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Abstract—This paper presents a genetic algorithm (GA) with methods. Jaret al. [4] developed an algorithm using de-
specialized encoding, initialization, and local search operators to composition based on branch and bound to minimize link
optimize the design of communication network topologies. This ,qt5 with a minimum network reliability constraint; this is

NP-hard problem is often highly constrained so that random ini- . I ble for full d K
tialization and standard genetic operators usually generate infea- computationally tractable for fully connected networks up

sible networks. Another complication is that the fitness function t0 12 nodes. Using a greedy heuristic, Agganealal. [5]
involves calculating the all-terminal reliability of the network, maximized reliability given a cost constraint for networks with

which is a computationally expensive calculation. Therefore, it djffering link reliabilities and an all-terminal reliability metric.

is imperative that the search balances the need to thoroughly : ) ot
explore the boundary between feasible and infeasible networks, Ventetsanopoulos and Singh [6] used a two-step heuristic

along with calculating fitness on only the most promising candi- Procedure for the problem of minimizing a network’s cost
date networks. The algorithm results are compared to optimum Subject to a reliability constraint. The algorithm first used a
results found by branch and bound and also to GA results heuristic to develop an initial feasible network configuration,
without local search operators on a suite of 79 test problems. 5nd then a branch and bound approach was used to im-

This strategy of employing bounds, simple heuristic checks, and . . . S . .
problem-sp%)::ific regaiyar?d local searcﬁ operators can be used prove this configuration. A deterministic version of simulated

on other highly constrained combinatorial applications where annea”'?g was used by _Ati(_J!J”ah 3_-nd Rao [?] with exact
numerous fitness calculations are prohibitive. calculation of network reliability to find the optimal design
Index Terms—Genetic algorithm, local search, Monte Carlo of very small networks (five nodes or less). Piegtal.

simulation, network design, network reliability, penalty function, [8] also used_simulated annealing to find optimal .designs
repair. for packet switch networks where delay and capacity were

considered, but reliability was not. Tabu search was used by
Glover et al. [9] to choose network design when considering
cost and capacity, but not reliability. Another tabu search
LTHOUGH the topological optimization of networks isapproach by Beltran and Skorin-Kapov [10] was used to design
an important problem in many fields such as telecomeliable networks by searching for the least cost spanning
munications, electricity distribution, and gas pipelines, it hast@o-tree, where the two-tree objective was a coarse surrogate
major importance in the computer communication industrjgr reliability. Koh and Lee [11] also used tabu search to
when considering network reliability. In a communicatioling telecommunication network designs that required some
network, all-terminal network reliability (also callediniform podes (special offices) having more than one link while others
or overall network reliability) is defined as the probability tha regular offices) required only one link, while also using this
every pair of nodes can communicate with each other [1], [3jak constraint as a surrogate for network reliability.
This means that the network forms at least a spanning treegenetic algorithms (GA'’s) have recently been used in com-
The primary design problem is to choose a set of links fgjinatorial optimization approaches to reliable design, mainly
a given set of nodes to either maximize reliability given g series and parallel systems [12]-[14]. For network design,
cost qqnstraint or to mini_mize cost given a m_inimum Network mar et al. [15] developed a GA considering diameter,
reliability constraint. This design problem is NP-hard [3layerage distance, and computer network reliability and applied
anq as a_further complication, the calculation of all-terming! 15 four test problems of up to nine nodes. They calculated
reliability is also NP-hard. all-terminal network reliability exactly and used a maximum
This problem and related versions have been studied in th&wvork diameter (minimal number of links between any
literature with both enumerative-based methods and heurisjg, nodes) as a constraint. The same authors used this GA

to expand existing computer networks [16]. Daws al.
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TABLE | Il. STATEMENT OF THE PROBLEM

SEARCH SPACE SizE FOR FOUR NETWORK SIZES L -
A communication network can be modeled by a probabilis-

# Nodes (N) 7 10 15 20 tic graph G = (N, L,p), in which N and L are the set

#Links(L:W) 2z 4 105 190 of nodes and links that corresponds to the computer sites

Search Space (2°) 2.10x10° | 3.51x107 | 4.05x107 | 1.56xi0° ~ and communication connections, respectively, ané the

# Spanning Trees (N%?) | 1.68x10° | 1.00x10° | 1.94x10" | 262x10®  connection (link) reliability. The networks are assumed to have

# Minimum Cutsets (2" 1) | 127x10” [ 1.02x10" | 327x10" | 1.04x10°  pjgirectional links and therefore are modeled by graphs with
nondirected links. It is further assumed that the graph has no
parallel (i.e., redundant) edges. Redundant links can be added

without regard to reliability. Walters and Smith [20] usedo improve reliability, and the approach described in this paper

a GA to address optimal design of a pipe network thabuld be modified straightforwardly to include redundancy.

connects all nodes to a root node using a nonlinear cq¥e optimization problem is

function. Reliability and capacity were not considered, making

this a somewhat simplistic approach. Deeter and Smith [21] N-1 N

presented a GA approach for a small (five nodes) minimum Minimize Z = Z Z Cij®Tij

cost network design problem with alternative link reliabilities i=1 j=i+l

and an all-terminal network reliability constraint. Dengit Subject to: R(z) > R, 1)

al. [22] addressed the all-terminal network design problem

on a test suite of 20 problems using a fairly standard Gwherex;; € {0,1} is the decision variableg;; is the cost

implementation, and that method will be considered later #f (i, 7) link, R(z) is the network reliability, andk,, is the

this paper. A shorter, earlier version of the research presentehimum reliability requirement.

in this paper appeared in [23]. The following define the other problem assumptions.
Given the NP-hard nature of the problem, heuristics are1) The location of each network node is given.

often needed to solve problems of realistic size. GA’s have not2) Nodes are perfectly reliable.

been used as much as might be expected, however, becaugg Eachc;; andp are fixed and known.

of the difficulty of dealing with the feasibility issue. Highly 4) Links are either operational or failed.

reliable networks imply a severely constrained problem whens) The failures of links are independent.

minimum system reliability is used as a constraint. It is 6) No repair is considered.

unknown whether or not a network is feasible until the network

reliability is calculated. This calculation, if done exactly, is

also NP-hard [24]. An alternative approach is to maximize net-

work reliability given a maximum cost constraint, and in this

case, network reliability must be calculated as part of the oA: Encoding

jective function. Table | shows the_growth_ of the search spacep variable-length integer string representation was used

for both the design problem (choice of links) and the exagi|iowing [25] to represent a water distribution system. Thiel

calculation of network reliability (spanning trees and minimurg; 5| [26] also used this encoding to represent the possible

cutsets). For network§ of Iarger size, all-terminal “?"ab”it}’nsertion sequences of objects in a knapsack problem. Every

can be accurately estimated using a Monte Carlo simulatiggssiple link is assigned an integer, and the presence of that

approach. While computationally tractable for large networkg, is signaled by the presence of that integer in the ordered

Monte Carlo is nevertheless an expensive procedure for aCLHing. The scheme for the integer assignment is arbitrary.

rate estimation, from the standpoint of computational effort,q fully connected network in Fig. 1 uses the following
The contributions of this paper are twofold. First, a difﬁc“'.tassignment.

I1l. THE GENETIC ALGORITHM

and realistic problem class is solved effectively and efficiently -

. . . . . Link Integer Label
using a test suite of 79 problems. Previous works, including 13 1
those cited above, have demonstrated the heuristic and exact 1’5 2
optimization procedures on a small humber of problems of 1:6 3
limited network size, thus the important issue of scale-up is 1,4 4
left unanswered. The 79 randomly generated test problems 1,2 5
in this paper range up to 20 nodes and 55 possible links. 23 6
Second, a general approach to employing easily calculated 25 7
fithess surrogates to minimize the actual fitness calculation 2,6 8
is married with local search and repair algorithms, a penalty 2.4 9
function, and a seeding strategy to encourage the production 3,4 10
of highly fit, feasible solutions. This is a good example of 3,6 11
customizing the GA meta-heuristic to a highly constrained 3,5 12
combinatorial problem where the fitness calculation is difficult. 4,5 13
Local search proves more efficient in identifying near optimal 4,6 14
solutions, thereby minimizing the fithess calculation. 5,6 15
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networks that fail to meet the minimum reliability requirement.
The objective of the penalty function is to lead the optimization
algorithm to near-optimal, feasible solutions. It is important to
allow infeasible solutions into the population because good
solutions can be the result of breeding between feasible and
infeasible solutions, and the reproduction procedure does not
ensure feasible children even if both parents are feasible,
especially in highly constrained problems where the constraint
is likely to be active. There has been a body of work published
in evolutionary computation on handling constraints (the most
recent comprehensive treatment is found in [29]). In particular,
Michalewicz [30]-[33] and Smith [34], [35] have worked on
using penalty functions to effectively and efficiently guide
evolutionary search to feasible, optimal (or near-optimal) final
solutions. The penalty function below uses the notion of
distance of the solution from feasibility (th&(x) — R, term)
and a nonlinear penalty (the exponent of two).

The fitness function is given by

22 =Y Y i+ bleman(R(E@) - R (2)

=1 j=i+1
(b) s— 10, if R(z) >R,
1, if R(z) < R,

Fig. 1. Two networks with six nodes where links are arbitrarily labeled with .
integers 1-15. This labeling forms the encoding of the network for the GA.  Cmax = the maximum value of;;.
(a) A fully connected network with 15 links that are arbitrarily labeled with

integers 1-15. (b) A partially connected network with ten links using the . s . .
same labeling scheme as in (a). For computation ofR(x), three reliability estimations are

used to trade off accuracy with computational effort. An ideal
, i , o strategy would only employ the computationally intensive
String representations of networks given in Fig. 1 are [1 Zathod of Monte Carlo simulation on the optimal network
345678 9 10 11 12.13 14 15] and 1456911 .12 13 1&’esign. Since the GA is an iterative algorithm, this ideal cannot
15], respectively. The first network includes all possible link§e attained as many candidate networks must be evaluated
using the arbitrarily assigned labels defined above. The secopfling the search. Therefore, screening of candidate network
network contains ten links, using the same labeling schemgsigns is used. First, a connectivity check for a spanning tree
Node de_gree is defined as the number of links which emanat&,aqe on all new network designs using the method of [27].
from a given node. For example, node 2 of the lower netwok,en for networks which pass this check, the two-connectivity

of Fig. 1 has node degree 3. measure of [28] is made by ensuring that all nodes have at least
- _ degree two. Finally, for networks which pass both of these
B. Initial Population preliminary checks, Jan’s upper bound [2] is used to compute

To enhance the efficiency of the search, the initial populati¢ie upper bound of reliability of the candidate netwdil; ().
consists of networks with the characteristics of being highijhis upper bound is used in the calculation of the objective
reliable. The combination of a stochastic depth-first algorithfinction (2) for all networks except those which are the best
with repair is used to generate the initial population by tH@und so far(zggst). Networks which haveliy(z) > R,
following. and the lowest cost so far are sent to the simulation subroutine

1) A spanning tree is implemented through the depth-firgcfr precise estimatilon of network reliability .using an efficient

search algorithm by Hopcroft and Uliman [27], whicHVlonte_ Car_lo technique by Yeft al. [_36]. This Monte Ca_rlo
grows a tree from a randomly chosen node. techmq_ue improves upon the classic m_eth_o_d by red_ucmg the

2) Links selected randomly from the cotree set (the set ygriability qf _the estl_mate of network reliability, allowing for

links which are not yet used in the tree) are added to tReMore efficient estimator.
spanning tree to increase connectivity.

3) If the network obtained by Steps 1) and 2) does not halze The Algorithm

two connectivity [28], it is repaired by the algorithm tpa fow of the algorithm is as follows.

explained in Section IlI-E. Step 1) Generate the initial population of sizeby the

o ) method of Section IlI-B. Calculate the fitness of

C. Objective Function each candidate network in the population using (2)
The objective function is the sum of the total cost for all and Jan’s upper bound [2] & x), except for the
links in the network plus a quadratic penalty function for lowest cost network withRy () > R,. For this
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networkzggsT, use the Monte Carlo estimation of
R(z) in (2). Generationg = 1.

Step 2) Select two candidate networks. An elitist rank-
ing selection with stochastic remainder sampling
without replacement is used [37].

Step 3) To obtain two children, apply crossover (defined
in Section IlI-F) to the selected networks and
mutation (defined in Section IlI-G) to the children.

Step 4) Determine the two-connectivity of each new child.
Use the repair algorithm (defined in Section III-E}:ig
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(@) (b)

. 2. A network with five nodes that is repaired for two-connectivity by

on any that do not satisfy two-connectivity. adding a link from node 1 to node 2. (a) Original network that does not satisfy
Step 5) CalculateRy () for each child using Jan’s uppertwo-connectivity. (b) Repaired network where the link between nodes 1 and

bound and compute its fithess using (2). 2 (

Step 6) If the number of new childrens—1 go to Step 2).
Step 7) Replace parents with children, retaining the best
solution from the previous generation.
Step 8) Sort the new generation according to fitness,l is
to s. co
a) If Z(xz;) < Z(zpgrst), then calculate the re-
liability of this network using Monte Carlo
simulation, else go to Step 9).
b) zpest = %;. Go to Step 9).
Step 9) Ifg = gmax Stop, else go to Step 2) agd=g+1. g

E. Two-Connectivity Repair Algorithm

If any candidate network does not pass two-connectivity
(i.e., has one or more nodes with node degt@¢, the network
is repaired using three different alternatives according to how
many nodes fail the test. The repair strategy is basically a
greedy link addition procedure.

Step 1) DeterminéVy,ni;k = 1,---, max node degree in

a network.

Step 2) Rank allV, andn;, exceptN; andn, in increas-

ing order fromk = 2, ..., maximum node degree;

determineN,,;, and nin.

a) If ny = 1, determine which connection between
this node and the nodes in th€,;, set has
minimum cost and connect them, stop.

b) If ng = 2: E
— Compute the connection cost of the two

Nodes(¢m,, my,) iN the Ny set.

— Compute all ¢, and for j
17 27 * 5 min-

— If Cmyy,miz < [min(cnlllynlminj) +
min(Cm,o mum ;)] then connect the two
nodes in theV; set; else connect the nodes
in V; set to other nodes iV,,;,,, through
Inin(cnlllynlmin j)’ Inin(cmlz,mmin j)'

c) If ng > 2,

— Randomly select two nodes frof; set,

— Apply b) for these two nodes until; = 0.

to

Mmin ;

where
Ny, set of nodes with: degree;
Nupin  Set of nodes with minimum degree except nodes
with one degree;
g number of nodes in théV;. set;

in bold) is added.

my; node labels in theV; set;
Mmin ; NOde labels in théVy,, set,j = 1,2, -+, Nyin.
An illustrative example of the connectivity repair algorithm

presented. A candidate network with five nodes and link
sts of
c12=32, caz=54 c4=62, c15=25

C23 = 34, C2.4 = 58, C2,5 = 45, C34 = 36,

C3,5 = 52, Cq,5 = 29

shown in Fig. 2(a).

Step 1) Ny = [1,2],711 =2;No = [3,4, 5],712 = 3. In this
case; Ny = No andng,;, = na. Apply Step 2b),
becausen; = 2.

Step 2b) 1 and 2 are the nodes in tvg set; 3, 4, 5 are
the nodes in theV,,;, set. The connection cost
of the two nodes in theV, setisc; » = 32. The
connection costs af2;; to nodes in thev,,;, set
arec; s = 54,¢1,4 = 62, and ¢ ; already exists.
1,3 < ¢1,4;¢1,3 IS the minimum cost connection.
The connection costs ofni» to nodes in the
Numin S€t arecy 3 = 34,¢2 4 already exists and
c25 = 43. Sincecy 3 < c2.5 c2 3 IS the minimum
connection.c; » < [e1.3 + ¢2,3], SO node 1 is
connected to node 2.

After repair, the network shown in Fig. 2(b) is obtained.

Crossover Operator

Crossover is a form of uniform crossover with repair
ensure each child is at least a spanning tree with two-

connectivity.

Step 1) Select two candidate networks, callédand172.
Determine the common links- 7’1 N 72, other
links are:T1 =T1—(T1NT2); T2 =T2—(T1N
T2).

Step 2) Assign common links to childreil’, 72. T1' =
TIiNT2, T2 =T1NT2.

Step 3) IfT1’ and T2’ are spanning trees, go to Step 5),
else go to Step 4).

Step 4) Links fronil’1, in cost order, are added %1’ until
T1’ is a spanning tree. Use the same procedure to
obtain 72’ from T2.

Step 5) Determine which links &f'1 U 72 do not exist in
T1 andT?2: CT1 =TI\T1; CT2 = T2\T?2'.

Step6) Tl =TV UCT2; T2 = T2 UCTL.
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<Z K@ RO Q\% ) k @
(a) (b (@)

3 -
) (b)
Fig. 3. Two networks with five nodes that have been selected for crossoveig. 5. The second step of the creation of two children that adds links from
(a) ParentI'l. (b). Parentl2. each parent (in bold) to make each child a spanning tree. (a) A link between

nodes 4 and 5 (in bold) is added to make a spanning Title (b) A link
between nodes 3 and 4 (in bold) is added to make a spannindf'ee

O—@®  O—

/

G—® OO

@

(b)

Fig. 4. The initial step of creation of two children takes links common to (@)
both parents. (a) Chil@'1’. (b) Child T°2".

®

—0®

(b)
Fig. 6. The final step in the creation of two children. (a) CHild’ is
comp?seq ofl'1’ [Fig. 5(@)] UCT2 (in bold). (b) Child T2' is composed
An illustrative example of the crossover operator is showﬁf. T2 [Fig. ()] UCT1 (in bold)
Fig. 3(a) and (b) shows the selectéd and 72 parents. All
link costs are the same as for the network in Fig. 2. Note that
the encoding would be the integer link labeling as in Fig. 1;
however, for clarity in the example below, the links are labeled
by the nodes they connect.
Step 1) T1NT2 = [1,3;2,4;3,5]; T1 = [1,2;2,3;4, 5],
T2 = [1,5;2,5;3,4].
Step 2) Assign common links to children as shown in
Fig. 4(a) and (b).
Step 3) Y _angTT are not spanning trees. . Fig. 7. T2' from Fig. 6(b) that has undergone repair for two-connectivity.
Step 4)ci; in T1: c12 = 32,c23 = 34,c45 = 29 IS The link between nodes 1 and 5 (in bold) has been added.
minimum; ¢;; in 72 ¢cp5 = 45,c34 = 36 is
minimum. Add links 4,5 and 3,4 to make spanning

trees. Step 2) Randomly select an allowable link not in the net-
Steps 5 and 6) Leftover links from each parent are added work and add it; stop.
to the opposite children. Step 3) Rank links of the network in decreasing cost order.
T2 still has one degree for node 5; therefore the repair Drop the maximum cost link from the network.
algorithm of Section llI-E is invoked and the final child If the network still has two-connectivity, stop;
network 72" of Fig. 7 results. otherwise cancel dropping this link, and retry the
procedure for the remaining ranked links until one
is dropped or the list has been exhausted; stop.
G. Mutation Operator Step 4) Generate ~ U(0,1). If »w < (1-DR) (where DR
Mutation takes the form of a randomized greedy local is the drop rate) go to Step 2), otherwise go to
search operator. The mutation operator is applied differently Step 3).
according to node degrees of the network. The mutation operator is illustrated assuming the network
Step 1) Determine node degrees @&gf the network for in Fig. 8(a) and link costs as in Fig. 2.
ji=12,-.- N. Step 1) In this network, the node degreédsg(j);j =
If deg(j) = 2 for all j; go to Step 2); 1,2,---, N aredeg(1) = 2, deg(2) = 2, deg(3) =
If deg(y) > 2 for all j; go to Step 3); 3, deg(4) = 2, deg(5) = 3. As shown, the nodes

Else,deg(j) > 2; for all j; go to Step 4). 1, 2 and 4 have node degree2 and 3 and 5 have
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TABLE I
0 e ANOVA AND DuNcAN’'s TEST RESULTS
Source of DF F-values | P-values
variation
Model 50 6.730 0.000
Error 192
Corrected Total | 242 R’ = 0.667
NS 2 59.475 0.000
©, ©) 5) PS 2 | 40198 | 0.000
CR 2 1.746 0.177
@) (b) MR 2 17.530 0.000
Fig. 8. Mutation of a network with five nodes and six links. (a) Network DR i 5273212 gggg
with ded7) > 2 before mutation. (b) Network after mutation where the link NS xPS : . 4
from node 3 to node 5 has been deleted. NS x CR 4 0.758 0.55
NS x MR 4 2.761 0.029
NS x DR 4 0.926 0.450
node degree= 3 and V, = [1,2,4], N3 = [3,5]; PSxCR 4 0.922 0.453
sdeg(4) > 2. In this case, Step 4) is applied. ggxgg j g-ggg 8-232
X . .
Step 4) Generate, ~ U(0,1); for examplew = 0.4578 CR x MR 4 0345 0.847
and DR = 0.70.u > (1 — DR), so go to Step 3). CR xDR 4 1.315 0.266
Step 3) Use drop operatoe; 3 = 54,¢35 = 52,¢25 = MR x DR 4 0.736 0.586
45,¢c34 = 36,c12 = 32,c45 = 29. Dropping Ly 3 Significant | n | Group x Dunc_an Levels
fails two-connectivity, so drod.; 5. The mutated Factors — 9'°‘:3p'"9 -
network is shown in Fig. 8(b). NS 81 | 0.00266 B 8
- 81 | 0.00846 A 10
H. Parameter Values of GA 81 | 0.00761 A 25
. . . ) PS 81 | 0.00319 B 50
Performance was systematically investigated for a set of five 81 | 0.00216 B 75
parameters: network size (NS), population size (PS), crossover 81 | 0.00636 A 0.10
rate (CR), mutation rate (MR), and drop rate (DR). Three MR 81 0-88‘2128 g 8-58
levels were selected for each parameter, so the experimen- 8110 '
tal design included 3 design points. Five replications were
made for each design point, resulting in 1215 observations. TABLE Il
Statistical analysis was performed using analysis of variance SUMMARY OF RESULTS OF TWO GA APPROACHES
(ANOVA) and Duncan’s multiple range tests and the results (AVERAGED OVER TEN RUNS OF EACH PROBLEM SiZE)
are shown in Table Il. While NS, PS, and MR were significant Problem NGA [22] LS/NGA
. . 0, 0
o = 0.05, CR and DR were not. The‘-statistic values L | Seach | Mean | Mean% | Mean | Mean%
. Space Solns from Solns from
for NS and PS were larger than that of MR, suggesting Searched | Optimal | Searched | Optimal
that the variations in the levels of NS and PS have greater | 15 3.28x1o: 2378 0.472 1596 0.400
impact on performance than does MR. It is not surprising tha@ 21 1 209x10 1) 6254 1.068 4190 0.777
: : ! 28 | 268x10 11638 1.176 7811 0.889
network size affects the search, or that the interaction between| as | 6.87x10™° | 28168 2.957 12922 1.050
network size and population size is significant, because ©®f | 45 3.15x10:: 62783 3.509 34168 1.094
the exponential increase in search space as each nodélis25 | 360x10 | 83833 | 4675 43566 0.323
added. A few of the other two-way interactions were slightly
significant. The best results were found for RS0 or 75, CR TABLE IV
= 0.50,0.60 or 0.70, MR = 0.20 or 0.30, and DR= 0.50, 0.60 CoMPARISON OF COMPUTATION TIME
or 0.70. In this paper, the parameters are set at :PS5_O, Problem Voo CPU Seconds
QR : 0.70, MR = 0.30, and DR = 9.60. The population . N L B+B [4] NGA [22] LS/NGA
size is somewhat small for conventional GA's, however, it 6| 15 0.514 51.313 13.216
was chosen considering the computational effort needed to ; g; 3833-?22 ;‘6‘?;‘5‘; 1?2;;?
evaluate e_ach so_Iutl_o_n. Smce_populatlons of 50 and 75 were 9l 3 3903195 | 588717 | 203388
not statistically significantly different, the lower value was 10| 45 4164.566 | 1175.533 458.937
chosen. Note that mutation is fairly active; this is a result 11 ] 55 |59575263| 1532341 472.105

of its local search effect which appears to fine tune promising

search spaces identified by crossover. and when generating the initial population.) These are the
branch and bound (B+ B) technique by Jaret al. [4] and
IV.  COMPUTATIONAL RESULTS the network GA (NGA) that was fully investigated in [22].

There are two comparisons made to judge the effectiven®SA uses a binary encoding, single point crossover, and
and efficiency of the network GA with local search, termedit flip mutation; no repair or local search is performed.
LS/NGA. (Recall that repair, in the form of greedy localThe fitness calculation (including the bounding and Monte
search, is done by both the crossover and mutation operat@arlo simulation) is identical to LS/NGA, however, as are



DENGIZ et al. GA FOR OPTIMAL DESIGN OF RELIABLE NETWORKS 185

TABLE V
CoMPLETE REsULTS COMPARING PERFORMANCE AND CPU TIME

Problem B+B [4] NGA [22] LS/NGA
No | N L p Ro Best | CPU sec. | Coeff. CPU Coeff. CPU
Cost Var.* sec. Var.* sec.
FULLY CONNECTED NETWORKS

1 6 15 090 090 231 1.87 | 0.0245 57.50 0 11.97
2|16 15 09 09 239 0.01 0 41.05 0 8.28
316 15 080 090 227 0.04 0 38.90 0 12.30
4 |16 15 090 090 212 0.17 o] 46.32 0 12.60
5 {6 15 090 090 184 0.28 0 52.39 | 0.0233 13.72
6 |6 15 090 095 254 0.11 0 69.39 | 0.0217 19.48
76 15 090 095 286 0.00 0 50.17 0 13.04
8 |6 15 090 095 275 0.06 0 48.37 0 12.40
9 16 15 090 095 255 0.06 0 59.32 0 14.36
10{6 15 090 0.95 198 0.01 0 63.65 | 0.0121 21.51
1116 15 095 095 227 3.90 | 0.0357 57.98 | 0.0023 14.08
12|16 15 095 095 213 0.11{ 0.0235 47.83 | 0.0193 10.03
1316 15 095 095 190 0.00] 0.0280 42.32 0 10.09
1416 15 095 095 200 0.44 | 0.0238 57.54 | 0.0173 13.04
1516 15 095 095 179 0.66 | 0.0193 46.97 | 0.0256 11.36
1617 21 090 090 189 11.26 | 0.0177 130.71| 0.0175 21.77
17717 21 090 09 184 0.17 0 76.74 0 18.80
1817 21 090 090 243 0.50 | 0.0167 135.98 ] 0.0202 26.93
1917 21 090 090 129 1.21| 0.0121 122.46 | 0.0195 28.91
2017 21 0980 0% 124 0.05 0 83.45 0 23.77
2117 21 090 085 205 0.83 | 0.0406 301.41( 0.0337 71.40
22 17 21 090 0985 209 0.06 0 4 0 37.06
2317 21 090 095 268 0.06 | 0.0310 25573 | 0.0187 56.39
24 17 21 090 095 143 0.17 ] 0.0264 280.26 | 0.0193 78.72
2517 21 090 095 153 0.01 0 160.43 0 52.93
2617 21 095 095 185 22.85} 0.0333 112.26 | 0.0111 28.89
2717 21 095 095 182 1.27 | 0.0046 81.78 | 0.0035 16.99
2817 21 095 095 230 1.76 | 0.0090 109.47 | 0.0072 26.64
2917 21 095 0.5 122 2.31( 0.0265 112.62 | 0.0259 27.82
307 21 095 095 124 0.39 0 74.49 0 19.64
3|8 28 09 090 208 21.9] 0.0211 260.86 | 0.0161 79.55
328 28 09 090 203 20.37 0 175.06 0 75.37
33|18 28 09 090 211 140.66 | 0.0149 198.80 | 0.0119 79.67
3418 28 09 090 291 173.01| 0.0204 210.95| 0.0108 83.66
358 28 090 090 178 159.34 | 0.0112 230.70 0 67.34
36 |8 28 090 095 247 | 1016253 | 0.0152 611.28 | 0.0140 168.79
3718 28 090 095 247 | 15207.83| 0.0274 80894 0.0183 226.08
3818 28 09 095 245 12712.21 | 0.0124 663.99 | 0.0034 184.31
39| 8 28 090 0.95 336 9616.80 | 0.0169 743.39| 0.0177 303.50
40 [ 8 28 090 095 202 9242.10| 0.0231 629.13 | 0.0235 266.47

* Qver 10 runs.
(@

the selection mechanism, the penalty function, and the usesofutions, in terms of nearness to optimality and computational
the two-connectivity screen for initial population generationeffort. The results are averaged over each problem instance
The 79 randomly generated test problems are both fuly each network size and over the ten replications of each
connected and nonfully connected networks wkhranging problem instance. It can be seen that LS/NGA does not degrade
from 6-20" The available links of the nonfully connectedn performance with increase in problem size while NGA does.
networks were randomly generated and were 1.5 tilNeS Fyrthermore, while computational effort grows with problem
The link costs for all networks were randomly gengrated OVEze, it is a more modest growth than for NGA and many orders
[:F' 100]. Each problem for the GA’s was run ten t|mes.W|t.f6f magnitude less than the exponential growth for enumerative
different random number seeds to gauge the natural varlabllggsed methods. This comparison of computational effort is

of the GA. more clearly seen in Table IV. All computational comparisons

Table Il shows a summary of the test problems comparin . .
the performance of the two GA approaches with the optim‘églere made_on a Pentium 133 MHz PC using Pascal code.
Table V lists complete results of the three methods for all

LAll test problems are available from the authors. 79 test problems. The conclusions of the results summarized
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TABLE V (Continued)
CoMPLETE ResuLTS COMPARING PERFORMANCE AND CPU TIME

Problem B+B [4] NGA [22] LS/NGA
No | N L p Ro Best | CPU sec. Coeff. CPUsec. | Coeff. CPU sec.
Cost Var.* Var.*
FULLY CONNECTED NETWORKS
41| 8 28 095 095 179 0.11 0 133.32 0 43.81
42 | 8 28 095 095 194 2.69 | 0.0053 202.57 | 0.0033 40.56
43 | 8 28 095 095 197 26.97 | 0.0052 173.74 | 0.0080 58.04
44 | 8 28 095 095 276 20.76 | 0.0133 187.02 | 0.0100 50.64
451 8 28 095 085 173 72.78 | 0.0190 189.02 | 0.0206 53.51
46 | 9 36 090 090 239 8.02 | 0.0105 324.38 | 0.0066 98.19
47 | 9 36 090 090 191 23.78 | 0.0277 365.31| 0.0081 153.77
481 9 36 090 090 257 702.05 | 0.0301 530.37 | 0.0171 176.79
43 | 9 36 090 090 171 0.82 | 0.0255 292.01 0 81.18
50 9 36 090 090 198 12.36 | 0.0228 378.91 0 90.49
51 9 36 090 095 286 8321.87 | 0.0821 1215.28 | 0.0325 404.93
521 9 36 090 095 220 1425948 | 0.0330 998.79 | 0.0309 358.28
531 9 36 090 095 306 9900.87 | 0.0313 1256.82 | 0.0163 560.89
541 9 36 080 095 219 17000.04 | 0.0457 865.38 | 0.0226 340.13
55 9 36 090 095 237 7739.99 | 0.0760 1024.77 | 0.0778 391.52
56 [ 9 36 095 095 209 4.95| 0.0576 274.83 0 59.24
5719 36 095 095 171 21.75| 0.0137 293.43 | 0.0092 99.98
58 9 36 095 0985 233 6§25.03 | 0.0375 372.18 | 0.0268 97.95
59 9 36 095 095 151 0.99 | 0.0471 252.71 0 65.78
60| 9 36 095 095 185 25.92 { 0.0381 385.59 0 71.67
6110 45 090 090 131 4623.19 | 0.0518 1047.60 | 0.0231 375.14
62 | 10 45 090 090 154 2118.75| 0.0651 794.83 | 0.0223 214.63
63 | 10 45 090 090 267 1860.74 | 0.0142 998.01 | 0.0061 415.53
64 | 10 45 090 090 263 1466.73 | 0.0126 678.02 0] 171.04
65 |10 45 090 090 293 2212.70 | 0.0329 1093.36 | 0.0182 488.12
66 { 10 45 090 095 153 5712.97 | 0.0257 1718.45| 0.0150 982.98
67 | 10 45 090 095 197 7728.21| 0.0203 1689.51 | 0.0177 726.31
68 | 10 45 090 095 311 8248.16 | 0.0367 1967.61 | 0.0136 984.30
69 | 10 45 090 095 291 6802.16 | 0.0404 1529.61 | 0.0244 825.45
70 (10 45 090 095 358 12221.39 | 0.0276 2662.34 | 0.0048 1071.99
71110 45 095 095 1121 3492.17 | 0.0563 793.22 | 0.0124 177.31
72 110 45 095 095 136 1125.89 | 0.0291 615.29 | 0.0185 81.87
73110 45 095 095 236 987.64 | 0.0276 781.68 | 0.0160 139.53
74 | 10 45 095 095 245 2507.89 | 0.0369 632.11 0 98.31
75110 45 095 095 268 1359.91{ 0.0513 630.37 | 0.0120 131.55
76 [ 11 55 090 0.90 246 59575.49 | 0.0499 1532.34 0 47211
NON FULLY CONNECTED NETWORKS
77 {14 21 090 090 1083 23950.01 | 0.0129 7293.97 | 0.0079 1672.75
78 | 16 24 090 095 1022 | 131756.43 | 0.0204 2699.38 [ 0.0185 2334.15
79 120 30 095 095 596 # 0.0052 5983.24 | 0.0152 4458.81

* Over 10 runs.
# Optimum solution taken from [4]. CPU time unknown.

(b)

in Tables Ill and IV are confirmed. The GA'’s find optimalnonparametric or parametric statistical tests. A nonparametric
solutions at a fraction of the computational cost of branch astyn test of CPU between LS/NGA and NGA resulted in
bound for the larger problems. Both GA formulations found p-value < 0.0000 that LS/NGA is more efficient with a
the optimal solution in at least one of the ten runs for athean improvement of 392 s. A sign test of CPU of LS/NGA
problems. and B+ B was inconclusive. For small problems, BB is
Applying statistical tests to the results gives the followingnuch more efficient; however, it becomes orders of magnitude
Pairedt-testé between the coefficient of variation over terless efficient for large problems. This is typical computational
runs yields that LS/NGA is superior to NGA withavalue behavior of a heuristic versus an enumerative method as search
of 0.0000 and a mean improvement (decrease in coefficispace grows exponentially.
of variation) of 0.0104. The distributions of the CPU times of
all three methods did not meet the requirements of efficient V. CONCLUSIONS
It is not surprising that a special purpose GA is more effi-
2The residuals of the ten pairs were distributed approximately normally.cient than an enumerative based method on NP-hard problems
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of realistic size. It is encouraging that the heuristic GA is very2]
effective in identifying optimal solutions, even in search spaceEﬂ
up to 108, The problem studied, while being of interest in
many real applications, is not one that particularly lends itself]
to an evolutionary approach at first glance. There are several
major barriers which had to be overcome. First, the problemns)
when the network must be highly reliable, is very constrained.
This is handled initially by repairing children to ensure they,
at least might be highly reliable. For networks which might be
highly reliable, but are not (identified after network reliability
is calculated), the infeasibility is handled via a distance-
based quadratic exterior penalty function. Second, the fithess
calculation is computationally burdensome, so use of bound®

and repair and local search operators are used. Bounds serve

as surrogates in the reliability fithess function for networkd9]
which are not the best candidates for the final solution. Repair
and local search help identify networks which are particulariyo)
promising in their region of the search space.

What is of greater interest is the series of steps that !
be incorporated into an evolutionary meta-heuristic, such as a
GA, which enables the efficient and effective optimization df2l
highly constrained problems with large search spaces where
the calculation of fitness is difficult. The steps used includde]
seeding the initial population with solutions that are prone to
be highly fit, crossover and mutation operators which tend gy
produce highly fit offspring, and the judicious use of quickly
calculated surrogates for fitness. [15]

Repair operators and local search mechanisms will be prob-
lem specific. In this paper, they are simple greedy operatdiél
that work by adding or subtracting the lowest or highest cost
link. In other problems, similar uncomplicated approachgs7]
using the notion of neighboring solutions may work well. The
primary objective is to use some problem-specific knowledgg
to craft simple mechanisms to encourage the production of
solutions that are apt to be fit and feasible. To identi
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9] F. N. Abuali, D. A. Schoenefeld, and R. L. Wainwright, “Designing

when the local search repair mechanisms are needed, fith€ss telecommunications networks using genetic algorithms and probabilistic

surrogates should be employed where possible. In this paper,
first a connectivity check and then counting node degre
were applied to screen for highly reliable networks. For other

problems, there may be somewhat crude, but reasonable, Wa)l/]s

to quickly examine a solution for the likelihood of superio 2

fithess. Finally, exact calculation of fitness is largely avoided
by using an upper bound on all but the most superior candf?l
dates. Upper and lower bounds exist for many optimization
problems, such as scheduling and routing. Depending on thigs]

tightness and their ease of calculation, these bounds may be
valuable fitness surrogates during search and their usefulnggs

should be exploited to craft an efficient evolutionary algorithm.

It must be cautioned that use of surrogates and inexact fitn
calculations, in some cases, may fail to allow the search to
identify the optimal solution. Since what is usually desired &6l
a very good solution, rather than the single optimal solution,
this possibility is more of an academic concern than a real ongz]

[28]
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