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Abstract

The convolution layer has been the dominant feature ex-

tractor in computer vision for years. However, the spatial

aggregation in convolution is basically a pattern match-

ing process that applies fixed filters which are inefficient

at modeling visual elements with varying spatial distribu-

tions. This paper presents a new image feature extractor,

called the local relation layer, that adaptively determines

aggregation weights based on the compositional relation-

ship of local pixel pairs. With this relational approach, it

can composite visual elements into higher-level entities in

a more efficient manner that benefits semantic inference. A

network built with local relation layers, called the Local Re-

lation Network (LR-Net), is found to provide greater mod-

eling capacity than its counterpart built with regular con-

volution on large-scale recognition tasks such as ImageNet

classification.

1. Introduction

Humans have a remarkable ability to “see the infinite

world with finite means” [27, 2]. From perceiving a lim-

ited set of low-level visual primitives, they can produc-

tively compose unlimited higher-level visual concepts, from

which an understanding of a viewed scene can be formed.

In computer vision, this compositional behavior may be

approximated by the building of hierarchical representa-

tions in a convolutional neural network, where different lay-

ers represent different levels of visual elements. At lower

layers, basic elements such as edges are extracted. These

are combined at middle layers to form object parts, and then

finally at higher layers, whole objects are represented [35].

Although a series of convolutional layers can construct

a hierarchical representation, its mechanism for compos-

ing lower-level elements into higher-level entities can be

viewed as highly inefficient in regards to conceptual infer-

ence. Rather than recognizing how elements can be mean-

ingfully joined together, convolutional layers act as tem-
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Figure 1. Illustration of the 3×3 convolution layer and the 3×3

local relation layer. While 3 channels are required by convolution

to represent the spatial variability between bird eye and beak, the

local relation layer requires only 1 channel.

plates, where input features are spatially aggregated accord-

ing to convolutional filter weights. For an effective compo-

sition of features, suitable filters would need to be learned

and applied. This requirement is problematic when trying

to infer visual concepts that have significant spatial vari-

ability, such as from geometric deformation as illustrated in

Fig. 1, since filter learning could potentially face a combi-

natorial explosion of different valid compositional possibil-

ities [24, 34, 23].

In this paper, we present a new computational network

layer, called the local relation layer, in which meaningful

compositional structure can be adaptively inferred among

visual elements in a local area. In contrast to convolution

layers which employ fixed aggregation weights over spa-

tially neighboring input features, our new layer adapts the

aggregation weights based on the composability of local

pixel pairs. Inspired by recent works on relation model-

ing [1], composability is determined by the similarity of

two pixels’ feature projections into a learned embedding

space. This embedding may additionally account for ge-

ometric priors, which have proven to be useful in visual

recognition tasks1. By learning how to adaptively compose

1For example, geometric priors are intrinsically encoded in the con-

volution layer, as its aggregation weights are parameterized on relative

positions. This is an important property leading to its success in visual

recognition.
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pixels in a local area, a more effective and efficient compo-

sitional hierarchy can be built.

Local relation layers can be used as a direct replacement

of convolutional layers2 in deep networks, with little added

overhead. Using these layers, we have developed a net-

work architecture called Local Relation Network (LR-Net)

that follows the practice in ResNet [9] of stacking resid-

ual blocks to enable optimization of very deep networks.

Given the same computation budget, LR-Net with 26 lay-

ers and bottleneck residual blocks surpasses the regular 26-

layer ResNet by an absolute 3% in top-1 accuracy on the

ImageNet image classification task [7]. Improved accuracy

is also achieved with basic residual blocks and on deeper

networks (50 and 101 layers).

Besides strong image classification performance, we

demonstrate several favorable properties of local relation

networks. One of them is their greater effectiveness in uti-

lizing large kernel neighborhoods compared to regular con-

volution networks. While regular ConvNets mainly employ

3 × 3 kernels due to saturation at larger sizes, LR-Net is

found to benefit from kernels of 7 × 7 or even larger. We

additionally show that the network is more robust to adver-

sarial attacks, likely due to its compositional power in the

spatial domain.

We note that while deep neural networks all form a

bottom-up hierarchy of image features, they generally ag-

gregate feature based on static convolution weights, which

can be regarded as a top-down manner. By contrast, our

compositional approach computes the weights adaptively

based on composability of local pixels pairs, referred to

as a bottom-up manner. There exist a few recent meth-

ods [24, 10, 28] that also do so, but they are either not ap-

plicable to large-scale recognition tasks [24, 10] or act in

only a complementary role to regular convolution, rather

than as a replacement [28]. Moreover, these methods do

spatial aggregation over the whole input feature map and do

not consider geometric relationships between pixels, while

our network demonstrates the importance of locality and ge-

ometric priors. With this work, it is shown that a bottom-up

approach to determining feature aggregation weights can be

both practical and effective.

2. Related Works

Convolution Layers and Extensions The convolution

layer has existed for several decades [8, 18]. Its re-

cent popularity started with the impressive performance of

AlexNet [17] in classifying objects on ImageNet [7]. Since

then, the convolution layer has been almost exclusively used

in extracting basic visual features.

2Since 1×1 convolutions do not involve filtering over neighboring pix-

els, we do not treat them as convolutions in this paper and refer to them as

channel transformations [20]. Nevertheless, in some figures/tables, we use

1× 1 to denote a channel transformation layer for notation convenience.

Extensions to the regular convolution layer have been

proposed. In one direction, a better accuracy-efficiency

tradeoff is obtained by limiting the scope of aggregated in-

put channels. Representative works include group convo-

lution [17, 31] and depthwise convolution [5, 11]. Another

direction is to modify the spatial scope for aggregation. This

has been done to enlarge the receptive field, such as through

atrous/dilated convolution [4, 33], and to enhance the abil-

ity to model geometric deformation, via active [14] and de-

formable convolution [6, 36].

Some works relax the requirement of sharing aggrega-

tion weights/scopes across positions. A straightforward ap-

proach is taken with the locally connected layer [25], which

learns independent aggregation weights for different posi-

tions. Its application is limited due to the loss of important

properties from regular convolution, including translation

invariance and knowledge transfer from one position to oth-

ers. In other works along this direction, convolution layers

are proposed which generate position-adaptive aggregation

weights [15] or an adaptive aggregation scope [6, 36].

We note that regular convolution and the above exten-

sions all operate in a top-down manner, determining their

convolution behavior based on image appearance or spatial

positions within a receptive field. In contrast, the proposed

layer determines aggregation weights in a bottom-up fash-

ion based on composability of local pixel pairs, which we

believe provides a more efficient encoding of spatial com-

position in the visual world. At the same time, the proposed

layer follows and adapts several favorable design principles

from these convolution variants, such as locality, use of ge-

ometric priors, and weight/meta-weight sharing across po-

sitions, which have been found to be crucial in effectively

extracting visual features.

Capsule Networks To address some shortcomings of

convolution layers, there have been recent works that deter-

mine the aggregation weights in a bottom-up manner based

on the composability of pixel pairs. A representative work

is Capsule Networks [24, 10], in which composability is

computed by an iterative routing process. In each routing

step, the aggregation weights are enlarged if the vectors be-

fore and after aggregation are close to each other, and they

are reduced otherwise. This self-strengthening process in

capsule networks is similar to the process of a filtering bub-

ble, a popular phenomenon in social networks where the

connection between agents with the same interests becomes

stronger, while the connections become weaker when inter-

ests are dissimilar.

Although the routing method is inspiring, the computa-

tion is not well aligned with current learning infrastructures

such as back-propagation and multi-layer networks. In con-

trast, the composability of pixel pairs in the local relation

layer is computed by the similarity of pixel pairs in an em-

3465



bedding space with learnt embedding parameters, which is

more friendly to the current learning infrastructure. The

local relation layer is also differentiated from capsule net-

works by its aggregation computation process, including its

spatial scope (local vs. global) and geometric priors (with

vs. without). With these differences, local relation networks

are significantly more practical than existing methods based

on bottom-up aggregation.

Self-Attention / Graph Networks The proposed local re-

lation layer is also related to self-attention models [26] used

in natural language processing, and to graph networks ap-

plied on non-grid data [3]. These works share a basic struc-

ture similar to general relation modeling [1], which natu-

rally introduces compositionality in the networks.

Due mainly to their powerful composition modeling

ability, these methods have become the dominant ap-

proaches in their respective fields. However, in computer

vision, there are few works involving such compositional-

ity in their network architecture [12, 28, 32, 19, 29, 13, 30]

. In [12], relationships between object proposals are mod-

eled, which leads to improved accuracy as well as the first

fully end-to-end object detector. The relation modeling in

that work is applied to non-grid data. In [28], relationships

are modeled between pixels, as in our work. However, the

goal is different. [28] extracts long-range context as com-

plementary to the convolution layer, we pursue a basic im-

age feature extractor with more representation power for

spatial composition than the convolution layer. In [13], the

channel-wise attention are explored and [30] further inte-

grated the channel-wise attention and spatial-wise attention.

In this sense, our work bridges the general philosophy of

introducing compositionality into representation, which has

proven effective in processing sequential and non-grid data,

and applicability as a basic feature extractor for computer

vision. Such a goal is non-trivial and requires adaptations

from both sides.

3. A General Formulation

In this section, we describe a general formulation for ba-

sic image feature extractors, based on which the proposed

local relation layer will be presented. Denote the input and

output of a layer by x ∈ R
C×H×W and y ∈ R

C′
×H′

×W ′

,

with C,C ′ being the channels of input/output features and

H,W,H ′,W ′ the input/output spatial resolution. Existing

basic image extraction layers generally produce the output

feature by a weighted aggregation of input features,

y(c′,p′) =
∑

c∈Ωc′ ,p∈Ω
p′

ω(c′, c,p′,p) · x(c,p), (1)

where c, c′ and p = (h,w),p′ = (h′, w′) index the in-

put and output channels and feature map positions, respec-

tively; Ωc′ and Ωp′ denote the scope for channel and spa-

tial aggregation of input features in producing the output

feature value at channel c′ and position p
′, respectively;

ω(c′, c,p′,p) denotes the aggregation weight from c,p to

c′,p′. Existing basic image feature extraction layers are

differentiated mainly by three aspects: parameterization

method, aggregation scope, and aggregation weights.

Parameterization method defines the model weights to

be learnt. The most common parameterization method is

to directly learn the aggregation weights ω [18]. There are

also some methods that learn a meta-network {θ} on input

features to generate adaptive aggregation weights [15] or an

adaptive aggregation scope across spatial positions [6], or

learn a fixed prior about spatial aggregation scope (Ω) [14].

In general, the parameterization is shared across spatial po-

sition to enable translation invariance.

Aggregation scope defines the range of channels and spa-

tial positions involved in aggregation computation. For

channel scope, regular convolution includes all input chan-

nels in computing each channel output. For greater effi-

ciency, some methods consider only one or a group of in-

put channels in producing one channel of the output fea-

ture [17, 5]. Recently, there have been methods where

multiple or all output channels share the same aggregation

weights [28, 24]. For spatial scope, most methods constrain

the aggregation computation in a local area. Restricting ag-

gregation to a local area can not only significantly reduce

computation but also help introduce an information bottle-

neck that facilitates learning of visual patterns. Neverthe-

less, recent non-convolution methods [28, 24] mostly adopt

a full spatial scope for aggregation computation.

Aggregation weights are typically learned as network pa-

rameters or are computed from them. Almost all vari-

ants of convolution obtain their aggregation weights in a

top-down manner, where they are either fixed across po-

sitions or determined by a meta-network on the input fea-

tures at the position. There are also some non-convolution

methods [28, 24] that compute the aggregation weights in

a bottom-up fashion, with the weights determined by the

composability of a pixel pair. In contrast to convolution

variants whose aggregation weights depend heavily on ge-

ometric priors, such priors are seldom used in recent non-

convolution methods.

Table 1 presents a summary of existing basic image fea-

ture extractors.

4. Local Relation Layer

In this section, we introduce the local relation layer. Ex-

pressed within the general formulation of Eqn. (1), its ag-
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Table 1. A summary of basic image feature extractors. The “parameterization” column indicates the model weights to be learnt. The

symbols ω, {θ},Ω denote aggregation weights, weights of meta-networks, and spatial sampling points, respectively. “share” indicates

whether the parameterized weights are shared across position. The aggregation scope is given over both the channel and spatial domains.

The “aggregation weight” column covers three aspects: how aggregation weights are computed from parameterized weights (“computation”

sub-column); inclusion of geometric priors (“geo.” sub-column); type of computation (“type” sub-column).

method
parameterization aggregation scope aggregation weight

param. share
channel

(in/out/share)
spatial computation geo. type

conv.

regular ω X all/one/no local ω X top-down

group [17, 31] ω X group/one/no local ω X top-down

depthwise [5, 11] ω X one/one/no local ω X top-down

dilated [4, 33] ω X all/one/no atrous ω X top-down

active [14] ω, Ω X all/one/no Ω ω X top-down

local connected [25] ω ✗ all/one/no local ω X top-down

dynamic filters [15] θ X all/one/no local fθ(xp′) X top-down

deformable [6, 36] ω, θ X all/one/no Ω(θ) ω X top-down

non-local [28] θk, θq X one/one/all full Φ(fθq (xp′), fθk (xp)) ✗ bottom-up

capsule [24, 10] θ ✗ one/one/group full route(yp′ , fθ(xp)) ✗ bottom-up

local relation (our) θk, θq, θg X one/one/group local
softmaxΩ(Φ(fθq (xp′),

fθk (xp)) + fθg (p− p
′))

X bottom-up

gregation weights are defined as3

ω(p′

,p) = softmax(Φ(fθq (xp′), fθk (xp))+fθg (p−p
′)), (2)

where the term Φ(fθq (xp′), fθk(xp)) is a measure of com-

posability between the target pixel p′ and a pixel p within

its position scope, based on their appearance after trans-

formations fθq and fθk , following recent works on relation

modeling [1]. The term fθg (p−p
′) defines the composabil-

ity of a pixel pair (p,p′) based on a geometric prior. The

geometric term adopts the relative position as input and is

translationally invariant.

This new layer belongs to the class of bottom-up meth-

ods, as indicated in Table 1, as it determines composability

based on the properties of the two visual elements. In the

following, we present its design and discuss its differences

from existing bottom-up methods. These differences lead to

significantly higher accuracy on image recognition bench-

marks. Its performance also is comparable to or surpasses

state-of-the-art top-down convolution methods.

Locality The bottom-up methods typically aggregate in-

put features from over the full image. In contrast, the local

relation layer limits the aggregation computation to a local

area, e.g., a 7 × 7 neighborhood. We find that constraining

the aggregation scope to a local neighborhood is crucial for

feature learning in visual recognition (see Table 3).

Compared with the convolution variants which also con-

strain the aggregation computation to a spatial neighbor-

hood, the local relation layer proves more effective in uti-

lizing larger kernels. While convolution variants usually

exhibit performance saturation with neighborhoods larger

3Since one output channel strictly uses one input channel in aggregation

computation, we omit the c, c
′ for notational convenience.

than 3 × 3, the local relation layer yields steady improve-

ments in accuracy when increasing the neighborhood size

from 3 × 3 to 7 × 7 (see Table 3). This difference may be

due to the representation power of convolution layer being

bottlenecked by the number of fixed filters, hence there is no

benefit from a larger kernel size. In contrast, the local rela-

tion layer composes local pixel pairs in a flexible bottom-up

manner that allows it to effectively model visual patterns of

increasing size and complexity. We use a 7 × 7 kernel size

by default.

Appearance composability We follow a general ap-

proach for relation modeling [1] to compute appearance

composability Φ(fθq (xp′), fθk(xp)), where xp′ and xp are

projected to a query (by a channel transformation layer fθq )

and key (by a channel transformation layer fθk ) embedding

space, respectively. While in previous works the query and

key are vectors, in the local relation layer, we use scalars to

represent them so that the computation and representation

are lightweight. We find that scalars work also well and

have better speed-accuracy trade-off compared to vectors

(see Table 4).

We consider the following instantiations of function Φ,

which we later show to work similarly well (see Table 6):

a) squared difference:

Φ(qp′ , kp) = −(qp′ − kp)
2
. (3)

b) absolute difference:

Φ(qp′ , kp) = −|qp′ − kp|, (4)

c) multiplication:

Φ(qp′ , kp) = qp′ · kp, (5)

We use Eqn. (3) by default.
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Figure 2. The local relation layer.

Geometric priors Another important aspect differentiat-

ing the local relation layer from other bottom-up methods is

the inclusion of geometric priors.

The geometric prior is encoded by a small network on the

relative position of p to p
′. The small network consists of

two-channel transformation layers, with a ReLU activation

in between. We find that using a small network to compute

the geometric prior values is better than directly learning

the values, especially when the neighborhood size is large

(see Table 3). This is possible because a small network on

relative position treats relative positions as vectors in met-

ric space, while the direct method treats different relative

positions as independent identities.

Note that the inference process with using a small net-

work is the same as that of directly learning the geometric

priors. In fact, during inference, the fixed learnt weights

θg will induce fixed geometric prior values fθg (∆p) for a

relative position ∆p. We use these fixed geometric prior

values instead of the original model weights θg for more

convenient inference.

Weight normalization We use SoftMax normalization

over the spatial scope Ω to compute the final aggregation

weights. Such normalization is found to be crucial in bal-

ancing the contributions of the appearance composability

and geometric prior terms (see Table 6).

Channel sharing Following [24], the local relation layer

uses channel sharing in aggregation computation, where

multiple channels share the same aggregation weights.

Channel sharing can generally reduce the model size and

facilitate GPU memory scheduling for efficient implemen-

tation. We observe no accuracy drop with up to 8 channels

(default) sharing the same aggregation (see Table 5), while

achieving more than 3× actual speed-up than that of 1 chan-

nel per aggregation in our CUDA kernel implementation.

Complexity and implementation The local relation

layer is summarized in Figure 2. Given an H × W input

feature map, k × k spatial neighborhood, C channels, and

m channels per aggregation computation, the total compu-

tational complexity (in FLOPs) of a local relation layer with

stride s is

C = O

(

(
1 + s2

m
+ 1)C(C + k

2)
HW

s2

)

. (6)

In our experiments, a naive implementation by a CUDA

kernel is used, which is several times slower than regular

convolution with the same FLOPs4. Note that convolution

has a highly optimized implementation with careful mem-

ory scheduling. Optimization of memory scheduling for the

local relation layer will be a focus of our future work.

5. Local Relation Networks

Local relation layers can be used to replace spatial con-

volution layers in deep neural networks. In this section, we

describe layer replacement in the ResNet architecture [9],

where residual blocks with the same topology are stacked.

Figure 3 illustrates the replacement of the 3 × 3 convo-

lution layer in the bottleneck/basic residual blocks and the

first 7× 7 convolution layer in ResNet. For residual blocks,

we keep the FLOPs the same by adopting the expansion ra-

tio (α) of the layer to be replaced. For the first 7× 7 convo-

lution layer, we transform the 3×H ×W input to a feature

map of 64×H ×W by a channel transformation layer and

follow this with a 7×7 local relation layer. The replacement

of the 7× 7 convolution layer consumes similar FLOPs and

has comparable accuracy on ImageNet recognition. In the

experiments, we will mainly ablate the effects of replacing

3× 3 convolution layers in residual blocks.

After replacing all convolution layers in ResNet, we ob-

tain a network which we call the Local Relation Network

(LR-Net). Table 2 shows a comparison of ResNet-50 and

LR-Net-50 (with default hyper-parameters of 7 × 7 kernel

size and m = 8 channels per aggregation). LR-Net-50 uses

similar FLOPs but has a slightly smaller model size because

of its channel sharing in aggregation.

6. Experiments

We perform an ablation study on the ImageNet-1K im-

age classification task. To facilitate the study given lim-

ited GPU resources, we conduct the study using LR-Net-

26, which is a 26 layer local relation network adapted

from ResNet-26. The networks have 8 bottleneck residual

4The LR-Net-26 network introduced in Section 5 is about 3× slower

than that of a regular ResNet-26 model on a Titan Xp GPU.

3468



1×1 CT, 64�
7×7 LR (8), 64�

1×1 CT, 256

+

1×1 CT, 64

7×7 LR (8), 64 (s=2)

7×7 LR (8), 64�
7×7 LR (8), 64�

+

(a) entry layers (b) bottleneck block (c) basic block

Figure 3. Illustration of replacing the first 7× 7 convolution layer

(a) and the bottleneck/basic residual blocks (b)(c) in the ResNet

architecture. “CT” denotes the channel transformation layer and

“LR” denotes the local relation layer. “7×7 (8), 64” represents

kernel size of 7×7, channel sharing of m = 8 and output channel

of 64. “s = 2” represents a stride of 2. All layers are followed by

a batch normalization layer and a ReLU activation layer.

stage output ResNet-50 LR-Net-50 (7×7, m=8)

res1 112×112 7×7 conv, 64, stride 2
1×1, 64

7×7 LR, 64, stride 2

res2 56×56

3×3 max pool, stride 2 3×3 max pool, stride 2






1×1, 64

3×3 conv, 64

1×1, 256






×3







1×1, 100

7×7 LR, 100

1×1, 256






×3

res3 28×28







1×1, 128

3×3 conv, 128

1×1, 512






×4







1×1, 200

7×7 LR, 200

1×1, 512






×4

res4 14×14







1×1, 256

3×3 conv, 256

1×1, 1024






×6







1×1, 400

7×7 LR, 400

1×1, 1024






×6

res5 7×7







1×1, 512

3×3 conv, 512

1×1, 2048






×3







1×1, 800

7×7 LR, 800

1×1, 2048






×3

1×1
global average pool global average pool

1000-d fc, softmax 1000-d fc, softmax

# params 25.5×106 23.3×106

FLOPs 4.3×109 4.3×109

Table 2. (Left) ResNet-50. (Right) LR-Net-50 with 7 × 7 kernel

size and m = 8 channels per aggregation computation. Inside the

brackets are the shape of a residual block, and outside the brack-

ets is the number of stacked blocks in a stage. LR-Net-50 requires

similar FLOPs as ResNet-50 and a slightly smaller number of pa-

rameters.

blocks, with {2, 2, 2, 2} blocks for res2, res3, res4, res5, re-

spectively. We also report results on networks stacked by

basic residual blocks (LR-Net-18) and with a larger depth

of layers (LR-Net-50, LR-Net-101). The robustness of LR-

Nets to adversarial attacks is examined as well.

Our experimental settings and hyper-parameters mostly

follow [31]. Please see the appendix for details.

6.1. Ablation Study

Impact of spatial scope Table 3 presents the impact of

varying aggregation spatial scope for the proposed local re-

lation networks, as well as the regular ResNet-26 network

and its variant, ResNet-DW-26 [21], where the regular con-

volution layer is replaced by depthwise convolution. We

have the following observations.

a) Importance of locality Existing bottom-up methods typi-

cally compute spatial aggregation over the entire input fea-

ture map [28, 24]. We first compare the proposed local rela-

tion networks, which enforces a locality constraint on spa-

tial aggregation scope, to the equivalent method without this

constraint (the “full image” column in Table 3)5.

Without encoding any geometric priors (noted as “NG”

in the table), we observe a huge improvement by chang-

ing the aggregation computation from using the whole in-

put feature map to just a 7×7 neighborhood (from 50.7

to 71.9). Surprisingly, while the effectiveness of convolu-

tion networks is ascribed to the explicit modeling of geo-

metric priors, we obtain competitive accuracy on ImageNet

classification purely by applying a locality constraint to a

geometric-free aggregation method (71.9 vs. 72.8), demon-

strating the effectiveness of the locality constraint.

For the LR-Net-26 models which encode the geometric

prior term described in Section 4, we also observe signifi-

cant accuracy improvement, from 68.4 to 75.7. Noting that

geometric priors can also act as a method to limit the ag-

gregation scope (positions with smaller geometric prior val-

ues will contribute little to the final aggregation computa-

tion), the locality constraint further constrains the aggrega-

tion scope.

The locality constraint may also provide an information

bottleneck to the network, which aids representation learn-

ing.

b) LR-Net Benefits from large kernel

The regular ResNet-26 model has similar accuracy with

3×3 and 5×5 kernels and loses accuracy when kernel size is

larger than 5×5. For ResNet-DW-26 models, the accuracy

is almost unchanged when moving from 3×3 to 9×9.

In contrast, both LR-Net-26 variants (with/without geo-

metric prior terms) obtain steadily improved accuracy when

the kernel size grows from 3×3 to 7×7: 70.8→ 71.5→71.9

for LR-Net-26 (NG) which has no geometric prior term, and

73.6 → 74.9 → 75.7 for LR-Net-26 which includes both the

appearance composability and geometric prior terms. The

results demonstrate the superiority of the proposed LR-Net

in harnessing large kernels.

5We follow [28] to reduce the computation complexity of the “full im-

age” method, by adopting downsampled key feature maps at high resolu-

tion stages: 4× for res2, 2× for res3 and 2× for res4. Without this, the

accuracy of “full image” methods would be even lower.
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Table 3. Recognition performance of different architectures with varying spatial aggregation scope and different geometric prior terms on

ImageNet classification. Top-1 and top-5 accuracy (%) is reported. “NG” denotes local relation networks without the geometric prior

term. “G*” represents the method that directly learns the geometric prior values as described in Section 4. For fair comparison, we set

all the architectures to have similar FLOPs with the regular ResNet-26 model, by adapting their bottleneck ratio α. For ResNet-(DW)-26

networks, we omit the “full image” column due to implementation difficulty.

network
geo.

prior

aggregation spatial scope

3× 3 5× 5 7× 7 9× 9 full image

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

ResNet-26 ✓ 72.8 91.0 73.0 91.1 72.3 90.7 71.4 90.3 - -

ResNet-DW-26 ✓ 73.7 91.5 73.9 91.6 73.8 91.6 73.8 91.6 - -

LR-Net-26 (NG) ✗ 70.8 89.8 71.5 90.1 71.9 90.4 70.2 89.3 50.7 74.7

LR-Net-26 (G*) ✓ 73.2 91.1 74.1 91.7 73.6 91.2 72.3 90.7 60.3 82.1

LR-Net-26 ✓ 73.6 91.6 74.9 92.3 75.7 92.6 75.4 92.4 68.4 88.0

Table 4. Ablation on query/key dimension (top-1 acc %).

query/key dim 1 2 4 8 16

LR-Net-26 75.7 75.4 75.1 74.7 73.7

Table 5. Ablation on channel sharing (top-1 acc %).

chn. sharing m 1 2 4 8 16 #chn.

LR-Net-26 75.3 75.5 75.5 75.7 75.3 70.9

Table 6. Ablation on appearance composability term and the nor-

malization method (top-1 acc %).

method
app. comp. Eqn. normalization

(3) (4) (5) none softmax

LR-Net-26 75.7 75.5 75.7 74.8 75.7

Table 7. Comparison with non-local neural networks.

method top-1 top-5 # params FLOPs

ResNet-26 72.8 91.0 16.0M 2.6G

NL-26 47.7 72.1 17.3M 2.6G

ResNet-26-NL 73.4 91.2 38.2M 5.6G

LR-Net-26 75.7 92.6 14.7M 2.6G

LR-Net-26-NL 76.0 92.8 37.1M 5.6G

Table 8. Applied on Different Architectures. For LR-Net-18, α

balances increasing # params and decreasing FLOPs.

method top-1 top-5 # params FLOPs

ResNet-18 70.1 89.4 11.7M 3.1G

LR-Net-18 74.6 92.0 14.4M 2.5G

ResNet-50 76.3 93.2 25.5M 4.3G

LR-Net-50 77.3 93.6 23.3M 4.3G

ResNet-101 77.9 94.0 44.4M 8.0G

LR-Net-101 78.5 94.3 42.0M 8.0G

Effect of geometric prior In the last three rows of Ta-

ble 3, the encoding of geometric priors is ablated. Both ge-

ometric prior embedding methods perform better than that

Table 9. Comparison of robustness to white-box adversarial attacks

for different architectures on ImageNet (top-1 acc %).

network
adversarial train regular train

clean targeted untargeted clean

ResNet-26 44.9 37.9 14.4 72.8

ResNet-50 52.0 43.0 22.5 76.3

LR-Net-26 52.1 44.2 26.8 75.7

Figure 4. Illustration of learnt geometric prior values.

without geometric priors for all spatial scopes, demonstrat-

ing their usefulness in visual feature learning.

Comparing the two geometric prior encoding methods,

applying a small network on relative positions (the last row)

performs better than directly learning independent geomet-

ric prior values. The gap between them is larger when the

kernel size is larger (0.4 at 3×3 and 3.1 at 9×9), showing

that it is crucial to additionally account for relative posi-

tions, especially when the neighborhood is large.

Figure 4 shows the learnt 7×7 geometric prior values

after softmax at four stages of LR-Net-26. In general, for

lower layers, the priors are sharper, indicating a preference

for stronger constraints in the learning of appearance com-

posability. For higher layers, the priors are smoother, indi-

cating a preference for greater freedom.

Other designs We also ablate various design elements.

a) Effect of query/key dim
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Table 4 ablates the accuracy of the proposed LR-Net-

26 model with varying key/query dimensions. We fol-

low [26] to compute the appearance composablity between

key and query vectors. We find decreased accuracy with

increasing key/query dimension, indicating the superiority

of scalars over typically-used vectors, as well as a better

speed-accuracy tradeoff.

b) Effect of channel sharing

Table 5 ablates the LR-Net-26 model with varying num-

bers of shared channels per aggregation (m). The accuracy

of LR-Net-26 is maintained when m is as large as 8, while

being 3× faster than not sharing (m = 1).

c) Composability term

Table 6 ablates over different appearance composabilty

terms: Eqn. (3), Eqn. (4) and Eqn. (5). They are found

to work comparably well. Figure 5 exhibits representative

examples of key and query maps learnt using the default

term of Eqn. (3), which indicate that composability between

semantic visual elements are learnt (girl and dog, tennis ball

and racket).

d) Softmax normalization

Table 6 shows that including the softmax normalization

in Eqn. (2) improves accuracy by 0.9, indicating the impor-

tance of normalization in balancing the two terms.

Comparison with other bottom-up methods Table 7

compares LR-Net with other bottom-up methods, i.e. non-

local neural networks [28]. By directly replacing the 3×3

convolution layer in the ResNet-26 model by non-local

modules, the model (NL-26) achieves an accuracy of 47.7,

far lower than its regular counterpart. By applying the non-

local modules after every residual block, top-1 accuracy of

73.4 is obtained, which is 0.6 higher than its regular coun-

terpart, with about 2× more computation.

The local relation layer is designed to replace convolu-

tion layers for better representation power. It achieves a

2.9 gain over the regular ResNet counterpart with a simi-

lar computation load. We note that the non-local module

is complementary to local relation networks, bringing a 0.3

gain when applied after every local relation block (see the

last row).

On different/deeper networks In Table 8, we evaluate

LR-Net with different/deeper network architectures, includ-

ing ResNet-18 which consists of 8 basic residual blocks and

ResNet-50/101 which use the same type of bottleneck resid-

ual blocks but have more layers (50 and 101 layers). The

proposed networks are also effective on these architectures.

6.2. Robustness to adversarial attacks

We test the ability of LR-Net to withstand adversar-

ial attacks using the white-box multi-step PGD attack

Figure 5. Illustration of learnt key and query.

method [22, 16], under both targeted and untargeted at-

tacks. Targeted attacks randomly choose one wrong class as

the target, while untargeted attacks succeed as long as the

model produces wrong predictions. We utilize the hyper-

parameters from [16] of the attacking methods, and employ

the targeted multi-step PGD adversarial method for train-

ing with the same hyper-parameters except for the number

of attack steps, set to 16 due to limited GPU resources.

Table 9 compares the robustness of LR-Net-26 and the

regular ResNet-26/ResNet-50 models against white-box ad-

versarial attacks on ImageNet. The LR-Net-26 model per-

forms significantly better than ResNet-26 model against

both the targeted (+6.3) and untargeted attacks (+12.4).

The LR-Net-26 model also performs better than the ResNet-

50 model (+0.8 for targeted attacks and +4.3 for untargeted

attacks), which uses about 2× more FLOPs and has bet-

ter top-1 accuracy in regular training (see the last column

of Table 9). These results indicate that the superior perfor-

mance of LR-Net in adversarial robustness is not purely due

to larger capacity but also because of the architecture itself.

7. Conclusion and Future Works

This paper presents the local relation layer, a basic im-

age feature extractor following the general philosophy of

introducing compositionality into representation. A deep

network composed by this new layer demonstrates strong

results on ImageNet classification, significantly expanding

the practicality of bottom-up methods, which are long be-

lieved to be more fundamental in representation than top-

down methods such as convolution.

We note that the study of this new layer is still at an

early stage. Future directions includes: 1) better GPU mem-

ory scheduling for faster implementation; 2) better designs

to outperform advanced convolution methods such as de-

formable convolution [6, 36]; 3) exploring other properties

and the applicability on other vision tasks.
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