
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997 179

Local Search Genetic Algorithm for
Optimal Design of Reliable Networks

Berna Dengiz, Fulya Altiparmak, and Alice E. Smith,Senior Member, IEEE

Abstract—This paper presents a genetic algorithm (GA) with
specialized encoding, initialization, and local search operators to
optimize the design of communication network topologies. This
NP-hard problem is often highly constrained so that random ini-
tialization and standard genetic operators usually generate infea-
sible networks. Another complication is that the fitness function
involves calculating the all-terminal reliability of the network,
which is a computationally expensive calculation. Therefore, it
is imperative that the search balances the need to thoroughly
explore the boundary between feasible and infeasible networks,
along with calculating fitness on only the most promising candi-
date networks. The algorithm results are compared to optimum
results found by branch and bound and also to GA results
without local search operators on a suite of 79 test problems.
This strategy of employing bounds, simple heuristic checks, and
problem-specific repair and local search operators can be used
on other highly constrained combinatorial applications where
numerous fitness calculations are prohibitive.

Index Terms—Genetic algorithm, local search, Monte Carlo
simulation, network design, network reliability, penalty function,
repair.

I. INTRODUCTION

A LTHOUGH the topological optimization of networks is
an important problem in many fields such as telecom-

munications, electricity distribution, and gas pipelines, it has a
major importance in the computer communication industry,
when considering network reliability. In a communication
network,all-terminal network reliability (also calleduniform
or overall network reliability) is defined as the probability that
every pair of nodes can communicate with each other [1], [2].
This means that the network forms at least a spanning tree.
The primary design problem is to choose a set of links for
a given set of nodes to either maximize reliability given a
cost constraint or to minimize cost given a minimum network
reliability constraint. This design problem is NP-hard [3],
and as a further complication, the calculation of all-terminal
reliability is also NP-hard.

This problem and related versions have been studied in the
literature with both enumerative-based methods and heuristic

Manuscript received June 13, 1997; revised July 24, 1997. This work was
supported in part by The Government Planning Organization of Turkey (DPT),
Project DPT-96K-120820. The work of A. E. Smith was supported by National
Science Foundation CAREER Grant DMI 95-02134.

B. Dengiz and F. Altiparmak are with the Department of Industrial
Engineering, Gazi University, Ankara Turkey (e-mail: berna@rorqual.cc.metu.
edu.tr).

A. E. Smith is with the Department of Industrial Engineering, University
of Pittsburgh, Pittsburgh, PA 15261 USA (e-mail: aesmith@engrng.pitt.edu).

Publisher Item Identifier S 1089-778X(97)08537-8.

methods. Janet al. [4] developed an algorithm using de-
composition based on branch and bound to minimize link
costs with a minimum network reliability constraint; this is
computationally tractable for fully connected networks up
to 12 nodes. Using a greedy heuristic, Aggarwalet al. [5]
maximized reliability given a cost constraint for networks with
differing link reliabilities and an all-terminal reliability metric.
Ventetsanopoulos and Singh [6] used a two-step heuristic
procedure for the problem of minimizing a network’s cost
subject to a reliability constraint. The algorithm first used a
heuristic to develop an initial feasible network configuration,
and then a branch and bound approach was used to im-
prove this configuration. A deterministic version of simulated
annealing was used by Atiqullah and Rao [7] with exact
calculation of network reliability to find the optimal design
of very small networks (five nodes or less). Pierreet al.
[8] also used simulated annealing to find optimal designs
for packet switch networks where delay and capacity were
considered, but reliability was not. Tabu search was used by
Glover et al. [9] to choose network design when considering
cost and capacity, but not reliability. Another tabu search
approach by Beltran and Skorin-Kapov [10] was used to design
reliable networks by searching for the least cost spanning
two-tree, where the two-tree objective was a coarse surrogate
for reliability. Koh and Lee [11] also used tabu search to
find telecommunication network designs that required some
nodes (special offices) having more than one link while others
(regular offices) required only one link, while also using this
link constraint as a surrogate for network reliability.

Genetic algorithms (GA’s) have recently been used in com-
binatorial optimization approaches to reliable design, mainly
for series and parallel systems [12]–[14]. For network design,
Kumar et al. [15] developed a GA considering diameter,
average distance, and computer network reliability and applied
it to four test problems of up to nine nodes. They calculated
all-terminal network reliability exactly and used a maximum
network diameter (minimal number of links between any
two nodes) as a constraint. The same authors used this GA
to expand existing computer networks [16]. Daviset al.
[17] approached a related problem considering link capacities
and rerouting upon link failure using a customized GA.
Abuali et al. [18] assigned terminal nodes to concentrator
sites to minimize costs while considering capacities using a
GA, but no reliability was considered. The same authors in
[19] solved the probabilistic minimum spanning tree problem
where inclusion of the node in the network is stochastic and
the objective is to minimize connection (link) costs, again

1089–778X/97$10.00 1997 IEEE

180 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

TABLE I
SEARCH SPACE SIZE FOR FOUR NETWORK SIZES

without regard to reliability. Walters and Smith [20] used
a GA to address optimal design of a pipe network that
connects all nodes to a root node using a nonlinear cost
function. Reliability and capacity were not considered, making
this a somewhat simplistic approach. Deeter and Smith [21]
presented a GA approach for a small (five nodes) minimum
cost network design problem with alternative link reliabilities
and an all-terminal network reliability constraint. Dengizet
al. [22] addressed the all-terminal network design problem
on a test suite of 20 problems using a fairly standard GA
implementation, and that method will be considered later in
this paper. A shorter, earlier version of the research presented
in this paper appeared in [23].

Given the NP-hard nature of the problem, heuristics are
often needed to solve problems of realistic size. GA’s have not
been used as much as might be expected, however, because
of the difficulty of dealing with the feasibility issue. Highly
reliable networks imply a severely constrained problem when
minimum system reliability is used as a constraint. It is
unknown whether or not a network is feasible until the network
reliability is calculated. This calculation, if done exactly, is
also NP-hard [24]. An alternative approach is to maximize net-
work reliability given a maximum cost constraint, and in this
case, network reliability must be calculated as part of the ob-
jective function. Table I shows the growth of the search space
for both the design problem (choice of links) and the exact
calculation of network reliability (spanning trees and minimum
cutsets). For networks of larger size, all-terminal reliability
can be accurately estimated using a Monte Carlo simulation
approach. While computationally tractable for large networks,
Monte Carlo is nevertheless an expensive procedure for accu-
rate estimation, from the standpoint of computational effort.

The contributions of this paper are twofold. First, a difficult
and realistic problem class is solved effectively and efficiently
using a test suite of 79 problems. Previous works, including
those cited above, have demonstrated the heuristic and exact
optimization procedures on a small number of problems of
limited network size, thus the important issue of scale-up is
left unanswered. The 79 randomly generated test problems
in this paper range up to 20 nodes and 55 possible links.
Second, a general approach to employing easily calculated
fitness surrogates to minimize the actual fitness calculation
is married with local search and repair algorithms, a penalty
function, and a seeding strategy to encourage the production
of highly fit, feasible solutions. This is a good example of
customizing the GA meta-heuristic to a highly constrained
combinatorial problem where the fitness calculation is difficult.
Local search proves more efficient in identifying near optimal
solutions, thereby minimizing the fitness calculation.

II. STATEMENT OF THE PROBLEM

A communication network can be modeled by a probabilis-
tic graph , in which and are the set
of nodes and links that corresponds to the computer sites
and communication connections, respectively, andis the
connection (link) reliability. The networks are assumed to have
bidirectional links and therefore are modeled by graphs with
nondirected links. It is further assumed that the graph has no
parallel (i.e., redundant) edges. Redundant links can be added
to improve reliability, and the approach described in this paper
could be modified straightforwardly to include redundancy.
The optimization problem is

Minimize

Subject to: (1)

where is the decision variable, is the cost
of link, is the network reliability, and is the
minimum reliability requirement.

The following define the other problem assumptions.

1) The location of each network node is given.
2) Nodes are perfectly reliable.
3) Each and are fixed and known.
4) Links are either operational or failed.
5) The failures of links are independent.
6) No repair is considered.

III. T HE GENETIC ALGORITHM

A. Encoding

A variable-length integer string representation was used
following [25] to represent a water distribution system. Thiel
et al. [26] also used this encoding to represent the possible
insertion sequences of objects in a knapsack problem. Every
possible link is assigned an integer, and the presence of that
link is signaled by the presence of that integer in the ordered
string. The scheme for the integer assignment is arbitrary.
The fully connected network in Fig. 1 uses the following
assignment.

Link Integer Label
1,3 1
1,5 2
1,6 3
1,4 4
1,2 5
2,3 6
2,5 7
2,6 8
2,4 9
3,4 10
3,6 11
3,5 12
4,5 13
4,6 14
5,6 15

DENGIZ et al.: GA FOR OPTIMAL DESIGN OF RELIABLE NETWORKS 181

(a)

(b)

Fig. 1. Two networks with six nodes where links are arbitrarily labeled with
integers 1–15. This labeling forms the encoding of the network for the GA.
(a) A fully connected network with 15 links that are arbitrarily labeled with
integers 1–15. (b) A partially connected network with ten links using the
same labeling scheme as in (a).

String representations of networks given in Fig. 1 are [1 2
3 4 5 6 7 8 9 10 11 12 13 14 15] and [1 4 5 6 9 11 12 13 14
15], respectively. The first network includes all possible links
using the arbitrarily assigned labels defined above. The second
network contains ten links, using the same labeling scheme.
Node degree is defined as the number of links which emanate
from a given node. For example, node 2 of the lower network
of Fig. 1 has node degree 3.

B. Initial Population

To enhance the efficiency of the search, the initial population
consists of networks with the characteristics of being highly
reliable. The combination of a stochastic depth-first algorithm
with repair is used to generate the initial population by the
following.

1) A spanning tree is implemented through the depth-first
search algorithm by Hopcroft and Ullman [27], which
grows a tree from a randomly chosen node.

2) Links selected randomly from the cotree set (the set of
links which are not yet used in the tree) are added to the
spanning tree to increase connectivity.

3) If the network obtained by Steps 1) and 2) does not have
two connectivity [28], it is repaired by the algorithm
explained in Section III-E.

C. Objective Function

The objective function is the sum of the total cost for all
links in the network plus a quadratic penalty function for

networks that fail to meet the minimum reliability requirement.
The objective of the penalty function is to lead the optimization
algorithm to near-optimal, feasible solutions. It is important to
allow infeasible solutions into the population because good
solutions can be the result of breeding between feasible and
infeasible solutions, and the reproduction procedure does not
ensure feasible children even if both parents are feasible,
especially in highly constrained problems where the constraint
is likely to be active. There has been a body of work published
in evolutionary computation on handling constraints (the most
recent comprehensive treatment is found in [29]). In particular,
Michalewicz [30]–[33] and Smith [34], [35] have worked on
using penalty functions to effectively and efficiently guide
evolutionary search to feasible, optimal (or near-optimal) final
solutions. The penalty function below uses the notion of
distance of the solution from feasibility (the term)
and a nonlinear penalty (the exponent of two).

The fitness function is given by

(2)

if
if

the maximum value of

For computation of , three reliability estimations are
used to trade off accuracy with computational effort. An ideal
strategy would only employ the computationally intensive
method of Monte Carlo simulation on the optimal network
design. Since the GA is an iterative algorithm, this ideal cannot
be attained as many candidate networks must be evaluated
during the search. Therefore, screening of candidate network
designs is used. First, a connectivity check for a spanning tree
is made on all new network designs using the method of [27].
Then, for networks which pass this check, the two-connectivity
measure of [28] is made by ensuring that all nodes have at least
degree two. Finally, for networks which pass both of these
preliminary checks, Jan’s upper bound [2] is used to compute
the upper bound of reliability of the candidate network, .
This upper bound is used in the calculation of the objective
function (2) for all networks except those which are the best
found so far . Networks which have
and the lowest cost so far are sent to the simulation subroutine
for precise estimation of network reliability using an efficient
Monte Carlo technique by Yehet al. [36]. This Monte Carlo
technique improves upon the classic method by reducing the
variability of the estimate of network reliability, allowing for
a more efficient estimator.

D. The Algorithm

The flow of the algorithm is as follows.

Step 1) Generate the initial population of sizeby the
method of Section III-B. Calculate the fitness of
each candidate network in the population using (2)
and Jan’s upper bound [2] as , except for the
lowest cost network with . For this

182 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

network , use the Monte Carlo estimation of
in (2). Generation, .

Step 2) Select two candidate networks. An elitist rank-
ing selection with stochastic remainder sampling
without replacement is used [37].

Step 3) To obtain two children, apply crossover (defined
in Section III-F) to the selected networks and
mutation (defined in Section III-G) to the children.

Step 4) Determine the two-connectivity of each new child.
Use the repair algorithm (defined in Section III-E)
on any that do not satisfy two-connectivity.

Step 5) Calculate for each child using Jan’s upper
bound and compute its fitness using (2).

Step 6) If the number of new children go to Step 2).
Step 7) Replace parents with children, retaining the best

solution from the previous generation.
Step 8) Sort the new generation according to fitness,

to .

a) If , then calculate the re-
liability of this network using Monte Carlo
simulation, else go to Step 9).

b) Go to Step 9).

Step 9) If stop, else go to Step 2) and .

E. Two-Connectivity Repair Algorithm

If any candidate network does not pass two-connectivity
(i.e., has one or more nodes with node degree2), the network
is repaired using three different alternatives according to how
many nodes fail the test. The repair strategy is basically a
greedy link addition procedure.

Step 1) Determine max node degree in
a network.

Step 2) Rank all and except and in increas-
ing order from , maximum node degree;
determine and .

a) If , determine which connection between
this node and the nodes in the set has
minimum cost and connect them, stop.

b) If :

— Compute the connection cost of the two
nodes in the set.

— Compute all and for

— If
then connect the two

nodes in the set; else connect the nodes
in set to other nodes in through

c) If :

— Randomly select two nodes from set,
— Apply b) for these two nodes until

where

set of nodes with degree;
set of nodes with minimum degree except nodes
with one degree;
number of nodes in the set;

(a) (b)

Fig. 2. A network with five nodes that is repaired for two-connectivity by
adding a link from node 1 to node 2. (a) Original network that does not satisfy
two-connectivity. (b) Repaired network where the link between nodes 1 and
2 (in bold) is added.

node labels in the set;
node labels in the set, .

An illustrative example of the connectivity repair algorithm
is presented. A candidate network with five nodes and link
costs of

is shown in Fig. 2(a).

Step 1) In this
case; and Apply Step 2b),
because

Step 2b) 1 and 2 are the nodes in the set; 3, 4, 5 are
the nodes in the set. The connection cost
of the two nodes in the set is The
connection costs of to nodes in the set
are and already exists.

is the minimum cost connection.
The connection costs of to nodes in the

set are already exists and
Since is the minimum

connection. so node 1 is
connected to node 2.

After repair, the network shown in Fig. 2(b) is obtained.

F. Crossover Operator

Crossover is a form of uniform crossover with repair
to ensure each child is at least a spanning tree with two-
connectivity.

Step 1) Select two candidate networks, calledand .
Determine the common links other
links are: ;

Step 2) Assign common links to children, .
;

Step 3) If and are spanning trees, go to Step 5),
else go to Step 4).

Step 4) Links from , in cost order, are added to until
is a spanning tree. Use the same procedure to

obtain from .
Step 5) Determine which links of do not exist in

and : ; .
Step 6) ;

DENGIZ et al.: GA FOR OPTIMAL DESIGN OF RELIABLE NETWORKS 183

(a) (b)

Fig. 3. Two networks with five nodes that have been selected for crossover.
(a) ParentT1: (b). ParentT2:

(a) (b)

Fig. 4. The initial step of creation of two children takes links common to
both parents. (a) ChildT10: (b) Child T20:

An illustrative example of the crossover operator is shown.
Fig. 3(a) and (b) shows the selected and parents. All
link costs are the same as for the network in Fig. 2. Note that
the encoding would be the integer link labeling as in Fig. 1;
however, for clarity in the example below, the links are labeled
by the nodes they connect.

Step 1) ; ,

Step 2) Assign common links to children as shown in
Fig. 4(a) and (b).

Step 3) and are not spanning trees.
Step 4) in : is

minimum; in : is
minimum. Add links 4,5 and 3,4 to make spanning
trees.

Steps 5 and 6) Leftover links from each parent are added
to the opposite children.

still has one degree for node 5; therefore the repair
algorithm of Section III-E is invoked and the final child
network of Fig. 7 results.

G. Mutation Operator

Mutation takes the form of a randomized greedy local
search operator. The mutation operator is applied differently
according to node degrees of the network.

Step 1) Determine node degrees degof the network for

If for all go to Step 2);
If for all go to Step 3);
Else, for all go to Step 4).

(a) (b)

Fig. 5. The second step of the creation of two children that adds links from
each parent (in bold) to make each child a spanning tree. (a) A link between
nodes 4 and 5 (in bold) is added to make a spanning treeT10: (b) A link
between nodes 3 and 4 (in bold) is added to make a spanning treeT20:

(a) (b)

Fig. 6. The final step in the creation of two children. (a) ChildT10 is
composed ofT10 [Fig. 5(a)] [CT2 (in bold). (b) ChildT20 is composed
of T20 [Fig. 5(b)] [CT1 (in bold).

Fig. 7. T20 from Fig. 6(b) that has undergone repair for two-connectivity.
The link between nodes 1 and 5 (in bold) has been added.

Step 2) Randomly select an allowable link not in the net-
work and add it; stop.

Step 3) Rank links of the network in decreasing cost order.
Drop the maximum cost link from the network.
If the network still has two-connectivity, stop;
otherwise cancel dropping this link, and retry the
procedure for the remaining ranked links until one
is dropped or the list has been exhausted; stop.

Step 4) Generate If - (where
is the drop rate) go to Step 2), otherwise go to
Step 3).

The mutation operator is illustrated assuming the network
in Fig. 8(a) and link costs as in Fig. 2.

Step 1) In this network, the node degrees
are

As shown, the nodes
1, 2 and 4 have node degree and 3 and 5 have

184 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

(a) (b)

Fig. 8. Mutation of a network with five nodes and six links. (a) Network
with deg(j) � 2 before mutation. (b) Network after mutation where the link
from node 3 to node 5 has been deleted.

node degree and
s In this case, Step 4) is applied.

Step 4) Generate for example
and so go to Step 3).

Step 3) Use drop operator.
Dropping

fails two-connectivity, so drop The mutated
network is shown in Fig. 8(b).

H. Parameter Values of GA

Performance was systematically investigated for a set of five
parameters: network size (NS), population size (PS), crossover
rate (CR), mutation rate (MR), and drop rate (DR). Three
levels were selected for each parameter, so the experimen-
tal design included 3 design points. Five replications were
made for each design point, resulting in 1215 observations.
Statistical analysis was performed using analysis of variance
(ANOVA) and Duncan’s multiple range tests and the results
are shown in Table II. While NS, PS, and MR were significant

CR and DR were not. The -statistic values
for NS and PS were larger than that of MR, suggesting
that the variations in the levels of NS and PS have greater
impact on performance than does MR. It is not surprising that
network size affects the search, or that the interaction between
network size and population size is significant, because of
the exponential increase in search space as each node is
added. A few of the other two-way interactions were slightly
significant. The best results were found for PS or , CR

or , MR or , and DR
or . In this paper, the parameters are set at PS ,
CR , MR and DR . The population
size is somewhat small for conventional GA’s, however, it
was chosen considering the computational effort needed to
evaluate each solution. Since populations of 50 and 75 were
not statistically significantly different, the lower value was
chosen. Note that mutation is fairly active; this is a result
of its local search effect which appears to fine tune promising
search spaces identified by crossover.

IV. COMPUTATIONAL RESULTS

There are two comparisons made to judge the effectiveness
and efficiency of the network GA with local search, termed
LS/NGA. (Recall that repair, in the form of greedy local
search, is done by both the crossover and mutation operators,

TABLE II
ANOVA AND DUNCAN’S TEST RESULTS

TABLE III
SUMMARY OF RESULTS OF TWO GA APPROACHES

(AVERAGED OVER TEN RUNS OF EACH PROBLEM SIZE)

TABLE IV
COMPARISON OF COMPUTATION TIME

and when generating the initial population.) These are the
branch and bound (B B) technique by Janet al. [4] and
the network GA (NGA) that was fully investigated in [22].
NGA uses a binary encoding, single point crossover, and
bit flip mutation; no repair or local search is performed.
The fitness calculation (including the bounding and Monte
Carlo simulation) is identical to LS/NGA, however, as are

DENGIZ et al.: GA FOR OPTIMAL DESIGN OF RELIABLE NETWORKS 185

TABLE V
COMPLETE RESULTS COMPARING PERFORMANCE AND CPU TIME

(a)

the selection mechanism, the penalty function, and the use of
the two-connectivity screen for initial population generation.

The 79 randomly generated test problems are both fully
connected and nonfully connected networks withranging
from 6–20.1 The available links of the nonfully connected
networks were randomly generated and were 1.5 times
The link costs for all networks were randomly generated over
[1, 100]. Each problem for the GA’s was run ten times with
different random number seeds to gauge the natural variability
of the GA.

Table III shows a summary of the test problems comparing
the performance of the two GA approaches with the optimal

1All test problems are available from the authors.

solutions, in terms of nearness to optimality and computational
effort. The results are averaged over each problem instance
of each network size and over the ten replications of each
problem instance. It can be seen that LS/NGA does not degrade
in performance with increase in problem size while NGA does.
Furthermore, while computational effort grows with problem
size, it is a more modest growth than for NGA and many orders
of magnitude less than the exponential growth for enumerative
based methods. This comparison of computational effort is
more clearly seen in Table IV. All computational comparisons
were made on a Pentium 133 MHz PC using Pascal code.

Table V lists complete results of the three methods for all
79 test problems. The conclusions of the results summarized

186 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

TABLE V (Continued)
COMPLETE RESULTS COMPARING PERFORMANCE AND CPU TIME

(b)

in Tables III and IV are confirmed. The GA’s find optimal
solutions at a fraction of the computational cost of branch and
bound for the larger problems. Both GA formulations found
the optimal solution in at least one of the ten runs for all
problems.

Applying statistical tests to the results gives the following.
Paired -tests2 between the coefficient of variation over ten
runs yields that LS/NGA is superior to NGA with a-value
of 0.0000 and a mean improvement (decrease in coefficient
of variation) of 0.0104. The distributions of the CPU times of
all three methods did not meet the requirements of efficient

2The residuals of the ten pairs were distributed approximately normally.

nonparametric or parametric statistical tests. A nonparametric
sign test of CPU between LS/NGA and NGA resulted in
a -value 0.0000 that LS/NGA is more efficient with a
mean improvement of 392 s. A sign test of CPU of LS/NGA
and B B was inconclusive. For small problems, B B is
much more efficient; however, it becomes orders of magnitude
less efficient for large problems. This is typical computational
behavior of a heuristic versus an enumerative method as search
space grows exponentially.

V. CONCLUSIONS

It is not surprising that a special purpose GA is more effi-
cient than an enumerative based method on NP-hard problems

DENGIZ et al.: GA FOR OPTIMAL DESIGN OF RELIABLE NETWORKS 187

of realistic size. It is encouraging that the heuristic GA is very
effective in identifying optimal solutions, even in search spaces
up to 10 The problem studied, while being of interest in
many real applications, is not one that particularly lends itself
to an evolutionary approach at first glance. There are several
major barriers which had to be overcome. First, the problem,
when the network must be highly reliable, is very constrained.
This is handled initially by repairing children to ensure they
at least might be highly reliable. For networks which might be
highly reliable, but are not (identified after network reliability
is calculated), the infeasibility is handled via a distance-
based quadratic exterior penalty function. Second, the fitness
calculation is computationally burdensome, so use of bounds
and repair and local search operators are used. Bounds serve
as surrogates in the reliability fitness function for networks
which are not the best candidates for the final solution. Repair
and local search help identify networks which are particularly
promising in their region of the search space.

What is of greater interest is the series of steps that can
be incorporated into an evolutionary meta-heuristic, such as a
GA, which enables the efficient and effective optimization of
highly constrained problems with large search spaces where
the calculation of fitness is difficult. The steps used included
seeding the initial population with solutions that are prone to
be highly fit, crossover and mutation operators which tend to
produce highly fit offspring, and the judicious use of quickly
calculated surrogates for fitness.

Repair operators and local search mechanisms will be prob-
lem specific. In this paper, they are simple greedy operators
that work by adding or subtracting the lowest or highest cost
link. In other problems, similar uncomplicated approaches
using the notion of neighboring solutions may work well. The
primary objective is to use some problem-specific knowledge
to craft simple mechanisms to encourage the production of
solutions that are apt to be fit and feasible. To identify
when the local search repair mechanisms are needed, fitness
surrogates should be employed where possible. In this paper,
first a connectivity check and then counting node degrees
were applied to screen for highly reliable networks. For other
problems, there may be somewhat crude, but reasonable, ways
to quickly examine a solution for the likelihood of superior
fitness. Finally, exact calculation of fitness is largely avoided
by using an upper bound on all but the most superior candi-
dates. Upper and lower bounds exist for many optimization
problems, such as scheduling and routing. Depending on their
tightness and their ease of calculation, these bounds may be
valuable fitness surrogates during search and their usefulness
should be exploited to craft an efficient evolutionary algorithm.
It must be cautioned that use of surrogates and inexact fitness
calculations, in some cases, may fail to allow the search to
identify the optimal solution. Since what is usually desired is
a very good solution, rather than the single optimal solution,
this possibility is more of an academic concern than a real one.

REFERENCES

[1] C. J. Colbourn,The Combinatorics of Network Reliability. Oxford
Univ. Press, 1987.

[2] R. H. Jan, “Design of reliable networks,”Comput. Oper. Res., vol. 20,
pp. 25–34, 1993.

[3] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[4] R. H. Jan, F. J. Hwang, and S. T. Cheng, “Topological optimization of a
communication network subject to a reliability constraint,”IEEE Trans.
Reliability, vol. 42, pp. 63–70, 1993.

[5] K. K. Aggarwal, Y. C. Chopra, and J. S. Bajwa, “Reliability evaluation
by network decomposition,”IEEE Trans. Reliability, vol. R-31, pp.
355–358, 1982.

[6] A. N. Ventetsanopoulos and I. Singh, “Topological optimization of
communication networks subject to reliability constraints,”Problem of
Contr. Inform. Theory, vol. 15, pp. 63–78, 1986.

[7] M. M. Atiqullah and S. S. Rao, “Reliability optimization of com-
munication networks using simulated annealing,”Microelectronics and
Reliability, vol. 33, pp. 1303–1319, 1993.

[8] S. Pierre, M.-A. Hyppolite, J.-M. Bourjolly, and O. Dioume, “Topo-
logical design of computer communication networks using simulated
annealing,”Eng. Applicat. Artificial Intell., vol. 8, pp. 61–69, 1995.

[9] F. Glover, M. Lee, and J. Ryan, “Least-cost network topology design
for a new service: An application of a tabu search,”Ann. Oper. Res.,
vol. 33, pp. 351–362, 1991.

[10] H. F. Beltran and D. Skorin-Kapov, “On minimum cost isolated failure
immune networks,”Telecommun. Syst., vol. 3, pp. 183–200, 1994.

[11] S. J. Koh and C. Y. Lee, “A tabu search for the survivable fiber
optic communication network design,”Comput. Ind. Eng., vol. 28, pp.
689–700, 1995.

[12] D. W. Coit and A. E. Smith, “Reliability optimization of series-parallel
systems using a genetic algorithm,”IEEE Trans. Reliability, vol. 45, pp.
254–260, 1996.

[13] K. Ida, M. Gen, and T. Yokota, “System reliability optimization of
series-parallel systems using a genetic algorithm,” inProc. 16th Int.
Conf. Computers and Industrial Engineering, 1994, pp. 349–352.

[14] L. Painton and J. Campbell, “Genetic algorithms in optimization of
system reliability,”IEEE Trans. Reliability, vol. 44, pp. 172–178, 1995.

[15] A. Kumar, R. M. Pathak, Y. P. Gupta, and H. R. Parsaei, “A genetic
algorithm for distributed system topology design,”Comp. Ind. Eng.,
vol. 28, pp. 659–670, 1995.

[16] A. Kumar, R. M. Pathak, and Y. P. Gupta, “Genetic algorithm based
reliability optimization for computer network expansion,”IEEE Trans.
Reliability, vol. 44, pp. 63–72, 1995.

[17] L. Davis, D. Orvosh, A. Cox, and Y. Qui, “A genetic algorithm for
survivable network design,” inProc. 5th Int. Conf. Genetic Algorithms,
1993, pp. 408–415.

[18] F. N. Abuali, D. A. Schoenefeld, and R. L. Wainwright, “Terminal
assignment in a communications network using genetic algorithms,” in
Proc. ACM Computer Science Conf., 1994, pp. 74–81.

[19] F. N. Abuali, D. A. Schoenefeld, and R. L. Wainwright, “Designing
telecommunications networks using genetic algorithms and probabilistic
minimum spanning trees,” inProc. 1994 ACM Symp. Applied Comput-
ing, 1994, pp. 242–246.

[20] G. A. Walters and D. K. Smith, “Evolutionary design algorithm for
optimal layout of tree networks,”Eng. Optim., vol. 24, pp. 261–281,
1995.

[21] D. L. Deeter and A. E. Smith, “Heuristic optimization of network
design considering all-terminal reliability,” inProc. Reliability and
Maintainability Symp., 1997, pp. 194–199.

[22] B. Dengiz, F. Altiparmak, and A. E. Smith, “Efficient optimization of
all-terminal reliable networks using an evolutionary approach,”IEEE
Trans. Reliability, vol. 46, pp. 18–26, 1997.

[23] , “Local search genetic algorithm for optimization of highly
reliable communications networks,” inProc. Seventh Int. Conf. Genetic
Algorithms (ICGA97), 1997, pp. 650–657.

[24] M. Ball and R. M. Van Slyke, “Backtracking algorithms for network
reliability analysis,”Ann. Discrete Math., vol. 1, pp. 49–64, 1977.

[25] D. A. Savic and G. A. Walters, “An evolution program for pressure
regulation in water distribution networks,”Eng. Optim., vol. 24, pp.
197–219, 1995.

[26] J. Thiel and S. Voss, “Some experiences on solving multiconstraint zero-
one knapsack problems with genetic algorithms,”INFOR J., vol. 32, pp.
226–242, 1994.

[27] J. E. Hopcroft and J. D. Ullman, “Set merging algorithms,”SIAM J.
Comput., vol. 2, pp. 296–303, 1973.

[28] L. G. Roberts and B. D. Wessler, “Computer network development to
achieve resource sharing,” inProc. Spring Joint Computing Conf., vol.
36, 1970, pp. 543–599.

[29] T. Baeck, D. B. Fogel, and Z. Michalewicz,Handbook of Evolutionary
Computation, Part C5. Bristol, U.K.: Inst. Physics Publishing and
Oxford Univ. Press, 1997.

188 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

[30] Z. Michalewicz, “Genetic algorithms numerical optimization and con-
straints,”Proc. 6th Int. Conf. Genetic Algorithms, pp. 151–158, 1995.

[31] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution
Programs3rd ed. New York, Springer, 1996.

[32] Z. Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary
algorithm for numerical optimization problems with nonlinear con-
straints,” inProc. 2nd IEEE Int. Conf. Evolutionary Computation, 1995,
pp. 647–651.

[33] Z. Michalewicz and N. Attia, “Evolutionary optimization of constrained
problems,” in Proc. 3rd Annu. Conf. on Evolutionary Programming,
1994, pp. 98–108.

[34] A. E. Smith and D. M. Tate, “Genetic optimization using a penalty
function,” in Proc. 5th Int. Conf. on Genetic Algorithms, 1993, pp.
499–505.

[35] D. W. Coit, A. E. Smith, and D. M. Tate, “Adaptive penalty methods for
genetic optimization of constrained combinatorial problems,”INFORMS
J. Comput,, vol. 8, pp. 173–182, 1996.

[36] M. S. Yeh, J. S. Lin, and W. C. Yeh, “New Monte Carlo method for
estimating network reliability,” inProc. 16th Int. Conf. Computers &
Industrial Engineering, 1994, pp. 723–726.

[37] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

Berna Dengiz is an Associate Professor of Industrial Engineering and also
Vice Dean of the Faculty of Engineering, Gazi University, Ankara, Turkey.
Her field of study is the modeling and optimization of complex systems.

Dr. Dengiz is a member of SCS—Society for Computer Simulations,
Operations Research Society of Turkey, Informatics Society of Turkey, and
Statistics Society of Turkey.

Fulya Altiparmak received the B.Sc., the M.Sc., and the Ph.D. degrees
in industrial engineering from Gazi University in 1987, 1990, and 1996,
respectively.

She is a Research Assistant of Industrial Engineering, Gazi University,
Ankara, Turkey. Her research concerns reliability optimization and modeling
of complex systems using stochastic optimization techniques.

Dr. Altiparmak is a member of the Operations Research Society of Turkey.

Alice E. Smith (M’88–SM’96) is Associate Profes-
sor of Industrial Engineering and Board of Visitors
Faculty Fellow at the University of Pittsburgh, PA.
Her research interests are in modeling and opti-
mization of complex systems. She is a member
of the Design and Manufacturing Editorial Board
of IIE Transactions and is an Associate Editor
of INFORMS Journal on Computing, International
Journal of Smart Engineering System Design, and
Engineering Design and Automation.

Dr. Smith is a Senior Member of IIE and SWE,
a member of INFORMS and ASEE, and a Registered Professional Engineer
in the Commonwealth of Pennsylvania.

