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Abstract 
 

We propose a method for local search of Boolean 
relations relating variables of a CNF formula. The method 
is to branch on small subsets of the set of CNF variables 
and to analyze results of unit propagation. By taking into 
account variable value assignments deduced during the 
unit propagation procedure the method is able to justify 
any relation represented by a Boolean expression. The 
proposed technique is based on bitwise logical operations 
over ternary vectors. We implement a restricted version of 
the method used for unit clause derivation and equivalent-
literal identification in a preprocessor engine for a SAT-
solver. The experiments show that the proposed technique 
is useful for solving real-world instances of the formal 
verification domain. 
 
 
1: Introduction 
 

The satisfiability problem (SAT) attracts researchers 
due to its numerous applications and theoretical 
importance. In the last decade substantial progress has 
been made in the development of practical complete SAT 
algorithms [1,2,5,6,8,11-15,18]. All of them, except  [5], 
are descendants of the DPLL-algorithm [7].  

The DPLL-algorithm can be considered as a special 
case of general resolution that is called tree-like 
resolution. It was shown in [3] that there is an exponential 
gap between the performance of tree-like resolution and 
that of general resolution. Clause recording [2,13-15,18], 
restarts [1,10,13,14], and deduction of “strong” relations 
(unit clauses, equivalences and others) [5,6,16] are the 
steps made in the modern state-of-the-art SAT-solvers 
towards general resolution.  

This paper belongs to the direction of research 
[9,19,20,23] meant to deduce and effectively use strong 
relations. We develop Le Berre’s recent idea [19] to 
deduce relations by analyzing results of unit propagation. 
Our method consists of the following steps. Given a CNF, 
we select a few variables and branch on them performing 
unit propagation. On the basis of analysis of the values 
assigned to variables during unit propagation we deduce 

new relations relating the assigned variables. From a 
practical standpoint, an important feature of our method is 
the use of bitwise logical operations over ternary vectors 
that speeds up the calculations. 

Our method outperforms Le Berre’s one at least for 
the following three reasons. First, Le Berre’s method can 
be viewed as a restricted version of our method with 
branching on two variables at most. (In the current 
implementation we limit the set of branching variables to 
five variables to cut down to 32 the length of the used 
ternary vectors). Second, our method is able to justify not 
only the unit clauses and literal equivalences as in Le 
Berre’s method but also deduce any relation of Boolean 
variables. Third, our method is able to deduce the 
relations in the presence of don’t-cares when the values of 
the considered variables are known partly. 

The proposed method was implemented in a 
preprocessing engine named P_EQ. In the current 
implementation we identify unit clauses and literal 
equivalences only, because these relations are stronger 
and easier to check on. Besides, there is a great deal of 
such relations in the instances we consider. In this paper 
we compare the performance of BerkMin [14] with that of 
BerkMin enhanced by P_EQ on publicly available 
benchmarks from the formal verification domain. The 
experiments show that the proposed technique is useful. 
Almost all the obtained results are superior to the best 
known so far.  

The paper is organized as follows. First we describe 
the basic idea. Second, we introduce inductive and  
deductive stages of our method. Then we outline a CNF 
formula traversing strategy meant to identify unit clauses 
and literal equivalence relations. Finally, we present 
experimental results. 

 
2: Basic idea 

 
Given a conjunctive normal form (CNF) F specified 

on the set of variables {x1,…,xn}, the satisfiability 
problem (SAT) is to satisfy (set to 1) all the disjunctions  
of F  by some assignment of values to the variables from 
{x1,…,xn} or to prove that such a satisfying assignment  
called solution does not exist. A disjunction of variables 
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from {x1,…,xn} is also called a clause. A clause 
containing only one literal is called a unit clause.   

A Boolean function g is called an implicate of a 
Boolean function f  if  f → g = 1. Implicate g can be added 
to f conjunctively, i.e. f = f  ∧  g.  If g is an implicate of f 
no solution exists within the part of Boolean space 
specified by ¬g.  Adding implicates to CNF F 
representing Boolean function f, especially adding short 
implicates (depending on a small number of variables), 
simplify solving SAT-instances. 
    Unit clauses (of the form x, ¬x), binary clauses (x ∧  y, 
¬x∧ y,  x∧¬ y,  ¬x∧¬ y), and equivalences (x ↔ y, ¬x↔y,  
x↔¬ y,  ¬x↔¬ y) are known to be very useful kinds of 
implicates used to simplify solving SAT-instances that 
arise in formal verification and test generation domain 
[9,25-29]. Special relations (of the form x → (y↔z), x ↔ 
y ↔ z) were proven to be useful for solving parity-32 
problem [6]. This list may grow longer in the future. 
     Consider CNF F = (a∨¬ b) ∧  (b∨¬ c) ∧  (¬a ∨¬ d) ∧  (d 
∨¬ c). Suppose, a solution exists and contains a = 0. 
When making assignment a = 0, the first clause becomes 
unit consisting of single literal ¬b. We can satisfy the 
clause only by assigning b = 0. This assignment is called 
deduced. Then we can deduce c = 0 from the second 
clause. Such procedure of deducing assignments based on 
appearance of unit clauses in the formula is called unit 
propagation or Boolean constraint propagation. We can 
conclude for our example, if a solution exists and contains 
a = 0, then c = 0 is also in the solution.      

Similarly, based on the third and fourth clauses we can 
deduce, if a solution exists and contains a = 1, then again 
c = 0 is in the solution.  So, if F is satisfiable, then c = 0 is 
in any solution. Hence, ¬c is an implicate of F. In other 
words, if branching on variable x of CNF F we deduce the 
same value for the same variable y, say y = 0, in both 
branches x = 0 and x = 1, then we can conclude that ¬y is 
an implicate of F.  

Now we are ready to extend this observation to the 
general case. Suppose, we have a partition of the Boolean 
space (where the CNF F is specified) and we know that 
some blocks of the partition (marked in dark in fig. 1) 
have no solution whereas a solution can exist in any other 
block of the partition (marked in white). Moreover, it is 
known, if a solution exists in a white block, it satisfies a 
Boolean relation R(a,..,b).  Then we can conclude that 
R(a,…,b) is an implicate of F. 

We can divide the Boolean space into parts by 
branching on a subset of variables. For instance, by 
branching on 3 variables, one partitions the space into 8 
blocks. By making assignments to branching variables 
and performing unit propagation we can deduce values of 
some variables a,…,b   in each block of the partition. 
Suppose, unit propagation leads to appearance of 
complementary unit clauses x and ¬x in F.  Such situation 
is  called  a  conflict.  A  conflict  means  that  there  is  no  

 

 
 
 
 
 

 
 

 
 

Fig. 1: Partition of Boolean space 
 
solution in the block specified by the current assignment 
to branching variables.  So, conflicting blocks can be 
marked in dark and conflict-free blocks can be marked in 
white (fig. 1). We come to the basic idea: if values of 
a,…,b   satisfy a  relation R(a,..,b) in each conflict-free 
block of the partition, then R(a,..,b) is an implicate of F.  

In the case of two-block partitions, this idea leads to a 
“partial contraposition” of the basic rule  (A → B) ∧  (A → 
¬B)  ⇒  ¬A of Socrates algorithm [26],  namely to  (¬B 
→ ¬A) ∧  (B → ¬A)  ⇒  ¬A. The case of four-block 
partitions was partly considered in [19]. The general case 
is closely related to Stalmark’s method [16]. The 
difference is that Stalmark’s method with its saturation 
procedure is global. When branching on variable x1, it 
tries to branch on x2, x3, and so on in breadth first manner 
in each block of the partition determined by branching on 
x1.  In contrast, our method is local, and its locality allows 
one to arrange search for arbitrary relations in parallel and 
in the presence of don’t-cares as shown below. 

 
3: Inductive stage 
 

Suppose, we are going to find relations of a type R 
(for example binary clauses or equivalences) relating 
variables from a subset Z of variables of CNF F. We call 
the set Z observable.  Let Y be a subset of Z selected in a 
way. Suppose, we have a procedure which branches on 
variables from Y, performs unit propagations, and records 
values assigned to the observable variables. Let assigned 
values be stored in a ternary matrix T(Z). 

As an example, consider a ternary matrix (fig. 2). 
Here, the observable set is Z = {y1,y2,y3,a,d,e,f,g} and  the 
set of branching variables is Y = {y1,y2,y3}.  Each column 
of the matrix corresponds to a branch in our procedure. 
For instance,    column   C2    contains    values    assigned    
to observable variables on the branch y1 = 0, y2 = 1, y3 = 0.  
Each row of the matrix corresponds to an observable 
variable. 
      Matrix T(Z) is called observable. Let the observable 
matrix consist of dashes in the initial state, and our 
procedure specifies values of the matrix elements by 
substituting values 0 or 1 for dashes. 

The part of the Boolean space determined by 
assignments  y1  = 0,  y2  = 1, y3  = 0  is represented by cube 

                     

R(a,…,b) 

R(a,…,b) R(a,…,b) 

R(a,…,b) 

R(a,…,b) 



  C0 C1 C2 C3 C4 C5 C6 C7  
  0 0 0 0 1 1 1 1 y1 

  0 0 1 1 0 0 1 1 y2 
  0 1 0 1 0 1 0 1 y3 
T(Z) = 1 1 1 - - 0 - 1 a 
  0 0 - - 1 - - - d 
  1 0 0 1 1 1 0 0 e 
  0 0 - 0 - 1 1 - f 
  0 - 0 - 0 0 0 1 g 
   b = 0 1 0 1 0 0 0 1  

 
Fig. 2: Observable matrix 

 
¬y1 y2 ¬y3. The column C2 shows that if a solution exists 
in the cube ¬y1 y2 ¬y3   then it contains a = 1, e = 0 and   
g = 0, but values of d and f are unknown (fig. 2).   

Also consider a binary vector b which will be used by 
our procedure to record encountered conflicts as follows. 
The i-th component bi of b is equal to 1, if making the 
assignment to the variables of Y in accordance with i-th 
column of the observable matrix leads to a conflict. 
Otherwise bi = 0. In our example, b3 = 1 as a consequence 
of a conflict imposed by assignments y1 = 0, y2 = 1, y3 = 1 
(fig. 2). Vector b is called a vector of conflicts. 

The procedure filling in the observable matrix and the 
vector of conflicts implements an inductive stage of the 
method.   As a prototype of the procedure, we can use the 
DPLL algorithm [7] slightly modified to record conflicts 
and value assignments as described above. 

 
4: Deductive stage 
   

Consider the column C2 of the observable matrix 
represented on fig. 2.  If a solution exists in the cube     
¬y1y2¬y3, the value of variable d is unknown in the 
solution. To clarify the situation we have to branch within 
the cube ¬y1y2¬y3. It is important to underscore that we 
can solve the problem of insufficient information in spite 
of partial uncertainty of the observable matrix.  

Consider table 1 describing commonly used logical 
operations. We see that for some operations the amount of 
uncertainty is reduced. For example, 1 dominates 0 for the 
disjunction operation, which means 1 = - ∨  1 = 1 ∨  -. 
Similarly, relation R = (¬a → d ) ∨  f holds in the cube 
¬y1y2¬y3

 corresponding to column 2, since a = 1, d = f = 
- in the column, and (¬1 → - ) ∨  - = 1 (fig. 2). We can see 
that values of a, d, f satisfy the relation R for each column 
marked by 0 in the vector of conflicts b. So, R is an 
implicate of F. 
      Now, we transform this observation into a vector 
form. Denote by tw the row that correspondents to the 
observable variable w in the observable matrix. Let R be a 
logical expression connecting observable variables. For 
our example R = (¬a→d ) ∨  f. Replacing each observable 
variable   w  with corresponding ternary vector   tw   in the 

a b ¬a a∧ b a∨ b a→b a↔b 
0 0 1 0 0 1 1 
0 1 1 0 1 1 0 
1 0 0 0 1 0 0 
1 1 0 1 1 1 1 
0 - 1 0 - 1 - 
- 0 - 0 - - - 
1 - 0 - 1 - - 
- 1 - - 1 1 - 
- - - - - - - 

  
Table 1: Logical operations 

 
expression we form the vector expression R* where the 
logical operations over vectors are bitwise.  We have R* = 
 (¬ ta  → td )  ∨  tf  in our example. 

Theorem 1. R ⇐  F  if  R*  ∨  b = 1*. 
Here F is the initial CNF, ⇐  denotes R ← F = 1, b is a 

binary vector recording conflicts, 1* is the vector 
containing only 1 values and having the same length as b. 

As a consequence we have 
        x ⇐  F  if  tx  ∨  b= 1*, 
        x ↔ y ⇐  F  if  ( tx  ↔ ty )  ∨  b = 1*, 
        x ∨  ¬y ⇐  F  if  tx  ∨  ¬ ty  ∨  b = 1*, and so on. 
It is easy to check that ¬ tg ∨  b = 1*, ( ty

2 ↔ ¬ te ) ∨  b 
=1*,  (¬ ta → td ) ∨  tf  ∨  b = 1* for the observable matrix 
T(Z) (fig. 2). The first expression means that the unit 
clause ¬g can be added to the CNF F for which the 
matrix T(Z) was constructed.  The second expression 
shows that literals y2 and ¬e (as well as ¬y2 and e) are 
equivalent and can be identified in F. The third expression 
means that R = (¬a → d ) ∨  f  is implied by F.  

Note that we have got the equivalence y2 ↔ ¬e due to 
the fact that b1 = b3 = 1 in spite of y2 ≠ ¬e in columns C1, 
C3. So, conflicts give a “masking” effect, which can be 
used to resolve situations known as “false negatives” and 
“impossibilities to propagate inequality to primary 
outputs” in equivalence checking [28] (we omit the 
discussion of the question for lack of space). 

Note that we proved some Boolean relations in spite 
of a number of uncertainties in the observable matrix. 
Nevertheless, to exploit Theorem 1 it is necessary to 
eliminate uncertainty completely, forming vector 1* when 
expression R* is calculated. Consider how the last 
requirement can be relaxed and how relations can be 
deduced without eliminating the uncertainty completely. 

Let h be a conjunction depending on variables of the 
set Y. Suppose h = ¬y1y2. Since h = ¬y1 y2 ¬y3 ∨  ¬y1 y2 
y3, we can say that h corresponds to columns C2, C3 (fig. 
2). Consider a ternary vector ¬h* that differs from the 
Boolean vector 1* only in that it can take any value from  
the set {0,-,1} in the components which correspond to the 
conjunction h.   

Theorem 2.  h ∨  R ⇐  F  if  R*  ∨  b = ¬h*. 
The theorem can be interpreted as follows. The cube  



h “masks”  the white blocks where R doesn’t hold (fig. 1).  
It is easy to see that it is impossible to use theorem 1 

to prove that e ∨  f ⇐  F for our example, since the 
component of t = te  ∨   tf  ∨  b corresponding to column C2  
is equal  to -. At the same time, according to theorem 2 
expression h ∨  e ∨  f ⇐  F holds where h = ¬y1y2¬y3. 

Deducing a strong relation like unit clause or literal 
equivalence allows one to reduce search space by a factor 
of 2. Note that relations like h ∨  R where h is a 
conjunction can be strong as well. For instance, the 
relation ¬y1y2¬y3  ∨  f allows one to reduce search space 
by 1/2 - 1/8 = 3/8. Such relations are attractive from the 
viewpoint of unit propagation. Indeed, when R=0 we have 
to set conjunction h to 1 by assigning appropriate values 
to all its variables. So, given relation ¬y1y2¬y3   ∨   f and f 
= 0, we deduce value assignments y1 = 0,  y2 = 1,  y3 = 0. 
 

5: Formula traversing strategy 
 

Strong relations usually simplify testing the 
satisfiability of large real-life CNF formulas, especially 
when such relations are in abundance. Suppose it is 
known that a large number of relations can be deduced by 
branching  on subsets that consist of two variables. If the 
number of variables in a formula is large (at present, 
“large” means up to a few millions), then even a simple 
quadratic algorithm examining all pairs of variables is 
impractical. Besides, deduction of relations is order 
dependent, that is deducing of some relations may make it 
much easier to deduce others. So, an efficient strategy of 
formula traversing is necessary to select subsets of 
variables to branch on.  

In this paper, we simulate the well-known strategy 
used by commercial BDD based tools for equivalence 
checking of combinative circuits. In accordance with the 
strategy, equivalence relations between intermediate 
points of the compared circuit are propagated from inputs 
to outputs. The strategy can be explained by the following 
example. 

Consider two AND gates with identical input 
variables: u = ab, v = ab. A consistent value assignment to 
the variables of the first gate has to satisfy CNF 
(¬a∨¬ b∨ u) ∧  (a∨¬ u) ∧  (b∨¬ u). A consistent value 
assignment to the variables of the two gates has to satisfy 
CNF N = (¬a∨¬ b∨ u) ∧  (a∨¬ u) ∧  (b∨¬ u) ∧  (¬a∨¬ b∨ v) 
∧  (a∨¬ v) ∧  (b∨¬ v). Let us assume that the modified 
DPLL procedure is used and it branches on the set of 
variables V = { a, b }. It is easy to see that the method 
proposed above allows one to prove u ↔ v ⇐  F. The 
result will not change, if the gates have different input 
variables, for instance a, b and a′, b′, but a ↔ a′ and b ↔ 
b′. So, branching on the input variables of a gate it is 
possible to propagate an equivalence relation from the 
gate input to its output. 

Suppose, it is unknown which variables of {a,b,u} are  
 

input ones for the considered AND gate.  In this case, we 
can deduce the equivalence relation u ↔ v branching on 
the longest clause from the CNF description of the gate, 
namely ¬a ∨  ¬b ∨  u, since the clause contains all the 
variables relating to the gate. 

We have to use this heuristic since later on we will 
consider the situation when one has to deal with a CNF 
formula describing some verification problem without 
knowledge of the structure of the underlying circuit. We 
assume that variables of the CNF are correctly numbered 
i. e. if a node described by variable xi has a lower level 
number than a node described by variable xj , then i < j. 
The level of a node in a circuit is equal to the maximal 
length of a path leading to the node from an input of the 
circuit. (In other words, variable numbering follows the 
topological ordering of nodes.) We also assume that CNF 
description follows the topological ordering as well. That 
is if clauses specifying gate g are located closer to the 
beginning of the formula then clauses specifying gate g’ 
then the level of gate g’ cannot be smaller than that of g.  
Such assumptions are not necessarily true for publicly 
available benchmarks. But even if the topological 
ordering is preserved partially it may allow one to deduce 
a lot of strong relations. 

We traverse the formula twice. To perform the first 
traversal we mark a set of variables having the smallest 
numbers. Ideally, input variables should be marked only 
(but in our experiments input variables were unknown and 
the first 150 variables were marked). Then the set of 
variables is examined in the ascending order of variable 
numbers. For each variable xi we select the clauses having 
size l∈ {3,4,5,6} and containing xi itself. If the clause 
contains l-1 marked variables, the modified DPLL 
procedure is applied to deduce strong relations by 
branching on the marked variables. If the equivalence of 
two literals is proven, the literals are marked. In the 
second traversal we examine the formula from the 
beginning to the end and the clauses of length l are picked  
again. But now we branch on all variables of the clause 
except the case when l = 6. In this case we branch on the 
first 5 variables of the clause. If a unit clause is deduced, 
unit propagation procedure is run to deduce the additional 
unit clauses. Periodically, the discovered equivalent 
literals are identified i.e. all literals of one variable are 
replaced with the corresponding literals of the equivalent 
variable. 

State-of-the-art algorithms of combinational 
equivalence checking [9,28,29] make full use of structural 
properties of processed circuits. The procedure described 
in this section uses structure partially and indirectly. Our 
purpose is only to demonstrate the potential of the 
technique proposed in the paper. We can see from the 
next section that new technique allows one to improve 
performance of SAT-tools significantly on some well 
known benchmarks from formal verification domain. 
     



6: Experimental results  
 

The proposed method was implemented in a 
preprocessing engine P_EQ for SAT-solver BerkMin 
[14]. Both programs were written in Microsoft’s Visual 
C++ under Windows-95. The experiments were run on a 
computer with Pentium-III-700 and 640Mb of RAM.  We 
considered all instances from benchmark class Joao [22] 
which encodes equivalence checking of combinational 
circuits, and the hardest instances from class FVP-
UNSAT2.0 [17] describing verification of pipelined 
microprocessors, and from the BMC benchmark class 
encoding bounded model checking problems [4]. 

The results of the experiments are shown in Tables 2-
3. Names of instances are given in the column “Name”. 
The column “BerkMin” describes BerkMin’s 
performance. The column “eq_lit” gives the number of 
deduced pairs of equivalent literals. Note that since the 
equivalent literals were not immediately identified, the 
number of deduced pairs of equivalent literals forming an 
equivalence class may exceed the number of elements in 
this class. The column “Unit” gives the number of derived 
unit clauses. The column P_EQ+BerkMin describes the 
performance of BerkMin enhanced by P_EQ. The column 
“the best at SAT-EX” shows the best results among 23 
sat-solvers tested by L. Simon at the web site SAT-EX 
[21] (class FVP-UNSAT2.0 has not been tested there). 

Table 3 shows that using P_EQ substantially reduces 
runtimes on the instances of classes Barrel, Longmult and 
Joao in comparison with running BerkMin alone. The 
explanation is that a lot of strong relations were 
discovered for these instances. Frequently, the instances 
were solved by P_EQ alone. Note that using P_EQ for 
satisfiable instances (marked by suffix “bug”) does not 
give any speed-up. The instances were solved quickly by 
BerkMin without any preprocessing. 
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c7552, c7552_s from the class Joao are classified as 
quasi-challenging for current Sat-solvers [21]. Each of the 
instances is solved by at most two SAT-solvers tested at 
the site SAT-EX (within the timeout limit of 10000 s.). 
On the other hand, after applying P_EQ these instances 
are easily solved by BerkMin. 
     When solving the instances encoding microprocessor 
verification problems, P_EQ revealed few strong 
relations. Nevertheless, using P_EQ allows BerkMin  to 
solve the hardest instances of the class FVP-UNSAT2.0 
faster (except for one instance). Note that this class is 
hard for current SAT-solvers [14,24]. Web site [30] says 
that state-of-the-art SAT-solver Zchaff [13] solved 
instances 6pipe and 7pipe in 18,439.4 s. and 54,928.9 s., 
correspondingly, on SUNW, Ultra-80 system with clock 
frequency of 450MHz. We can see from Table 2 that 
BerkMin solved the instances much faster, and using 
P_EQ reduces runtime for the instances nearly two times. 

 

BerkMin P_EQ P_EQ+ 
BerkMin 

Name 

Time Eq_lit Units Time Time 
5pipe_4 294.1 112 806 29.2 226.3 
6pipe 701.7 72 1763 89.7 455.9 
6pipe_6_ 481.9 212 1523 84.1 507.6 
7pipe 2237.5 76 3067 220.8 1201.5 
7pipe_bg 479.5 72 2987 214.8 243.9 
    Total 4194.7   638.6 2635.2 
 
Table 2: Representatives of class 8FVP-UNSAT2.0 
 
     The comparison of the results given in columns 
“P_EQ+BerkMin” and “the best at site SAT-EX” shows 
that enhancing BerkMin by P_EQ allows one to solve the 
instances considered in this paper a few times faster (up 
two orders of magnitude) than using the best program 
listed at the web site for each instance (with the exception 
of easy satisfiable instances for which results are 
comparable). 
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BerkMin P_EQ P_EQ+ 

BerkMin 
The best at 
SAT-EX 

Name 

Time Eq_lit Unit Time Time Sat-solver Time* 
Representatives of BMC subclass Barrel 

Barrel5 2.09 1962 464 0.06 0.06 Eqsatz 0.67 
Barrel6 15.17 2620 658 0.16 0.16 Eqsatz 1.39 
Barrel7 80.3 5256 893 0.22 0.22 Eqsatz 1.82 
Barrel8 480.87 7768 1301 0.28 0.28 Satz-215 2.72 
Barrel9 378.76 13952 1870 0.55 0.55 Eqsatz 6.13 

Representatives of BMC subclass Longmult 
Lngmlt9 99.20 4016 746 3.63 64.48 Posit 237.78 
Lngmlt10 135.60 4558 670 5.22 78.17 Posit 347.20 
Lngmlt11 195.04 5126 731 8.48 58.11 Posit 479.73 
Lngmlt12 256.96 5720 706 12.30 50.81 Zchaff 602.05 
Lngmlt13 296.10 6376 752 17.58 33.01 Posit 731.39 
Lngmlt14 374.50 7090 862 24.06 34.32 Zchaff 682.91 
Lngmlt15 270.01 7798 1027 31.97 33.18 Heerhugo 215.27 

Class Joao 
C1355 0.77 1002 1 0.17 0.28 Heerhugo 0.86 
C1355_s 0.6 772 380 0.05 0.05 Heerhugo 0.87 
C1908 1.75 2836 81 0.28 0.33 Zchaff 11.74 
C1908_bug 1.15 2838 81 0.28 0.33 N_tab  0.16 
C1908_s 1.87 2856 81 0.27 0.27 Zchaff 13.36 
C2670 1.75 3408 3111 0.22 0.49 Zchaff 6.15 
C2670_bug 0.06 3338 294 0.22 0.33 N_sat 0.09 
C2670_s 2.37 3800 367 0.17 0.17 Zchaff 6.17 
C3540 30.54 4394 25 0.82 1.7 Zchaff 130.96 
C3540_bug 0.22 4392 25 0.76 1.09 Zchaff 0.14 
C3540_s 34.99 5000 47 0.77 0.83 Zchaff 202.44 
C490 0.38 448 1 0.05 0.11 Eqsatz 0.18 
C490_s 0.50 160 367 0.05 0.05 Eqsatz 0.14 
C432 0.05 370 10 0.0 0.0 Zchaff 0.36 
C432_s 0.06 372 10 0.0 0.0 Zchaff 0.26 
C5315 20.21 6868 421 0.77 1.59 Zchaff 121.92 
C5315_bug 0.71 6632 324 0.71 1.92 N_sat 0.17 
C5315_s 22.91 6378 649 0.61 0.61 Zchaff 108.75 
C6288 >5000 3082 111 0.16 0.16 Heerhugo 2.60 
C6288_s >5000 3082 108 0.17 0.17 Heerhugo 2.57 
C7552 100.35 10422 303 1.32 5.77 Zchaff 243.78 
C7552_bug 0.38 10154 304 1.37 4.33 N_sat 0.24 
C7552_s 144.73 9596 519 0.87 0.87 Zchaff 380.95 
C880 0.38 0 148 0.0 0.0 Zchaff 4.47 
C880_s 0.38 0 148 0.0 0.0 Zchaff 4.45 

               *) Experiments were run on PII-400 under Linux [21]. 
 
                                           Table 3: Representatives of BMC and Miters classes 


