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ABSTRACT With the development of medium- and high-resolution satellites, successfully segmenting 

differently sized geo-objects remains a challenging issue in the framework of geographic object-based 

image analysis (GEOBIA). The hybrid image segmentation method is a good alternative to produce good 

segmentation that best matched the different sizes of geo-objects. However, the existing methods almost 

use a certain scale or other segmentation parameters (SPs) to control the sizes and shapes of segments. This 

will lead to two issues: (1) one single scale is impossible to segment every geo-object well due to the land 

cover complexity within remote-sensing imageries; (2) over- and under-segmented regions still occur in the 

segmentation results, whatever using any advanced segmentation methods. To solve the above problems, 

this paper developed a hybrid image segmentation method with local scale-guided hierarchical region 

merging and further over- and under-segmentation processing. First, the primitive segmentation was 

produced and then stratified into layers with different land covers. Then, the local scale was calculated for a 

more objective merging process in the separating layers. Third, the over- and under-segmentation at 

separating layers was recognized and re-processed for achieving a fine segmentation. To validate the 

proposed method, it was applied to three test images of gaofen-1 satellite with different land cover types, 

and ten competing methods were compared. The visual and quantitative results indicated the advantage of 

our method in segmenting out different sizes of geo-objects, which can effectively reduce the over- and 

under-segmentation error. 

INDEX TERMS geographic object-based image analysis (GEOBIA), hybrid image segmentation, local 

scale, hierarchical region merging, over- and under-segmentation recognition and re-process. 

I. INTRODUCTION 

With the increasing availability of detailed geo-object 

information in medium- and high- resolution remote 

sensing images, geographic object-based image analysis 

(GEOBIA) [1, 2] has become a new paradigm in extracting 

various geo-objects from these data, such as farmland 

division [3-6], building detection [7, 8], coastal geo-object 

recognition [9, 10] and change detection [11, 12] . The 

advantages of the low spectral variation within geo-objects 

and the full utilization of textural features and shape 

concepts of geo-objects make GEOBIA yield more accurate 

image classification than the traditional pixel-based 

analysis method [13-15]. GEOBIA mainly consists of three 

processes: image segmentation, feature extraction including 

spectral, textural, and spatial information, and segment 

classification [16-19]. Image segmentation is implemented 

to generate segments and these segments are considered the 

geo-objects, which are the foundation of subsequent feature 
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extraction and image classification. Thus, the selection of 

an appropriate image segmentation method is very critical 

for generating good segments, which can make the best 

match with the real geo-objects. 

The function of image segmentation is to divide a remote 

sensing image into spatially heterogeneous and spectrally 

homogeneous regions [20, 21]. Most existent segmentation 

methods only consider the boundary information, such as 

the edge-based method [22-25], or the spatial information, 

such as the region-based method [26-34]. The edge-based 

method determines the edge for an image by tracking the 

pixel values that are discontinuous at different boundary 

regions [24], but it always tends towards over-segmentation. 

The region-based method aggregates or merges similar 

pixels by calculating the similarity between adjacent pixels 

restricted by some criterion [33], but it is likely to produce 

an under-segmented result, and is time-consuming with too 

much iteration calculation. 

The hybrid segmentation method employing a split- and -

merge strategy is a good alternative to solve the 

aforementioned problem. Such method is a two-stage 

technology, which first uses the edge-based method to 

produce over-segmented results and then applies the region-

based method to merge similar segments for the best match 

with the real geo-objects [35]. The hybrid method takes full 

use of the boundary information and spatial information. 

And it searches for the adjacent segment pairs, but not the 

adjacent pixel pairs, thus running faster than the traditional 

region-based method and can be affected by the local 

structure. Recently, some scholars have paid more attention 

to such methods for improving the segmentation accuracy 

[29, 32, 35-40]. 

In the frame of hybrid segmentation, over-segmentation 

is regarded as a desirable starting and the edge-based 

method tends towards over-segmentation. Hence, an 

appropriate merging method is very critical for generating 

satisfying segmentation results. Following the existent 

literature, the merging criteria and merging order are the 

main focus in the merging algorithm design and 

optimization [29, 30, 34, 41-43]. However, the sizes of 

segments are controlled by scale or other segmentation 

parameters (SPs) in these merging algorithms. Different 

scales will lead to different results, in which small scale 

tends towards over-segmentation and large scale tends 

towards under-segmentation. In addition, one single scale is 

impossible to segment every geo-object well due to the land 

cover complexity within remote-sensing imageries.  

There are two alternatives for solving the above problems. 

The first approach is the multiple optimal scale (or SP) 

determination method [31, 44-47]. When the region 

merging process is initialized by an image with all types of 

geo-objects, the multiple scales (or SPs) obtained can 

generate satisfying results that are best matched with 

differently sized geo-objects, but studying the approach that 

these results are combined into one ultimate segmentation 

layer is difficult. Note that different types of land covers 

have their unique characteristics in geo-object size, shape, 

and spectral variability. For example, the forest is generally 

largely sized and obviously spectral variable, and the 

residential buildings are usually regularly shaped, little 

sized and lowly spectral changed. It would be a good choice 

to separate different types of land covers into different 

layers before the region merging process is executed. First, 

this will avoid the confusion that different types of land 

covers are wrongly merged. Second, different optimal 

scales (or SPs) can participate in controlling the merging 

process, achieving the multiple scale (or SP) determination. 

Third, the merging costs are calculated with the adjacent 

segments with similar characteristics, enhancing the 

objectivity and effectiveness of the merging criteria. 

The second approach is the local scale (or SP) 

optimization method [36, 48, 49], which adjusts the global 

scale (or SP) based on local spectral structure. For example, 

in the recent works of Yang et al. (2017) [36] and Su (2019) 

[48], they think that homogeneous adjacent segments are 

more possible to be one geo-object, thus a relatively high 

scale (or SP) is required for merging one adjacent segment 

pair with low spectral variance (high homogeneity). But 

Yang et al. (2017) calculated the homogeneity only using 

one segment, ignoring the impact of adjacent segments. Su 

(2019) further improved the approach by considering the 

homogeneity of the adjacent segments and introducing one 

parameter ρ to affect the extension rate of local SP. 

However, Su (2019) neglected that the region merging 

process just happened in two adjacent segments, not all the 

image. Thus, the impact of spectral variance change after 

one pair of adjacent segments are merged is required to be 

considered to adjust the local scale (or SP) for a more 

objective merging process. 

Moreover, the over- and under-segmented regions still 

occur in the result, after the operation of the above 

processing. To further improve the segmentation quality, 

the over- and under-segmented regions need to be identified 

and then further processed. Most methods only evaluate the 

over- and under-segmentation in a global manner [17, 50-

53]. In other words, these methods can indicate 

segmentation quality but not be helpful for further 

improving the segmentation results. Reasonably, evaluation 

metrics should remain within the object-based paradigm for 

effectively identifying over- and under-segmented regions. 

Recently, only limited corresponding studies were reported 

[54, 55]. It will be interesting to study a new and simple 

over- and under-segmentation recognition method from the 

perspective of segment. 

In this paper, a hybrid remote sensing image 

segmentation method with local scale-guided hierarchical 

region merging and further over- and under-segmentation 

processing is developed. The proposed method skillfully 

integrates multiple optimal scale (or SP) determination and 

the local scale (or SP) approach, and then recognizes and 
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processes the over- and under- segmented regions for 

generating more satisfying segmentation. More specifically, 

the main contributions of this paper constitute of three 

aspects: 

1) The primitive segmentation produced by the edge-

based method is rapidly divided into two layers with 

different land covers using a simple vegetation index. It 

would help achieve the multiple scale (or SP) determination 

and forming the ultimate segmentation layer. 

2) The spectral variance change after one pair of adjacent 

segments are merged is considered to calculate the local 

scale (or SP) for a more objective merging process in the 

separating layers. 

3) The over- and under-segmented regions at separating 

layers were recognized using the coefficient of variation 

(CV), and then re-processed to achieve a fine segmentation. 

The CV is a comprehensive indicator that can reveal the 

level of both over- and under-segmentation. 

The remaining of this paper is designed as follows. The 

proposed approach is detailly introduced in Section Ⅱ, 

followed by the experiment results in Section Ⅲ. The 

discussion and conclusions are given in Section Ⅳ and Ⅵ, 

respectively. 

II. METHODS 

The proposed hybrid remote-sensing image segmentation 

method can be divided into three parts: (1) the primitive 

segmentation production and stratification, (2) the local 

scale-guided region merging at separating layers, and (3) 

the over- and under-segmented regions recognition and re-

process at separating layers. A general flowchart of the 

proposed approach is shown in Figure 1. 

A. PRIMITIVE SEGMENTATION PRODUCTION AND 
STRATIFICATION 

Over-segmentation is regarded as a desirable starting for the 

hybrid remote sensing image segmentation. The watershed 

transform is used to generate over-segmented regions (the 

primitive segmentation). Then, the Normalized Difference 

Vegetation Index (NDVI), which is a Simple and easily 

calculated vegetation index, is employed to generate the 

vegetation map for separating the primitive segmentation into 

two layers with vegetative segments and non-vegetative 

segments. 

1) PRIMITIVE SEGMENTATION GENERATION  

The watershed transformation [56] is designed to detect 

edges controlled by the spectral distance between adjacent 

segments. And most scholars applied the method after a 

gradient image is calculated from a panchromatic image or a 

single band of one multi-spectral image [57]. However, the 

edge information contained in multi-spectral bands should be 

taken full use for detecting more accurate edges with the 

increasing availability of multi-spectral satellites [36, 58]. In 

this paper, a gradient weighted by multi-spectral bands are 

computed and then the watershed transformation is 

implemented to produce over-segmented results for 

subsequent merging. 

2) PRIMITIVE SEGMENTATION STRATIFICATION  

The NDVI is a normalized ratio of the NIR and red bands, 

as follows: 

                             
NIR red

NIR red

b b
NDVI

b b

−
=

+
                            (1) 

where bNIR and bred are the spectral reflectance of NIR 

and red bands obtained in a remote sensing image, 

respectively. The NDVI is a vegetation measure that can 

reflect the seasonal and inter-annual changes in vegetation 

growth, and the greater NDVI value indicates higher 

vegetation coverage.  

Primitive segmentation 
generation and stratification

Region merging with 
local scale

Multiple spectral image

Primitive segmentation Vegetation map
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Layer with vegetative segments Layer with non-vegetative segments

Adjacent relationship between 

vegetative segments

Adjacent relationship between 

non-vegetative segments

Merging cost calculation

FLSA algorithm Global scale Local scale

Merged vegetative  segments Merged vegetative  segments

RAG model

Over- and under-
segmentation 

recognition and re-
process

Coefficient of variation (CV) 

calculation
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Over-

segmentation
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segmentation
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segmentation
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FIGURE 1. The schematic of the proposed hybrid remote sensing 
image segmentation method with local scale-guided hierarchical 
region merging and further over- and under-segmentation processing. 
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Then, the NDVI is calculated to generate the vegetation 

map, and the vegetation map is used to separate the 

primitive segmentation into two layers with vegetative 

segments and non-vegetative segments. The separating 

process can be illustrated in Figure 2. 

Assuming that S1-S15 are the segments from the 

primitive segmentation produced by the watershed 

transformation, and the yellow part in the vegetation map 

represents vegetation, and the blue part represents the non-

vegetation. It is easy to classify one segment when it is 

completely located in vegetation or non-vegetation part. 

However, when a segment covers both vegetation and non-

vegetation parts, such as S7 and S11, it is a real issue to 

determine the classification of the segment. The 

overlapping area metric is used to solve the problem. If the 

vegetation has the largest overlapping in this segment, the 

segment will be classified as a vegetative segment. For 

example, over half areas of S7-S11 are all located in the 

vegetation part, so they belong to vegetative segments.  

B. LOCAL SCALE-GUIDED REGION MERGING  

After the operation of primitive segmentation production 

and stratification, the full lambda-schedule algorithm 

(FLSA) [27] is used to calculate the merging cost, and the 

global scale is determined by the parameter optimization 

method of Johnson et al. (2015) [44]. Then, the local scale 

is adjusted by considering the spectral variance change after 

one pair of adjacent segments is merged. Finally, the 

iterative merging process continues until the stopping rule 

is satisfied, and the merging results at separating layers are 

exported. 

1) GLOBAL SCALE DETERMINATION 

The graph models of RAG are built with separating layers 

with vegetation segments and non-vegetation segments to 

represent the adjacent relationship between segments, with 

node and arcs indicating segments and their adjacent 

segments [37]. Figure 3 illustrates an example. It is difficult 

to quantitatively recognize the adjacent segments in the left 

segmentation result. However, the adjacent segment pairs 

can be easy to be searched after the RAG is generated, as 

shown in the right table. Then, the merging cost between 

adjacent segments is computed using the FLSA, defined as 

follows: 

1 2 1 2

1

1 2 1 2

S S S ,S

S ,S2

S S S ,S

A A E
Lambda

A A L


= 

+
                              (2) 

where S1  and S2  are one pair of the adjacent segments, 

AS1
 and AS2

 are the areas of S1 and S2, which are replaced 

by the pixel number in this paper. ES1,S2
 is the Euclidean 

distance between S1  and S2 , and LS1,S2
 is the common 

boundary between S1 and S2. To take full advantage of the 

spectral information in multiple bands, this paper calculates 

the FLSA averaged by multiple bands as the ultimate 

merging cost. The adjacent segment pairs will be merged 

into one segment if their merging cost is less than the global 

scale (t). The cumulative probability analysis adopted in 

this paper can determine t, as follows: 

F(x ) P(x t) =  =   (0 1)                                 (3) 

where x is one of all the merging costs between adjacent 

segments, P is the cumulative probability in case that  x ≤ t, 

and β is the merging parameter, which controls the merging 

process. The process of determining t is as follows: First, 

all the merging costs between adjacent segments are sorted 

from low value to high value, and then put to a new list 

with a size of N × 1. N is the number of all the adjacent 

segment pairs. Then, the location in the new list is searched 

by calculating the product of N and β, i.e., M, and the 

merging cost located in (M, 1) in this list is recognized as 

the t. Specifically, the optimal global scales (i.e., t) at the 

separating layers are determined using the approach of 

Johnson et al. (2015), which uses two indexes of the area-

weighted variance (WV) and Moran’s I and applies the F-

measure strategy to combine the two indexes for evaluating 

the segmentation quality. 

2) REGION MERGING WITH LOCAL SCALE  

 

FIGURE 2. Illustration of primitive segmentation stratification. For the 
left part, the primitive segmentation is overlaid with the vegetation map; 
for the right part, the top image is the selected vegetative segments and 
the bottom is the selected non-vegetative segments. 

  

 

FIGURE 3. Illustration of converting one segmentation into RAG. 
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The global scales at the separating layers obtained are not 

likely to guarantee to delineate every geo-object well. To 

produce more objective segmentation, this paper develops a 

local scale determination method, which considers the 

spectral variance change after one pair of adjacent segments 

is merged. The proposed approach can be defined as: 

3

1 2

S

local

S S

v
t t

v +

=                                    (4) 

where t is the global scale, vS3
 is the variance after the 

adjacent segments pair of S1  and S2  is merged (i.e., S3 ); 

vS1+S2
 is the relative variance of S1 and S2, as defined in Eq. 

(5), 

1 1 2 2

1 2

1 2

S S S S

S S

S S

A v A v
v

A A
+

 + 
=

+
                            (5) 

where vS1
 and vS2

 is the variance of S1  and S2 , 

respectively.  

Then an example is presented in Figure 4 to illustrate the 

proposed approach. The pixel values within segments and 

the adjacent relationship between segments are shown in 

the left segment example. The top table presents the 

variance statistics of every segment and merged adjacent 

segments. The bottom presents the weight of three pairs of 

adjacent segments, which is a coefficient that locally 

adjusts the global scale, such as Eq. (4) in our article and 

Eq. (1) in Su (2019). S1 and S2 have the lowest variance 

(both are 0.25), indicating that S1 and S2 are more likely to 

be part of one geo-object. Both of the proposed approach 

and Su’s approach both put larger weights into the global 

scale for obtaining a larger local scale. With region merging 

processing, if homogeneity of segments is decreased, it 

indicates that over-segmentation is reduced. When one 

segment is under-segmented, if it is merged with its 

neighboring segment, the homogeneity will be increased. In 

this case, the adjacent segments should not be merged and it 

should be put less weight into the global scale. After the 

two pairs of adjacent segments (S1-S2 and S1-S4) are 

merged, the variance increased (S1: 0.25 and S2: 0.25 vs. 

S1+S2: 0.5, and S1:0.25 and S4: 0.9167 vs. S1+S4: 1.1429), 

indicating decreased over-segmentation. Then larger weight 

should be put for larger local scale. The adjacent segments 

of S2 and S3 have a decreased variance (S2: 0.25 and S3:1 

vs. S2+S3:0.6964) after they are merged, indicating that the 

merging processing should be banned. Then less weight is 

required for controlling the global scale. The proposed 

approach puts larger weights in S1-S2 and S1-S4 and less 

weight in S2-S3, however, the approach of Su (2019) puts 

similar weights in S1-S4 and S2-S3. This indicates that the 

spectral variance change after one pair of adjacent segments 

is merged is also critical for obtaining a more objective 

local scale estimation. 

The process of the region merging with local scale is as 

follows: All pairs of adjacent segments are corresponding 

to their respective merging cost, calculated by Eq. (2), and 

then put to a new list with a size of N × 3. The first two 

columns store one segment and its neighboring segment, 

and the third column stores the corresponding merging cost. 

The segment-pair with the lowest merging cost is first 

searched and if the merging cost is less than  𝑡𝑙𝑜𝑐𝑎𝑙 , the 

segment-pair will be merged. Then the RAG is updated by 

adding the newly formed adjacent relationship and deleting 

the old adjacent relationship corresponding to the merged 

two segments. The merging cost of newly formed adjacent 

segments is also calculated. Finally, the new list is updated. 

The detailed information can be found in Table Ⅰ. 

Note that with all threshold-based region merging 

methods, the user must vary the merging parameter for 

producing segmentation with high quality. Hence, the 

merging parameter β is varied from 0.1 to 1 in steps of 0.1, 

and the appropriate β is recognized using the approach of 

Johnson et al. (2015). 

C. OVER- AND UNDER- SEGMENTATION RECOGNITION 
AND RE-PROCESS  

Over- and under-segmentation recognition and re-process is 

also a critical issue to improve the segmentation quality. 

After implementing the local scale-guided region merging, 

the coefficient of variation (CV) is used to estimate the 

degree of over- and under-segmented regions from the 

perspective of the object and recognize the over- and under-

segmented regions. Then, these regions are further 

processed. Finally, the segments at separating layers are 

combined into one ultimate segmentation layer. 

1) OVER- AND UNDER- SEGMENTATION RECOGNITION  

 

FIGURE 4. Illustration of converting global scale into local scale. 

 TABLE I 

REGION MERGING WITH LOCAL SCALE 

Input: original image, vegetative segments/non-vegetative segments, β 

Procedure 

(1) Create a RAG based on vegetative segments/non-vegetative segments, 
and calculate the merging cost using Eq. (2); 

(2) Calculate the global scale t by Eq. (3), and then compute 𝑡𝑙𝑜𝑐𝑎𝑙 of each 

pair of adjacent segments using Eq. (4); 

(3) Search the segment-pair with lowest merging cost, and merge them if 

the merging cost is less than 𝑡𝑙𝑜𝑐𝑎𝑙; 

(4) Update RAG and then calculate the merging cost and 𝑡𝑙𝑜𝑐𝑎𝑙 with new 

formed segment-pair; 
(5) Repeat (3) and (4) until no segment-pair is merged. 

End 

Output: merged vegetative segments/ non-vegetative segments 
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Different segments have different sizes and ranges of 

spectral reflectance. To achieve the objective comparison 

among segments, the CV is applied to calculate the degree 

of over- and under-segmentation, which can be defined as: 
2

i(X X)

nCV
X

−

=


                                   (6) 

where X̅ is the mean of spectral values within a segment, 

n is the number of pixels within the segment and Xi is the 

spectral value of one pixel within the segment. The CV 

reflects the dispersion degree of spectral values within a 

segment, i.e., the segment with higher CV tends toward 

under-segmentation and the segment with lower CV tends 

toward over-segmentation. 

The process of over- and under-segmentation recognition 

is follows: First, the CV corresponding to each segment is 

calculated. Second, two CV thresholds are set to recognize 

the over-segmented regions (lowest 30% of segments) and 

under-segmented regions (highest 30% of segments) in 

each segmentation layer (vegetative segments/non-

vegetative segments). Third, the separating layer is divided 

into three layers of over-segmentation, good-segmentation, 

and under-segmentation. 

2) OVER- AND UNDER- SEGMENTATION RE-PROCESS 

The recognized over- and under-segmented regions need to 

be further processed for obtaining more accurate segments. 

For the over-segmentation layer, the adjacent segments are 

recognized using the RAG model and merged using the 

FLSA with local scale; For the under-segmentation layer, 

the under-segmented regions will be initialized to the 

original segments obtained by the watershed transformation. 

Then the adjacent relationship of these original segments is 

searched by building RAG, and the FLSA with local scale 

is again implemented to merge the adjacent original 

segments. Finally, all the separating layers are fused into 

one ultimate segmentation layer. 

D. METHOD VALIDATION  

To demonstrate the effectiveness of the proposed method, 

the visual and quantitative evaluation approaches are 

adopted in this paper. The total error (TE) and the quality 

rate (QR) [59] are chosen for quantitative evaluation. The 

TE is a Euclidean Distance combination of over-

segmentation (OS) and under-segmentation (US). The OS 

and US are both varied from 0 to 1, where OS is equal to 

zero indicates no over-segmented regions and US is equal 

to zero indicates no under-segmented regions. However, OS 

and US are often antagonistic for evaluating one remote 

sensing image segmentation and cannot indicate the overall 

segmentation quality. Hence, the TE is used to solve this 

problem and it varies from 0 to √2. The lower TE indicates 

better overall segmentation quality. The QR is a 

discrepancy measure in area between a reference polygon 

and its corresponding segment, and varies from 0 to 1. 

When segments are over- or under-segmented, the QR 

value will be large. When QR is equal to 0, indicating the 

highest segmentation goodness (i.e., no over- and under-

segmentation). The more details of TE and QR can be 

found in Clinton et al. (2010). 

A reference polygon may be overlapped with many 

segments in a segmentation; however, it is required that one 

recognized geo-object corresponds to a single segment. To 

determine the corresponding relationship from the reference 

polygon and its overlapped segments, we develop an 

overlay measure (OM) to calculate the goodness- of –fit 

between one reference polygon and its overlapped segments, 

as follows: 

i j i j

i j

i j i j

i j

area(r s ) area(r s )
2

area(r ) area(s )
OM

area(r s ) area(r s )

area(r ) area(s )

 
 

=
 

+

                         (7) 

where ri is one of the reference polygons and sj is one of 

the corresponding overlapped segments. Note that OM 

varies from 0 to 1, and the segment with the highest OM 

value is chosen to correspond with the reference polygon.  

III. RESULTS 

A. DATASET 

To test the effectiveness of the proposed method, three 

subsets of multi-spectral high spatial resolution images are 

acquired from a Chinese remote sensing satellite, gaofen-1, 

with four bands of 8m resolution (blue, green, red, and near-

infrared) and a panchromatic band of 2m resolution. These 

images are collected on May 8th, 2016, and then the 

NNDiffuse pan-sharpening method embedded in software 

ENVI 5.2 is used to generate multi-spectral images of 2m 

resolution with four bands. Figure 5(a), (b) & (c) show the 

dataset. The three test images are recognized as T1, T2 and 

T3, respectively. The sizes of all the test images are 1.1×1.1 

km. The testing areas are not very large, but various land 

cover types in the dataset are capable of demonstrating the 

proposed method. T1 is a typical urban area containing 

complex buildings, green belts, and road networks. T2 is a 

suburban area filled with industrial buildings, water, tree 

clusters, and large open fields. And T3 is a rural area 

including a village and differently sized agricultural land. 

Figure 6(a)-(c) present the corresponding expert-manually 

digitized reference geo-objects, whose numbers are 106, 124 

and 77, respectively. We can observe that differently sized 

geo-objects have been digitized for all the test images. 

B. THE INTERMEDIATE RESULTS OF THE PROPOSED 

METHOD 
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As described in Section Ⅱ, the proposed method mainly 

includes three processes: (1) the primitive segmentation 

production and stratification, (2) the local scale-guided 

region merging at separating layers, and (3) the over- and 

under-segmented regions recognition and re-process at 

separating layers. To make readers fully understand the 

whole procedure, some intermediate results are displayed. 

For the first process, Figure 7 shows the primitive 

segmentation results and vegetation maps. We can observe 

in Figure 7(a) that the initial segmentations of the three test 

images are seriously over-segmented. Combining the 

primitive segments and vegetation maps, two layers with 

vegetative segments and non-vegetative segments are 

generated, as illustrated in Figure 8. It is observed that the 

segments of the vegetative part and non-vegetative part 

have been effectively separated.  

For the second process, the local scale-guided region 

merging is the focus. The local scale is calculated based on 

the optimal global scale. Figure 9 shows the change of 

goodness scores of the test images with merging parameter 

β increasing to determine the optimal global scales. As 

indicated by the highest goodness scores, 0.7, 0.8 and 0.7 

are selected for merging vegetative segments of T1, T2 and 

T3, and 0.5, 0.7 and 0.6 are selected for merging non-

vegetative segments of T1, T2 and T3, respectively. Figure 

10 displays the local scale-guided region merging results of 

the test images at the optimal β. Compared with Figure 8, 

 

FIGURE 5. GF-1 images selected for segmentation experiment: (a) T1, urban area, (b) T2, suburban area, and (c) T3, rural area. These images are 
shown with false color combination by near-infrared, red and green bands. 

 

FIGURE 6. The manually digitized reference geo-objects selected for accuracy evaluation: (a) T1, (b) T2, and (c) T3. 

 

 

FIGURE 7. The primitive segmentation results and vegetation maps of 
three test images: (a) primitive segmentation produced by watershed 
transformation, and (b) vegetation maps produced by NDVI. 
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the level of over-segmentation has been greatly reduced. 

For the third process, the over- and under-segmented 

regions are identified and further processed for obtaining 

more accurate segmentation. After applying CV to 

recognize the over- and under-segmented regions, the over-

segmented regions are further merged using the local scale-

guided region merging method, and the under-segmented 

regions are re-merged after the under-segmented regions 

are initialized to the original segments obtained by the 

 

FIGURE 8. The primitive segmentation stratification results: (a) 
vegetative segments, and (b) non-vegetative segments. 

 

FIGURE 9. The change of goodness scores of the test images with 
merging parameter β increasing: (a) T1, (b) T2, and (c) T3. 

 
 

 

FIGURE 10. The local scale-guided region merging results of the test 
images at the optimal β: (a) vegetative merging results, and (b) non-
vegetative merging results. 

 

FIGURE 11. The goodness score variations of over- and under-
segmented regions with increased β: (a) vegetative segments, and (b) 
non-vegetative segments. 
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watershed transformation. To obtain the optimal global 

scale, the result of goodness score variations with increased 

β is shown in Figure 11.  For T1, 0.8 is selected as the 

further merged threshold of vegetative segments and non-

vegetative segments (over-segmented regions), and 0.5 and 

0.8 are selected as the re-merged threshold of vegetative 

segments and non-vegetative segments (under-segmented 

regions). For T2, the further merged threshold of that is set 

at 0.9 and 0.7, respectively, and the re-merged threshold of 

that is set at 0.6 and 0.2, respectively. For T3, we determine 

0.1 and 0.6 as the further merged threshold of that, and 0.7 

as the re-merged threshold of that. Figure 12 shows the 

ultimate segmentation results produced by the proposed 

method. 

C. COMPARISON EXPERIMENT 

10 methods were compared and analyzed for fully 

validating the proposed method. The detailed information 

on the 10 methods can be found in Table Ⅱ. Obviously, M1 

and M2 are compared for analyzing the superiority of the 

proposed local scale approach; M3 is used to reveal the 

effect of over- and under-segmentation recognition and re-

process; M4 aims at revealing the effect of primitive 

segmentation stratification; M5, M6, M7, M8, M9 and M10 

are the competitive methods for further comparison. Note 

that all the methods are based on the same initial segments 

produced by the watershed transform, as shown in Figure 

7(a). The segmentation parameters of these methods are 

determined by the parameter optimization method of 

Johnson et al. (2015), and the detailed parameter setting can 

be found in Table Ⅲ.  
Then, some subsets of the segmentation results of the 

three test images are shown in Figure 13 for visual analysis. 

For the first subset of T1, although all the methods wrongly 

merged grassland and bare soil land into one geo-objects, 

M1 and M3 performed better in segmenting tree belts than 

the other methods. M4 and M5 could not segment some tree 

 

FIGURE 12. The ultimate segmentation results produced by the 
proposed method. 

 

 

 

TABLE Ⅱ 
THE DETAILED INFORMATION OF COMPARED METHODS 

 

Code Description 

M1 The proposed method. 

M2 The proposed method with global approach. 

M3 The proposed method with no over- and under-segmentation 
recognition and re-process. 

M4 The proposed method with no primitive segmentation 

stratification. 
M5 The FLSA-based region merging method. It is proposed by 

Robinson et al. (2002). 

M6 The local spectral angle (SA)-based region merging method. It 
is proposed by Yang et al. (2017). 

M7 The scale-variable region-merging method. It is proposed by Su 

(2019). 
M8 The refined FLSA region merging method. It is proposed by 

Wang et al. (2020). 
M9 The region merging method aided by inter-segment and 

boundary homogeneities. It is proposed by Zhang et al. (2019). 

M10 The multiple merging method. It is proposed by Wang et al. 
(2021) 

 

TABLE Ⅲ 
DETAILED PARAMETER SETTING OF THE 10 METHODS 

Code Image 

parameter setting(s) 

β 

ρ 
Vegetative segments 

Non-vegetative 

segments 

Initial 

layer 

OS 

layer 

US 

layer 

Initial 

layer 

OS 

layer 

US 

layer 

M1 T1 0.7 0.8 0.5 0.5 0.8 0.8 - 

T2 0.8 0.9 0.6 0.7 0.7 0.2 - 
T3 0.7 0.1 0.7 0.6 0.6 0.7 - 

M2 T1 0.7 0.1 0.5 0.5 0.8 0.6 - 

T2 0.8 0.9 0.6 0.7 0.7 0.5 - 
T3 0.7 0.2 0.7 0.6 0.1 0.6 - 

M3 T1 0.7 - - 0.5 - - - 

T2 0.8 - - 0.7 - - - 
T3 0.7 - - 0.6 - - - 

  β 
ρ 

  Initial layer OS layer US layer 

M4 T1 0.5 0.8 0.6 - 
T2 0.6 0.1 0.6 - 

T3 0.6 0.7 0.6 - 

M5 T1 0.5 - - - 
T2 0.6 - - - 

T3 0.6 - - - 

M6 T1 0.7 - - - 
T2 0.6 - - - 

T3 0.7 - - - 

M7 T1 0.5 - - 1 

T2 0.8 - - 1 

T3 0.7 - - 1 

M8 T1 0.6 - - - 

T2 0.6 - - - 

T3 0.6 - - - 
M9 T1 0.6 - - - 

T2 0.7 - - - 

T3 0.7 - - - 

  Global scale Merging criteria 

  Q wcolor wshape 

M10 T1 8 0.2 0.2 

 T2 8 0.1 0.5 
 T3 9 0.1 0.2 
a OS represents over-segmentation, and US represents under-

segmentation. 
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belts out with the bare soil land. M7 seriously over- segmented the tree belts. For the second subset of T1, M1 

 

FIGURE 13. The subsets of the segmentation results of the three test images with 10 segmentation methods. 
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and M3 delineated differently sized geo-objects better than 

the other methods. Some buildings could not be segment 

out in the results of M2, M4, M5, M8 and M9. M6 and M7 

over-segmented various geo-objects with different degrees. 

For the first subset of T2, T1 and T2 produced good 

segments for the bare soil land and buildings, whereas the 

other eight methods over-segmented these geo-objects with 

varying degrees. For the second subset of T2, T1 and T2 

had a better overall performance in segmenting vegetative 

land and bare soil land, but they wrongly merged one small 

vegetative area and a path into the bare soil land. M3 had 

slight over-segmentation for the vegetative land. M4, M5, 

M6, M7, M9 and M10 almost had different levels of over-

segmentation for the vegetative land and bare soil land. M8 

under-segmented some bare soil land and a path. For the 

first subset of T3, M1 and M10 extracted the tree belt better 

than the other methods. M7 performed the worst in 

segmenting out the tree belt. Moreover, M4 did not 

distinguish some vegetative areas and bare soil areas well. 

For the second subset of T3, M1, M2, M4, M8,  M9 and 

M10 had relatively satisfying segmentation for the bare soil 

land, whereas M3, M6, and M7 produced evident over-

segmentation for this tpye of geo-object.  

Finally, to further analyze the effectiveness of the 

proposed method, the quantitative evaluation results of three 

test images are provided in Table Ⅳ. For T1, The M1 can 

produce the segmentation with the best overall quality, as 

indicated by the lowest QR and TE values. The method with 

the second-best score is the M3. Although the indicators of 

OS and US cannot directly reflect the overall segmentation 

quality, they are competent to indicate the level of over- and 

under-segmentation. The lowest OS value and relatively 

lower US value reveal that there are less over- and under-

segmentation in the segmentation produced by M1. For T2, 

the M1 had the lowest QR value and the second-lowest TE 

value, indicating good overall performance in generating 

satisfying segmentation. The M2 is followed, as indicated by 

the lowest TE value and the third-lowest QR value. The 

lowest OS and US values revealed less over-segmentation 

and under-segmentation in the M1 and M7 results, 

respectively. For T3, the M1 apparently outperformed the 

other nine methods, with the lowest QR and TE values. M4 

produced less over-segmentation and M7 produced less 

under-segmentation, with the lowest OS and US values, 

respectively. 

In addition, the running efficiency of the competing 

methods is shown in Table Ⅴ. According to Table Ⅴ, M1-

M3 had less running time than the other methods, 

indicating the stratification strategy can effectively 

improving the running efficiency. More running time of M1 

than M2 indicated the proposed local scale approach added 

the time complexity. Overall, the proposed method is a 

relatively timely and accurately efficient remote-sensing 

image segmentation method compared with the competing 

methods. 

IV. DISCUSSION 

A good segmentation is very critical for subsequent remote- 

sensing image interpretation, since it is regarded as the core 

of GEOBIA. The hybrid image segmentation method is a 

good alternative to produce good segmentation that best 

matched the different sizes of geo-objects. However, the 

existing methods almost use a certain scale or other 

TABLE Ⅳ 

QUANTITATIVE EVALUATION FOR THE SEGMENTATION RESULTS OF THE 

THREE TEST IMAGES WITH 10 SEGMENTATION METHODS. 

Image Method QR TE OS US 

T1 

M1 0.4465 0.28 0.3487 0.1877 

M2 0.4533 0.2834 0.3524 0.191 

M3 0.447 0.2808 0.3507 0.1862 

M4 0.4941 0.3188 0.3767 0.2477 

M5 0.4935 0.3171 0.3779 0.2415 

M6 0.617 0.3847 0.4073 0.3607 

M7 0.5447 0.3571 0.4808 0.1545 

M8 0.4955 0.3174 0.3791 0.2403 

 M9 0.5143 0.3587 0.4287 0.2711 

 M10 0.4793 0.298 0.2936 0.3023 

T2 

M1 0.413 0.2538 0.2587 0.2489 

M2 0.435 0.2514 0.3008 0.1897 

M3 0.4322 0.2571 0.2918 0.217 

M4 0.4405 0.2776 0.3599 0.1569 
M5 0.4401 0.2738 0.3515 0.1623 

M6 0.5987 0.403 0.4701 0.3221 

M7 0.5501 0.379 0.5277 0.094 

M8 0.5354 0.3428 0.4469 0.1879 

 M9 0.4997 0.3218 0.4123 0.1925 

 M10 0.5413 0.3494 0.4593 0.1824 

T3 

M1 0.5019 0.3271 0.4274 0.1771 

M2 0.5288 0.3502 0.4658 0.1684 

M3 0.5388 0.3577 0.4763 0.1702 

M4 0.5388 0.3393 0.3499 0.3284 

M5 0.5431 0.3527 0.4295 0.2537 

M6 0.588 0.3998 0.5043 0.2557 

M7 0.6512 0.453 0.6286 0.1237 

M8 0.5509 0.3585 0.4524 0.2289 

 M9 0.5437 0.3519 0.4677 0.1701 

 M10 0.5499 0.3533 0.4701 0.1692 

 
TABLE Ⅴ 

THE RUNNING TIME OF COMPARED METHODS 

Method 

Running time (unit: second)  

Test image 

T1 T2 T3 

M1 98.2 85.8 76.9  

M2 93.1 83.1 72.4  

M3 95.7 83.3 74.6  

M4 107.1 91.9 81.3  

M5 102.4 89.6 78.6  

M6 602.6 489.6 425.7  

M7 315.3 280.1 266.3  

M8 464.9 419.9 389.8  

M9 613.9 492.3 427.5  

M10 293.4 270.7 258.6  
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segmentation parameters (SPs) to control the sizes and 

shapes of segments. This will lead to two issues: (1) one 

single scale is impossible to segment every geo-object well 

due to the land cover complexity within remote-sensing 

imageries; (2) over- and under-segmented regions still 

occur in the segmentation results, whatever using any 

advanced segmentation methods. 

Multiple scale optimization and local scale approach are 

two main solutions to solve the first issue. But it is difficult 

to fuse the segmentation results obtained by the multiple 

optimal scales into one layer for the multiple scale 

optimization approaches. Considering the unique 

characteristics in geo-object size, shape, and spectral 

variability with different types of land covers, and using 

these characteristics to separate primitive segments into 

different layers may help achieve the multiple optimal scale 

determination and forming subsequent ultimate layer. For 

the local scale approaches, it adjusts the global scale based 

on local spectral structure for a more objective merging 

process. However, some methods neglect that the region 

merging process just happened in two adjacent segments. 

The spectral variance change after one pair of adjacent 

segments are merged is also a non-negligible factor to 

determine the reasonable local scale. Based on the above 

considerations, this paper developed the local scale-guided 

hierarchical region merging method. The multiple optimal 

scale determination and the local scale approach are 

skillfully combined in this method. 

Over- and under-segmentation recognition and further 

process can solve the second issue. The existing methods 

can indicate segmentation quality but may not be helpful 

for further improving the segmentation results since the 

evaluation metrics is in a global manner. To further 

improve the segmentation quality, this paper developed one 

over- and under-segmentation recognition method based on 

the object-based paradigm, in which the CV is employed. 

Different from that the existing method uses different 

indicators to calculate the level of over- and under-

segmentation, the CV is a comprehensive indicator that 

reveals the level of both over- and under-segmentation. 

The proposed technology, which is more like the 

framework of one merge process, is independent of the 

related split- and -merge based segmentation methods. The 

readers can employ any split- and -merge method into our 

proposed technology, not just the watershed transformation 

and FLSA used in this paper. This undoubtedly increases 

the robustness of the proposed technology, extending its 

application scope. Moreover, the proposed framework will 

be applied to Multiresolution Segmentation (MRS) 

algorithm in the future, since the MRS is currently a 

popular segmentation method for GEOBIA. 

 To demonstrate the proposed technology, visual and 

quantitative analyses were given, as described in Section Ⅲ. 

Figure 13 showed that the proposed method (M1) had a 

better overall performance in segmenting differently sized 

geo-objects compared with the competing methods. Table 

Ⅳ further demonstrated the conclusion since M1 had lower 

QR and TE values than M5-M10. The lower QR and TE 

values of M1 than M2 in most cases indicated the 

superiority of the proposed local scale approach. The same 

phenomena also occurred in the comparative results of T1 

and T3, T1 and T4. The comparative results of T1 and T3 

indicated that the primitive segmentation can effectively 

avoid wrong merging with different types of land covers, 

thus improving the segmentation quality. The comparative 

results of T1 and T4 revealed that the over- and under-

segmentation recognition and re-process employing the CV 

is capable of reducing the over- under-segmentation. 

Overall, the proposed method has the potential to produce 

better segmentation results.  

However, some problems were found in the experimental 

results. The detailed analyses are as follows: 

(1) We observe that all the methods were incapable of 

segmenting out the vegetative area and bare soil area in the 

first subset of T1 of Figure 13, while the NDVI map of T1 

in Figure 7(b) obviously separated them. The inappropriate 

initial segments may be the main cause of the above 

situation. Thus, using a more efficient segmentation method 

to obtain good initial segments is also non-negligible in the 

framework of split- and -merge strategy. 

(2) The fact is found that the NDVI map of T2 (Figure 

7(b)) did not recognize some vegetative parts very well, 

leading to that M1 and M2 could not distinguish the 

vegetative area and bare soil area in the second subset of T2 

of Fig. 13. This paper just used the empirical threshold to 

calculate the NDVI map, which may result in segmentation 

error. 

(3) It is observed that the QR and TE values of M3 are a 

little higher than those of M1 for T1 in Table Ⅳ, indicating 

a limited improvement of segmentation quality in T1 after 

the over- and under-segmentation recognition and re-

process is implemented. The reason causing the 

phenomenon is that single over-segmented regions were 

recognized, and it was not helpful to reduce segmentation 

error since no neighboring segments can be further merged 

with the single over-segmented region. Existing recognition 

methods of over- and under-segmentation distinguish these 

regions based on certain mathematical criteria, such as the 

local variance and Moran’s I in Johnson and Xie (2011), 

and CV adopted in this paper. They both ignore the context 

information between one over-segmented region and its 

neighbors. Thus, it is very critical for developing a more 

objective recognition method by considering the semantic 

information in the future. 

Moreover, only NDVI was used in this paper to achieve 

the primitive segmentation stratification. Using NDVI for 

segmentation may be a little outdated and simple, but it is 

limited by the condition that the test images only contain 

four bands of blue, green, red, and near-infrared. With the 

spectral resolution improvement of the high spatial 
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resolution imagery in the future, more auxiliary parameters, 

such as the normalized difference impervious surface index 

(NDISI), Normalized Burn Ratio (NBR), and normalized 

difference building index (NDBI), are involved in primitive 

segmentation stratification for obtaining more accurate 

segmentation. 

Although the multiple scale optimization and local scale 

approach is helpful to improve segmentation quality, the 

global scale needs to be artificially set and the optimal scale 

is searched within some ranges, which adds certain 

subjectivity and much work. In the future, developing one 

automatic segmentation stopping rule is also very critical to 

guarantee objective and efficient segmentation. 

V. CONCLUSION 

In this paper, a hybrid remote sensing segmentation method 

with local scale-guided hierarchical region merging and 

further over- and under-segmentation processing is proposed 

to segment differently sized geo-objects. The proposed 

technology skillfully integrates multiple optimal scale 

determination and the local scale approach, and then 

recognizes and processes the over- and under-segmented 

regions for generating more satisfying segmentation. To 

validate the proposed method, three test images of gaofen-1 

were used and ten competing methods were compared. The 

visual and quantitative results demonstrated that the proposed 

method was more potential to delineate various sizes of geo-

objects compared with the competing methods.  

In the future, more auxiliary parameters used for primitive 

segmentation stratification, the automatic segmentation 

stopping rule, and the semantic information-based over- and 

under-segmentation recognition method will be our main 

focus. 
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