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Abstract 

MAXSAT solutions, i.e., near-satisfying assignments 
for propositional formulas, are sometimes meaningless 
for real-world problems because such formulas include 
“mandatory clauses” that must be all satisfied for the 
solution to be reasonable. In this paper, we intro- 
duce Partial MAXSAT and investigate how to solve 
it using local search algorithms. An instance of Par- 
tial MAXSAT consists of two formulas fA and f~, and 
its solution must satisfy all clauses in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA and as many 
clauses in fB as possible. The basic idea of our al- 
gorithm is to give weight to fA-clauses (the manda- 
tory clauses) and then apply local search. We face two 
problems; (i) what amount of weight is appropriate 
and (ii) how to deal with the common action of local 
search algorithms, giving weight to clauses for their 
own purpose, which will hide the initial weight as the 
algorithms proceed. 

Introchction 

Local search has already become an important 
paradigm for solving propositional CNF satisfiabil- 
ity. Since it was shown to be surprisingly power- 
ful (Gu 1992; Selman et.aZ 1992), local search has 
been intensively discussed by many AI-researchers, 
mainly focused on how to escape from local minimas 
or “plateaus.” Strategies to that goal include Maxflips 
(Selman et.& 1992), Random Walk (Selman and Kautz 
1993), Simulated Annealing Selman and Kautz 1996; 
Spears 1996) and Weighting f Morris 1993; Selman and 
Kautz 1993; Cha and Iwama 1995; Cha and Iwama 
1996; Frank 1996). By these efforts, random 3CNF 
formulas (at the hard region) are now considered to be 

“‘solvable” up to some 10” variables, which is a great 

progress compared to some lo2 variables at the begin- 
ning of 90’s. 

Then it is an obvious movement to try to take ad- 
vantage of this remarkable development for solving 
real-world problems (e.g., Kautz and Selman I996), 
namely,‘by reducing them into CNF satisfiability. One 
important merit of using CNF satisfiability rather 
than conventional approaches (typically based on in- 
teger programming or first-order refutation) is that 

Copyright @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1997, American Association for Artificial In- 

telligence (www.aaai.org). All rights reserved. 

**Department of Computer Science 

Kyoto University 

Kyoto 606, Japan 

yahiko@kuis.Kyoto-u.ac.jp 

the reduction is quite systematic and often straight- 
forward: Simply speaking, all we have to do is to gen- 
erate clauses so that each of them will become false if 
something bad happens. Particularly when there are 
a lot of “irregular” constraints, we can really enjoy 
this merit. Mowever, real-world formulas, i.e., formu- 
las reduced from real-world problems, are sometimes 
much tougher than random formulas: First of all, their 
size becomes unexpectedly large because propositional 
variables can hold only true or false. (Intuitively speak- 
ing, in order to simulate one integer variable that can 
take Ic different values, we need k propositional vari- 
ables or log Ic ones if binary coding is possible.) Sec- 
ondly, even more serious is that real-world formulas 
are often unsatisfiable because of too many constraints. 
This is not surprising since one tends to put more con- 
straints assuming that it implies better solutions. 

Therefore, it does not appear to be realistic to stick 
to complete solutions or satisfying assignments for 
large-scale, real-world formulas. Instead, what is re- 
alistic is to use MAXSAT which gives us better so- 
lutions or truth assignments that unsatisfy a smaller 
number of clauses. Of course, local search does work 
for MAXSAT (S 1 e man and Kautz 1996) and in fact 
its main target was MAXSAT itself (Hansen and Jau- 
mand 1990) before Selman et.al claimed that it was 
also useful to search complete solutions (Selman et.aE 
1992). Unfortunately, the simple MAXSAT approach 
has a significant drawback. The third and probably the 
most important feature of real-world. formulas is that 
they include “mandatory” clauses whose unsatisfaction 
makes solutions meaningless. (In (Freuder et.al 1995), 
Selman says ‘(a near-satisfying assignment corresponds 
to a plan with a “magic” step, i.e., a physically in- 
feasible operation.“) The number of such mandatory 
clauses is usually not large, often a fraction of the whole 
formula. 

Now it is obvious why we need zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPartial MAXSAT 
(PIMSATin short) introduced in (Miyazaki et.al 1996): 
An instance of PMSAT is composed of two CNF for- 
mulas $A and fB over the same variable set. It requires 
us to obtain a truth assignment or a solution that sat- 
isfies all the clauses in fA and as many ones in fB as 

possible. Namely, the goodness value of the solution is 
the number of satisfied clauses in fB. Then how can 
we solve PMSAT using local search? One simple idea 
is to repeat mandatory clauses, i.e., clauses in fA, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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then to apply local search for obtaining MAXSAT so- 
lutions. Actually we do not have to repeat clauses but 
can give weight to each clause. 

The objective of this paper is to investigate how this 
simple idea works. We mainly focus on two problems: 
(i) What amount of weight given to mandatory clauses 
is appropriate? (ii) Local search algorithms also give 
weight to clauses for their own purpose. This weight- 
ing will hide the initial weight given to the mandatory 
clauses as the algorithms proceed, which might become 
a significant obstacle against our goal, i.e., trying to 
satisfy all mandatory clauses. 

For experiments, we used not only random 3CNF 
formulas but also a typical real-world formula which 
is to obtain a class-schedule table of universities. The 
data were taken from the real database of CS depart- 
ment, Kyushu University (Miyazaki et .a1 1996)) whose 
size is not so large but somehow realistic (60 stu- 
dents, 30 courses, 13 faculties, 3 class rooms and 10 
time-slots). The formula includes 900 variables .and 
some 300,000 clauses out of which some 2000 ones are 
mandatory. This is obviously a nice example for claim- 
ing the usefulness of Partial MAXSAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Why Simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAXSAT’ 
We first take a look at why simple MAXSAT does not 
work using the class-schedule example. The notation 
in this paper is as follows: A literal is a (logic) varz’a& 
z or its negation ZZ. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclause is a sum (disjunction) 

of one or more literals. A (CNF) formula is a prod- 

uct (conjunction) of clauses. A truth assignment is a 
mapping from variables into (true, false} or { 1, 0). A 
formula f is said to be satisfiable if there is a truth 
assignment which makes all the clauses true; such an 
assignment is called a satisfying truth assignment. 

An instance of the class-scheduling problem consists 
of the following information: (i) A set CS of students, 
cp of professors, CR of classrooms, CT of timeslots 
and CC of courses. (ii) Which courses each student 
in CS wishes to take, e.g., student s wants to take 
courses cr , c2 and cs. (iii) Which courses each profes- 
sor in Cp teaches, (iv) Which timeslots each professor 

* cannot teach, (v) Which courses each classroom can- 
not be used for (because of its capacity). (vi) Which 
timeslots each classroom cannot be used for, and so 
on. 

Now we generate a CNF formula from this infor- 
mation Let A,B and C be the numbers of the total 
courses, timeslots and classrooms. Then we use vari- 
ables zi,j,k(l 5 i 5 A, 1 5 j 5 B, and 1 5 k 5 C). 
Namely ~i,j,k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 means that course i is assigned to 
timeslot j and room k. Hence a particular truth as- 
signment into those variables ~,j,k can be associated 
with a particular class schedule. Here is the translation 
algorithm: 

Step I. For each ir,i2, j, L(ir # iz), we generate the 
clause (zil,j,lcV xiz ,j,h), which becomes false if different 
courses ir and i2 are taught in the same room at the 
same time. 

Step 2. Suppose for example that professor 
pr teaches courses ~2, c4 and ~5. Then for each 

j&l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2(h # k2), w e generate the clauses (x2,j,kl v 
- -- 
24,j,hz > A (XZ,j,k l v 25,j,kz )A(Zq,j,lc lVS - 5 ,j,h > A hj,h v 

- - 
Q,j,d A b4,j,h v z4,j,lcs 

~ ~ 
> A (X5,j,k~ v 25,j,k ,). I f tw o 

courses (including the same one) taught by the same 
professor pr are assigned to the same timeslot and dif- 
ferent rooms, then at least one of those clauses becomes 
false. We generate such clauses for each of all the pro- 
fessors. 

Step 3. For each i, we generate the clause (xi,r,r V 

X& 1,2 v . . . V xi,~,~) which becomes false if course ci 
does not appear m the class schedule. 

Step 4. Suppose for example, student sr wants to 
take courses cl, ~3, c5 and cs. Then for each j, kr , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI&, we 

-- -- ~ 
generate h,j,hl V x3,j,g,) A (xl,j,a l V X5,j,/cz > A (Xl,j,/c , V 
- - 
xS,j,h > A (x3,j,h vx5,j,h -----)A(ZQ,j,lc lVZg,j,lcz)A(55,j,W1V 

-1. I ft  w o of those four courses are assigned to the 
same timeslot, then one of these six clauses becomes 
false. Construct such clauses for all the students. 

Steps 5 -  7. More clauses are generated by a similar 
idea according to the other constraints (omitted). 

To obtain a specific benchmark formula, we used the 
real data of the CS department, Kyushu University. It 
involves 30 courses, 10 timeslots, 3 rooms, 13 professors 
and 60 students, where each professor teaches two or 
three courses and has two or three inconvenient time- 
slots. Each student selects eight to ten courses. It 
should be noted that this formula, say f, is probably 
unsatisfiable because the request of students is so tight 
(there are ten timeslots and many students select ten 
courses). 

Now what happens if we try to solve this f using 
simple MAXSAT? According to our experiment, it was 
not hard to obtain a solution that unsatisfies only 15 

clauses out of the roughly 300,000 total ones. It might 
seem good but actually not: The result, namely the 
obtained class schedule, did not include eight courses 
out of 30. Also, there were five collisions of two courses 
in the same room at the same time and so on. Namely 
the number of the unsatisfied clauses is small but most 
of them are mandatory; if one of them is not satisfied 
then the solution includes a fatal defect. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

artial MAXSAT 
Recall that an instance of PMSAT is composed of two 
CNF formulas fA and fB. We have to obtain a solution 
(an assignment) that satisfies all the clauses in fA and 
as many ones in f~ as possible. Generally speaking, 
there iS an implicit assumption such that fA must be 
“easy,” because it would be otherwise hard to obtain 
any solution at all regardless of its goodness. One ex- 
ample of this easiness is that fA includes either only 
positive literals or only negative ones which we call 
uni-polar. 

It seems that PMSAT has a large power of “simulat- 
ing” other combinatorial optimization problems even 
under the easy-fA assumption: For example, there 
is an approximation preserving reduction from MAX- 
Clique to PMSAT with uni-polar fA. (Note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat MAX- 

Clique is one of the hardest optimization problems 
that is beheved to have no approximation algorithms 

of approximation ratio n’- ’ or better (Hastad 1996).) 
More formally we can prove that there is a polynomial- 
time algorithm that, given a graph G, outputs (fA, f~) 
which meets the following conditions: (i) fA is uni- 
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polar. (ii) There is a polynomial-time algorithm that 
computes a clique C of G from a solution 2 of (f~, f~) 
such that the approximation ratio of C is L iff the ap- 
proximation ratio of 2 is tE. 

The reduction is pretty straightforward: For a graph 
G with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn vertices ~1 through vn, we use n variables zr 
through zn. f~ is the product of clauses (z V q) 
such that there is no edge between vi and 7-j. Note 
that fA contains only negated variables. f~ is set to 
be (~1) A (~2) A - - - A (cc,). Its correctness is almost 
obvious: From a solution (an assignment) of (f~, fB), 
we can compute a clique easily, namely, by obtaining a 
set of vertices vi such that zi is set to be true. Since all 
the clauses in fA are satisfied, no two vertices vi and vj 
being unconnected are not in the set. In other words, 
the set of vertices constitute a clique. Note that it is 
widely believed that there is no such approximation- 
preserving reduction form MAX-Clique to the normal 
MAXSAT. 

A bit harder example is a reduction from MPN- 
Coloring, also known as a hard problem (Bellare et.al 

1995). This time, we use n2 + n variables xi,j (1 5 i 5 

n, 1 < j 5 n) and xj (1 2 j 5 n). Setting xi,j = 1 
means that vertex vi 1s given color j. f~ consists of the 
following two groups of clauses: (a) For each 1 5 i 5 n 
and different jr and j2, 1 5 jr, j2 5 n, we generate 

(2i,jlV2i,jz ). (b) For each 1 5 j < n and different 2”r 
and i2, 1 5 ir, is 5 n, such that there is an edge be- 

-- 
tween vi, and vi2 9 we generate (xi1 ,j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV xi2 ,j). A clause 

in (a) becomes false if a single vertex is given two or 
more different colors and a clause in (b) becomes false 
if two connected vertices are given the same color. ~JJ 
is written as 

where each f&i consists of the single clause (xi,1 V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xi,2 v * * -V%,TZ) and fBa,j consists of n clauses (TiT$lYjJ 

for 1 5 i 5 n. 

This reduction preserves approximation in the fol- 
lowing way: First of all, one can see that if an assign- 
ment satisfies all the clauses in fA, then (i) each vertex 
is given at most one color and (ii) no two connected 
vertices are given the same color. But it can happen 
that no color at all is assigned to some vertex. We next 
show that if we wish to satisfy as many clauses in f~ as 
possible, what we should do is to satisfy all the clauses 

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB,,, through fB1,,. Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa  clause in f~,,~ 

is not satisfied. That means the vertex vi is not given 
any color. Then we can satisfy it by setting xi,j = 1 

for some j such that xi! ,j = 0 for all i’, i.e., by giving a 
color j, which is not currently used, to that vertex vi. 
clearly this change keeps all the clauses in $A satisfied, 
and by this change, at most one clause (pi, v q) in 

jBz.i changes from satisfied to unsatisfied. Therefore 

the number of satisfied clauses does not decrease at 
least. Similarly we should satisfy all the clauses ~~~~~ 

through ~Bz.~ because if there is an unsatisfied clause 

in f&j) -‘- we can satisfy it by setting zj = 0. Again, this 

change keeps all the clauses in fA and f&1 through 

fBl+ satisfied, and since only one clause (zj ) becomes 

false, the number of satisfied clauses does not decrease. 

Thus, without loss of generality, we have to consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ody S,SSignmentS that Satisfy fA, f&i for all i and 

$B2 j for all j. Then if color j is actually used for some 

vertex, then the variable xj must be set to 0 since at 

least one (x i,j V q) becomes false otherwise. Thus the 

clause (zj) under this assignment is false. Otherwise, if 
the color j is not used then all zi,j, 1 5 i 5 n, are true 

by themselves and hence we can make (zj) true. As a 
result, the number of unsatisfied clauses in fB is equal 
to the number of colors that are needed in the proper 
coloring. In other words, satisfying more clauses in fB 
means better coloring (fewer colors). 

0ur basic idea of solving PMSAT is quite simple: We 
repeat each clause in f,4 (or equivalently we can give 
initial weight to clauses in f,4 but we will seldom use 
this expression to avoid possible confusion between this 
weighting and the other type of weighting carried out 
by local search algorithms). Then we simply apply lo- 
cal search algorithms to obtain a solution that (hope- 
fully) minimizes the number of unsatisfied clauses. As 
local search algorithms, we tested two popular ones 
in this paper; one is based on the so-called weighting 
method and the other is based on @SAT+Random- 
Walk. In more detail, the former program (developed 
by the authors) adds +I to the weight of each clause 
that is not satisfied at the current assignment whenever 
the current assignment is a local minima. The latter 
was developed by Gang et.al (Liang et.al 1996) that is 
claimed to be one of the fastest GSAT-type programs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Initial Weighting St sat egies 

As an extreme case, suppose for example that a single 
clause in fA is repeated K + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 times where K is the 
number of all the clauses in fB and that fA is “easy” 
to be satisfied. Then to satisfy one more (original) 
&We in fA pays even if it makes all the ChSeS in fB 
false in the sense that the number of unsatisfied clauses 
decreases by at least one. It is very likely that the local- 
search algorithm first tries to satisfy all the clauses in 
PA and after that it then tries to satisfy others (i.e., in 
fB> as many as possible while keeping fA all satisfied. 
That is exactly what we want. 

Unfortunately this observation is too easy: After 
reaching some assignment that satisfies all IA, the 
local-search algorithm will never visit any assignment 
that makes fA false because such an assignment in- 
creases the number of unsatisfied clauses too large due 
to the repetition of fA_clauses. That means the search 
space is quite restricted, which usually gives a bad 
effect to the performance of local-search algorithms. 
This turned out to be true by the following simple ex- 
periment: Suppose that both fA and jB are random 
formulas and the number of clauses in fA is one ninth 
the number of clauses in fB. Also suppose that the 
local search has already reduced the number of un- 
satisfied clauses well, say, to 20 (i.e., fA is expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to include two such clauses on average). Then it of- 
ten happens that all the clauses of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA are satisfied by 
chance without using any repetition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,J-clauses at 
all. However, if we assure the satisfaction of fA by 
the (heavy) repetition, then it becomes easier to sat- 
isfy fA-clauses but it becomes very hard to reduce the 
number of unsatisfied clauses in fjg, say, to less than 
50. 

Thus, we do need the repetition but its amount 
should be minimum. Then how can we compute an 
appropriate amount of the repetition? The idea is to 
make some kind of balance between fA and fB. To do 
so, we first suppose that the current assignment is not 
too bad, i.e., almost all fA-&kuses are already satis- 
fied and many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB-dauses are also satisfied. Under this 
assumption, we can imply several conditions on the 
current value of each variable. Using this information, 
we can then compute the average number, say, iV, of 
fB_claUses that are currently satisfied but will become 
unsatisfied when we change the assignment so that one 
new fA--clause will become satisfied. This number N 
is a good suggestion of the number of repetitions of 
each fA-chse. An example of this calculation for the 
class-schedule formula will be given in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Restart and Reset Strategies 

As shown in (Cha and Iwama 1995; Cha and Iwama 
1996; Frank 1996), the weighting method is very fast in 
terms of the number of cell-moves until the algorithm 
gets to a satisfying assignment. However, it takes more 
time to carry out a single cell-move. Actually, the 
GSAT-type program by Liang et.al, which we will call 
LWM hereafter, can make five to ten cell-moves while 
our weighting-type program carries out a single cell- 
move. (This difference of performance is also due to 
implementation at least in part.) Thus it is not an 
easy question whether should be preferred. 

When we use weighting-type local search for PM- 
SAT, special care must be needed: Recall that each 
fA_claUSe is repeated, for example, ten times. How- 
ever, the algorithm can give weight to any clause, ei- 
ther in fA or in fB, if that Clause is unsatisfied at a 
local minima. Note that giving +l weight has exactly 
the same effect as repeating that clause one more time. 
Also it should be noted that the total amount of weight 
given by the algorithm is surprisingly large especially 
when the program is run for long time. Therefore it can 
well happen that the initial repetition of fA-chses 
will soon be overwhelmed by the vast amount of weight 
given by the algorithm. 

We can observe this phenomenon in Fig. 1, which 
shows how the number of unsatisfied clauses in fA (de- 
noted by A-Clauses) and in fB (denoted by B-Clauses) 
changes as the algorithm proceeds. The formula used 
is a random 3SAT formula of 400 variables, 4000 (to- 
tal) clauses and 400 fA-&buses. Each fA-chuse is re- 
peated 100 times. (We also obtained very similar data 
for a formula of 800 variables, 8000 clauses and 800 
f~-&%Uses.) As one can see, the number of unsatisfied 
fA_claUses drops immediately to zero thanks to the 
repetition, but when the number of steps (cell- moves) 
increases, it leaves from zero at some moment, say, T, 
and never comes back to zero. Namely, the effect of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the initial repetition of fA_clauses dies at the moment 
T and it is totally nonsense to continue the algorithm 
after that. 

Then what should be done at that moment T? A 
simple answer is to stop the current search and restart 
the algorithm completely from the beginning (i.e., from 
a randomly selected initial assignment). We call this 
version RESTART. Another possibility is to reset only 
the weight given by the algorithm so far and to con- 
tinue the search from the current assignment. This is 
called RESET. The next question is how to decide this 
moment T. Since the moment depends on the total 
weight given by the algorithm so far, one reasonable 
way is to decide it by the number of local minimas 
visited by the algorithm so far. (Recall that the al- 
gorithm gives weight whenever it gets to a local min- 
ima.) It is denoted by an integer parameter, Maxflips, 
(as Maxflips = 100) which means that the algorithm 
restarts (or resets) after it has visited local minimas 
Maxflips times. 

Experiments 

As mentioned in the preceding section, we tested 
three algorithms, RESTART, RESET and LWM. The 
value of Maxflips was set to 400 since that is not too 
small compared to the moment 2’ discussed previously. 
(Note that if Maxflips is too small, we may never be 
able to reach good solutions at all. So, it is safer to 
make this value large but it may lose the efficiency.) 
Random formulas are denoted as ra - b - c where a, 
b and c are integers that show the numbers of vari- 
ables, the whole clauses and f,J-clauses, respectively. 
We also used the class-schedule formula for which the 
clauses are divided into fA and fB as follows: fA in- 
cludes all the clauses generated at Steps I and 2 (for 
the obvious reason). The clauses generated at Step 3 
are also important. However, if we put them into fA, 
then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA becomes not uni-polar. So, we did not do so 
but repeated (zi,r,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVQJJ V- - *VZ~,B,C) Ki times where 
Ki is the number of students who select course ci, and 
put them into fB. This does not lose sense because if 
ci is missing, then it gives inconvenience to only the 
Ki students. All the other clauses are put into fB. 

Let us take a look at how to calculate the appropri- 
ate repetitions of fA-clauses in the case of this class- 
schedule formula: Suppose that we are now close to 
a good solution, namely the current assignment looks 
like the one such that for each i only one of xi,j,k, 
B 2 j 5 B and 1 5 k 5 C, is 1 and all the others 0. 

Furthermore suppose that there is an fA-clause, say, 
(xi 1 1 V m) that is now 0, i.e., both xi 1 1 and x. 1 r 
are’ i. Ali’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/A-clauses must be satisfied. ‘So let us”&e 
what happens if we try to flip the variable xi,r,r from 

- - 
1 to 0. Apparently this fA-clause (xi,r,r Vxj,l,l) is sat- 
isfied and fortunately it does not cause any bad effect 
to other fA-clauses (i.e., no such clauses change from 
1 to 0). 

We next observe how this flip (of zi,i,r from 1 to 

0) changes the satisfaction of fB-&uses. As for the 
all-positive-literal clauses generated in Step 3, (xi,r,r v 

- l - V z&B&) is expected to change from 1 to 0. That 
does not happen actually if some variable other than 
ZQ,J_ is also 1, but this probability is low according to 
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the nearly-good-solution assumption mentioned above. 
Recall that this clause is repeated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKi times. As for 
the opposite clauses, i.e., the ones changing from 0 to 
P, it is enough to only consider the clauses generated 
in Step 4 (others are negligible). Such clauses have 

-- 
the form of (~i,r,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zit,1,6) and if this is 0, then it 
means some student among the Ki ones wishes to take 
both courses i and i’ which collide at timeslot P in the 
current assignment. We can assume that the number 
of such students is only a fraction of Ki. It is not 

hard to see that Ki = ff on average where E and % 

are the number of students and the average number 
of courses selected by a student, respectively. (Recall 
that A is the number of courses.) Thus the number 

of satisfied clauses in f~ decreases by roughly F_ As 

a result, flipping zi,r,r from 1 to 0 increases satisfied 

clauses by one in fA but decreases by T in f~. This 

is the number N discussed previously, which is about 
20 in our current example. 

Figs. 2-4 show the performance of RESTART, RE- 
SET and LWM for random formulas, i.e., for r400- 
4000-400, r400-8000-800 and r800-8000-800, respec- 
tively. Each curve shows the number of unsatisfied 
fB--clauses of the best solution (i.e., it satisfies all the 
fA_claUSeS and most fB--clauses) the algorithm has 
gotten by that number of steps (cell-moves). (This 
graph, in general, seems to be quite reasonable to show 
the performance of MAXSAT algorithms, which never 
appeared in the literature.) Each graph shows the av- 
erage of results for four random formulas. The number 
of repetitions for each fA-clause is 100 for all experi- 
ments. Generally speaking, RESET appears to be the 
best. 

Figs. 5 and 6 show similar graphs for the class- 
schedule formula. The number of repetitions for fA- 
clauses is 20 and Maxflips = 2000 (Fig. 5) and 5000 
(Fig.6). The current best result is a solution that in- 
cludes 93 unsatisfied (all f~) clauses, which was ob- 
tained after some 5 million steps. We also tested the 
heavy weight (lOOO), but we were not able to get any 
solution that contains less than 115 unsatisfied clauses. 

Remark. Very recently, Nonobe and Ibaraki 
(Nonobe and Ibaraki 1996) used our data for the class 
schedule and obtained a schedule table using a sophis- 
ticated CSP approach. Their result is slightly better 
than ours, i.e., the students have to abandon 86 courses 
(almost the same as 86 unsatisfied clauses in our case) 
in total, and they claim the result is optimal. 

Concluding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARemarks 

Because of the time limit, we were not able to con- 
duct several experiments including; (1) experiments 
to observe the effect of the number of repetitions of 
jA_claUSes, (2) experiments to investigate an optimal 
value for Maxflips, (3) experiments to test some differ- 
ent weighting strategies that are suitable to PMSAT 
and so on. It might be more important to investigate 
more basic requirements for solving PMSAT. For ex- 
ample, completely different approaches like backtrack- 
ing may work better for PMSAT. Also there may be 
other methods to manage fA_clauses than simply re- 
peating them. 
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