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Let M be a noncompact hyperbolic 3-manifold that has a tri-
angulation by positively oriented ideal tetrahedra. We explain
how to produce local coordinates for the variety defined by
the gluing equations for PGL(3, C )-representations. In particu-
lar, we prove local rigidity of the “geometric” representation in
PGL(3, C ), recovering a recent result of Menal-Ferrer and Porti.
More generally, we give a criterion for local rigidity of PGL(3, C )-
representations and provide detailed analysis of the figure-eight-
knot sister manifold exhibiting the different possibilities that can
occur.

1. INTRODUCTION

Let M be a compact orientable 3-manifold with bound-
ary a union of � tori. Assume that the interior of M

carries a hyperbolic metric of finite volume and let
ρ : π1(M) → PGL(3, C ) be the corresponding holonomy
composed with the 3-dimensional irreducible representa-
tion of PGL(2, C ) (this representation is usually called
the geometric or adjoint representation).

Building on [Bergeron et al. 12], we give a combina-
torial proof of the following theorem, first proved in
[Menal-Ferrer and Porti 11].

Theorem 1.1. The class [ρ] of ρ in the algebraic quotient
of Hom(π1(M),PGL(3, C )) by the action of PGL(3, C )
by conjugation is a smooth point with local dimension 2�.

Our main theorem, Theorem 6.2, is in fact more gen-
eral. We do not consider solely the geometric represen-
tation, and in fact, our proof applies to an explicit open
subset (called R(M, T +); see the beginning of Section 6)
of the (decorated) representation variety into PGL(3, C ).
It also provides explicit coordinates and a description of
the possible deformations. We analyze in the last sec-
tion the figure-eight-knot sister manifold: we describe all
the (decorated) representations whose restrictions to the
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Bergeron et al: Local Rigidity for PGL(3, C )-Representations of 3-Manifold Groups 411

boundary torus are unipotent. It turns out that there ex-
ist rigid points (i.e., isolated points in the (decorated)
unipotent representation variety) together with nonrigid
components.

There is a natural holonomy map (see Section 4) from
the (decorated) representation variety of M to the rep-
resentation variety of its boundary. It is known that its
image is a Lagrangian subvariety and that the map is
a local isomorphism on a Zariski open set. Remark 6.4
proves these facts in a combinatorial way. When M is a
knot complement and one considers the group PGL(2, C )
instead of PGL(3, C ), this image is the algebraic variety
defined by the A-polynomial of the knot. In this paper,
we explore more precisely the map hol and exhibit a fiber
that is not discrete.

2. IDEAL TRIANGULATION

An ordered simplex is a simplex with a fixed vertex or-
dering. Recall that an orientation of a set of vertices is a
numbering of the elements of this set up to even permu-
tation. The face of an ordered simplex inherits an orien-
tation. We define an abstract triangulation to be a pair
T = ((Tμ)μ=1,...,ν ,Φ), where (Tμ)μ=1,...,ν is a finite fam-
ily of abstract ordered simplicial tetrahedra and Φ is a
matching of the faces of the Tμ ’s reversing the orienta-
tion. For a simplicial tetrahedron T , we define Trunc(T )
to be the tetrahedron truncated at each vertex. The space
obtained from Trunc(Tμ) after matching the faces will be
denoted by K.

We call an abstract triangulation T together with an
oriented homeomorphism

K =
ν⊔

μ=1

Trunc(Tμ)/Φ → M,

where M is a compact 3-manifold with boundary, a
triangulation—or rather an ideal triangulation.

In the following, we will always assume that the
boundary of M is a disjoint union of a finite collection of
2-dimensional tori. Recall that by a simple Euler charac-
teristic count, the number of edges of K is equal to the
number ν of tetrahedra, the most important family of
examples being the compact 3-manifolds whose interior
carries a complete hyperbolic structure of finite volume.
The existence of an ideal triangulation for M still appears
to be an open question.1 Nevertheless, it was proved in

1 Note, however, that starting from the Epstein–Penner decompo-
sition of M into ideal polyhedra, [Petronio and Porti 00] produces
a degenerate triangulation of M .

FIGURE 1. Combinatorics of W (color figure available
online).

[Luo et al. 08] that by passing to a finite regular cover,
we may assume that M admits an ideal triangulation. In
the following paragraphs, we assume that M itself ad-
mits an ideal triangulation T and postpone to the proof
of Theorem 1.1 the task of reducing to this case (see
Lemma 6.6).

2.1. Parabolic Decorations

We recall from [Bergeron et al. 12] the notion of a
parabolic decoration of the pair (M, T ): to each tetrahe-
dron Tμ of T we associate nonzero complex coordinates
zα (Tμ) (α ∈ I), where I is equal to the set of vertices of
the arrows in the triangulation given by Figure 1.

Let J2
Tμ

= ZI denote the 16-dimensional abstract free
Z-module and denote the canonical basis of J2

Tμ
by

{eα}α∈I . It contains oriented edges eij (edges are ori-
ented from j to i) and faces eijk . Using this notation,
the 16-tuple of complex parameters (zα (Tμ))α∈I is better
viewed as an element

z(Tμ) ∈ Hom(J2
Tμ

, C ×) ∼= C × ⊗Z (J2
Tμ

)∗.

We refer to [Bergeron et al. 12] for details. Such an ele-
ment uniquely determines a tetrahedron of flags if and
only if the following relations are satisfied:

zijk = −zilzj lzkl (2–1)

and

zik =
1

1 − zij
. (2–2)

Note that the second relation implies the following
one:

zij zik zil = −1, (2–3)

Let J2 denote the direct sum of the J2
Tμ

’s, and consider
an element z ∈ C × ⊗Z (J2)∗ to be a set of parameters
of the triangulation T . As usual, these coordinates are
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412 Experimental Mathematics, Vol. 22 (2013), No. 4

FIGURE 2. The z-coordinates for a tetrahedron.

subject to consistency relations after gluing by Φ: given
two adjacent tetrahedra Tμ , Tμ ′ of T with a common face
(ijk), then

zijk (Tμ)zikj (Tμ ′) = 1. (2–4)

And given a sequence T1 , . . . , Tμ of tetrahedra sharing a
common edge ij and such that ij is an inner edge of the
subcomplex comprising T1 ∪ · · · ∪ Tμ , then

zij (T1) · · · zij (Tμ) = zji(T1) · · · zji(Tμ) = 1. (2–5)

Remark 2.1. Consider a fundamental domain of the trian-
gulation of the universal cover M̃ lifted from that of M .
A decoration of the complex is then equivalent to an as-
signment of a flag to each of its vertices together with an
additional transversality condition on the flags to ensure
that the zα ’s do not vanish.

3. THE REPRESENTATION VARIETY

Given M and a triangulation T , we consider the space of
parabolic decorations and denote it by R(M, T ) (we call
it the representation variety associated to the parabolic
decorations of the triangulation). It is observed in the
next subsection that it can be identified with an open
subset of Hom(π1(M),PGL(3, C ))/PGL(3, C ).

More explicitly, we define R(M, T ) as

R(M, T ) = g−1(1, . . . , 1),

where

g = (h, a, f) : C × ⊗ (J2)∗ → (C ×)8ν × (C ×)4ν × (C ×)4ν

∼= (C ×)16ν

is the product of the three maps h, a, f , defined below.

First of all, h = (h1 , . . . , hν ) is the product of the maps
hμ : C × ⊗Z (J2

Tμ
)∗ → (C ×)8 (μ = 1, . . . , ν) associated to

the Tμ ’s and defined by

hμ(z)=
(
− zijk

zilzj lzkl
,− zikl

zij zkj zlj
,− zilj

zik zlk zjk
,− zkjl

zkizjizlj
,

− zij zik zil ,−zjizjk zjl ,−zkizkj zkl ,−zlizlj zlk

)
.

Here z = z(Tμ) ∈ C × ⊗Z (J2
Tμ

)∗; cf. (2–1) and (2–3).
Next, we define the map a; cf. (2–2). Let aμ : C × ⊗Z

(J2
Tμ

)∗ → C 4 (μ = 1, . . . , ν) associated to Tμ be the map
defined by

aμ(z) =
(
zik (1 − zij ), zj l(1 − zji), zki(1 − zkl),
× zlj (1 − zlk )

)
.

We define a = (a1 , . . . , aν ).
Finally, we let Cor

1 denote the free Z-module gener-
ated by the oriented 1-simplices of K, and C2 the free
Z-module generated by the 2-faces of K. As observed
before, if K has only tori as ideal boundaries, then the
number of edges in K is ν and the number of faces is
2ν. Therefore, the Z-module Cor

1 + C2 has rank 4ν, and
therefore Hom(Cor

1 + C2 , C ×) ∼= (C ×)4ν .
As in [Bergeron et al. 12], we define, for ēij an oriented

edge of K, a map

F : Cor
1 + C2 → J2

by

F (ēij ) = e1
ij + · · · + eμ

ij ,

where T1 , . . . , Tμ is a sequence of tetrahedra sharing the
edge ēij such that ēij is an inner edge of the subcom-
plex T1 ∪ · · · ∪ Tμ and each eμ

ij gets identified with the
oriented edge ēij in T . And for a 2-face ēijk ,

F (ēijk ) = eμ
ijk + eμ ′

ikj ,

where μ and μ′ index the two 3-simplices having the com-
mon face ēijk . We then define the map

f : Hom(J2 , C ×) → Hom(Cor
1 + C2 , C ×) ∼= (C ×)4ν

by f(z) = z ◦ F ; compare (2–4) and (2–5). A decoration
z ∈ C × ⊗Z (J2)∗ satisfies the edge and face equations
(2–5) and (2–4) if and only if f(z) = 1 (compare with
the map F ∗ defined in the next section, so we can write
equivalently z ∈ C × ⊗Z Ker(F ∗)).

From an element in R(M, T ), one may reconstruct
a representation (up to conjugacy) by computing the
holonomy of the complex of flags (see [Bergeron et al. 12,
Section 5]). Restating Remark 2.1, a decoration is equiv-
alent to a map, equivariant under π1(M), from the space
of cusps of M̃ to the space of flags with a transversality
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condition. Note that each flag is then invariant by the
holonomy of the cusp.

Moreover, the map from R(M, T ) to

Hom(π1(M),PGL(3, C ))/PGL(3, C )

is open: given a representation ρ, its decoration equips
each cusp p of M with a flag Fp invariant under the
holonomy of the isotropy Γp of p. Now, deforming the
representation ρ to ρ′, for each cusp p, one can deform Fp

into a flag F ′
p invariant under ρ′(Γp). The transversality

condition being open, this gives a decoration for every
decoration ρ′ near ρ.

Generalizations of this formalism to the case
of representations of 3-dimensional fundamental
groups to PGL(n, C ) for n ≥ 3 can be seen in
[Garoufalidis et al. 12, Dimofte et al. 13].

4. THE SYMPLECTIC ISOMORPHISM

In this section, we recall results of [Bergeron et al. 12]
that will be used in the proof of the main theorem. As
in that work, each J2

Tμ
is equipped with a bilinear skew-

symmetric form given by

Ω2(eα , eβ ) = εαβ .

Here given α and β in I, we set (recall Figure 1)

εαβ = #{oriented arrows from α to β}
− #{oriented arrows from β to α}.

We let (J2 ,Ω2) denote the orthogonal sum of the spaces
(J2

Tμ
,Ω2). We denote by eμ

α the eα -element in J2
Tμ

. Let

p : J2 → (J2)∗

denote the homomorphism v �→ Ω2(v, ·). In terms of the
basis (eα ) and its dual (e∗α ), we can write

p(eα ) =
∑

β

εαβ e∗β .

Let J be the quotient of J2 by the kernel of Ω2. The
latter is the subspace generated on each tetrahedron by
elements of the form ∑

α∈I

bαeα

for all {bα} ∈ ZI such that
∑

α∈I bαεαβ = 0 for every
β ∈ I. Equivalently, it is the subspace generated by
eij + eik + eil and eijk − (eil + ejl + ekl).

We let J∗ ⊂ (J2)∗ be the dual subspace that consists
of the linear maps that vanish on the kernel of Ω2. Note
that we have J∗ = Im(p) and that it is 8-dimensional.

The form Ω2 induces a nondegenerate skew-symmetric
(we will call it symplectic) form Ω on J . This yields a
canonical identification between J and J∗; we denote by
Ω∗ the corresponding symplectic form on J∗.

Consider the sequence introduced in
[Bergeron et al. 12]:

Cor
1 + C2

F→ J2 p→ (J2)∗ F ∗
→ Cor

1 + C2 .

The skew-symmetric form Ω∗ on J∗ is nondegenerate, but
its restriction to Im(p) ∩ Ker(F ∗) has a nontrivial kernel.
In [Bergeron et al. 12], we relate this form to “Goldman–
Weil–Petersson” forms on the peripheral tori: there is
a form wps on each H1(Ts, Z2), s = 1, . . . , �, defined as
the coupling of the cup product on H1 with the scalar
product2 〈 , 〉 on Z2 defined by〈(

n

m

)
,

(
n′

m′

)〉
=

1
3
(2nn′ + 2mm′ + nm′ + n′m);

see [Bergeron et al. 12, Section 7]. For our purpose,
we rephrase the content of [Bergeron et al. 12, Corol-
lary 7.3.2] in the following proposition.

Proposition 4.1. We have

Ker(Ω∗
| Im(p)∩Ker(F ∗)) = Im(p ◦ F ).

The skew-symmetric form Ω∗ therefore induces a sym-
plectic form on the quotient

(J∗ ∩ Ker(F ∗))/ Im(p ◦ F ).

Moreover, there is a symplectic isomorphism, de-
fined over Q , between this quotient and the space
⊕�

s=1H
1(Ts, Z2) equipped with the direct sum ⊕swps , still

denoted by wp.

Let us briefly explain how to understand Proposi-
tion 4.1 as a corollary in [Bergeron et al. 12]. First re-
call from [Bergeron et al. 12, Section 7.2] that given an
element z ∈ R(M, T ), we may compute the holonomy of
a loop c ∈ H1(Ts, Z) and get an upper triangular ma-
trix; let ( 1

C ∗ , 1, C) be its diagonal part. The mapping that
takes c ⊗

(
n
m

)
to Cm (C∗)n yields the holonomy map

hol : R(M, T ) → ⊕�
s=1 Hom

(
H1

(
Ts, Z2) , C ×)

.

The symplectic map of the proposition is the linearization
of this holonomy map.

Here is how it is done: Our variety R(M, T ) is a sub-
variety of C × ⊗ (J2)∗. This latter space may be viewed

2 This product should be interpreted as the Killing form on the
space of roots of sl(3, C ) through a suitable choice of basis.
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414 Experimental Mathematics, Vol. 22 (2013), No. 4

as the exponential of the C -vector space C ⊗ (J2)∗.
Lemma 7.2.1 of [Bergeron et al. 12] expresses the square
of hol (there, the holonomy map is denoted by R) as the
exponential of a linear map:

C ⊗
(
J2)∗ → ⊕�

s=1H
1 (

Ts, C 2)
� ⊕�

s=1 Hom
(
H1

(
Ts, Z2) , C

)
.

Moreover, this map is defined over Q and at the level
of the Z-modules. At that level, it is indeed obtained
as the composition of the map h∗, dual to the map
h defined in [Bergeron et al. 12, Section 7.2.2], with
the projection to ⊕sH

1(Ts, Z2) ∼= Z4� (using a symplec-
tic basis of H1(Ts, Z)). The symplectic isomorphism of
Proposition 4.1 is given by this map [Bergeron et al. 12,
Theorem 7.3.1 and Corollary 7.3.2], after restriction
to J∗ ∩ Ker(F ∗) and quotienting by Im(p ◦ F ) (see
[Bergeron et al. 12, Section 7.4]).

5. INFINITESIMAL DEFORMATIONS

Let z = (z(Tμ))μ=1,...,ν ∈ R(M, T ). The exponential
map identifies Tz (C × ⊗Z (J2)∗) with C ⊗ (J2)∗ =
Hom(J2 , C ). Under this identification, the differential
dz g defines a linear map, which we write as a direct sum
dzh ⊕ dza ⊕ dzf .

In the following three lemmas, we identify the ker-
nel of each of these three linear maps in order to prove
Proposition 5.4.

Lemma 5.1. As a subspace of C ⊗ (J2)∗, the kernel of dzh

is equal to C ⊗ J∗.

Proof. The lemma follows from the definitions that ξ ∈
C ⊗ (J2)∗ belongs to the kernel of dzh if and only
if it vanishes on the subspace Ker(Ω2) generated by
eν
ij + eν

ik + eν
il and eν

ijk − (eν
il + eν

jl + eν
kl). This concludes

the proof.

Lemma 5.2. As a subspace of C ⊗ (J2)∗, the kernel of dza
is equal to the subspace A(z) defined as{

ξ ∈ Hom(J2 , C ) : ξ(eμ
ij ) + zil(Tμ)ξ(eμ

ik ) = 0,

ξ(eμ
ji) + zjk (Tμ)ξ(eμ

jl) = 0, ξ(eμ
ki) + zkl(Tμ)ξ(eμ

kj ) = 0,

ξ(eμ
lj ) + zlk (Tμ)ξ(eμ

li) = 0, ∀μ
}
.

Proof. Here again, we have only to check the assertion
on each tetrahedron Tμ of T . All four coordinates of aμ

can be dealt with in the same way, so we consider here

only the first coordinate:

z �→ zik (1 − zij ).

Taking the differential of the logarithm, we obtain

dzik

zik
− dzij

1 − zij
= 0.

Equivalently,

dzij

zij
=

(
1 − zij

zij

)
dzik

zik
.

Since z ∈ R(M, T ), we have hν (z) = aμ(z) = 1. In par-
ticular,

(1 − zij ) =
1

zik
and zij zik = − 1

zil
.

We conclude that

dzij

zij
+ zil

dzik

zik
= 0.

Under the identification of Tz (C × ⊗Z (J2)∗) with C ⊗
(J2)∗ = Hom(J2 , C ), this proves the lemma.

We denote by F ∗ : (J2)∗ → Cor
1 + C2 the dual map to

F (here we identify Cor
1 + C2 with its dual using the

canonical basis). It is the “projection map”

(eμ
α )∗ �→ ēα

when (eμ
α )∗ ∈ (J2)∗. By definition of f we have the fol-

lowing.

Lemma 5.3. As a subspace of C ⊗ (J2)∗, the kernel of dzf

is equal to C ⊗ Ker(F ∗).

Lemmas 5.1, 5.2, and 5.3 clearly imply the next propo-
sition.

Proposition 5.4.

Ker dz g = (C ⊗ (Im(p) ∩ Ker(F ∗)) ∩ A(z). (5–1)

Note that among these three spaces, two are defined
over Z and do not depend on the point z, but the last
one, A(z), actually depends on z. We shall give examples
in which the dimension of the intersection varies and de-
scribe the corresponding deformations in R(M, T ). But
first, we consider an open subset of R(M, T ) that we
prove to be a manifold.
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6. THE COMPLEX MANIFOLD R(M,T +)

Let

R(M, T +) =
{
z = (z(Tμ))μ=1,...,ν ∈ R(M, T )

: Im zij (Tμ) > 0, ∀μ, i, j
}

be the subspace of R(M, T ) whose edge coordinates
have positive imaginary parts. Note that coordinates cor-
responding to the geometric representation belong to
R(M, T +).

Remark 6.1. Observe that in the case of an ideal tri-
angulation of a hyperbolic manifold with shape param-
eters all having positive imaginary part and satisfy-
ing the edge conditions and unipotent holonomy con-
ditions, we obtain as holonomy the geometric represen-
tation ρgeom . The shape parameters in the PSL(2, C )
case give rise to a parabolic decoration of the ideal tri-
angulation in the sense of this paper, which is clearly
contained in R(M, T +). This is explained in detail in
[Bergeron et al. 12].

The main theorem of this section is a generalization
of a theorem of [Choi 04]; it states that R(M, T +) is a
smooth complex manifold and gives local coordinates.

Recall that we assumed that ∂M is the disjoint union
of � tori. For each boundary torus Ts (s = 1, . . . , �) of M ,
we fix a symplectic basis (as, bs) of the first homology
group H1(Ts). Given a point z in the representation va-
riety R(M, T ), we may consider the holonomy elements
associated to as and bs . They preserve a flag associated
to the torus by the decoration. In a basis adapted to this
flag, those matrices are of the form (for notational sim-
plicity, we write them in PGL(3, C ) rather than SL(3, C ))

⎛
⎜⎝

1/A∗
s ∗ ∗

0 1 ∗
0 0 As

⎞
⎟⎠ and

⎛
⎜⎝

1/B∗
s ∗ ∗

0 1 ∗
0 0 Bs

⎞
⎟⎠ .

Now the diagonal entries As and A∗
s of the first matrix

define for each torus a map

R(M, T ) → (C ×)2� ; z �→ (As,A
∗
s)s=1,...,� . (6–1)

Theorem 6.2. Assume that ∂M is the disjoint union of
� tori. Then the complex variety R(M, T +) is a smooth
complex manifold of dimension 2�. Moreover, the map
(6–1) restricts to a local biholomorphism from R(M, T +)
to (C ×)2� .

Proof. The proof that R(M, T +) is smooth follows imme-
diately if we prove that g is of constant rank at its points.
We will show that the complex dimension of Ker(dg) is
2l and relate it to the map (6–1) in order to prove the
second part of the theorem.

The key point of the proof of Theorem 6.2 is the fol-
lowing:

Lemma 6.3. Let z ∈ R(M, T +).
� For every ξ �= 0 in A(z), we have Ω∗(ξ, ξ̄) �= 0.
� (C ⊗ Im(p ◦ F )) ∩ A(z) = {0}.

Proof. Here ξ̄ is the complex conjugate of ξ. The second
point is a direct consequence of the first. Indeed, let

ξ ∈ (C ⊗ Im(p ◦ F )) ∩ A(z).

It follows from the first point in Proposition 4.1 that
Ω∗(ξ, ξ) = 0. If the first point holds, then it forces ξ to
be null.

Now Ω∗(ξ, ξ) can be computed locally on each tetrahe-
dron Tμ : Since ξ belongs to the subspace C ⊗ J∗ ⊂ C ⊗
(J2)∗, it is determined by the coordinates ξμ

ij = ξ(eμ
ij ).

Now, with respect to the symplectic form Ω, the basis
vector eμ

ij is orthogonal to all the basis vectors except eμ
ik

and Ω(eμ
ij , e

μ
ik ) = 1. By duality, we therefore have

Ω∗(ξ, ξ) =
ν∑

μ=1

4∑
i=1

(
ξμ
ij ξ

μ
ik − ξ

μ
ij ξ

μ
ik

)

= −
ν∑

μ=1

4∑
i=1

∣∣ξμ
ij

∣∣2 (
1

zil(Tμ)
− 1

zil(Tμ)

)
.

Here the last equality follows from the fact that ξ ∈ A(z).
Since for each μ and i, we have (up to a nonzero constant)

Im

(
1

zil(Tμ)
− 1

zil(Tμ)

)
> 0,

the proof is complete.

Let L(z) be the image of A(z) in ⊕�
s=1H

1(Ts, C 2).
It follows from the previous lemma and the fact that
the map is defined over Q (see Lemma 4.1) that L(z) is
a totally isotropic subspace isomorphic to A(z) ∩ (C ⊗
(J∗ ∩ Ker(F ∗))) and that it satisfies that for every χ �= 0
in L(z), we have wp(χ, χ̄) �= 0.

The space ⊕�
s=1H

1(Ts, C 2) decomposes as the sum
of two subspaces:

∑
s [as ] ⊗ C 2 and

∑
s [bs ] ⊗ C 2 (where

[as ] and [bs ] denote the respective Poincaré duals to as

and bs). Both are Lagrangian subspaces and are invari-
ant under complex conjugation. To prove Theorem 6.2,
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it remains to prove that L(z) projects surjectively onto∑
s [as ] ⊗ C 2 . The dimension dimL(z) may be computed.

In fact, by duality, we have

dim(J∗ ∩ Ker(F ∗)) = dim(Im(p) ∩ Ker(F ∗))
= dim(J2)∗ − dim(Im(F ) + Ker(p)).

But we obviously have

dim(Im(F ) + Ker(p))
= dim Ker(p) + dim Im(F ) − dim(Ker(p) ∩ Im(F )).

On the other hand, we have

dim J2 = 16ν, dim Ker(p) = 8ν,

dim Im(F ) = dimCor
1 + dimC2 = 4ν

(note that the map F is injective). It finally follows
from the proof of [Bergeron et al. 12, Lemma 7.4.1] that
dim(Ker(p) ∩ Im(F )) = 2�. We conclude that

dim(J∗ ∩ Ker(F ∗)) = 4ν + 2�.

Since dimA(z) = 4ν, the intersection A(z) ∩ J∗ ∩
Ker(F ∗) is of dimension at least 2�, and L(z) is a totally
isotropic subspace of dimension at least 2� in a symplec-
tic space of dimension 4�: it is a Lagrangian subspace.
Theorem 6.2 now immediately follows from the following
lemma.

Remark 6.4. The preceding considerations give a combi-
natorial proof that the image of R(M, T ) is a Lagrangian
subvariety of the space of representations of the funda-
mental group of the boundary of M .

Lemma 6.5. We have

L(z) ∩
∑

s

[bs ] ⊗ C 2 = {0}.

Proof. Suppose that χ belongs to this intersection. Since∑
s [bs ] ⊗ C 2 is a Lagrangian subspace invariant under

complex conjugation, the complex conjugate χ̄ also be-
longs to

∑
s [bs ] ⊗ C 2 , and we have

wp(χ, χ̄) = 0.

Since χ also belongs to L(z), Lemma 6.3 finally implies
that χ = 0.

6.1. Rigid Points

In general, if z ∈ R(M, T ), the space L(z) is still a La-
grangian subspace. If we replace Lemma 6.3 by the as-
sumption that(

C ⊗ Im(p ◦ F )
)
∩ A(z) = {0}, (6–2)

the proof of Theorem 6.2 still implies that R(M, T ) is
(locally around z) a smooth complex manifold of dimen-
sion 2�, and the choice of a 2�-dimensional subspace of
⊕�

s=1H
1(Ts, C 2) transverse to L(z) yields a choice of lo-

cal coordinates.
A point z satisfying (6–2) is called a rigid point of

R(M, T ): indeed, at such a point, you cannot deform the
representation without deforming its trace on the bound-
ary tori. Note that if there exists a point z ∈ R(M, T )
such that the condition (6–2) is satisfied, then (6–2) is
satisfied for almost every point in the same connected
component. This transversality condition may be ex-
pressed as the nonvanishing of a determinant of a ma-
trix with entries in C (z). In the next section, we provide
explicit examples of all the situations that can occur.

6.2. Proof of Theorem 1.1

Theorem 1.1 does not immediately follow from Theo-
rem 6.2, since M may not admit an ideal triangulation.
Recall, however, that M has a finite regular cover M ′ that
does admit an ideal triangulation [Luo et al. 08]. We may
therefore apply Theorem 1.1 to M ′, and the proof follows
from the following general (certainly well-known) lemma.

Lemma 6.6. Let M ′ be a finite regular cover of M . Let ρ

and ρ′ be the geometric representations for M and M ′.
Then one cannot deform ρ without deforming ρ′.

Proof. Let γi be a finite set of loxodromic elements gen-
erating π1(M). Let n be the index of π1(M ′) in π1(M).
Then γn

i is a loxodromic element of π1(M ′).
Hence ρ′(γn

i ) = (ρ(γi))n is a loxodromic element in
PGL(3, C ). The crucial though elementary point is that
its nth square roots form a finite set of PGL(3, C ). So
once ρ′ is fixed, the determination of a representation ρ

such that ρ′ = ρ|π1 (M ′) requires a finite number of choices:
we should choose an nth square root for each ρ′(γn

i )
among a finite number of them.

7. EXAMPLES

In this section, we describe exact solutions of the com-
patibility equations that give all unipotent decorations of
the triangulation with two tetrahedra of the figure-eight
knot’s sister manifold. This manifold has one cusp, so is
homotopic to a compact manifold whose boundary con-
sists of one torus. In terms of Theorem 6.2, we are looking
at the fiber over (1, 1) of the map z �→ (A,A∗). We show
that besides rigid decorations (i.e., isolated points in the
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fiber), we obtain nonrigid ones, namely four 1-parameter
families of unipotent decorations.

Among the rigid decorations, one corresponds to
the (complete) hyperbolic structure and belongs to
R(M, T +). The rigidity then follows from Theorem 6.2.
At the other isolated points, the rigidity is simply ex-
plained by the transversality between A(z) and Im(p ◦
F ), as explained in Section 6.1.

As for the nonrigid components, their existence shows
first that rigidity is not granted at all. Moreover, the
geometry of the fiber over a point in (C ∗)2 appears to be
complicated, with intersections of components. The map
from the (decorated) representation variety R(M, T ) to
its image in the representation variety of the torus turns
out to be far from trivial from a geometric point of view.

Let us stress that these components also contain points
of special interest: there are points corresponding to rep-
resentations with values in PSL(2, C ) that are rigid inside
PSL(2, C ), but no longer inside PSL(3, C ).

The analysis of this simple example seems to indicate
that basically anything can happen, at least outside of
R(M, T +).

7.1. The Figure-Eight Knot’s Sister Manifold

The figure-eight knot’s sister manifold M and its triangu-
lation T are described by the gluing of two tetrahedra as
in Figure 3. Let zij and wij be the coordinates associated
to the edge ij. We will express all the equations in terms
of these edge coordinates (since the face coordinates are
monomials in the edge coordinates; see (2–1)).

The variety R(M, T ) is then given by relations (2–3)
and (2–2) among the zij and among the wij plus the face
and edge conditions (2–4) and (2–5).

z343
z43 4

z12

1

z21

2

w343
w43 4

w12

1

w21

2

FIGURE 3. The figure-eight sister manifold represented
by two tetrahedra.

z24 z34

z43z13

z21 z32

z41z12

z23 z31

z42z14
w42 w14

w31 w23

w41 w12

w32 w21

w43 w13

w34 w24

FIGURE 4. The boundary holonomy of the figure-eight
sister manifold. The horizontal oriented line corre-
sponds to A, A∗ and the other oriented line to B, B∗

(color figure available online).

In this case, the edge equations are

(Le)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e1 := z23z34z41w23w34w41 − 1 = 0,

e2 := z32z43z14w32w43w14 − 1 = 0,

e3 := z12z24z31w12w24w31 − 1 = 0,

e4 := z21z42z13w21w42w13 − 1 = 0,

and the face equations are

(Lf )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1 := z21z31z41w12w32w42 − 1 = 0,
f2 := z12z32z42w21w31w41 − 1 = 0,
f3 := z13z43z23w14w34w24 − 1 = 0,
f4 := z14z24z34w13w23w43 − 1 = 0.

Moreover, one may compute the eigenvalues of the
holonomy in the boundary torus (see [Bergeron et al. 12,
Section 7.2]) by following the two paths representing the
generators of the boundary torus homology in Figure 4.
The two eigenvalues associated to a path are obtained
using the following rule: For the first one, say A, we mul-
tiply the cross-ratio invariant zij if the vertex ij of a
triangle is seen to the left and by its inverse if it is seen
to the right. For the inverse of the second one, say A∗,
we multiply by 1/zji if the vertex ij of a triangle is seen
to the left and by zklzlk /zij if it is seen to the right:

A = z12
1

w32
z41

1
w21

, A∗ =
1

z21

w14w41

w32

1
z14

w34w43

w21
,

B = z31
1

w14
z42

1
w23

, B∗ =
1

z13

w23w32

w14

1
z24

w14w41

w23
,
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or equivalently,

(Lh,A,A ∗,B ,B ∗)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hA := w32w21A − z12z41 = 0,

hA ∗ := z21w32z14w21A
∗ − w14w41w34w43 = 0,

hB := w14w23B − z31z42 = 0,

hB ∗ := z13w14z24w23B
∗ − w23w32w14w41 = 0.

If A = B = A∗ = B∗ = 1, the solutions of the equa-
tions correspond to unipotent structures.

7.2. Methods

The computational problem to be solved is the descrip-
tion of a constructible set of C 24 defined by the union
of the edge equations Le , the face equations Lf , the
equations modeling the unipotent structures Lh,1,1,1,1

augmented by a set of relations between some of the
variables Lr , and a set of inequalities (the coordinates
are supposed to be different from 0 and 1), with

Lr:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w13 =
1

1 − w12
, w14 =

w12 − 1
w12

,

w23 =
w21 − 1

w21
, w24 =

1
1 − w21

,

w31 =
1

1 − w34
, w32 =

w34 − 1
w34

,

w41 =
w43 − 1

w43
, w42 =

1
1 − w43

,

z13 =
1

1 − z12
, z14 =

z12 − 1
z12

,

z23 =
z21 − 1

z21
, z24 =

1
1 − z21

,

z31 =
1

1 − z34
, z32 =

z34 − 1
z34

,

z41 =
z43 − 1

z43
, z42 =

1
1 − z43

.

(7–1)

After a straightforward substitution of the relations
Lr in the equations{

e1 , . . . , e4 , f1 , . . . , f4 , hA |A=1 , hA ∗ |A ∗=1 , hB |B=1 ,

× hB ∗ |B ∗=1
}
,

one shows that the initial problem is then equivalent to
describing the constructible set defined by a set of 12
polynomial equations

E:= {x ∈ C 8 , Pi(x) = 0, i = 1, . . . , 12, Pi ∈ Z[X ]}

in the eight unknowns

X = {z12 , z21 , z34 , z43 , w12 , w21 , w34 , w43},

and a set of 16 polynomial inequalities

F:= {x ∈ C 8 , u(x) �= 0, u(x) �= 1, u ∈ X}.

Classical tools from computer algebra are used to:

� Compute generators of ideals using Gröbner bases.
A Gröbner basis of a polynomial ideal I is a set of
generators of I such that there is a natural way of
reducing canonically a polynomial P (mod I).

� Eliminate variables: Given Y ⊂ X and I ⊂ Q [X ],
compute J = I ∩ Q [Y] and note that the set

J = {x ∈ C Y , p(x) = 0, p ∈ J}

is the Zariski closure of the projection of

I = {x ∈ C X , p(x) = 0, p ∈ I}

onto the Y-coordinates.

Combining the items, one can then compute an ideal
I ′ whose zero set is E \ F by computing⎛

⎝I +

〈
T

∏
f∈F

f − 1

〉⎞
⎠ ∩ Q [X ]

(see, for example, [Cox et al. 07, Chapter 4]).
For rather small systems, one then computes straight-

forwardly (by means of a classical algorithm) a prime or
primary decomposition of any ideal defining E \ F . This
is possible in the present case. In practice, however, for
triangulations with more than two tetrahedra, these clas-
sical algorithms will not be sufficiently powerful to study
these varieties.

We do not go further in the description of the com-
putations, which will be part of a more general contri-
bution by the last three authors [Falbel et al. 13]. Let us
just mention that the process gives us an exhaustive de-
scription of all the components of the constructible set we
study. Moreover, the interested reader may easily check
that the given solutions indeed satisfy all the equations.

For the present paper, we just retain that a prime
decomposition of an ideal defining E \ F has been com-
puted, and we give the main elements describing the so-
lutions so that the reader can at least check the main
properties (essentially dimensions) of the results.

Each component (0- or 1-dimensional) can be de-
scribed in the same way: a polynomial P (in one or two
variables) over Q such that each coordinate zij or wij

is an algebraic (over Q) function of the roots of P . In
particular, they naturally come in families of Galois con-
jugates. This is no surprise, since the equations defining
R(M, T ) have integer coefficients.
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7.3. Rigid Unipotent Decorations

We are looking for the isolated points of the set

U = {z ∈ R(M, T ) | A = A∗ = B = B∗ = 1}.

There are four Galois families of such points. They are
described by four irreducible polynomials with integer
coefficients in one variable. Two of them are of degree 2
and the other two of degree 8.

The first polynomial is the minimal polynomial of
the sixth root of unity 1

2

(
1 + i

√
3
)
. For a root ω± =

1
2

(
1 ± i

√
3
)
, the following defines an isolated point in U :

z12 = z21 = z34 = z43 = w12 = w21 = w34 = w43 = ω±.

The solution associated to ω+ is easily checked to cor-
respond to the hyperbolic structure on M : it is the ge-
ometric representation, as we called it. The other one is
its complex conjugate.

A point of R(M, T ) corresponding to a representa-
tion in PU(2, 1) (we call such representations CR; see
[Falbel 08]) with unipotent boundary holonomy was ob-
tained in [Genzmer 10] and is parameterized by the same
polynomial, the z- and w-coordinates being this time
given by

z12 = z21 = −ω, z34 = z43 = −(ω±)2 ,

w12 = w21 = −ω2 , w34 = w43 = −ω±.

The two other isolated 0-dimensional components have
degree 8, and their minimal polynomials are respectively

P = X8 − X7 + 5X6 − 7X5 + 7X4 − 8X3 + 5X2

− 2X + 1 = 0

and

Q(X) = P (1 − X) = 0.

We do not describe all the z- and w-coordinates in terms
of their roots (for the record, let us mention that z43 is
directly given by the root). None of these 16 representa-
tions are in PSL(2, C ) or in PU(2, 1).

Although the computations above are exact, we could
also check that these isolated components are rigid by
computing that the tangent space is zero-dimensional.
We do not include the computations here.

7.4. Nonrigid Components

There exist two 1-dimensional prime components (S1

and S2), each of which can be parameterized by two 1-
parameter families.

The four 1-parameter families of solutions are de-
scribed as follows: Let τ± = 1

2 ± 1
2

√
5 be one of the two

real roots of X2 = X + 1. Then the roots X2 − XY − Y 2

define two 1-parameter families meeting at (0, 0): X =
τ±Y . They parameterize four 1-parameter families of
points (S±

1 ) and (S±
2 ).

For S1 , we obtain

(S±
1 )

⎧⎪⎪⎨
⎪⎪⎩

z12 = w12 =
X + Y

X − 1
, z21 = w21 = 1 + Y,

z34 = w34 =
X2 + X + Y

X(X − 1)
, z43 = w43 = X.

By restricting S1 to the condition that the representation
be in PU(2, 1), we obtain (after writing the system as a
real system separating the real and imaginary parts) an
algebraic set of real dimension 1 entirely characterized by
its projection on the coordinates in R 2 of z21 = x + iy.
The projection is a product of two circles:

(x − τ±)2 + y2 = 1.

Among the solutions (in S1), we obtain only two
belonging to PSL(2, C ) (and they even belong to
PSL(2, R ) ⊂ PU(2, 1)):

z12 = z21 = z34 = z43 = w12 = w21 = w34 = w43

= 1 + τ±.

These points are then rigid inside PSL(2, C ) but not in-
side PSL(3, C ) (nor inside PU(2, 1)).

The other two 1-parameter families are parameterized
as follows:

(S±
2 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z12 = w21 = 1 +
Y

X
− (X + 1)(Y + 1)

X2 + X − 1
,

z21 = w12 =
X + Y − 1

Y − 1
,

z34 = w43 = X + Y,

z43 = w34 =
1
Y

.

None of these points gives a representation in PSL(2, C )
or PU(2, 1).
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