , f ) ∨ δ̄n(l)
)
.

Therefore (assuming that the constants ĉ, c̄ have been chosen properly)

inf
Fk

Pf − inf
Fl

Pf = inf
Fk

EP (Fl , f ) ≥ ĉ

2
δ̂n(l) − δ̄n(l) ≥

(
ĉ

2
− 1

)
δ̄n(l) ≥ c̄δ̄n(l),

which implies that k < k̄ and hence k̂ ≤ k̄. Similarly, if k < k̃, then there exists
l > k such that

inf
Fk

EP (Fl , f ) = inf
Fk

Pf − inf
Fl

Pf > c̃δ̃n(l).

Due to (9.11), on the event E

inf
Fk

EP (Fl , f ) ≤ 2 inf
Fk

Ên(Fl , f ) ∨ δ̄n(l),

implying that

inf
Fk

Pnf − inf
Fl

Pnf = inf
Fk

Ên(Fl , f ) ≥ (
c̃δ̃n(l) − δ̄n(l)

)
/2 ≥

(
c̃ − 1

2

)
δ̃n(l) > ĉδ̂n(l),

provided that the constants have been chosen properly. Therefore, k < k̂ and hence
k̃ ≤ k̂.
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Next we have on the event E for all k ≥ k̄

P f̂ − inf
j

inf
Fj

Pf = P f̂
k̂
− inf

Fk

Pf + inf
Fk

Pf − inf
j

inf
Fj

Pf

= P f̂
k̂
− inf

F
k̂

Pf + inf
F

k̂

Pf − inf
Fk

Pf + inf
Fk

Pf − inf
j

inf
Fj

Pf

≤ δ̄n(k̂) + inf
F

k̃

Pf − inf
Fk

Pf + inf
Fk

Pf − inf
j

inf
Fj

Pf

≤ δ̄n(k̂) + c̃δ̃n(k) + inf
Fk

Pf − inf
j

inf
Fj

Pf

≤ inf
Fk

Pf − inf
j

inf
Fj

Pf + (c̃ + 1)δ̃n(k),

implying the first bound. The second bound follows immediately by plugging
in k = k∗ (which is possible since k∗ ≥ k̄) and observing that infFk∗ Pf −
infj infFj

Pf = 0. �

PROOF OF THEOREM 8. Since φn(δ) ≤ ωn(D(δ)), conditions (i) and (ii) im-

ply that, for all P ∈ Pρ,κ,C(F ), φn(δ) ≤ Kn−1/2δ
1−ρ
2κ . Then, by an easy computa-

tion,

δ̄n(t) ≤ K

[(
1

n

) κ
2κ+ρ−1 ∨

(
t

n

) κ
2κ−1 ∨ t

n

]

with some K > 0. It remains to recall that δ̄n(t) ≥ δn(t) and to use Theorem 1 with
t replaced by t + log logq n to get with some K > 0 for all P ∈ Pρ,κ,C(F ) the
bound

P
{
n

κ
2κ+ρ−1 E(f̂n) ≥ K(1 + t)

} ≤ e−t ,

which implies the result. �

PROOF OF THEOREM 9. We use Theorem 7 to get for all P

P
{
P f̂ − Pf∗ ≥ Kδ̃n(k

∗(P ))
} = O(n−2).

Since for all P ∈ Pj , k∗(P ) = j , we have

max
1≤j≤N

sup
P∈Pj

P{P f̂ − Pf∗ ≥ Kδ̃n(j)} = O(n−2).

The same argument as in the proof of Theorem 8 shows that δ̃n(j) ≤ Kn−βj .
Therefore

max
1≤j≤N

sup
P∈Pj

nβj E(P f̂ − Pf∗) ≤ max
1≤j≤N

nβj sup
P∈Pj

P{P f̂ − Pf∗ ≥ Kn−βj } + K

≤ K + O
(

max
1≤j≤N

nβj−2
)

= O(1). �
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PROOF OF THEOREM 10. We first look at a single class F of binary func-
tions. The following upper bounds hold:

D2(F ; δ) = sup
f,g∈F (δ)

P (f − g)2 ≤ sup
f,g∈F (δ)

(Pf + Pg) ≤ 2
(

inf
f ∈F

Pf + δ
)

and

ωn(F ; δ) ≤ K

[
δ

√
E log�F (X1, . . . ,Xn)

n
+ E log�F (X1, . . . ,Xn)

n

]
,(9.13)

where the proof of the second bound can be found in [36]. It follows that

φn(δ) ≤ K

[√
2
(

inf
f ∈F

Pf + δ
)E log�F (X1, . . . ,Xn)

n
+ E log�F (X1, . . . ,Xn)

n

]
,

which implies, by using the 	-transform, that with some constant K

δ̄n(t) ≤ K

[√
inf

f ∈F
Pf

E log�F (X1, . . . ,Xn) + t

n
+ E log�F (X1, . . . ,Xn) + t

n

]
.

We now define

δ̂n(t) := K̂

[√
inf

f ∈F
Pnf

log�F (X1, . . . ,Xn) + t

n
+ log�F (X1, . . . ,Xn) + t

n

]

and

δ̃n(t) := K̃

[√
inf

f ∈F
Pf

E log�F (X1, . . . ,Xn) + t

n
+ E log�F (X1, . . . ,Xn) + t

n

]
.

We use the following deviation inequality for shattering numbers due to Bouche-
ron, Lugosi and Massart [12]: with probability at least 1 − e−t

log�F (X1, . . . ,Xn) ≤ 2E log�F (X1, . . . ,Xn) + 2t

and

E log�F (X1, . . . ,Xn) ≤ 2 log�F (X1, . . . ,Xn) + 2t.

Using this device together with Lemma 3, it is easy to see that with probability at

least 1 − logq
q3n
t

e−t we have δ̄n(t) ≤ δ̂n(t) ≤ δ̃n(t). For instance, to prove the first
of the two inequalities, note that, by the above deviation inequality for shattering
numbers, on an event of probability at least 1− e−t we can replace in the bound on
δ̄n(t) E log�F (X1, . . . ,Xn) by log�F (X1, . . . ,Xn). On the other hand, the first

bound of Lemma 3 implies that with probability at least 1 − logq
q3

δ̄n(t)
e−t we have
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(using 2ab ≤ a2 + b2)

inf
F

Pf ≤ inf
F

Pnf + 2δ̄n(t) + 2

√
t

n
inf
F

Pf/2 + t

3n

≤ inf
F

Pnf + 2δ̄n(t) + inf
F

Pf/2 + 2t

n
,

which implies infF Pf ≤ 2 infF Pnf +4δ̄n(t)+4t/n. Plugging this into the bound
on δ̄n(t) and replacing E log�F (X1, . . . ,Xn) by log�F (X1, . . . ,Xn), we easily
get (with some constant K)

δ̄n(t) ≤ K

[√
inf

f ∈F
Pnf

log�F (X1, . . . ,Xn) + t

n
+ log�F (X1, . . . ,Xn) + t

n

]

+ 2

√
δ̄n(t)

2

K2 log�F (X1, . . . ,Xn) + t

2n
,

which, again using 2ab ≤ a2 + b2, leads to the bound (with some K̂)

δ̄n(t) ≤ K̂

[√
inf

f ∈F
Pnf

log�F (X1, . . . ,Xn) + t

n
+ log�F (X1, . . . ,Xn) + t

n

]

= δ̂n(t),

which holds with probability at least 1 − logq
q4

δ̄n(t)
e−t . The second inequality

δ̂n(t) ≤ δ̃n(t) can be proved similarly. For a sequence Fk of classes of binary func-
tions, this gives condition (5.2) and allows us to use Theorem 5 to complete the
proof. �

PROOF OF LEMMA 5. First note that

φn(δ) = E sup
f,g∈F (δ)

|(Pn − P)(f − g)| ≤ 2E sup
f ∈F (δ)

|(Pn − P)(f − f̄ )|.

Also, f ∈ F (δ) implies that

ρP (f, f̄ ) ≤ ρP (f,f∗) + ρP (f̄ , f∗) ≤
√

D(Pf − Pf∗) +
√

D(P f̄ − Pf∗)

≤
√

D(Pf − P f̄ ) + 2
√

D(P f̄ − Pf∗)

≤ √
Dδ + 2

√
D� ≤ √

2D(δ + 4�),

where � := P f̄ − Pf∗ = infF Pf − Pf∗. It follows that

D(F ; δ) ≤ 2
√

D
(√

δ + 2
√

�
)

and φn(δ) ≤ 2θn

(√
2D(δ + 4�)

)
.
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As a consequence, recalling the definition of Ūn(δ; t), we easily get with some
constant C > 0 for all ε ∈ (0,1]

Ūn(δ; t) ≤ Cθn

(√
2D(δ + 4�)

) + C

√
Dδt

n
+ C

(
ε� + Dt

nε

)

=: ψ1(δ) + ψ2(δ) + ψ3(δ),

where we have used the inequality 2
√

D� t
n

≤ ε� + Dt
nε

to bound the term

D(F ; δ)
√

t
n

involved in Ūn(δ; t). Since

δ̄n(F ; t) := Ū
	,q
n,t

(
1

2q3

)
≤ Ū

	
n,t

(
1

2q3

)
,

it is enough now to bound the 	-transform of ψ1,ψ2,ψ3 separately and to use
property 4 of Section 2.3. Let u := 1

6q3 . Then by properties 3, 7, 8 of Section 2.3

ψ
	
1(u) ≤ 1

2D
θ	
n

(
εu

4CD

)
+ 4ε�.

Also (see property 6 with α = 1/2 and property 3), ψ
	
2(u) ≤ C2Dt/(nu2) and

(property 5)

ψ3(u) ≤ C

u

(
ε� + Dt

nε

)
.

As a result, property 4 now yields

δ̄n(F ; t) ≤ 1

2D
θ	
n

(
εu

4CD

)
+

(
4 + C

u

)
ε� +

(
C

u
+ C2

u2

)
Dt

nε
,

which after proper rescaling of ε and adjusting the constants gives the bound of
the lemma. �

PROOF OF THEOREM 11. The proof is a straightforward consequence of The-
orem 6, Remarks 2 and 4 after this theorem and Lemma 5. Note that one should
choose ϕk(u) = u2/Dk , which implies that ϕ∗(v) = Dkv

2/4. The rest is an easy
computation. �

PROOF OF LEMMA 6. First of all, note that by the Lipschitz condition (7.3)
∀g1, g2 ∈ G

P
∣∣(� • g1) − (� • g2)

∣∣2 ≤ L2‖g1 − g2‖2
L2(�).

Next, by (7.5), we have for g ∈ G, x ∈ S, y ∈ T

�(y, g(x)) + �(y, ḡ(x))

2
≥ �

(
y; g(x) + ḡ(x)

2

)
+ ψ

(∣∣g(x) − ḡ(x)
∣∣r).



2652 V. KOLTCHINSKII

Integrating this inequality and observing that g+ḡ
2 ∈ G and hence P(� • (

g+ḡ
2 )) ≥

P(� • ḡ) yields

P(� • g) + P(� • ḡ)

2
≥ P(� • ḡ) + �ψ(|g − ḡ|r ),

or

P(� • g) − P(� • ḡ) ≥ 2�ψ(|g − ḡ|r ).
Now we can use Jensen’s inequality, the monotonicity of ψ , and the fact that
|g − ḡ| ≤ M to get

EP (F ;� • g) = P(� • g)−P(� • ḡ) ≥ 2ψ(�|g − ḡ|r ) ≥ 2ψ
(
Mr−2‖g − ḡ‖2

L2(�)

)
,

which implies

F (δ) = {(� • g) :g ∈ G,EP (F ;� • g) ≤ δ} ⊂ {(� • g) :g ∈ Gδ}
where Gδ := {g ∈ G :‖g − ḡ‖2

L2(�) ≤ M2−rψ−1(δ/2)}. Therefore

DP (F ; δ) ≤ L sup
g1,g2∈Gδ

‖g1 − g2‖L2(�) ≤ 2LM1−r/2
√

ψ−1(δ/2).

We will now bound φn(δ) = φn(F ; δ) in terms of θn(δ) = θn(G; ḡ; δ). By the
symmetrization inequality,

φn(δ) = E sup
f1,f2∈F (δ)

|(Pn − P)(f1 − f2)|

≤ 2E sup
g1,g2∈G(δ)

∣∣∣∣∣n−1
n∑

i=1

εi

(
�(Yi;g1(Xi)) − �(Yi;g2(Xi))

)∣∣∣∣∣
≤ 4E sup

g∈G(δ)

∣∣∣∣∣n−1
n∑

i=1

εi

(
�(Yi;g(Xi)) − �(Yi; ḡ(Xi))

)∣∣∣∣∣,
which by the contraction inequality can be bounded further by

16LE sup
g∈G(δ)

∣∣∣∣∣n−1
n∑

i=1

εi(g(Xi) − ḡ(Xi))

∣∣∣∣∣
≤ 16LE sup

{∣∣∣∣∣n−1
n∑

i=1

εi(g(Xi) − ḡ(Xi))

∣∣∣∣∣ :g ∈ G,‖g − ḡ‖2
L2(�)

≤ M2−rψ−1(δ/2)

}
.

Using now the desymmetrization inequality yields

φn(δ) ≤ 32LE sup
{|(�n − �)(g − ḡ)| :g ∈ G,‖g − ḡ‖2

L2(�) ≤ M2−rψ−1(δ/2)
}

+ 8L

√
M2−rψ−1(δ/2)

n
.
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As a result, we can bound (with a proper choice of C)

Ūn(δ; t) ≤ W̄n(δ; t)

= C

[
Lθn(M

2−rψ−1(δ/2)) + L

√
M2−rψ−1(δ/2)(t + 1)

n
+ t

n

]
,

and the first bound follows. The second bound is also immediate because of prop-
erty 2, Section 2.3. �

PROOF OF THEOREM 12. We will apply the lemma with r = 2 and ψ(u) =
�u. Suppose that θn is upper bounded by a function θ̌n of strictly concave type. In
this case we have

W̄n(δ; t) ≤ C

[
Lθ̌n(δ/(2�)) + L

√
δ(t + 1)

2�n
+ t

n

]
.

Using the basic properties of the 	-transform it is easy to deduce that with some
constant C

δ̄W
n (G; t) ≤ C

[
2�θ̌	

n

(
�

L

)
+ L2

�

t + 1

n

]
.

Since G := M conv(H), where H is a VC-type class of functions from S into
[−1/2,1/2], condition (2.1) holds for H with envelope F ≡ 1. As in Example 4
of Section 2.5,

θn(δ) ≤ θ̌n(δ) := C

[
Mρ

√
n

δ(1−ρ)/2 ∨ M2ρ/(ρ+1)

n1/(1+ρ)

]

with ρ := V
V +2 . Such a θ̌n is of strictly concave type and θ

	
n(ε) ≤ C M2ρ/(1+ρ)

n1/(1+ρ) ×
ε−2/(1+ρ) for ε ≤ 1. Therefore,

δ̄W
n (G; t) ≤ C

[
�MV/(V +1)

(
L

�
∨ 1

)(V +2)/(V +1)

n− 1
2

V +2
V +1 + L2

�

t + 1

n

]

= πn(M,L,�; t).
Assume now that for all y, �(y, ·) is bounded by 1 on the interval [−M/2,M/2].
Applying Theorem 2, we get

P

{
P(� • ĝ) ≥ min

g∈G
P(� • g) + πn(M,L,�; t)

}
≤ e−t .

To get rid of the assumption that � is bounded by 1, note that if � is bounded by
D on the interval [−M/2,M/2], one can replace � by �/D and also note that
L,� become then L/D,�/D. Since πn(M,L/D,�/D; t) = πn(M,L,�; t)/D,
the result follows by a simple rescaling. �
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