
Local Search Algorithms for Partial MAXSAT

Byungki Cha *y Kazuo Iwama *, Yahiko Mambayashi** and Shuichi Miyazaki*

*Department of Computer Science

Kyushu University

Fukuoka 812, Japan

{cha, iwama, shuichi)@csce.kyushu-u.ac.jp

Abstract

MAXSAT solutions, i.e., near-satisfying assignments
for propositional formulas, are sometimes meaningless
for real-world problems because such formulas include
“mandatory clauses” that must be all satisfied for the
solution to be reasonable. In this paper, we intro-
duce Partial MAXSAT and investigate how to solve
it using local search algorithms. An instance of Par-
tial MAXSAT consists of two formulas fA and f~, and
its solution must satisfy all clauses in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA and as many
clauses in fB as possible. The basic idea of our al-
gorithm is to give weight to fA-clauses (the manda-
tory clauses) and then apply local search. We face two
problems; (i) what amount of weight is appropriate
and (ii) how to deal with the common action of local
search algorithms, giving weight to clauses for their
own purpose, which will hide the initial weight as the
algorithms proceed.

Introchction

Local search has already become an important
paradigm for solving propositional CNF satisfiabil-
ity. Since it was shown to be surprisingly power-
ful (Gu 1992; Selman et.aZ 1992), local search has
been intensively discussed by many AI-researchers,
mainly focused on how to escape from local minimas
or “plateaus.” Strategies to that goal include Maxflips
(Selman et.& 1992), Random Walk (Selman and Kautz
1993), Simulated Annealing Selman and Kautz 1996;
Spears 1996) and Weighting f Morris 1993; Selman and
Kautz 1993; Cha and Iwama 1995; Cha and Iwama
1996; Frank 1996). By these efforts, random 3CNF
formulas (at the hard region) are now considered to be

“‘solvable” up to some 10” variables, which is a great

progress compared to some lo2 variables at the begin-
ning of 90’s.

Then it is an obvious movement to try to take ad-
vantage of this remarkable development for solving
real-world problems (e.g., Kautz and Selman I996),
namely,‘by reducing them into CNF satisfiability. One
important merit of using CNF satisfiability rather
than conventional approaches (typically based on in-
teger programming or first-order refutation) is that

Copyright @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1997, American Association for Artificial In-

telligence (www.aaai.org). All rights reserved.

**Department of Computer Science

Kyoto University

Kyoto 606, Japan

yahiko@kuis.Kyoto-u.ac.jp

the reduction is quite systematic and often straight-
forward: Simply speaking, all we have to do is to gen-
erate clauses so that each of them will become false if
something bad happens. Particularly when there are
a lot of “irregular” constraints, we can really enjoy
this merit. Mowever, real-world formulas, i.e., formu-
las reduced from real-world problems, are sometimes
much tougher than random formulas: First of all, their
size becomes unexpectedly large because propositional
variables can hold only true or false. (Intuitively speak-
ing, in order to simulate one integer variable that can
take Ic different values, we need k propositional vari-
ables or log Ic ones if binary coding is possible.) Sec-
ondly, even more serious is that real-world formulas
are often unsatisfiable because of too many constraints.
This is not surprising since one tends to put more con-
straints assuming that it implies better solutions.

Therefore, it does not appear to be realistic to stick
to complete solutions or satisfying assignments for
large-scale, real-world formulas. Instead, what is re-
alistic is to use MAXSAT which gives us better so-
lutions or truth assignments that unsatisfy a smaller
number of clauses. Of course, local search does work
for MAXSAT (S 1 e man and Kautz 1996) and in fact
its main target was MAXSAT itself (Hansen and Jau-
mand 1990) before Selman et.al claimed that it was
also useful to search complete solutions (Selman et.aE
1992). Unfortunately, the simple MAXSAT approach
has a significant drawback. The third and probably the
most important feature of real-world. formulas is that
they include “mandatory” clauses whose unsatisfaction
makes solutions meaningless. (In (Freuder et.al 1995),
Selman says ‘(a near-satisfying assignment corresponds
to a plan with a “magic” step, i.e., a physically in-
feasible operation.“) The number of such mandatory
clauses is usually not large, often a fraction of the whole
formula.

Now it is obvious why we need zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPartial MAXSAT
(PIMSATin short) introduced in (Miyazaki et.al 1996):
An instance of PMSAT is composed of two CNF for-
mulas $A and fB over the same variable set. It requires
us to obtain a truth assignment or a solution that sat-
isfies all the clauses in fA and as many ones in fB as

possible. Namely, the goodness value of the solution is
the number of satisfied clauses in fB. Then how can
we solve PMSAT using local search? One simple idea
is to repeat mandatory clauses, i.e., clauses in fA, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LOCAL SEARCH: BEYOND SAT 263

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

then to apply local search for obtaining MAXSAT so-
lutions. Actually we do not have to repeat clauses but
can give weight to each clause.

The objective of this paper is to investigate how this
simple idea works. We mainly focus on two problems:
(i) What amount of weight given to mandatory clauses
is appropriate? (ii) Local search algorithms also give
weight to clauses for their own purpose. This weight-
ing will hide the initial weight given to the mandatory
clauses as the algorithms proceed, which might become
a significant obstacle against our goal, i.e., trying to
satisfy all mandatory clauses.

For experiments, we used not only random 3CNF
formulas but also a typical real-world formula which
is to obtain a class-schedule table of universities. The
data were taken from the real database of CS depart-
ment, Kyushu University (Miyazaki et .a1 1996)) whose
size is not so large but somehow realistic (60 stu-
dents, 30 courses, 13 faculties, 3 class rooms and 10
time-slots). The formula includes 900 variables .and
some 300,000 clauses out of which some 2000 ones are
mandatory. This is obviously a nice example for claim-
ing the usefulness of Partial MAXSAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Why Simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAXSAT’
We first take a look at why simple MAXSAT does not
work using the class-schedule example. The notation
in this paper is as follows: A literal is a (logic) varz’a&
z or its negation ZZ. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclause is a sum (disjunction)

of one or more literals. A (CNF) formula is a prod-

uct (conjunction) of clauses. A truth assignment is a
mapping from variables into (true, false} or { 1, 0). A
formula f is said to be satisfiable if there is a truth
assignment which makes all the clauses true; such an
assignment is called a satisfying truth assignment.

An instance of the class-scheduling problem consists
of the following information: (i) A set CS of students,
cp of professors, CR of classrooms, CT of timeslots
and CC of courses. (ii) Which courses each student
in CS wishes to take, e.g., student s wants to take
courses cr , c2 and cs. (iii) Which courses each profes-
sor in Cp teaches, (iv) Which timeslots each professor

* cannot teach, (v) Which courses each classroom can-
not be used for (because of its capacity). (vi) Which
timeslots each classroom cannot be used for, and so
on.

Now we generate a CNF formula from this infor-
mation Let A,B and C be the numbers of the total
courses, timeslots and classrooms. Then we use vari-
ables zi,j,k(l 5 i 5 A, 1 5 j 5 B, and 1 5 k 5 C).
Namely ~i,j,k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 means that course i is assigned to
timeslot j and room k. Hence a particular truth as-
signment into those variables ~,j,k can be associated
with a particular class schedule. Here is the translation
algorithm:

Step I. For each ir,i2, j, L(ir # iz), we generate the
clause (zil,j,lcV xiz ,j,h), which becomes false if different
courses ir and i2 are taught in the same room at the
same time.

Step 2. Suppose for example that professor
pr teaches courses ~2, c4 and ~5. Then for each

j&l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2(h # k2), w e generate the clauses (x2,j,kl v
- --
24,j,hz > A (XZ,j,k l v 25,j,kz)A(Zq,j,lc lVS - 5 ,j,h > A hj,h v

- -
Q,j,d A b4,j,h v z4,j,lcs

~ ~
> A (X5,j,k~ v 25,j,k ,). I f tw o

courses (including the same one) taught by the same
professor pr are assigned to the same timeslot and dif-
ferent rooms, then at least one of those clauses becomes
false. We generate such clauses for each of all the pro-
fessors.

Step 3. For each i, we generate the clause (xi,r,r V

X& 1,2 v . . . V xi,~,~) which becomes false if course ci
does not appear m the class schedule.

Step 4. Suppose for example, student sr wants to
take courses cl, ~3, c5 and cs. Then for each j, kr , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI&, we

-- -- ~
generate h,j,hl V x3,j,g,) A (xl,j,a l V X5,j,/cz > A (Xl,j,/c , V
- -
xS,j,h > A (x3,j,h vx5,j,h -----)A(ZQ,j,lc lVZg,j,lcz)A(55,j,W1V

-1. I ft w o of those four courses are assigned to the
same timeslot, then one of these six clauses becomes
false. Construct such clauses for all the students.

Steps 5 - 7. More clauses are generated by a similar
idea according to the other constraints (omitted).

To obtain a specific benchmark formula, we used the
real data of the CS department, Kyushu University. It
involves 30 courses, 10 timeslots, 3 rooms, 13 professors
and 60 students, where each professor teaches two or
three courses and has two or three inconvenient time-
slots. Each student selects eight to ten courses. It
should be noted that this formula, say f, is probably
unsatisfiable because the request of students is so tight
(there are ten timeslots and many students select ten
courses).

Now what happens if we try to solve this f using
simple MAXSAT? According to our experiment, it was
not hard to obtain a solution that unsatisfies only 15

clauses out of the roughly 300,000 total ones. It might
seem good but actually not: The result, namely the
obtained class schedule, did not include eight courses
out of 30. Also, there were five collisions of two courses
in the same room at the same time and so on. Namely
the number of the unsatisfied clauses is small but most
of them are mandatory; if one of them is not satisfied
then the solution includes a fatal defect. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

artial MAXSAT
Recall that an instance of PMSAT is composed of two
CNF formulas fA and fB. We have to obtain a solution
(an assignment) that satisfies all the clauses in fA and
as many ones in f~ as possible. Generally speaking,
there iS an implicit assumption such that fA must be
“easy,” because it would be otherwise hard to obtain
any solution at all regardless of its goodness. One ex-
ample of this easiness is that fA includes either only
positive literals or only negative ones which we call
uni-polar.

It seems that PMSAT has a large power of “simulat-
ing” other combinatorial optimization problems even
under the easy-fA assumption: For example, there
is an approximation preserving reduction from MAX-
Clique to PMSAT with uni-polar fA. (Note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat MAX-

Clique is one of the hardest optimization problems
that is beheved to have no approximation algorithms

of approximation ratio n’- ’ or better (Hastad 1996).)
More formally we can prove that there is a polynomial-
time algorithm that, given a graph G, outputs (fA, f~)
which meets the following conditions: (i) fA is uni-

264 CONSTRAINT SATISFACTION & SEARCH

polar. (ii) There is a polynomial-time algorithm that
computes a clique C of G from a solution 2 of (f~, f~)
such that the approximation ratio of C is L iff the ap-
proximation ratio of 2 is tE.

The reduction is pretty straightforward: For a graph
G with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn vertices ~1 through vn, we use n variables zr
through zn. f~ is the product of clauses (z V q)
such that there is no edge between vi and 7-j. Note
that fA contains only negated variables. f~ is set to
be (~1) A (~2) A - - - A (cc,). Its correctness is almost
obvious: From a solution (an assignment) of (f~, fB),
we can compute a clique easily, namely, by obtaining a
set of vertices vi such that zi is set to be true. Since all
the clauses in fA are satisfied, no two vertices vi and vj
being unconnected are not in the set. In other words,
the set of vertices constitute a clique. Note that it is
widely believed that there is no such approximation-
preserving reduction form MAX-Clique to the normal
MAXSAT.

A bit harder example is a reduction from MPN-
Coloring, also known as a hard problem (Bellare et.al

1995). This time, we use n2 + n variables xi,j (1 5 i 5

n, 1 < j 5 n) and xj (1 2 j 5 n). Setting xi,j = 1
means that vertex vi 1s given color j. f~ consists of the
following two groups of clauses: (a) For each 1 5 i 5 n
and different jr and j2, 1 5 jr, j2 5 n, we generate

(2i,jlV2i,jz). (b) For each 1 5 j < n and different 2”r
and i2, 1 5 ir, is 5 n, such that there is an edge be-

--
tween vi, and vi2 9 we generate (xi1 ,j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV xi2 ,j). A clause

in (a) becomes false if a single vertex is given two or
more different colors and a clause in (b) becomes false
if two connected vertices are given the same color. ~JJ
is written as

where each f&i consists of the single clause (xi,1 V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xi,2 v * * -V%,TZ) and fBa,j consists of n clauses (TiT$lYjJ

for 1 5 i 5 n.

This reduction preserves approximation in the fol-
lowing way: First of all, one can see that if an assign-
ment satisfies all the clauses in fA, then (i) each vertex
is given at most one color and (ii) no two connected
vertices are given the same color. But it can happen
that no color at all is assigned to some vertex. We next
show that if we wish to satisfy as many clauses in f~ as
possible, what we should do is to satisfy all the clauses

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB,,, through fB1,,. Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa clause in f~,,~

is not satisfied. That means the vertex vi is not given
any color. Then we can satisfy it by setting xi,j = 1

for some j such that xi! ,j = 0 for all i’, i.e., by giving a
color j, which is not currently used, to that vertex vi.
clearly this change keeps all the clauses in $A satisfied,
and by this change, at most one clause (pi, v q) in

jBz.i changes from satisfied to unsatisfied. Therefore

the number of satisfied clauses does not decrease at
least. Similarly we should satisfy all the clauses ~~~~~

through ~Bz.~ because if there is an unsatisfied clause

in f&j) -‘- we can satisfy it by setting zj = 0. Again, this

change keeps all the clauses in fA and f&1 through

fBl+ satisfied, and since only one clause (zj) becomes

false, the number of satisfied clauses does not decrease.

Thus, without loss of generality, we have to consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ody S,SSignmentS that Satisfy fA, f&i for all i and

$B2 j for all j. Then if color j is actually used for some

vertex, then the variable xj must be set to 0 since at

least one (x i,j V q) becomes false otherwise. Thus the

clause (zj) under this assignment is false. Otherwise, if
the color j is not used then all zi,j, 1 5 i 5 n, are true

by themselves and hence we can make (zj) true. As a
result, the number of unsatisfied clauses in fB is equal
to the number of colors that are needed in the proper
coloring. In other words, satisfying more clauses in fB
means better coloring (fewer colors).

0ur basic idea of solving PMSAT is quite simple: We
repeat each clause in f,4 (or equivalently we can give
initial weight to clauses in f,4 but we will seldom use
this expression to avoid possible confusion between this
weighting and the other type of weighting carried out
by local search algorithms). Then we simply apply lo-
cal search algorithms to obtain a solution that (hope-
fully) minimizes the number of unsatisfied clauses. As
local search algorithms, we tested two popular ones
in this paper; one is based on the so-called weighting
method and the other is based on @SAT+Random-
Walk. In more detail, the former program (developed
by the authors) adds +I to the weight of each clause
that is not satisfied at the current assignment whenever
the current assignment is a local minima. The latter
was developed by Gang et.al (Liang et.al 1996) that is
claimed to be one of the fastest GSAT-type programs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Initial Weighting St sat egies

As an extreme case, suppose for example that a single
clause in fA is repeated K + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 times where K is the
number of all the clauses in fB and that fA is “easy”
to be satisfied. Then to satisfy one more (original)
&We in fA pays even if it makes all the ChSeS in fB
false in the sense that the number of unsatisfied clauses
decreases by at least one. It is very likely that the local-
search algorithm first tries to satisfy all the clauses in
PA and after that it then tries to satisfy others (i.e., in
fB> as many as possible while keeping fA all satisfied.
That is exactly what we want.

Unfortunately this observation is too easy: After
reaching some assignment that satisfies all IA, the
local-search algorithm will never visit any assignment
that makes fA false because such an assignment in-
creases the number of unsatisfied clauses too large due
to the repetition of fA_clauses. That means the search
space is quite restricted, which usually gives a bad
effect to the performance of local-search algorithms.
This turned out to be true by the following simple ex-
periment: Suppose that both fA and jB are random
formulas and the number of clauses in fA is one ninth
the number of clauses in fB. Also suppose that the
local search has already reduced the number of un-
satisfied clauses well, say, to 20 (i.e., fA is expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LOCAL SEARCH: BEYOND SAT 265

to include two such clauses on average). Then it of-
ten happens that all the clauses of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA are satisfied by
chance without using any repetition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,J-clauses at
all. However, if we assure the satisfaction of fA by
the (heavy) repetition, then it becomes easier to sat-
isfy fA-clauses but it becomes very hard to reduce the
number of unsatisfied clauses in fjg, say, to less than
50.

Thus, we do need the repetition but its amount
should be minimum. Then how can we compute an
appropriate amount of the repetition? The idea is to
make some kind of balance between fA and fB. To do
so, we first suppose that the current assignment is not
too bad, i.e., almost all fA-&kuses are already satis-
fied and many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB-dauses are also satisfied. Under this
assumption, we can imply several conditions on the
current value of each variable. Using this information,
we can then compute the average number, say, iV, of
fB_claUses that are currently satisfied but will become
unsatisfied when we change the assignment so that one
new fA--clause will become satisfied. This number N
is a good suggestion of the number of repetitions of
each fA-chse. An example of this calculation for the
class-schedule formula will be given in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Restart and Reset Strategies

As shown in (Cha and Iwama 1995; Cha and Iwama
1996; Frank 1996), the weighting method is very fast in
terms of the number of cell-moves until the algorithm
gets to a satisfying assignment. However, it takes more
time to carry out a single cell-move. Actually, the
GSAT-type program by Liang et.al, which we will call
LWM hereafter, can make five to ten cell-moves while
our weighting-type program carries out a single cell-
move. (This difference of performance is also due to
implementation at least in part.) Thus it is not an
easy question whether should be preferred.

When we use weighting-type local search for PM-
SAT, special care must be needed: Recall that each
fA_claUSe is repeated, for example, ten times. How-
ever, the algorithm can give weight to any clause, ei-
ther in fA or in fB, if that Clause is unsatisfied at a
local minima. Note that giving +l weight has exactly
the same effect as repeating that clause one more time.
Also it should be noted that the total amount of weight
given by the algorithm is surprisingly large especially
when the program is run for long time. Therefore it can
well happen that the initial repetition of fA-chses
will soon be overwhelmed by the vast amount of weight
given by the algorithm.

We can observe this phenomenon in Fig. 1, which
shows how the number of unsatisfied clauses in fA (de-
noted by A-Clauses) and in fB (denoted by B-Clauses)
changes as the algorithm proceeds. The formula used
is a random 3SAT formula of 400 variables, 4000 (to-
tal) clauses and 400 fA-&buses. Each fA-chuse is re-
peated 100 times. (We also obtained very similar data
for a formula of 800 variables, 8000 clauses and 800
f~-&%Uses.) As one can see, the number of unsatisfied
fA_claUses drops immediately to zero thanks to the
repetition, but when the number of steps (cell- moves)
increases, it leaves from zero at some moment, say, T,
and never comes back to zero. Namely, the effect of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

266 CONSTRAINT SATISFACTION &I. SEARCH

the initial repetition of fA_clauses dies at the moment
T and it is totally nonsense to continue the algorithm
after that.

Then what should be done at that moment T? A
simple answer is to stop the current search and restart
the algorithm completely from the beginning (i.e., from
a randomly selected initial assignment). We call this
version RESTART. Another possibility is to reset only
the weight given by the algorithm so far and to con-
tinue the search from the current assignment. This is
called RESET. The next question is how to decide this
moment T. Since the moment depends on the total
weight given by the algorithm so far, one reasonable
way is to decide it by the number of local minimas
visited by the algorithm so far. (Recall that the al-
gorithm gives weight whenever it gets to a local min-
ima.) It is denoted by an integer parameter, Maxflips,
(as Maxflips = 100) which means that the algorithm
restarts (or resets) after it has visited local minimas
Maxflips times.

Experiments

As mentioned in the preceding section, we tested
three algorithms, RESTART, RESET and LWM. The
value of Maxflips was set to 400 since that is not too
small compared to the moment 2’ discussed previously.
(Note that if Maxflips is too small, we may never be
able to reach good solutions at all. So, it is safer to
make this value large but it may lose the efficiency.)
Random formulas are denoted as ra - b - c where a,
b and c are integers that show the numbers of vari-
ables, the whole clauses and f,J-clauses, respectively.
We also used the class-schedule formula for which the
clauses are divided into fA and fB as follows: fA in-
cludes all the clauses generated at Steps I and 2 (for
the obvious reason). The clauses generated at Step 3
are also important. However, if we put them into fA,
then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA becomes not uni-polar. So, we did not do so
but repeated (zi,r,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVQJJ V- - *VZ~,B,C) Ki times where
Ki is the number of students who select course ci, and
put them into fB. This does not lose sense because if
ci is missing, then it gives inconvenience to only the
Ki students. All the other clauses are put into fB.

Let us take a look at how to calculate the appropri-
ate repetitions of fA-clauses in the case of this class-
schedule formula: Suppose that we are now close to
a good solution, namely the current assignment looks
like the one such that for each i only one of xi,j,k,
B 2 j 5 B and 1 5 k 5 C, is 1 and all the others 0.

Furthermore suppose that there is an fA-clause, say,
(xi 1 1 V m) that is now 0, i.e., both xi 1 1 and x. 1 r
are’ i. Ali’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/A-clauses must be satisfied. ‘So let us”&e
what happens if we try to flip the variable xi,r,r from

- -
1 to 0. Apparently this fA-clause (xi,r,r Vxj,l,l) is sat-
isfied and fortunately it does not cause any bad effect
to other fA-clauses (i.e., no such clauses change from
1 to 0).

We next observe how this flip (of zi,i,r from 1 to

0) changes the satisfaction of fB-&uses. As for the
all-positive-literal clauses generated in Step 3, (xi,r,r v

- l - V z&B&) is expected to change from 1 to 0. That
does not happen actually if some variable other than
ZQ,J_ is also 1, but this probability is low according to

#UNSAT #UNSAT

1 ““““‘I -

Fig. 1 #STEPS(x 1000)

/
I - RESET
I

I _-- RESTART
: I __. LWM I

1 I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 10 20 30 40

Fig. 2 #STEPS (x 1000)

#UNSAT I I I I I I I
8
:
:

630 -;

: - RESET
-:
:

--- RESTART

: __. LWM

I
‘-1 I

‘--_______.
570 - ~~~~~~,~~~~~~----------~

1 I I I I ! I I 1

0 IO 20

Fig. 3 #STE:: (x ,000;’

- RESET

--- RESTART

t

;
380 i,

__. LWM

,
‘\ \

360

3201 (, (, , , (1

0 10 20 30 40

Fig. 4 #STEPS (x 1000)

12#d

110

100

GAT

‘,-_.iiETMioiTni:zwo1

I 8 I I , I

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l&

110

100

100 300 500

Fig. 5 #STEPS(x 1000)

__. LWM

____________ __________;

I I I I I ____________

; 1

I

: t

I

i I
.’ I ~~~“_r_rrr~~_~_-_~-~-“--“~“-“~““-~”-~--
J I I I t
0 100 300 500

Fig. 6 #STEPS(x 1000) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LOCAL SEARCH: BEYOND SAT 267

the nearly-good-solution assumption mentioned above.
Recall that this clause is repeated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKi times. As for
the opposite clauses, i.e., the ones changing from 0 to
P, it is enough to only consider the clauses generated
in Step 4 (others are negligible). Such clauses have

--
the form of (~i,r,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zit,1,6) and if this is 0, then it
means some student among the Ki ones wishes to take
both courses i and i’ which collide at timeslot P in the
current assignment. We can assume that the number
of such students is only a fraction of Ki. It is not

hard to see that Ki = ff on average where E and %

are the number of students and the average number
of courses selected by a student, respectively. (Recall
that A is the number of courses.) Thus the number

of satisfied clauses in f~ decreases by roughly F_ As

a result, flipping zi,r,r from 1 to 0 increases satisfied

clauses by one in fA but decreases by T in f~. This

is the number N discussed previously, which is about
20 in our current example.

Figs. 2-4 show the performance of RESTART, RE-
SET and LWM for random formulas, i.e., for r400-
4000-400, r400-8000-800 and r800-8000-800, respec-
tively. Each curve shows the number of unsatisfied
fB--clauses of the best solution (i.e., it satisfies all the
fA_claUSeS and most fB--clauses) the algorithm has
gotten by that number of steps (cell-moves). (This
graph, in general, seems to be quite reasonable to show
the performance of MAXSAT algorithms, which never
appeared in the literature.) Each graph shows the av-
erage of results for four random formulas. The number
of repetitions for each fA-clause is 100 for all experi-
ments. Generally speaking, RESET appears to be the
best.

Figs. 5 and 6 show similar graphs for the class-
schedule formula. The number of repetitions for fA-
clauses is 20 and Maxflips = 2000 (Fig. 5) and 5000
(Fig.6). The current best result is a solution that in-
cludes 93 unsatisfied (all f~) clauses, which was ob-
tained after some 5 million steps. We also tested the
heavy weight (lOOO), but we were not able to get any
solution that contains less than 115 unsatisfied clauses.

Remark. Very recently, Nonobe and Ibaraki
(Nonobe and Ibaraki 1996) used our data for the class
schedule and obtained a schedule table using a sophis-
ticated CSP approach. Their result is slightly better
than ours, i.e., the students have to abandon 86 courses
(almost the same as 86 unsatisfied clauses in our case)
in total, and they claim the result is optimal.

Concluding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARemarks

Because of the time limit, we were not able to con-
duct several experiments including; (1) experiments
to observe the effect of the number of repetitions of
jA_claUSes, (2) experiments to investigate an optimal
value for Maxflips, (3) experiments to test some differ-
ent weighting strategies that are suitable to PMSAT
and so on. It might be more important to investigate
more basic requirements for solving PMSAT. For ex-
ample, completely different approaches like backtrack-
ing may work better for PMSAT. Also there may be
other methods to manage fA_clauses than simply re-
peating them.

The first and fourth authors are Research Fellows of
the Japan Society for the Promotion of Science and this
research was supported by Scientific Research Grant,
Ministry of Education, Japan, No. 0569 and 2273. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

References
Bellare, M., Goldreich 0. and Sudan, M. (1995). Free
bits, PCPs and non-approximability - Towards tight
results. Proc. FOCS-95, pp.422-431.

Cha, B. and Iwama, K. (1995). Performance test of
local search algorithms using new types of random
CNF formulas, Proc. IJCAI-95, pp.304-310.

Cha, B. and Iwama, K. (1996). Adding new clauses
for faster local search, Proc. AAAI-96, pp.332-337.

Frank, J. (1996). Weighting for Godot: Learning
heuristics for GSAT, Proc. AAAI-96, pp.338-343.

Freuder, E.C., Dechter, R., Ginsberg, M.L., Selman,
B. and Tsang, E. (1995). Systematic versus stochas-
tic constraint satisfaction, Proc. IJCAI-95, pp.2027-
2032.

Gu, 9. (1992). Efficient local search for very large-
scale satisfiability problems, Sigart Bulletin, Vo1.3,
No.& pp.8-12.

Hastad, J. (1996) Proc. FOGS-96

Hansen, J. and Jaumard, B. (1990). Algorithms for
the maximum satisfiability problem. Computing, 44,
pp.279-303.

Kautz, H. and Selman, B. (1996). Pushing the en-
velope: Planning, propositional logic, and stochastic
search, Proc. AAAI-96, pp.f194-1201.

Liang, D., Wu, Y. and Ma, S. (1996). Personal com-
munication.

Miyazaki, S., Iwama, K. and Kambayashi, Y. (1996).
Database queries as combinatorial optimization prob-
lems, Proc. International Symposium on Cooperative

Database Systems for Advanced Applications, pp.448-

454.

Morris, P. (1993). The breakout method for escaping
from local minima, Proc. AAAI-93, pp.40-45.

Nonobe, K. and Ibaraki, T. (1996). Personal commu-
nication.

Selman, B. and Kautz, H.A. (1993). An empirical
study of greedy local search for satisfiability testing,
Pro,. AAAI-93, pp.46-51.

Selman, B., Kautz, H. and Cohen, B. (1996). Local
search strategies for satisfiability testing, DIMACS

Series in Discreet Mathematics and Theoretical Com-

puter Science 26, pp.521-531, 1996.

Selman, B., Levesque, H.J. and Mitchell, D.G. (1992).
A new method for solving hard satisfiability problems,
Proc. AAAI-92, pp.440-446.

Spears, W.M. (1996). S imulated annealing for hard
satisfiability problems, DIMACS Series in Discreet

Mathematics and Theoretical Computer Science 26,

pp.533-557.

268 CONSTRAINT SATISFACTION & SEARCH

