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LOCAL REFINEMENT TECHNIQUES FOR
ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS

I. ERROR ANALYSIS

R. E. EWING, R. D. LAZAROV, AND P. S. VASSILEVSKI

Abstract. A finite difference technique on rectangular cell-centered grids with
local refinement is proposed in order to derive discretizations of second-order
elliptic equations of divergence type approximating the so-called balance equa-

1 1/2tion. Error estimates in a discrete H -norm are derived of order h ' for a
simple symmetric scheme, and of order h ' for both a nonsymmetric and a
more accurate symmetric one, provided that the solution belongs to H +a for
a > \ and a > \ , respectively.

1. INTRODUCTION

The need for local refinement in solving real-life problems is of great practical
importance even for today's computer facilities. One can substantially save
computer storage and time in exploring the local properties of the solution of a
differential problem that describes, for example, a certain physical phenomenon,
if the discretization method takes advantage of these local properties of the
solution. Often, in practice, local properties of the solution are not known in
advance but can be determined by certain a posteriori analysis.

In this paper, we consider the problem of how to construct conservative ap-
proximations of divergence-type second-order elliptic boundary value problems
on grids with local refinement. Local grid refinement for such types of problems
has been used widely in the petroleum engineering literature, e.g., [7, 13, 14,
20]. The importance of very careful treatment of the difference stars near the
composite grid interfaces has been demonstrated experimentally in [14]. This
problem is the main concern of the present paper.

Cell-centered approximations were first proposed, studied, and applied to
certain 1-D parabolic problems by Samarskii in [15]. From a mixed finite ele-
ment approximation of 2-D second-order elliptic problems with mass lumping
that allows elimination of the velocity, Weiser and Wheeler [21] obtain and
analyze five-point cell-centered schemes on nonuniform but rectangular grids.
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The coefficients of these schemes are harmonic mean values of the coefficients
of the differential equation. As discussed in detail in [4], this is an important
feature of the schemes for problems with piecewise smooth coefficients, if mass
conservation is desired.

In this paper, we adopt the strategy of regular local grid refinement (see,
e.g., [5]) when each grid cell in a certain local subdomain is subdivided into
a number of rectangular cells. Then the discretization method used is based
on the finite volume technique by approximation of the balance equation over
each grid cell (see [9, 15, 16, 21]). As a consequence, finite difference schemes
derived in this manner on the composite grid preserve mass balance exactly.
With the exception of the irregular cells adjacent to the interfaces of the refined
subregion and the remaining part of the region, this approximation leads to
the standard 5-point difference equation (see, e.g., [16, 19, 21]). We treat the
irregular grid cells very carefully, proposing three new approximations of the
balance equation. Thus, our local refinement technique can be considered as an
extension of the results from Weiser and Wheeler [21] to the case of grids with
regular local refinement.

The error analysis of the derived difference schemes is done in the framework
of the book by Samarskii, Lazarov, and Makarov [18]. Since we are approx-
imating the balance equation, the local truncation error can be presented in a
divergence form with components depending only on the first derivatives of the
exact solution. Then, using the Bramble-Hilbert lemma argument [6], we pro-
vide an estimate of these residuals that require Hm , m > |, regularity of the
solution. In this way, we prove an 0(ha) convergence rate for the difference
schemes in a discrete H -norm, with a = j for the simplest symmetric scheme,
and a = | (m > 1 + a) for the nonsymmetric and a more accurate symmetric
scheme.

Unlike the finite element method, the finite difference approximation of a
self adjoint elliptic problem can produce a linear algebraic problem with a non-
symmetric matrix. In many cases, this is a severe violation of the fundamental
physical principle of reciprocity and should be avoided. There is also a purely
mathematical reason for avoiding nonsymmetry. Many efficient methods for
solving large systems of linear algebraic equations (for example, the conjugate
gradient method) rely on the symmetry of the matrix. In order to apply these
methods in a most efficient manner, we have to construct symmetric difference
schemes. This problem is also extensively studied in the present paper, where we
derive two symmetric approximations and study their algebraic and convergence
properties. However, in the case of local refinement, the most natural approx-
imation near the composite grid interfaces produces a nonsymmetric scheme.
It appears that this nonsymmetry is not too severe. We study the algebraic
properties of the corresponding matrix in order to use a generalized conjugate
gradient, e.g., that from Axelsson [2], in a subsequent paper.

The remainder of the paper is organized as follows. In §2, we introduce the
necessary notation, formulate the problem, and state our principles for the finite
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difference approximation. On the basis of the balance equation, we derive the
finite difference approximations in §3. Special attention is paid to the approx-
imation at the irregular grid points near the interface between the coarse and
fine grids, and three different approximations are derived. Then we formulate
the discrete problem as a system of linear algebraic equations and prove that the
corresponding matrix has a positive definite symmetric part. Next, we study in
§4 the discrete problem for the error of the method, presenting the local trunca-
tion error in a special divergence form. This enables us to prove convergence of
the schemes with a rate of 0(ha), a = \, \, depending on the approximation
along the interface lines.

In two subsequent papers, we discuss the derivation of efficient iterative meth-
ods for solving the composite grid system, extending the preconditioners devel-
oped by Bramble, Ewing, Pasciak, and Schatz [5] and by McCormick [11] and
McCormick and Thomas [12] (the FAC-method) to our case and to the multi-
level case.

2. Notation and problem formulation

2.1. Preliminaries and problem formulation. We use the standard notation for
Sobolev spaces [1]:

Hm = Hm(Cl) = {ue L2(Q) : Dau e L2(Çl),  \a\ < m),        m>0.

The norm in Hm(Q) is denoted || • \\m n and defined by

(2.1) IMIm,n = (X>l?,fi     '        K-,n=    Ell^lo.n
\i=o / \jq|=;

where || • ||0 n is the standard L -norm in Q,. We also use Sobolev spaces with
real index m > 0 [1].

We consider the following mixed boundary value problem: find a function
u(x) which satisfies the following differential equation in a bounded domain
QcR2:

,*n dwW       dW(2)        n   y(2.2) ^T + ̂ c7 = /W'        XeQ'

with

(2.3) W"(x) = -a(x)—,    Wy\x) = -a(x)—,       xeQ,

and the boundary conditions

(2.4) u(x) = g(x)   on TD,
du

'dv2.5) Wv = -a(x)^- = Q   onr\rfl,
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where v is the unit vector normal to the boundary T of Í2 and TD is a part
of T with positive measure. We suppose that there are positive constants a0
and ax such that

0 < a0 < a(x) < ax   in £2.
We are considering a mixed boundary value problem only for the sake of

simplicity of presentation. Here, we concentrate on the difficulties arising from
local refinement of the mesh. We develop a general approach for overcoming
two specific difficulties: constructing finite difference approximation on a com-
posite grid and solving the corresponding system of linear equations. The latter
will be studied in subsequent papers.

From the point of view of reservoir simulation, the pure Neumann boundary
value problem is more realistic. Then, condition (2.5) is imposed on the whole
boundary T. In this case, a necessary condition for existence of the solution is
fa f(x)dx = 0, and a unique solution can be selected by specifying the value
of /n u(x) dx . For our approach, these details are insignificant; but since they
are troublesome, we prefer to demonstrate our technique on a simpler problem
and to concentrate on the difficulties arising from the local grid refinement. In
order to explain our ideas and results better, we shall assume that a(x) = 1.

V) *<»>(«)

«<')(«)

».<■>(

%x) s<2>(*

»<»(*)

>(*)

e(x)
r-'W

(2),
A*)
5(2)(x)

w{l)(x)

Figure 2.1
A grid cell

= (x, - 0.5/î , x, + 0.5/i) x (x2 - 0.5A, x2 + 0.5A)
- east boundary of e(x)
- west boundary of e(x)
- north boundary of e(x)
- south boundary of e(x)
- the approximate total flux across s \x), / = 1, 2
- the approximate total flux across s( '(x)

meas(e(x))   = h
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If e = e(x) is the cell shown in Figure 2.1, then by integrating (2.2) over e
we get

(2.6)   /   W{1)ds-f   W(X)ds+í   W(2)ds-¡   W{2)ds= í [    f(t)dt,
7ï") /,<■> y+(2) yj(2i j ]e(X)'

which is a starting point for all of our approximations.

2.2. Grids, grid functions, and associated notation. We suppose that Q is a
rectangle with sides parallel to the axes xx and x2. Extensions to the case
of general domains and elliptic problems with Dirichlet boundary conditions
can be accomplished using the technique described in Samarskii, Lazarov, and
Makarov [18, Chapter III, p. 123].

We consider the case of cell-centered grids, which, owing to their good conser-
vation properties, are very popular in reservoir simulation, weather prediction,
heat transfer, etc. [4, 8-10, 13, 14, 20]. Our approximation of the differential
equation is based on the finite volume approach and uses the balance equation
(2.6). This approach was developed and extensively studied in the early 1960's
by Tikhonov and Samarskii in a series of papers [15, 17, 19] (see also [16]) and
rediscovered and augmented with new techniques in the mid 1980's (see [9, 10,
21]).

We cover the plane E2 by square cells with sides of length h . The grid
points are the centers of the cells. We suppose that the Dirichlet boundary
TD passes through the grid points (as shown in Figure 2.2). Our approach is
easily extended to the case of a nonuniform rectangular grid: the grid cells are
rectangles of size hx x h2, and the grid points are the centers of the cells.

Our goal is to develop a general approach for deriving finite difference ap-
proximations on a composite grid where we also introduce a refined grid along
the standard grid in subregions of special interest. We denote the subregions
covered by a refined grid by Q2 . If the remaining part of Í2 is denoted by Q,,
then we have Q = Q.x U Q2 .

The fine grid is introduced by subdividing the coarse grid cells in Q2 into a
certain number of fine grid cells and introducing as grid points the centers of the
new, finer cells (see Figure 2.2). Therefore, we have cells of two different sizes:
coarse grid cells of size hc and fine grid cells of size h, = £¡hc, m > I integer-
valued. The letter h will be used for both cases—fine and coarse cell sizes.
When m is an odd number, the points of the coarse grid in Q2 will coincide
with some of the points of the refined grid. This will be assumed throughout
the paper. In this case, we say that the coarse grid is imbedded in the fine grid
(see Figure 2.2).

For a given cell with center x € co, we use the notation of Figure 2.1.
We stress that w^\x) and w^\x) axe approximations of J^W^ds and

/to W(l) ds, in (2.6), respectively.
The centers of the coarse-grid cells contained in Í2 define the coarse grid,

which we denote by cb. The set of coarse-grid points in Q2, we denote by œ2 ;
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TD xife'2X

a

x - regular grid points, ,   _ irregular grid points

Figure 2.2
Grid with local refinement hc = 1hf

i.e., ö)2 = œ n Q2. The coarse-grid points in Q1 and the fine-grid points in
Q2 define the composite grid, denoted by co. The set of grid points lying on
FD, we denote by yD . We call the grid points of the composite grid next to the
boundary between Qj and Q2 irregular. All remaining grid points are called
regular. The grid points are denoted by x = (xx, x2) or (xx ¡, x2J), where
i, j axe integer indices.

Functions y(x) of a discrete argument x £ œ axe called grid functions. We
consistently use the dual notation for the value of the function y at the grid
point x = (xXi,x2j); y(x) = y(xXl-, x2J) = ytj. For a given grid function
y(x), x G co, we use the following discrete L2-norm:

/ x 1/2
(2.7) X>2(X)

On the other hand, the grid function y(x) can be considered as an element
of a vector space of dimension equal to ./V, the number of the grid points in co.
In this case, we denote y(x) as y eRN and consider it as an ^-dimensional
column vector. Then y   will be the row vector transpose of y.

3. Finite difference approximations

In this section, we derive three finite difference approximations of the prob-
lem (2.2)-(2.5) on a composite cell-centered grid. First, we consider the regular
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grid points, and following [16], derive a 5-point-star approximation with coef-
ficients some harmonic mean values of a(x). Next, we treat the irregular grid
points and propose three different approximations of the fluxes—simple sym-
metric, nonsymmetric, and more accurate symmetric approximations. Then,
we formulate the corresponding discrete problems and investigate the algebraic
properties of their matrices. We prove that all three approximations lead to
systems with invertible matrices and, moreover, that the matrices are spectrally
equivalent to the matrix of the simplest symmetric approximation. For the
nonsymmetric case, this is explained below.

3.1. Approximation of the balance equation. A starting point for the finite dif-
ference approximation of (2.2)-(2.5) is the balance equation (2.6). According
to our notation (see Figure 2.1), u/ \x) and ur \x) are approximate fluxes
across the faces s{l\x) and s{l\x), I = 1, 2, of a given cell e(x), x e to.
Then, replacing / W^'ds by their approximations, we get the following differ-
ence equations (in terms of approximate fluxes):

(3.1)        wW(x)-w{l)(x) + w{2)(x)-w{2)(x)= [ [    f(t)dt = <p(x),
J   Je{x)

a discrete analog of the balance equation (2.6). In order to complete the finite
difference approximation, we have to find a finite difference approximation of
the relations (2.3); i.e., we have to express the approximate fluxes w^'(x),
ur '(x), / = 1, 2, by the approximate values y(x) of the pressure u(x) at the
grid points.

Let us note first that if any of the boundaries of the cell e(x) lie on T\ro ,
then on this boundary we have Wv(x) = 0; therefore, it is natural to assume
that the corresponding approximate flux is zero. This is equivalent to an even
extension with respect to the boundary of our grid functions outside fi. With
this convention, we proceed with the approximation of the fluxes at the regular
grid points (see Figure 3.1).

Since a(x) is strictly positive, we can rewrite (2.3) in the form

(32) ^__W%çl xea    /=1   2(5.1) a^_      a{x)   ,       x eu, 1-1,2.

Now, let us integrate this equation for / = 1 along the interval with endpoints
(x\,i-\>x2j) and (xi,i>x2j)' We get

/•*.,,   W{l)(s, x, ,.) m        /•*.,,        ds
(3.3) ut .-«.,,. = -/ V ds s -wfxl2 ,. / . as    . ,

J ■/*,.,_,    a(s>x2,j) /'JJx,¡,_,a(s,x2j)

where by W¡_\.2 j we mean W( '(xx ,._, + \h, x2 ß .
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J+l

J-l

il ¡+1

Figure 3.1
Regular grid point (x, ¡,x2 ß

We can now write the following approximate relations, which will be a basis
for the finite difference approximation:

(3.4)

£mW{l\x)ds*hwfl/2J

~    (L [Xli     ds

js{y2)(x)ds^hwf]_xl2

* _ (i [X2i -  ds

-i

(xx (., s)

[",,,-«,_,,,],

K,,-",,,-!]•

These approximate relations show how to link the approximate fluxes w (x),
1=1,2, with the approximate values y(x) of the pressure. Specifically, at any
regular point x G to, we define

(3.5)
w{l\x) = w\l)j = -k®jA,ytJ = -k{l)A,y,       1=1,2,

w[l\x .t(') ÎA>) -    t(»,) = ö™ «-*}>?,,, a-*"V.       1=1,= 1,2.
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where

tw _t(i)
Ki,j-Ki+\,j'

Ví>; = y/j - y,_ij.       Ai^,y = y/+i,y - y<f>.
Vi.j^/j-^j-i '      Víj=y/,;+i ->*.>•

Then inserting (3.5) into (3.1), we get the desired finite difference approximation
of equation (2.2) at the regular grid points.

Remark 3.1. One can see easily how the derived approximation could be ex-
tended to the case of rectangular cells on a nonuniform mesh. If, instead of
the uniform grid parameter h , we introduce (hx i, h2 ,)—the sizes of the cell
e¡ in the x, and x2 directions—then formulas (3.5) and (3.6) will have the
following form:

"i,/ ^ rti,/-i

k{l) = (_I_ p' ds
-1

(-1 a(S>X2,j)t

and similarly for tu(1), w    , and ur '.

Remark 3.2. Obviously, at the regular grid points, we have
+ (1) (1) j      +(2) (2)wi'j = wiÁ,j    and    Wi,j = Wi,j+X-

Then equation (3.1) can be written in the form

2~] A[W    = f(t) dt,       x G to a regular point.

Remark 3.3. The coefficients k'' ' and l¿ ), / = 1, 2, are called harmonic mean
approximations of a(x), and are frequently used in the reservoir simulation lit-
erature (see [4, p. 84] and also [8, 13]). This approximation is particularly useful
when a(x) is a piecewise smooth function and can be derived from the lowest-
order mixed finite element method with "lumping the mass" (see, for example,
[21]). If c(x) is a smooth function in Q, then appropriate approximations to

k\ j and k) '. are a(xx (_1/2, x2   ) and a(xx i+x,2, x2 •), respectively, with

Remark 3.4. If a(x) = 1, then (3.5) is the standard 5-point approximation of
the Poisson equation with right-hand side the average of f(x) over the cell
e(x).   If f(x) is a smooth function, then the integral can be approximated
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i-1 i i+1

(i-lJ+4)

(i-lj + 1)

(i-U-1)

J+4

.1+3

J+2

j+l

M

Figure 3.2
Irregular grid point (x, /_1 V2,7+P

by the midpoint quadrature rule. But, we prefer to keep the right-hand side
as an integral of f(x), so that we keep an open option for nonsmooth f(x).
However, if we use any approximation of the integral, then we have to add its
error to the local truncation error of the difference scheme (see the presentation
of (4.2) and the estimate (4.10) below).

We next consider the approximation of the fluxes at the irregular points (see
Figure 3.2). Our ultimate requirement is that the finite difference scheme con-
serve mass. Since (in the particular situation shown on Figure 3.2)

(3.7) Í Wwds= [   WWds+ [ W[l)ds + I
JsmSi,j+2

Wwds.
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mass conservation requires that the approximate fluxes satisfy

(3.8) *!!!,.>♦.—¡3+«ïï„+-ïï*-
Thus, our task now is to find an appropriate approximation of the fluxes wfj+l,
1 = 0, 1,2. A natural approximation of the fluxes across the boundaries s¡ j+¡
uses the values of the pressure at the points (x, (_,, x2 +/), which for / = 0, 2
are not grid points. The needed values could be obtained from the values at
the coarse grid points by piecewise polynomial interpolation. Below, we use
piecewise constant and piecewise linear interpolation.

3.2. Simple symmetric approximation. We consider the case of irregular cell
ei j shown in Figure 3.2. Applying (3.3) and (3.4) in this case, we get

-i

k;,.AmdsS-hAIAAAA-A <»u-«-..A
Since we would like to have a coefficient &(1) which does not depend on h,
we divide the corresponding integral by the length of the interval of integration
(xx ,_,, x, ¡) and denote it by

kmm(_2_fx»      ds    y1
1,1     \hc + hfJx,„_,a(s,x2ß)

Since the point (x, (_,, x2 ) is not a grid point, we can assume that the ap-
proximate solution is extended over the cell ej_l as a constant and therefore
we can put y¡_x    = yi_1 ,+,. Thus, we get the following simplest form for the
approximate fluxes w¡.+¡, 1 = 0, 1,2:

(19) "!!/* = -r&M%<yi.j+i-yi-ij+i) = -j^u+A*.*,.
C J C J

where, implicitly, we have defined

Vi,J+l=)'/,;+/-^-l,j+P
(3-10) ,m        (    2      /•*..<        ds      Ylkw    - (-*— P'

a(s,x2j+l)J
at the irregular points (x, ;, x2 ,+/), / = 0, 1,2.

Using (3.10), we define the flux ujj.j, +1 by (3.8). Similarly, we define the
approximate fluxes at the irregular grid points (x, /+/, x2 ,), / = 0, 1,2 (see
Figure 3.2):

wmj = - jk¡l)j(yi+!J-yi+XJ_x) = -X2k{2^¡K2yi+lj,

i3'11) ,(2) í^_    [X>.J ds
MJ" \K + hflx2„_,a(xXJ+l,s)«-'—r.ír^'
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Note that in (3.11) we use the fact that 2hA(h, + hß = \ for the particular
situation of Figure 3.2.

For the approximation of the remaining fluxes at the irregular points, we can
use the approximations in (3.5) and (3.6).

Remark 3.5. Here we have considered the case hc = 7>h, only for definiteness.
It is easy to extend this approximation to the general case hc = mh,. Then,
(3.9) will have the form

(3-9,) wiJ*i = -^Tî^+Ay,,^.        / = 0, 1, ... , m - 1,

with /r ' and A( defined by (3.10). Similarly, we can define itr ' and k( '.
Remark 3.6. It is easy to see that this approximation leads to a system of linear
equations with a symmetric matrix. Since we have used piecewise constant
interpolation, it is natural to expect that the approximation properties of the
finite difference scheme are quite poor. We show that the rate of convergence
in the discrete energy norm, defined below by (4.9), of this scheme is 0(h ' ).
Therefore, it is natural to look for a better approximation; this is the main
concern of the following two subsections.

3.3. Nonsymmetric approximation. In this case, we suppose that y(x) is inter-
polated linearly between any two neighboring coarse-grid nodes. For example,
the values yt_x ,+/, / = 0, 2 (see Figure 3.2), are

(3.12)  yt_UJ = ¡yi_XJ+x + b/-i,;-i >        Vi-ij+i = 3^-ij+i + b,-i,,+4-
Then, instead of (3.9), we have the following expressions for the approximate
fluxes:

(3 13) WU = - 2\ku(y,,j - IVi-xj+x - bi-i.y-i).
i/i(1)       -  - iÂ-(1)     (v -lv - iv )Wi,j+2~        2Ki,j+2\yi,j+2       3->i-l,;+l       3>i-l ,j+4>-

Taking into account formulas (3.6) and (3.10), we can rewrite these expres-
sions in the following form:

(3-14) </«=-i*öfiVu+i.
^+2=-^+2ÂxyiJ+2 + ^+2A2yi_X:J+x.

Comparing (3.9) with (3.14), we see that in the latter case a correction pro-
portional to \hafj- has been added to the approximate fluxes. If the point
(*i ,_! > x2 j+x) is next to the north boundary of Q, then (x, ._,, x2 +4) is
outside Q, and the corresponding correction is not available. But since w(x)
satisfies (2.5), ■§%- = 0(h) near the boundary, and we can skip the correction.
Thus, near the boundary we can adopt the approximation of the simplest sym-
metric scheme. In the case of boundary condition a-jfë- = p, we have to add
\hfp(x) to the right-hand side of the difference scheme.
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(i-l,j+")

j+211+1

J+n

j + l

.i

i  ! i+2n + li       i + 1

Figure 3.3
Irregular grid cell with hc = (2n + l)hy

Similarly, we have the following expressions for the approximate fluxes at
the irregular points (x, ¡+¡, x2 ß , I = 0, 1,2:

w (2) ltP)Ä lu®;w - - ¡-ky >A v     - ikK >A vi,j-      lKi,j'h/i,j     6Ki, /Vi+lJ-l

(3.14' w(2)       _        1 7,(2)1      - _ ikK >    A v\,j-   iKi+ija2yi+ij

w (2)
i+2,j

J/>(2)    T 11,(2)-!^,M2,; + ^,iV,+1,J-r
For definiteness, we have considered the case when hc = 3Ay. In the case of

refinement hc = (2n + l)hj- (shown in Figure 3.3), the corresponding formulas
for the approximate fluxes are derived in a similar manner. For example, instead
of (3.14), we have

w(i)
i,j+n+l

W (1)
i, j+n+l

kW"•/, j+n+l
n + 1

c(1)^■j, j+n+l
n + 1

Aiy¡, j+n+l      2« + 1A2>V- 1,7+ti

1 = 1, 2, ... , n,

X /       T
^i, j+n+l       2« -I- 1    2^1-1,7+71     '

l = -l, -2, ...,-n.
3.4. More accurate symmetric approximation. The approximate fluxes in
(3.14) are sums of two terms: the first one is exactly the symmetric flux (3.9),
the second a correction, approximately equal to ±^af^-, that improves the ap-
proximation. Unfortunately, this correction leads to a nonsymmetric scheme.
In order to produce a symmetric scheme which has the same approximation
properties as the nonsymmetric one, we have to replace the second terms in
(3.14) by terms which approximate £%- and give a symmetric scheme. This
can be done in several ways. If we replace them by

i/>(>±K;+1lviJ+2-v i,)1
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then we get the following approximation of the fluxes:

(3.15)
^--2kl%yi,j-\kl%(yu+2-yiJ,

<j+2= -Kj+2Aiyi,j+2 + Kj+^ij+2-yl,J)-

Similarly, we get the following approximation of the fluxes ur ' at the irreg-
ular points (x, i, x2 ß and (x, /+2, x2 .) :

(3157} ^ij=-l^M:J-^xJy1+2^-yLß,

*>m.j = - ^V,+2,7 + t*f?i,j<yMj-yt.j)-
In the general case hc = (2n+l)hj- (shown in Figure 3.3), we get the following
approximations of the fluxes for the more accurate symmetric scheme:

w{l
i, j+n+l n+i

kw
k{l)       A v -    iJ+n(v -v )

i, j+n+l   w i, j+n+l 2     ^i, j+n+l     si,j+n-l>

l = ±l, ±2, ... , ±n.

The case hc = 2nhr is treated in the same way.

3.5. Formulation of the discrete problem. Summarizing these approxima-
tions, we formulate the following three finite difference schemes for the prob-
lem (2.2)-(2.5): find a grid function y(x) which satisfies the finite difference
equations (on the composite grid)

(3.16) -Y(wJ\x)-w[l\x))= [ f    f(t)dt = <p(x)   onto
/=1 J   Je(x)

and the Dirichlet boundary condition

(3.17) y(x) = g(x)   onTD,

where the approximate fluxes ur '(x) and w{ \x) axe defined by (3.5) and (3.6)
at all regular grid points and by any of the formulas (3.9)—(3.11), or (3.14), or
(3.15) at the irregular points.

As we mentioned above, the grid function y(x), x e to, can be considered
as a column vector y e R , where YV is the number of the grid points in to.
Then any of the three finite difference schemes can be written as a system of
linear algebraic equations

(3.18) ^y = f,

where in the right-hand side f we have taken the boundary condition (3.17)
into account.

Let

(3.19) A0y = f
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J| *2
0 1

(-1,-1)

Figure 3.4
Composite grid in a rectangle

be the matrix notation for the finite difference scheme (3.16), (3.17), (3.5), (3.6),
and (3.9)—(3.11); that is, A0 is a matrix of the simplest symmetric scheme.

Now we shall prove that the matrix A of (3.18) is invertible, and it will
follow that the finite difference scheme (3.16), (3.17) has a unique solution for
any <p(x), x e to, and g(x), x e TD . For definiteness, we shall consider the
case of the grid shown on Figure 3.4.

Let us form the inner product \TAy, where A is defined by (3.16) and v(x)
is an arbitrary grid function satisfying v(x) = 0 on TD. Then

.0/yTAy= -$>(*) £(u>lV)-u>{n(x))

(3.20)
xEco

2
l=\

= -EE«w(¿ w-» v^-E^
¡=\ xeco i=\

We transform the  sums  in  (3.20),   for   /   =   1,2,   using the following
Tsimple formula for summation by parts:   let  v  =   (vQ,vx, ... ,vn)     and
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w = (w0 ,wx, ..., wn)   be vectors in Rn+ ; then
71-1 71-1

(3.21) EK+1 - wAVi = - 2>,K - Vl) + WnVn-l - WXV0-
1=1 i=l

In order to use this formula for the case of Figure 3.4, we present the term
/, in the form

', = ££+££+££•
7<0 all /      7>0 i<0      7>0 i>0

Then, using formula (3.21) for each sum and taking into account that v(x) =
0 for x e ro , we get

(3-22)       E E$S - »!>u = - E E »!>,., - v, ,7) -
7<0 all i 7<0    i

where we have taken into account that for j < 0, the approximate flux w¡¡ is

defined as at the regular points and 'Wjn_l =0. Similarly,

\^v^ + (ü       UK
7>0 i'<0

(3-23) , + , 1

7>0   l KO J

and

(3^)EE(*!:í-«!>u = -eÍe<>u-^j)+<X;}-
7>0 i>0 7>0   ^ i>1 J

Note that in (3.23), we have 7 = 1,4,7,..., whereas in (3.24), 7 = 0,1,
2,....

Since, by (3.8),
w{l)    -w{1) +w{l)     +w{1)
W-l,j - W0,j + W0,j+\ + W0,j-l '

and taking into account the definition of A, from (3.6) and (3.10), we get

h = -    E    "PM.J
(3.25) (-..^.7)^.^0

- E^ij-i Voj-i + wojAivo,j + woj+iAivo,j+i}-
7>0

In a similar way, we also transform the term I2 :

h--     E     ^Mj
(3.26) K.nXi.fiemJ*

- E^KoVi-l.O + ™!2oV,',0 + WM,0A2Vi+l,o}-
¡>0
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Inserting these two identities into (3.20), we get the following basic representa-
tion:

(3.27) vr¿ly = -E{w(1)V + ™(2)V}>
eu

which is valid for the three finite difference schemes.
Now we consider consecutively the three difference schemes based on the

three approximations of the fluxes. In order to simplify our considerations, we
suppose that a(x) = 1.

Let us consider first the simplest symmetric scheme, where the approximate
fluxes are defined by (3.5), (3.6), (3.9)—(3.11). By using the corresponding ex-
pressions for Wfj, 1=1,2, for (x, ¡, x2 ß e to, in (3.27), we have

(3.28) yTA0y = E(*(1) VV + a[2)A2yA2v),

where

(3.29)

\   foxj>0, i = 0,J1)       J1)  _ /  2
,J     [l for the remaining indices,

(2)       (2)      Í j for/>0, ; = 0,
a    = a.    = < .

'-'     [l for the remaining indices.

From this representation, we see that the expression v ^0y is a symmetric
bilinear form of v and y, and that, therefore, the matrix A0 is symmetric. If

T Tv = y, then y A0y is a sum of squared finite differences, and y A0y = 0 if and
only if y is a constant vector. But since y(x) = 0 on rD , then y can only be
the zero vector. Therefore the matrix A0 is positive definite.

Remark 3.7. There exist positive constants c0 and c,, independent of h and
v, such that

(3.30) c0 E y2(x) measÉ?(x) < yr^0y < cxyTy = c, E /(*)•
x€to xeo)

_■jThis shows that the condition number of A0 is 0(h    ).
Now let us consider the nonsymmetric approximation of the fluxes at the

irregular grid points given by (3.14). Inserting (3.14) and (3.14') into (3.27),
we get

v Ay = E(Q   \y&iv + «   A2j>A2v)

(3.31) +6     E    {V-.,Avo,7-i-V-i,7Avo,7+.}
7=1,4,7,...

+ 6   E  {V,,-Avi,o-V,,-iV/+i,o}>
1=1,4,7,...
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where er' = a¡\, 1=1,2, are defined by (3.29). It is obvious that the bilinear
form v Ay is not symmetric. Applying the Cauchy inequality to the right-hand
side of (3.31), we get
(3-32) |vr^y| < |(vr^0v)1/2(yrV)1/2-

For v = y, combining this inequality with a similar inequality for the bound
below, we get

(3.33) ¡yTA0y<yTAy<¡yTA0y,
which shows that the matrix A is invertible and that the corresponding finite
difference scheme has a unique solution.

Finally, let us consider the case of more accurate symmetric approximation
of the fluxes at the irregular points given by (3.15). Substituting (3.15) and
(3.15') in (3.27), we get

v Ay = E(a   A.yAjU + a   A2yA2v)
CO

(3.34) +4     E    ^o,7+i -yo,7-i)K,7+i ~voj-i)
7=1,4,7,...

+ 4     E    O'.+i.o -J'i-i.oiK+i.o-Vi.o).
1=1,4,7,...

where a ' = a)■ ., / = 1, 2, are defined by (3.29). It is obvious that the bilinear
form v Ay is symmetric.

Applying the Cauchy inequality to the right-hand side of (3.34), we get
(3.35) |vr^y| < }2(vTA0v)l,2(yTAoy)1'2.

For v = y, combining this inequality with a similar one for the bound below,

(3.36) l2yTA0y<yTAy<lyTA0y,
which shows that the matrix A is invertible and that the corresponding finite
difference scheme has a unique solution.

Summarizing the results, we have the following theorem for all three approx-
imations:

Theorem 3.1. The finite difference scheme (3.16), (3.17), for which the approx-
imate fluxes are defined by (3.5), (3.6) at the regular grid points and by any of
the formulas (3.9)—(3.11) or (3.13), (3.14), or (3.15) at the irregular points,
has a unique solution. Moreover, the following basic inequalities are true:

(3.37) |vr^y| < y2(yTA0y)i/2(yTA0y)]/2,

(3.38) 7,v A0\ < v A\<y2v AQv,

where A0 is the matrix of the simplest symmetric approximation, and A is the
matrix of any of our three approximations.   If a(x) = I, then yx = \ and
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y2 = g for the matrix A of the nonsymmetric scheme, and yx = \, ~?i = \ f°r
the symmetric more accurate scheme.

The constants yx and y2 in (3.37), (3.38) depend on a(x). In general, this
dependence is very weak. For example, if /c( \x), I = 1, 2, are evaluated ex-
actly by (3.6), then yx and y2 do not depend on the ratio maxna(x)/minna(x),
which is important for the iterative methods for solving the corresponding sys-
tem.

It is important to note that, in the general case hc = mhf, the derived
approximations produce finite difference schemes which satisfy the inequalities
(3.37) and (3.38) with constants y, and y2 independent of the ratio m =
hjhf.

4. Error estimates
In this section, we study the convergence rate of the derived finite difference

schemes. As we noticed at the beginning, the cell-centered nonuniform meshes
are widely used in reservoir simulation. The averaging of the coefficient using
(3.6) is especially useful in the case of a piecewise continuous coefficient. The
nonuniformity of the grid and the discontinuity of the coefficient raise impor-
tant questions concerning convergence of the discrete solutions. Many of these
questions are discussed in [9, 15-17, 21]. Since our objective is studying the
problems arising from the local refinement, we concentrate on them. Thus, we
consider uniform (coarse and fine) meshes and a smooth coefficient. Moreover,
since the case of a smooth coefficient is similar to that of constant coefficients,
we assume that a(x) = 1.

The error analysis presented here is done in the general framework of the
methods developed in [18]. First, we define the corresponding finite difference
scheme for the error of the method e(x) = y(x) - u(x), x G to. The right-
hand side of the scheme is the local truncation error, which is presented in a
divergence form. Next, we derive an a priori estimate for e(x) in the discrete
energy norm. Finally, using the Bramble-Hilbert lemma argument [6], we get
an 0(ha) convergence rate, where \ < a depends on the smoothness of the
exact solution u(x) and on the type of the approximation we use (symmetric,
nonsymmetric, or more accurate symmetric).

4.1. An a priori estimate for the error. If e(x) = y(x) - u(x), x € to, is the
error of the finite difference method, then y(x) = e(x) + u(x), x G to ; or, in
vector form, y = e + u. Substituting y in (3.18) (or, equivalently, in (3.16),
(3.17)), we obtain

(4.1) Ae = f-Au=y/,

where Au is defined by the left-hand side of (3.16), in which the approximate
fluxes are defined by the values of u(x) at the grid points. Note that f is
defined by the right-hand sides of (3.16) and (3.17). Then, using (2.6) and the
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fact u(x) = g(x), x G TD, we transform y/ in the form

(4.2)
**>=e{//=1 Us

W{l)ds
-*""(/,

Fr(/)rf,-«;(/)
)}

?/(*)) »
/=i

.Í.C) (/)where the approximate fluxes ur  , iuu , / = 1, 2, are defined by the values
of u(x) at the grid points. Here we have defined implicitly

(4.3)
riî(x) = !+{,){x)W{l]ds-w{l)(x),

V,(x)=Ux)Wi,)dx-w{l)(x),>(x)

It is easy to see that, at the regular points, r¡x(xx ¡, x2 ) = nx(xx i+l, x2 .)
and n2(xx ., x2 ) = n2(xx ¡, x2 .+1). Note also that the error e(x) satisfies
homogeneous Dirichlet boundary conditions on rD ; i.e.,
(4.4) e(x) = 0   onTD.
It is important to point out that ^(x) = 0 on the north boundary of Q,
77¡'"(x) = 0 on the east boundary of Q, and n2(x) = 0 on the south boundary
of fi.

In order to investigate the convergence of the finite difference schemes, we
first derive the corresponding a priori estimates for e(x) in the energy norm.
We multiply equation (4.1) by e(x) and sum over all grid points x G w. Then
by (3.27) we have
(4.5) - E{^(1)WA^x) + w{2\x)Ä2e(x)} = E V(x)e(x).

x£ca XÇ.CÛ

Then, taking into account the particular form (4.2) of the local truncation error
y/(x) and using the same arguments as in (3.20)-(3.27), we have

2
E ¥(x)e(x) = E «(■*) E^/+M ~ V*))

(4.6)   * ;    /=1 2

= E E ̂ x^w - ̂ /M) = - E E ??/(^)A/ß(^)-
l=\    co (O   1=1

Therefore, (4.5) has the form

(4.7) e Ae = EE™(V
O)    1=1

EEw
CO   l=\

,(')where the approximate fluxes wy ', I = 1, 2, are defined using the values of
e(x) at the grid points x G to. Then, applying (3.38) and estimating the right-
hand side by the Cauchy inequality and (3.8), we get, from (4.7),

(4.8) yxeTA0e < C(eTA0e)l/2 (EE^M
V/=l     (O J

1/2
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Since the matrix A0 is symmetric and positive definite (note that our vectors
correspond to grid functions vanishing on ro), it defines a norm, called the
energy norm,
(4.9) IMI,,^IMU = (yrV)1/2-

Using the discrete L2-norm, defined by (2.7), (4.7), we obtain the following
theorem.

Theorem 4.1. The error s(x) = y(x) - u(x), x G to, of the finite difference
scheme (3.16), (3.17) satisfies the a priori estimate

(4.10) iwi»..<c(iiii1ii0><,+nibiio1j,
where the components nl, I = 1,2, of the local truncation error are defined by
(4.3) with approximate fluxes kj(/) and w{l\ I = 1,2, determined by (3.5),
(3.6), and one of the relations (3.9)- (3.11) for the simplest symmetric scheme,
(3.14) for the nonsymmetric scheme, or (3.15) for the more accurate symmetric
scheme. The constant C does not depend on h or e.

Obviously, the three finite difference schemes share the same a priori estimate
for the error. At this point in our development they differ only on the definition
of the local truncation error r¡¡, 1=1,2. In order to get an estimate for the
convergence rate, we have to estimate the norms ||r7,||0 m, I = 1, 2, in all three
cases.

4.2. Error estimates. Since we are considering the case a(x) = 1, the com-
ponents r¡¡ of the local truncation error in (4.3) are

(4.11) »//(*)=/",„    ^ds-w(l)(x),       xeto,
JA\x) öxi

where the fluxes «r '(x) axe defined by the values u(x) at the grid points
x G to.

Here, convergence analysis of difference schemes is performed in the frame-
work of [18]: n¡(x) axe considered as linear functionals of u(x), bounded in
the Sobolev spaces Hm , m > \ . For any particular finite difference approx-
imation, these functionals vanish for polynomials of certain degree and there-
fore, by the Bramble-Hilbert lemma argument, are of order 0(ha) for some
a. Using these estimates in (4.10), we get the corresponding estimate for the
convergence rate.

Our task now is to investigate the particular approximations of the fluxes.
Let us first consider the case of regular grid points. For / = 1, we have

rx2J+h/2  du    / , n
n^= I dx~ [Xl'i~2h,SJ ds-u(xXi,x2J) + u(xXi_x,x2j).

Here, nx(x) is a linear functional of u(x), bounded for u G Hm(ë), m > \ ,
ë = ë(x) = li j = ei j U ei_i    . This functional vanishes for all polynomials of
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second degree. Therefore, by the Bramble-Hilbert lemma argument, we get

(4.12) l*(*)l<CAmMM+li?(x),        \<m<2.
Now, let us consider the case of irregular grid points. Since at the irregu-

lar grid points we have three different approximations, we shall consider them
separately.

We begin with the case of the simplest symmetric scheme, for which the
approximate fluxes are defined by (3.9)—(3.11). For the points (x, (, x2 +/),
/ = 0, 1, 2, of Figure 3.2, we have

,x2J+(/+l/2)A/  du    / , v
*i(*i, i>x2.j+l)=  / ñx~(X^'~2hf'Slds

Jx2J+(l-l/2)hf   °XX   \ I J

-u(xXJ,x2J + lhf) + u(xXJ_x,x2j+x).

The expression on the right is a linear functional of u(x), bounded in Hm+l,
m > j. For / = 0, 2, it vanishes only for u = const (it fails to vanish for
u = x2). Then

(4.13) |^WI<C(|W|li?(;c)+/2m|w|m+li?(;c)),    \<m<l, 1 = 0,2,
where e(x) = et_x ,+, U ei Uei j+l, 1 = 0,2. The corresponding linear func-
tional nx for / = 1 vanishes for all polynomials of first degree, and therefore

(4.14) \nx(x)\<Chm\u\m+x-e(x),       \<m<l,

with ë(x) = ei_Xj+x[JeiJ.
If the irregular point is near the boundary T\rD , then the fluxes are defined

as in the case of the simplest symmetric approximation. But since |^ = 0 on
r\rD , it is easy to see that the estimate (4.14) is also valid for these points.

In a similar way, we can estimate n2(x) at the other irregular points. Then,
using (4.13) and (4.14), we get

E>72(*)<C E     \U\l,ë(x) + J2h2m\UL+l,e{x)
x€(o I      x€co x€(0

\x irregular /

<C(|M|2nA+/z2w|M|2m+Ijfi),

where £lh is a strip of width 4h around the interface between fi, and fl2
(coarse and fine grid regions). The first term on the right can be estimated by
the well-known Il'in's inequality (see [18, p. 26])

IMIo,na^C(îl/2|Mlm,n>        m>2->
where Qá is a strip in Q with a width ô . Therefore, we have

(4.15) IWo.^ÍE'íw)     ^1/2HMIU,a'        m>\-
\x€(o )
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In the same way, we can estimate \\rj2\\0 œ . Then, by (4.10), we get:

r77I+lTheorem 4.2. If the solution u(x) of the problem (2.2)-(2.5) is H -regular,
m > j, then the simplest symmetric difference scheme (3.16), (3.17), (3.5),
(3.6), (3.9)—(3.11) has 0(hl/2) rate of convergence in the energy norm; i.e.,

(4.16) \\y-u\\x¡w<Chl/2\\u\\m+XíSl,       m>\.

The low order of convergence of the simplest symmetric difference scheme
is due to its poor approximation properties at the irregular points. This is
not a surprise, since this approximation was obtained by piecewise constant
interpolation of the grid functions over every cell, which is a poor choice.

Now we consider the nonsymmetric approximation at the irregular point
(x, (, x2   ) of Figure 3.2, for example:

,Mul,x,J=Q^^(Xu,-\k,,S)ds

Ui,j       3Mi-l,7+l       3M!-1,7-1

This is a linear functional of u, bounded in Hm+l, m > \ , and vanishing for
polynomials of first degree. Then

\nx(x)\ = \nx(xXi,x2J)\<Chm\u\m+x-_,       \<m<l.

Then, using the approach we described above in the case of simplest symmetric
scheme, we have

/ X 1/2

llfillo,« = (E**)]     < Chm+l/2\\u\\m+y2til,       J < m < 1.

The same estimate can also be derived for the more accurate symmetric scheme,
since its approximation properties are the same as those of the nonsymmetric
scheme. We summarize this in the following theorem:

Theorem 4.3. If the solution u(x) of the problem (2.2)-(2.5) with constant co-
efficient a(x) is Hm+ ' -regular, j < m < 1, then the nonsymmetric scheme
(3.16), (3.17), (3.5), (3.6), (3.14) and the more accurate symmetric scheme
(3.16), (3.17), (3.5), (3.6), (3.15) have 0(hm+l/2) rate of convergence in the
energy norm (4.9) ; i.e.,

(4.17) lly-"ll,,w<CAm+1/2|N|m+3/2>ii,        \<m<l,

with constant C independent of h and u(x).

Remark 4.1. The components of the local truncation error depend locally on
the solution u(x). Their estimates depend only on its local smoothness. In our
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case, f2 = iî1 U Í22, and (4.17) can be written in the form

(4.18) ILK - «Hi.. < C(C1/2|WL+3/2,n, + h^XI2\\u\\m+,l2tClß.
If the term ||w||m+3/2 a is much larger than the term ||w||m+3/2 a , then it is
reasonable to introduce a finer grid in Q2 .

Unfortunately, the constant C in (4.17) depends on the ratio hjhr, and
(4.18) is no longer valid for A, = hßc , ß > 1. Instead ofthat, we can introduce
a multilevel refinement, choosing a sequence of subdomains Q2 +1) c £22fe) and
introducing in each of them a mesh of size hk+x = \hk, k = 1,2, ... , I - I.
Then, in the right-hand side of (4.18) we shall have a sum of the corresponding
norms of the solution in Çl2k)\Çl(k+l) multiplied by hk+xl2, and the constant
C will not depend on h .

Numerical experiments will be reported in a forthcoming paper, which will
also consider construction of optimal two-grid preconditioners for problems
with local refinement.

ACKNOWLEDGMENTS

This research was supported in part by Office of Naval Research Contract No.
0014-88-K-0370, by National Science Foundation Grant No. DMS-85-4360,
and by funding from the Institute for Scientific Computation at the University
of Wyoming through NSF Grant No. RII-8610680. The second and the third
authors have been supported also by the Bulgarian Committee of Science under
Grant No. 55-26-3-87.

Bibliography

1. R A. Adams, Sobolev spaces, Academic Press, New York, 1975.
2. O. Axelsson, A generalized conjugate gradient, least square method, Numer. Math. 51 (1987),

209-227.
3. O. Axelsson and V. A. Baker, Finite element solutions of boundary value problems, theory

and computation, Academic Press, Orlando, 1984.
4. K. Aziz and A. Settari, Petroleum reservoir simulation, Applied Science Publishers, London,

1979.
5. J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A preconditioning technique for

the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech.
Engrg. 67 (1988), 149-159.

6. J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with application to
Hermite interpolation, Numer. Math. 16 (1971), 362-369.

7. R. E. Ewing, Efficient adaptive procedures for fluid flow applications, Comput. Methods
Appl. Mech. Engrg. 55 (1986), 89-103.

8. R. E. Ewing and R. D. Lazarov, Adaptive local grid refinement, Paper SPE 17806, presented
at the SPE Rocky Mountain Regional Meeting, Casper, May 1988.

9. H. O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff, and A. B. White, Jr., Superconver-
gent schemes on irregular grids, Math. Comp. 47 (1986), 537-554.

10. T. A. Manteuffel and A. B. White, Jr., The numerical solution of second-order boundary
value problems on nonuniform meshes, Math. Comp. 47 (1986), 511-535.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS 461

11. S. McCormick, Fast adaptive composite grid (FAQ methods: Theory for the variational case,
Comput. Suppl. 5 (1984), 115-121.

12. S. McCormick and J. Thomas, The fast adaptive composite grid (FAQ method for elliptic
equations, Math. Comp. 46 (1986), 439-456.

13. O. A. Pedrosa, Jr., Use of hybrid grid in reservoir simulation, Ph. D. Thesis, Stanford
University, 1984.

14. P. Quandalle and P. Besset, Reduction of grid effects due to local sub-gridding in simulations
using a composite grid, Paper SPE 13527, presented at the SPE 1985 Reservoir Simulation
Symposium, Dallas, February 1985.

15. A. A. Samarskii, Homogeneous difference schemes on non-uniform nets for equations of
parabolic type, U.S.S.R. Comput. Math, and Math. Phys. 3 (1963), 351-393.

16. _, Introduction to the theory of difference schemes, Nauka, Moskow, 1971. (Russian)
17. _, Local one dimensional difference schemes on non-uniform nets, U.S.S.R. Comput.

Math, and Math. Phys. 3 (1963), 572-619.
18. A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference schemes for differential

equations having generalized solutions, Vysshaya Shkola, Moskow, USSR, 1987. (Russian)
19. A. N. Tikhonov and A. A. Samarskii, Homogeneous difference schemes on non-uniform nets,

U.S.S.R. Comput. Math, and Math. Phys. 2 (1962), 927-953.
20. D. U. von Rosenberg, Local grid refinement for finite difference methods, Paper SPE 10974,

presented at the 57th Annual Fall Technical Conference, New Orleans, September 1982.
21. A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic

problems, SIAM J. Numer. Anal. 25 (1988), 351-375.

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071

Institute of Mathematics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Center of Informatics and Computer Technology, Bulgarian Academy of Sciences,
1113 Sofia, Bulgaria

E-mail address : ewing%lode@uwyo.bitnet

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


