

Local Search for Boolean Relations on the Basis of Unit Propagation

Yakov Novikov
The United Institute of Informatics Problems, National Academy of Sciences of Belarus

Email:nov@newman.bas-net.by

Abstract

We propose a method for local search of Boolean
relations relating variables of a CNF formula. The method
is to branch on small subsets of the set of CNF variables
and to analyze results of unit propagation. By taking into
account variable value assignments deduced during the
unit propagation procedure the method is able to justify
any relation represented by a Boolean expression. The
proposed technique is based on bitwise logical operations
over ternary vectors. We implement a restricted version of
the method used for unit clause derivation and equivalent-
literal identification in a preprocessor engine for a SAT-
solver. The experiments show that the proposed technique
is useful for solving real-world instances of the formal
verification domain.

1: Introduction

The satisfiability problem (SAT) attracts researchers
due to its numerous applications and theoretical
importance. In the last decade substantial progress has
been made in the development of practical complete SAT
algorithms [1,2,5,6,8,11-15,18]. All of them, except [5],
are descendants of the DPLL-algorithm [7].

The DPLL-algorithm can be considered as a special
case of general resolution that is called tree-like
resolution. It was shown in [3] that there is an exponential
gap between the performance of tree-like resolution and
that of general resolution. Clause recording [2,13-15,18],
restarts [1,10,13,14], and deduction of “strong” relations
(unit clauses, equivalences and others) [5,6,16] are the
steps made in the modern state-of-the-art SAT-solvers
towards general resolution.

This paper belongs to the direction of research
[9,19,20,23] meant to deduce and effectively use strong
relations. We develop Le Berre’s recent idea [19] to
deduce relations by analyzing results of unit propagation.
Our method consists of the following steps. Given a CNF,
we select a few variables and branch on them performing
unit propagation. On the basis of analysis of the values
assigned to variables during unit propagation we deduce

new relations relating the assigned variables. From a
practical standpoint, an important feature of our method is
the use of bitwise logical operations over ternary vectors
that speeds up the calculations.

Our method outperforms Le Berre’s one at least for
the following three reasons. First, Le Berre’s method can
be viewed as a restricted version of our method with
branching on two variables at most. (In the current
implementation we limit the set of branching variables to
five variables to cut down to 32 the length of the used
ternary vectors). Second, our method is able to justify not
only the unit clauses and literal equivalences as in Le
Berre’s method but also deduce any relation of Boolean
variables. Third, our method is able to deduce the
relations in the presence of don’t-cares when the values of
the considered variables are known partly.

The proposed method was implemented in a
preprocessing engine named P_EQ. In the current
implementation we identify unit clauses and literal
equivalences only, because these relations are stronger
and easier to check on. Besides, there is a great deal of
such relations in the instances we consider. In this paper
we compare the performance of BerkMin [14] with that of
BerkMin enhanced by P_EQ on publicly available
benchmarks from the formal verification domain. The
experiments show that the proposed technique is useful.
Almost all the obtained results are superior to the best
known so far.

The paper is organized as follows. First we describe
the basic idea. Second, we introduce inductive and
deductive stages of our method. Then we outline a CNF
formula traversing strategy meant to identify unit clauses
and literal equivalence relations. Finally, we present
experimental results.

2: Basic idea

Given a conjunctive normal form (CNF) F specified

on the set of variables {x1,…,xn}, the satisfiability
problem (SAT) is to satisfy (set to 1) all the disjunctions
of F by some assignment of values to the variables from
{x1,…,xn} or to prove that such a satisfying assignment
called solution does not exist. A disjunction of variables

1530-1591/03 $17.00  2003 IEEE

from {x1,…,xn} is also called a clause. A clause
containing only one literal is called a unit clause.

A Boolean function g is called an implicate of a
Boolean function f if f → g = 1. Implicate g can be added
to f conjunctively, i.e. f = f ∧ g. If g is an implicate of f
no solution exists within the part of Boolean space
specified by ¬g. Adding implicates to CNF F
representing Boolean function f, especially adding short
implicates (depending on a small number of variables),
simplify solving SAT-instances.
 Unit clauses (of the form x, ¬x), binary clauses (x ∧ y,
¬x∧ y, x∧¬ y, ¬x∧¬ y), and equivalences (x ↔ y, ¬x↔y,
x↔¬ y, ¬x↔¬ y) are known to be very useful kinds of
implicates used to simplify solving SAT-instances that
arise in formal verification and test generation domain
[9,25-29]. Special relations (of the form x → (y↔z), x ↔
y ↔ z) were proven to be useful for solving parity-32
problem [6]. This list may grow longer in the future.
 Consider CNF F = (a∨¬ b) ∧ (b∨¬ c) ∧ (¬a ∨¬ d) ∧ (d
∨¬ c). Suppose, a solution exists and contains a = 0.
When making assignment a = 0, the first clause becomes
unit consisting of single literal ¬b. We can satisfy the
clause only by assigning b = 0. This assignment is called
deduced. Then we can deduce c = 0 from the second
clause. Such procedure of deducing assignments based on
appearance of unit clauses in the formula is called unit
propagation or Boolean constraint propagation. We can
conclude for our example, if a solution exists and contains
a = 0, then c = 0 is also in the solution.

Similarly, based on the third and fourth clauses we can
deduce, if a solution exists and contains a = 1, then again
c = 0 is in the solution. So, if F is satisfiable, then c = 0 is
in any solution. Hence, ¬c is an implicate of F. In other
words, if branching on variable x of CNF F we deduce the
same value for the same variable y, say y = 0, in both
branches x = 0 and x = 1, then we can conclude that ¬y is
an implicate of F.

Now we are ready to extend this observation to the
general case. Suppose, we have a partition of the Boolean
space (where the CNF F is specified) and we know that
some blocks of the partition (marked in dark in fig. 1)
have no solution whereas a solution can exist in any other
block of the partition (marked in white). Moreover, it is
known, if a solution exists in a white block, it satisfies a
Boolean relation R(a,..,b). Then we can conclude that
R(a,…,b) is an implicate of F.

We can divide the Boolean space into parts by
branching on a subset of variables. For instance, by
branching on 3 variables, one partitions the space into 8
blocks. By making assignments to branching variables
and performing unit propagation we can deduce values of
some variables a,…,b in each block of the partition.
Suppose, unit propagation leads to appearance of
complementary unit clauses x and ¬x in F. Such situation
is called a conflict. A conflict means that there is no

Fig. 1: Partition of Boolean space

solution in the block specified by the current assignment
to branching variables. So, conflicting blocks can be
marked in dark and conflict-free blocks can be marked in
white (fig. 1). We come to the basic idea: if values of
a,…,b satisfy a relation R(a,..,b) in each conflict-free
block of the partition, then R(a,..,b) is an implicate of F.

In the case of two-block partitions, this idea leads to a
“partial contraposition” of the basic rule (A → B) ∧ (A →
¬B) ⇒ ¬A of Socrates algorithm [26], namely to (¬B
→ ¬A) ∧ (B → ¬A) ⇒ ¬A. The case of four-block
partitions was partly considered in [19]. The general case
is closely related to Stalmark’s method [16]. The
difference is that Stalmark’s method with its saturation
procedure is global. When branching on variable x1, it
tries to branch on x2, x3, and so on in breadth first manner
in each block of the partition determined by branching on
x1. In contrast, our method is local, and its locality allows
one to arrange search for arbitrary relations in parallel and
in the presence of don’t-cares as shown below.

3: Inductive stage

Suppose, we are going to find relations of a type R
(for example binary clauses or equivalences) relating
variables from a subset Z of variables of CNF F. We call
the set Z observable. Let Y be a subset of Z selected in a
way. Suppose, we have a procedure which branches on
variables from Y, performs unit propagations, and records
values assigned to the observable variables. Let assigned
values be stored in a ternary matrix T(Z).

As an example, consider a ternary matrix (fig. 2).
Here, the observable set is Z = {y1,y2,y3,a,d,e,f,g} and the
set of branching variables is Y = {y1,y2,y3}. Each column
of the matrix corresponds to a branch in our procedure.
For instance, column C2 contains values assigned
to observable variables on the branch y1 = 0, y2 = 1, y3 = 0.
Each row of the matrix corresponds to an observable
variable.
 Matrix T(Z) is called observable. Let the observable
matrix consist of dashes in the initial state, and our
procedure specifies values of the matrix elements by
substituting values 0 or 1 for dashes.

The part of the Boolean space determined by
assignments y1 = 0, y2 = 1, y3 = 0 is represented by cube

R(a,…,b)

R(a,…,b) R(a,…,b)

R(a,…,b)

R(a,…,b)

 C0 C1 C2 C3 C4 C5 C6 C7
 0 0 0 0 1 1 1 1 y1

 0 0 1 1 0 0 1 1 y2
 0 1 0 1 0 1 0 1 y3
T(Z) = 1 1 1 - - 0 - 1 a
 0 0 - - 1 - - - d
 1 0 0 1 1 1 0 0 e
 0 0 - 0 - 1 1 - f
 0 - 0 - 0 0 0 1 g
 b = 0 1 0 1 0 0 0 1

Fig. 2: Observable matrix

¬y1 y2 ¬y3. The column C2 shows that if a solution exists
in the cube ¬y1 y2 ¬y3 then it contains a = 1, e = 0 and
g = 0, but values of d and f are unknown (fig. 2).

Also consider a binary vector b which will be used by
our procedure to record encountered conflicts as follows.
The i-th component bi of b is equal to 1, if making the
assignment to the variables of Y in accordance with i-th
column of the observable matrix leads to a conflict.
Otherwise bi = 0. In our example, b3 = 1 as a consequence
of a conflict imposed by assignments y1 = 0, y2 = 1, y3 = 1
(fig. 2). Vector b is called a vector of conflicts.

The procedure filling in the observable matrix and the
vector of conflicts implements an inductive stage of the
method. As a prototype of the procedure, we can use the
DPLL algorithm [7] slightly modified to record conflicts
and value assignments as described above.

4: Deductive stage

Consider the column C2 of the observable matrix
represented on fig. 2. If a solution exists in the cube
¬y1y2¬y3, the value of variable d is unknown in the
solution. To clarify the situation we have to branch within
the cube ¬y1y2¬y3. It is important to underscore that we
can solve the problem of insufficient information in spite
of partial uncertainty of the observable matrix.

Consider table 1 describing commonly used logical
operations. We see that for some operations the amount of
uncertainty is reduced. For example, 1 dominates 0 for the
disjunction operation, which means 1 = - ∨ 1 = 1 ∨ -.
Similarly, relation R = (¬a → d) ∨ f holds in the cube
¬y1y2¬y3

 corresponding to column 2, since a = 1, d = f =
- in the column, and (¬1 → -) ∨ - = 1 (fig. 2). We can see
that values of a, d, f satisfy the relation R for each column
marked by 0 in the vector of conflicts b. So, R is an
implicate of F.
 Now, we transform this observation into a vector
form. Denote by tw the row that correspondents to the
observable variable w in the observable matrix. Let R be a
logical expression connecting observable variables. For
our example R = (¬a→d) ∨ f. Replacing each observable
variable w with corresponding ternary vector tw in the

a b ¬a a∧ b a∨ b a→b a↔b
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1
0 - 1 0 - 1 -
- 0 - 0 - - -
1 - 0 - 1 - -
- 1 - - 1 1 -
- - - - - - -

Table 1: Logical operations

expression we form the vector expression R* where the
logical operations over vectors are bitwise. We have R* =
 (¬ ta → td) ∨ tf in our example.

Theorem 1. R ⇐ F if R* ∨ b = 1*.
Here F is the initial CNF, ⇐ denotes R ← F = 1, b is a

binary vector recording conflicts, 1* is the vector
containing only 1 values and having the same length as b.

As a consequence we have
 x ⇐ F if tx ∨ b= 1*,
 x ↔ y ⇐ F if (tx ↔ ty) ∨ b = 1*,
 x ∨ ¬y ⇐ F if tx ∨ ¬ ty ∨ b = 1*, and so on.
It is easy to check that ¬ tg ∨ b = 1*, (ty

2 ↔ ¬ te) ∨ b
=1*, (¬ ta → td) ∨ tf ∨ b = 1* for the observable matrix
T(Z) (fig. 2). The first expression means that the unit
clause ¬g can be added to the CNF F for which the
matrix T(Z) was constructed. The second expression
shows that literals y2 and ¬e (as well as ¬y2 and e) are
equivalent and can be identified in F. The third expression
means that R = (¬a → d) ∨ f is implied by F.

Note that we have got the equivalence y2 ↔ ¬e due to
the fact that b1 = b3 = 1 in spite of y2 ≠ ¬e in columns C1,
C3. So, conflicts give a “masking” effect, which can be
used to resolve situations known as “false negatives” and
“impossibilities to propagate inequality to primary
outputs” in equivalence checking [28] (we omit the
discussion of the question for lack of space).

Note that we proved some Boolean relations in spite
of a number of uncertainties in the observable matrix.
Nevertheless, to exploit Theorem 1 it is necessary to
eliminate uncertainty completely, forming vector 1* when
expression R* is calculated. Consider how the last
requirement can be relaxed and how relations can be
deduced without eliminating the uncertainty completely.

Let h be a conjunction depending on variables of the
set Y. Suppose h = ¬y1y2. Since h = ¬y1 y2 ¬y3 ∨ ¬y1 y2
y3, we can say that h corresponds to columns C2, C3 (fig.
2). Consider a ternary vector ¬h* that differs from the
Boolean vector 1* only in that it can take any value from
the set {0,-,1} in the components which correspond to the
conjunction h.

Theorem 2. h ∨ R ⇐ F if R* ∨ b = ¬h*.
The theorem can be interpreted as follows. The cube

h “masks” the white blocks where R doesn’t hold (fig. 1).
It is easy to see that it is impossible to use theorem 1

to prove that e ∨ f ⇐ F for our example, since the
component of t = te ∨ tf ∨ b corresponding to column C2
is equal to -. At the same time, according to theorem 2
expression h ∨ e ∨ f ⇐ F holds where h = ¬y1y2¬y3.

Deducing a strong relation like unit clause or literal
equivalence allows one to reduce search space by a factor
of 2. Note that relations like h ∨ R where h is a
conjunction can be strong as well. For instance, the
relation ¬y1y2¬y3 ∨ f allows one to reduce search space
by 1/2 - 1/8 = 3/8. Such relations are attractive from the
viewpoint of unit propagation. Indeed, when R=0 we have
to set conjunction h to 1 by assigning appropriate values
to all its variables. So, given relation ¬y1y2¬y3 ∨ f and f
= 0, we deduce value assignments y1 = 0, y2 = 1, y3 = 0.

5: Formula traversing strategy

Strong relations usually simplify testing the
satisfiability of large real-life CNF formulas, especially
when such relations are in abundance. Suppose it is
known that a large number of relations can be deduced by
branching on subsets that consist of two variables. If the
number of variables in a formula is large (at present,
“large” means up to a few millions), then even a simple
quadratic algorithm examining all pairs of variables is
impractical. Besides, deduction of relations is order
dependent, that is deducing of some relations may make it
much easier to deduce others. So, an efficient strategy of
formula traversing is necessary to select subsets of
variables to branch on.

In this paper, we simulate the well-known strategy
used by commercial BDD based tools for equivalence
checking of combinative circuits. In accordance with the
strategy, equivalence relations between intermediate
points of the compared circuit are propagated from inputs
to outputs. The strategy can be explained by the following
example.

Consider two AND gates with identical input
variables: u = ab, v = ab. A consistent value assignment to
the variables of the first gate has to satisfy CNF
(¬a∨¬ b∨ u) ∧ (a∨¬ u) ∧ (b∨¬ u). A consistent value
assignment to the variables of the two gates has to satisfy
CNF N = (¬a∨¬ b∨ u) ∧ (a∨¬ u) ∧ (b∨¬ u) ∧ (¬a∨¬ b∨ v)
∧ (a∨¬ v) ∧ (b∨¬ v). Let us assume that the modified
DPLL procedure is used and it branches on the set of
variables V = { a, b }. It is easy to see that the method
proposed above allows one to prove u ↔ v ⇐ F. The
result will not change, if the gates have different input
variables, for instance a, b and a′, b′, but a ↔ a′ and b ↔
b′. So, branching on the input variables of a gate it is
possible to propagate an equivalence relation from the
gate input to its output.

Suppose, it is unknown which variables of {a,b,u} are

input ones for the considered AND gate. In this case, we
can deduce the equivalence relation u ↔ v branching on
the longest clause from the CNF description of the gate,
namely ¬a ∨ ¬b ∨ u, since the clause contains all the
variables relating to the gate.

We have to use this heuristic since later on we will
consider the situation when one has to deal with a CNF
formula describing some verification problem without
knowledge of the structure of the underlying circuit. We
assume that variables of the CNF are correctly numbered
i. e. if a node described by variable xi has a lower level
number than a node described by variable xj , then i < j.
The level of a node in a circuit is equal to the maximal
length of a path leading to the node from an input of the
circuit. (In other words, variable numbering follows the
topological ordering of nodes.) We also assume that CNF
description follows the topological ordering as well. That
is if clauses specifying gate g are located closer to the
beginning of the formula then clauses specifying gate g’
then the level of gate g’ cannot be smaller than that of g.
Such assumptions are not necessarily true for publicly
available benchmarks. But even if the topological
ordering is preserved partially it may allow one to deduce
a lot of strong relations.

We traverse the formula twice. To perform the first
traversal we mark a set of variables having the smallest
numbers. Ideally, input variables should be marked only
(but in our experiments input variables were unknown and
the first 150 variables were marked). Then the set of
variables is examined in the ascending order of variable
numbers. For each variable xi we select the clauses having
size l∈ {3,4,5,6} and containing xi itself. If the clause
contains l-1 marked variables, the modified DPLL
procedure is applied to deduce strong relations by
branching on the marked variables. If the equivalence of
two literals is proven, the literals are marked. In the
second traversal we examine the formula from the
beginning to the end and the clauses of length l are picked
again. But now we branch on all variables of the clause
except the case when l = 6. In this case we branch on the
first 5 variables of the clause. If a unit clause is deduced,
unit propagation procedure is run to deduce the additional
unit clauses. Periodically, the discovered equivalent
literals are identified i.e. all literals of one variable are
replaced with the corresponding literals of the equivalent
variable.

State-of-the-art algorithms of combinational
equivalence checking [9,28,29] make full use of structural
properties of processed circuits. The procedure described
in this section uses structure partially and indirectly. Our
purpose is only to demonstrate the potential of the
technique proposed in the paper. We can see from the
next section that new technique allows one to improve
performance of SAT-tools significantly on some well
known benchmarks from formal verification domain.

6: Experimental results

The proposed method was implemented in a
preprocessing engine P_EQ for SAT-solver BerkMin
[14]. Both programs were written in Microsoft’s Visual
C++ under Windows-95. The experiments were run on a
computer with Pentium-III-700 and 640Mb of RAM. We
considered all instances from benchmark class Joao [22]
which encodes equivalence checking of combinational
circuits, and the hardest instances from class FVP-
UNSAT2.0 [17] describing verification of pipelined
microprocessors, and from the BMC benchmark class
encoding bounded model checking problems [4].

The results of the experiments are shown in Tables 2-
3. Names of instances are given in the column “Name”.
The column “BerkMin” describes BerkMin’s
performance. The column “eq_lit” gives the number of
deduced pairs of equivalent literals. Note that since the
equivalent literals were not immediately identified, the
number of deduced pairs of equivalent literals forming an
equivalence class may exceed the number of elements in
this class. The column “Unit” gives the number of derived
unit clauses. The column P_EQ+BerkMin describes the
performance of BerkMin enhanced by P_EQ. The column
“the best at SAT-EX” shows the best results among 23
sat-solvers tested by L. Simon at the web site SAT-EX
[21] (class FVP-UNSAT2.0 has not been tested there).

Table 3 shows that using P_EQ substantially reduces
runtimes on the instances of classes Barrel, Longmult and
Joao in comparison with running BerkMin alone. The
explanation is that a lot of strong relations were
discovered for these instances. Frequently, the instances
were solved by P_EQ alone. Note that using P_EQ for
satisfiable instances (marked by suffix “bug”) does not
give any speed-up. The instances were solved quickly by
BerkMin without any preprocessing.

��������� ��	

� ��	

��� �
������ ��
��� ��
�����

c7552, c7552_s from the class Joao are classified as
quasi-challenging for current Sat-solvers [21]. Each of the
instances is solved by at most two SAT-solvers tested at
the site SAT-EX (within the timeout limit of 10000 s.).
On the other hand, after applying P_EQ these instances
are easily solved by BerkMin.
 When solving the instances encoding microprocessor
verification problems, P_EQ revealed few strong
relations. Nevertheless, using P_EQ allows BerkMin to
solve the hardest instances of the class FVP-UNSAT2.0
faster (except for one instance). Note that this class is
hard for current SAT-solvers [14,24]. Web site [30] says
that state-of-the-art SAT-solver Zchaff [13] solved
instances 6pipe and 7pipe in 18,439.4 s. and 54,928.9 s.,
correspondingly, on SUNW, Ultra-80 system with clock
frequency of 450MHz. We can see from Table 2 that
BerkMin solved the instances much faster, and using
P_EQ reduces runtime for the instances nearly two times.

BerkMin P_EQ P_EQ+
BerkMin

Name

Time Eq_lit Units Time Time
5pipe_4 294.1 112 806 29.2 226.3
6pipe 701.7 72 1763 89.7 455.9
6pipe_6_ 481.9 212 1523 84.1 507.6
7pipe 2237.5 76 3067 220.8 1201.5
7pipe_bg 479.5 72 2987 214.8 243.9
 Total 4194.7 638.6 2635.2

Table 2: Representatives of class 8FVP-UNSAT2.0

 The comparison of the results given in columns
“P_EQ+BerkMin” and “the best at site SAT-EX” shows
that enhancing BerkMin by P_EQ allows one to solve the
instances considered in this paper a few times faster (up
two orders of magnitude) than using the best program
listed at the web site for each instance (with the exception
of easy satisfiable instances for which results are
comparable).

 References

 1. L.Baptista, J.P.Marques-Silva. The interplay of randomization and
learning on real-world instances of satisfiability//Proceedings of AAAI
Workshop on Leveraging Probability and Uncertainty in Computation. -
July 2000.
 2. R.J.J.Bayardo, R.C. Schrag. Using CSP Look-Back Techniques to
Solve Real-World SAT Instances// Proceeding of the Fourteenth
National Conference on Artificial Intelligence (AAAI’97),
Providence,Rhode Island. –1997. -P. 203-208.
 3. E.Ben-Sasson, R. Impagliazzo, A.Wigderson. Near optimal
separation of Treelike and General resolution// Proceedings of SAT-
2000: Third Workshop on the Satisfiability Problem.-May 2000.-P.14-
18.
 4. A. Biere et al. Symbolic model checking using SAT procedures
instead of BDDs// Proceedings of DAC'99. -1999.
 5. J.F.Groote, J.P.Warners. The propositional formula checker
HeerHugo//SAT2000. I.Gent et al. IOS Press. -2000. -P.261-281.
 6. C.-M.Li. Integrating Equivalency reasoning into Davis-Putnam
procedure//Proceedings of AAAI’2000. Austin.Texas. USA. -2000. -P.
291-296.
 7. M.Davis, G.Longemann, D.Loveland. A Machine program for
theorem proving//Comminications of the ACM. -1962. -V.5. -P.394-
397.
 8. O.Dubois, P.Andre, Y. Boufkhad, J.Carlier. SAT versus
UNSAT//Johnson and Trick, Second DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society. –1996. -P.415-436.
 9. E. Goldberg, M.Prasad. Using Sat for combinational equivalence
checking// Proceedings of DATE’01. -P.114-121.
 10. C.P.Gomes, B. Selman, H.Kautz. Boosting combinational search
through randomization// Proceedings of International Conference on
Principles and Practice of Constraint Programming. - 1997.
 11. J.W. Freeman. Improvements to propositional satisfiability search
algorithms//Ph.D. thesis, Department of computer and Information
science, University of Pennsylvania, Philadelphia. - 1995.
 12. C.M.Li. A constrained-based approach to narrow search for
Satisfiability // Information processing letters.-1999. -V. 71. -P. 75-80.
 13. M.W. Moskewicz et all. Chaff: Engineering an Efficient SAT
Solver// Proceedings of DAC’01. -2001.
 14. E. Goldberg, Ya. Novikov. BerkMin: a Fast and Robust SAT-
solver// Proceedings of DATE’02. –P.142-147.
 15. J.P.M.Silva, K.A.Sakallah. GRASP: A Search Algorithm for

Propositional Satisfiability//IEEE Trans. Comp.-1999.-V.48.-P.506-521.
 16. G. Stalmarck. A Tutorial on Stalmarck’s Proof Procedure for
Propositional Logic//Formal Methods in System Design. -2000.-V.13. –
P.23-58.
 17. M.Velev. CMU benchmark suite. Available from
http://www.ece.cmu.edu/~mvelev.
 18. H.Zhang. SATO: An efficient propositional prover// Proceedings
of the International Conference on Automated Deduction. -July 1997. -
P.272-275.
 19. D.L.Berre. Exploiting the real power of unit propagation look
ahead//Proceedings of the Workshop on Theory and Applications of
Satisfiability Testing (SAT2001).
 20. J.P.M. Silva. Algebraic simplification techniques for propositional
satisfiability//International Conference on Principles and Practice of
Constraint Programming. -Sept. 2000. -P. 537-542.
 21. http://www.lri.fr/~simon/satex/satex.php3.
 22. ftp://algos.inesc.pt/pub/benchmarks/cnf/equiv-checking
/MITERS.
 23. I. Lynce, J.P.M.Silva. The Interaction Between Simplification and
Search in Propositional Satisfiability // CP’01 Workshop on Modeling

and Problem Formulation (Formal’01), November. 2001.
 24. M.N. Velev, R.E. Bryant. Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors // Proceeding of DAC’01. -June 2001.-P.226-231.
 25. W. Kunz, D.K. Pradhan. Recursive learning: A new implication
technique for efficient solution to CAD-problems: Test, verification and
optimization // IEEE Trans. CAD. -Vol.13. -No.9. -1994.
 26. M.H. Schulz, E. Trischler, T.M. Sarfert. SOCRATES: A highly
efficient automatic test pattern generation system // IEEE Trans. CAD. -
Vol. 7. -Jun.1988. -P.126-137.
 27. P. Stephan, R.K. Brayton, A.L. Sangiovanni-Vincentelli.
Combinational test generation using satisfiability // IEEE Trans. CAD.
–Vol. 15. –No. 9. -Sept. 1996. –P.1167-1176.
 28. D. Brand. Verification of large synthesized designs // Digest of
Technical Papers of the IEEE/ACM International conference on
Computer-Aided Design, Santa Clara, CA. -Nov. 1993. –P.534-537.
 29. A.Kuehlmann et al. Robust Boolean Reasoning for Equivalence
Checking and Functional Property Verification // IEEE Trans. CAD. –
No.12. –Des. 2002.
 30. http://eigold.tripod.com/BerkMin.html.

BerkMin P_EQ P_EQ+

BerkMin
The best at
SAT-EX

Name

Time Eq_lit Unit Time Time Sat-solver Time*
Representatives of BMC subclass Barrel

Barrel5 2.09 1962 464 0.06 0.06 Eqsatz 0.67
Barrel6 15.17 2620 658 0.16 0.16 Eqsatz 1.39
Barrel7 80.3 5256 893 0.22 0.22 Eqsatz 1.82
Barrel8 480.87 7768 1301 0.28 0.28 Satz-215 2.72
Barrel9 378.76 13952 1870 0.55 0.55 Eqsatz 6.13

Representatives of BMC subclass Longmult
Lngmlt9 99.20 4016 746 3.63 64.48 Posit 237.78
Lngmlt10 135.60 4558 670 5.22 78.17 Posit 347.20
Lngmlt11 195.04 5126 731 8.48 58.11 Posit 479.73
Lngmlt12 256.96 5720 706 12.30 50.81 Zchaff 602.05
Lngmlt13 296.10 6376 752 17.58 33.01 Posit 731.39
Lngmlt14 374.50 7090 862 24.06 34.32 Zchaff 682.91
Lngmlt15 270.01 7798 1027 31.97 33.18 Heerhugo 215.27

Class Joao
C1355 0.77 1002 1 0.17 0.28 Heerhugo 0.86
C1355_s 0.6 772 380 0.05 0.05 Heerhugo 0.87
C1908 1.75 2836 81 0.28 0.33 Zchaff 11.74
C1908_bug 1.15 2838 81 0.28 0.33 N_tab 0.16
C1908_s 1.87 2856 81 0.27 0.27 Zchaff 13.36
C2670 1.75 3408 3111 0.22 0.49 Zchaff 6.15
C2670_bug 0.06 3338 294 0.22 0.33 N_sat 0.09
C2670_s 2.37 3800 367 0.17 0.17 Zchaff 6.17
C3540 30.54 4394 25 0.82 1.7 Zchaff 130.96
C3540_bug 0.22 4392 25 0.76 1.09 Zchaff 0.14
C3540_s 34.99 5000 47 0.77 0.83 Zchaff 202.44
C490 0.38 448 1 0.05 0.11 Eqsatz 0.18
C490_s 0.50 160 367 0.05 0.05 Eqsatz 0.14
C432 0.05 370 10 0.0 0.0 Zchaff 0.36
C432_s 0.06 372 10 0.0 0.0 Zchaff 0.26
C5315 20.21 6868 421 0.77 1.59 Zchaff 121.92
C5315_bug 0.71 6632 324 0.71 1.92 N_sat 0.17
C5315_s 22.91 6378 649 0.61 0.61 Zchaff 108.75
C6288 >5000 3082 111 0.16 0.16 Heerhugo 2.60
C6288_s >5000 3082 108 0.17 0.17 Heerhugo 2.57
C7552 100.35 10422 303 1.32 5.77 Zchaff 243.78
C7552_bug 0.38 10154 304 1.37 4.33 N_sat 0.24
C7552_s 144.73 9596 519 0.87 0.87 Zchaff 380.95
C880 0.38 0 148 0.0 0.0 Zchaff 4.47
C880_s 0.38 0 148 0.0 0.0 Zchaff 4.45

 *) Experiments were run on PII-400 under Linux [21].

 Table 3: Representatives of BMC and Miters classes

