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ABSTRACTIn this paper, we analyze lo
al sear
h heuristi
s for thek-median and fa
ility lo
ation problems. We de�ne thelo
ality gap of a lo
al sear
h pro
edure as the maximumratio of a lo
ally optimum solution (obtained using thispro
edure) to the global optimum. For k-median, weshow that lo
al sear
h with swaps has a lo
ality gap ofexa
tly 5. When we permit p fa
ilities to be swappedsimultaneously then the lo
ality gap of the lo
al sear
hpro
edure is exa
tly 3 + 2=p. This is the �rst analysisof lo
al sear
h for k-median that provides a boundedperforman
e guarantee with only k medians. This alsoimproves the previous known 4 approximation for thisproblem. For Un
apa
itated fa
ility lo
ation, we showthat lo
al sear
h, whi
h permits adding, dropping andswapping a fa
ility, has a lo
ality gap of exa
tly 3. Thisimproves the 5 bound of Korupolu et al. We also 
on-sider a 
apa
itated fa
ility lo
ation problem where ea
hfa
ility has a 
apa
ity and we are allowed to open mul-tiple 
opies of a fa
ility. For this problem we introdu
ea new operation whi
h opens one or more 
opies of afa
ility and drops zero or more fa
ilities. We prove thatlo
al sear
h whi
h permits this new operation has a lo-
ality gap between 3 and 4.
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The problem of lo
ating fa
ilities in a manner so thatthey 
an e�e
tively serve a set of 
lients has been thesubje
t of mu
h resear
h. While one 
ould 
onsiderfairly general measures of e�e
tiveness of a set of lo
a-tions in serving the 
lients, one measure that is typi
allyused is the distan
e between the 
lient and the fa
ilitythat is serving it. Sin
e by opening a lot of fa
ilities, we
an be near every 
lient, it also makes sense to take intoa

ount the number of fa
ilities opened in judging thequality of a solution. These two measures, typi
ally re-ferred to as the servi
e 
ost and the fa
ility 
ost, 
an be
ombined in many ways to obtain interesting variants tothe general fa
ility lo
ation problem. For instan
e, ink-median we require that at most k fa
ilities be openedand the total servi
e 
ost, measured as the sum of thedistan
es of ea
h 
lient to the nearest open fa
ility, beminimum. Instead of setting a limit on the total numberof fa
ilities that 
ould be opened, we sometimes asso-
iate with every fa
ility, a 
ost of opening that fa
ility.The fa
ility 
ost of a solution is then the sum of the
osts of the fa
ilities that are opened and the qualityof the solution is measured by the sum of the fa
ilityand servi
e 
osts. This, in fa
t, is the 
lassi
al fa
ilitylo
ation problem. Note that in this setting the fa
ility
osts need not be same and would, in general dependon the lo
ation at whi
h the fa
ility is being opened. Ageneralization of the 
lassi
al fa
ility lo
ation problemarises when we asso
iate a 
apa
ity with ea
h fa
ility,whi
h measures the maximum number of 
lients thatthe fa
ility 
an serve. Further variants of this 
apa
-itated fa
ility lo
ation (CFL) problem arise when webound the number of fa
ilities that 
an be opened at a
ertain lo
ation. Thus in k-CFL, we 
an open at mostk fa
ilities at any lo
ation.Lo
al sear
h te
hniques have been very popular asheuristi
s for hard 
ombinatorial optimization problems.The 1-ex
hange heuristi
 by Lin and Kernighan [7℄ forthe metri
-TSP remains the method of 
hoi
e for pra
-titioners. However, most of these heuristi
s have poorworst-
ase guarantees and very few approximation algo-rithms that rely on lo
al sear
h are known. One settingwhere lo
al sear
h is amenable to a worst-
ase analysis



is fa
ility lo
ation.For an instan
e I, let global(I) denote the globaloptimum and lo
al(I) be the lo
ally optimum solutionprovided by a 
ertain lo
al sear
h heuristi
. We 
all thesupremum of the ratio global(I)/lo
al(I), the lo
alitygap of this lo
al sear
h pro
edure. For 1-CFL with uni-form 
apa
ities, Korupolu et al. [8, 9℄ argued that anypro
edure that permits adding, dropping or swappinga fa
ility has a lo
ality gap of at most 8. Their analy-sis was subsequently re�ned and tightened by Chudakand Williamson [4℄ to yield a lo
ality gap of at most6. For the un
apa
itated version, Korupolu et al. [8, 9℄provide a bound of 5 on the lo
ality gap when the onlyoperations permitted are those of adding, dropping orswapping a fa
ility. Charikar and Guha [1℄ introdu
edan operation whi
h permits adding a fa
ility and drop-ping many, and showed that this lo
al sear
h pro
edurehas a lo
ality gap of exa
tly 3. For k-median Korupoluet al. [8, 9℄ gave a lo
al sear
h pro
edure whi
h permit-ted adding, deleting and swapping fa
ilities and gavea solution with k(1 + �) having a servi
e-
ost at most3 + 5=� times the optimum k-median solution.A di�erent approa
h to fa
ility lo
ation was employedby Shmoys, Tardos and Aardal [10℄ and Charikar, Guha,Shmoys and Tardos [11℄. They formulated the problemsas linear programs and rounded the optimum fra
tionalsolution to obtain a 6 23 approximation for k-median anda 3 approximation for the un
apa
itated fa
ility lo
a-tion problem. Jain and Vazirani [6℄ gave an alternate3 approximation algorithm for the un
apa
itated fa
ilitylo
ation problem (UFL) using the primal-dual s
hema.They also observed that k-median 
an be viewed as aLagrange-relaxation of UFL and utilized this to give a6 approximation algorithm for k-median. Charikar andGuha [1℄ improved this to a 4 approximation. Guhaand Khuller [5℄ employed randomization to improve theapproximation guarantee of UFL to 2.408. This wasfurther improved to (1+ 2=e) by Chudak [2℄ and �nallyto 1:728 by Charikar and Guha [1℄. Similar ideas wereused by Chudak and Shmoys [3℄ to obtain a 3 approx-imation algorithm for 1-CFL when the 
apa
ities areuniform. Jain and Vazirani [6℄ obtained a 4 approxi-mation algorithm for 1-CFL when the 
apa
ities werenon-uniform by solving a related UFL problem usingtheir primal-dual algorithm.Our Results: In this paper, we analyze lo
al sear
hheuristi
s for three problems.1. For k-median, we show that lo
al sear
h withsingle swaps has a lo
ality gap of 5. This is the �rstanalysis of lo
al sear
h for k-median that provides abounded performan
e guarantee with only k medians.We also show that doing multiple swaps, that is, drop-ping at most p fa
ilities and opening the same numberof new fa
ilities yields a lo
ality gap of 3+2=p. This im-proves on the 4 approximation algorithm for k-medianby Charikar and Guha [1℄. Our analysis of the lo
alitygap is tight, that is, for an in�nite family of instan
esthere is a lo
ally optimum solution whose servi
e 
ostis (3 + 2=p) times that of the global optimum.2. For UFL, we show that lo
al sear
h, whi
h permits

adding, dropping and swapping a fa
ility, has a lo
alitygap of 3. This improves the 5 bound of Korupolu etal. [8℄. Our analysis of the algorithm is tight, that is, weshow a lo
ally optimal solution whi
h has 
ost 3 timesthat of the optimum solution. Using standard s
alingte
hniques [1℄ our algorithm 
an be improved to a
hievea 1 +p2 � 2:414 approximation.3. For 1-CFL, we 
onsider the setting when the 
a-pa
ities are non-uniform and argue that lo
al sear
h,where the only operation permitted is to add multiple
opies of a fa
ility and drop zero or more fa
ilities, hasa lo
ality gap of at most 4. As for UFL, we give a poly-nomial algorithm that uses Knapsa
k as a subroutine tosear
h a subspa
e of adja
ent solutions. We also showan instan
e where the polynomial time algorithm 
an-not �nd an adja
ent solution of lower 
ost and whi
h has
ost 3 times the optimum. Again using s
aling te
h-niques [1℄ the algorithm 
an be improved to obtain a2 +p3 � 3:732 approximation.The paper is organized as follows. Se
tion 2 intro-du
es some notation. In Se
tion 3, we prove a lo
alitygap of 5 for the k-median problem when only singleswaps are permitted; in Se
tion 3.3, we show how theabove analysis 
an be extended to argue a lo
ality gap of3+ 2=p when up to p fa
ilities 
an be swapped simulta-neously. Se
tion 4 and Se
tion 5 dis
uss the algorithmsfor UFL and 1-CFL respe
tively. Se
tion 6 
on
ludeswith some open problems.
2. NOTATION AND PRELIMINARIESIn the k-median and fa
ility lo
ation problems, weare given two sets: F , the set of fa
ilities and C, theset of 
lients. There is a spe
i�ed distan
e 
ij � 0 be-tween every pair i; j 2 F [ C. In these problems, thegoal is to identify a subset of fa
ilities S � F and toserve the 
lients in C by the fa
ilities in S, su
h thatsome 
ost fun
tion is minimized. The fa
ilities in S aresaid to be open. The metri
 versions of these problemsassume that the distan
es 
ij are symmetri
 and satisfythe triangle inequality.The algorithm that we analyze is des
ribed in Fig-ure 1. Here � > 0 is a 
onstant, n = jF j is the numberof fa
ilities, m = jCj is the number of 
lients and p(n;m)is a polynomial in n and m. The 
ost fun
tion 
ost(S)and the operation op(S) will be de�ned di�erently fordi�erent problems.Algorithm Lo
al Sear
h.1. S  an arbitrary feasible solution.2. While 9 an operation op su
h that,
ost(op(S)) � (1� �p(n;m) )
ost(S),do S  op(S).3. return S.Figure 1: A generi
 lo
al sear
h algorithm fork-median and fa
ility lo
ation problemsAn operation op is 
alled admissible for S if 
ost(op(S))



� (1� �=p(n;m))
ost(S). At any exe
ution of the step2 of the algorithm, there will be at most a polynomialnumber of ops to be 
he
ked for admissibility. Also dur-ing ea
h admissible op, the 
ost of the 
urrent solutionde
reases by a fa
tor of at least �=p(n;m). If S� denotesan optimum solution and S0 denotes the initial solu-tion, then the number of ops that the algorithm doesis at most log(
ost(S0)=
ost(S�))= log 11��=p(n;m) wherep(n;m) is some polynomial in n = jF j and m = jCj. Aslog(
ost(S0)) is polynomial in the input size and per-forming ea
h op takes a polynomial time, this algorithmterminates in polynomial time.When there are no admissible operations, we knowthat every operation op redu
es the 
ost by fa
tor of atmost �=p(n;m), that is,
ost(op(S)) � (1� �p(n;m) ) 
ost(S):To simplify the exposition, we work with the simplifyingassumption that no operation improves the 
ost of thesolution, that is, for every operation op,
ost(op(S)) � 
ost(S):We will add at most p(n;m) of su
h inequalities to
on
lude that 
ost(S) � � � 
ost(S�) for some � � 1.Adding the 
orresponding original inequalities impliesthat 
ost(S) � �(1 + �)
ost(S�). Thus our proof that a
ertain lo
al sear
h pro
edure has lo
ality gap � trans-lates into a �(1 + �) approximation algorithm.We use the following notations. Let S denote theoutput of the algorithm and S� denote an optimum so-lution. The 
ost of serving a 
lient j, or the servi
e
ost of j, is the distan
e between j and the fa
ility thatserves it. Let sj and oj denote the servi
e 
osts of j inthe solutions S and S� respe
tively. Let NS(s) denotethe set of 
lients in C that are served by a fa
ility s 2 Sin the solution S. Similarly, let NS�(o) denote the setof 
lients in C that are served by a fa
ility o 2 S� inthe solution S�. For a subset A � S and B � S�, letNS(A) = Ss2ANS(s) and NS�(B) = So2BNS�(o).
3. THE K-MEDIAN PROBLEMIn the k-median problem, we are given an input pa-rameter k, 0 < k � jF j. The problem is to identify asubset S � F of at most k fa
ilities and to serve the
lients in C by the fa
ilities in S su
h that the totalservi
e 
ost is minimized. Thus, if a 
lient j 2 C isserved by a fa
ility �(j) 2 S, then we want to mini-mize 
ost(S) =Pj2C 
�(j)j . For a �xed S, serving ea
h
lient by the nearest fa
ility in S, minimizes this 
ost.
3.1 Local search with swapsThe only operation permitted in the lo
al sear
h pro-
edure is a swap. A swap is e�e
ted by 
losing a fa
ilitys 2 S and opening a fa
ility s0 62 S. We start with anarbitrary set of k fa
ilities and keep improving our so-lution with su
h swaps till it is possible to do so. Thealgorithm is des
ribed in Figure 1. The operation op isde�ned as,op(S) := S � s+ s0 for s 2 S and s0 62 S:

This swap will be denoted by hs; s0i.
3.2 The analysisWe now show that the lo
al sear
h pro
edure as de-�ned above has a lo
ality gap of 5. From the lo
al opti-mality of S, we know that any swap hs; oi for s 2 S ando 2 S�,
ost(S � s+ o) � 
ost(S) for all s 2 S; o 2 S� (1)Note that even if S\S� 6= ;, the above inequalities hold.We 
ombine these inequalities to show that, 
ost(S) �5 � 
ost(S�).Consider a fa
ility o 2 S�. We partition NS�(o) intosubsets ps = NS�(o) \ NS(s) for s 2 S. Consider a1-1 and onto mapping � : NS�(o) ! NS�(o) with thefollowing property.Property 3.1. For all s 2 S su
h that,jpsj � 12 jNS�(o)j, we have, �(ps) \ ps = ;.It is easy to see that su
h a mapping � exists.

j
o �(j)NS�(o)Figure 2: A mat
hing � on NS�(o)We say that a fa
ility o 2 S� is 
aptured by a fa
ilitys 2 S if s serves more than half the 
lients served byo, that is, jNS(s) \ NS�(o)j > 12 jNS�(o)j. Note that afa
ility o 2 S� is 
aptured by at most one s 2 S. We
all a fa
ility s 2 S, bad if it 
aptures some fa
ility inS� and good otherwise.We now 
onsider k swaps, one for ea
h fa
ility inS�. If some bad fa
ility s 2 S 
aptures exa
tly onefa
ility o 2 S� then we 
onsider the swap hs; oi. Supposel fa
ilities in S (and hen
e l fa
ilities in S�) are not
onsidered in su
h swaps. These l fa
ilities in S areeither good or bad, and the bad fa
ilities 
apture atleast two fa
ilities in S�. Hen
e there are at least l=2good fa
ilities in S. Now, 
onsider l swaps in whi
h theremaining l fa
ilities in S� get swapped with the goodfa
ilities in S su
h that ea
h good fa
ility is swapped-out at most twi
e.It is easy to verify that the swaps 
onsidered abovesatisfy the following properties.1. Ea
h o 2 S� is swapped-in exa
tly on
e.2. Ea
h s 2 S is swapped-out at most twi
e. This isbe
ause a fa
ility in S that 
aptures more than onefa
ility in S� is never swapped-out and a fa
ilitythat 
aptures exa
tly one fa
ility in S� is swappedonly with the fa
ility that it 
aptures.



3. If a swap hs; oi is 
onsidered, the fa
ility s doesnot 
apture any fa
ility o0 6= o.oojj
o0

s0j0 s�(j0)�(j0)o�(j0)oj0
s sj0sj

Figure 3: Reassigning the 
lients in NS(s) [NS�(o).We now analyze these swaps by 
onsidering an arbi-trary swap hs; oi. We pla
e an upper bound on the in-
rease in 
ost due to this swap by reassigning the 
lientsin NS(s) [ NS�(o) to the fa
ilities in S � s + o as fol-lows. Refer to Figure 3. The 
lients j 2 NS�(o) are nowassigned to o. Consider a 
lient j0 2 NS(s) \ NS�(o0),for o0 6= o. As s does not 
apture o0, we have jNS(s) \NS�(o0)j � 12 jNS�(o0)j and hen
e by the property of �,we have that �(j0) 62 NS(s). Let �(j0) 2 NS(s0). Notethat the distan
e that the 
lient j0 travels to the near-est fa
ility in S � s + o is at most 
j0s0 . Also fromtriangle inequality, 
j0s0 � 
j0o + 
o�(j0) + 
�(j0)s0 =oj0 + o�(j0) + s�(j0). The remaining 
lients 
ontinue tobe assigned to the old fa
ilities. From inequality (1) wehave, 
ost(S � s+ o)� 
ost(S) � 0:Therefore,Xj2NS� (o)(oj � sj)+ Xj2NS(s);j 62NS� (o) (oj + o�(j) + s�(j) � sj) � 0 (2)As ea
h fa
ility o 2 S� is swapped-in exa
tly on
e,the �rst term of the inequality (2) added over all the kswaps gives exa
tly, 
ost(S�)� 
ost(S). For the se
ondterm, we use the fa
t that ea
h s is swapped-out atmost twi
e. Also for any j 2 C, as sj is the shortestdistan
e from j to a fa
ility in S, we get, using triangleinequality, oj+o�(j)+s�(j) � sj . Thus the se
ond termof the inequality (2) added over all the k swaps is notgreater than 2Pj2C(oj+o�(j)+s�(j)�sj). But as � is 1-1 and onto mapping,Pj2C oj =Pj2C o�(j) = 
ost(S�)and Pj2C(s�(j) � sj) = 0. Thus, 2Pj2C(oj + o�(j) +s�(j) � sj) = 4 � 
ost(S�). Combining the two terms weget, 
ost(S�)� 
ost(S)+4 � 
ost(S�) � 0. Thus we havethe following theorem.

Theorem 3.1. A lo
al sear
h pro
edure for the met-ri
 k-median problem with operations de�ned as, op(S) :=S � s + s0 for s 2 S and s0 62 S, has a lo
ality gap atmost 5.The above algorithm and analysis extend very sim-ply to the 
ase when the 
lients j 2 C have arbitrarydemands dj � 0 to be served.
3.3 Local search with multi-swapsIn this se
tion, we generalize the algorithm in Se
-tion 3 to 
onsider multi-swaps in whi
h up to p fa
ilities
ould be swapped simultaneously. The operation op isnow de�ned as,op(S) := (S n A) [B for A � S and B � F n Ssu
h that jAj = jBj � p:This swap will be denoted by hA;Bi, and we prove thatthe lo
ality gap of the k-median problem with respe
tto this operation is exa
tly (3 + 2=p).
3.4 AnalysisWe extend the notion of 
apture as follows. For asubset A � S, we de�ne,
apture(A) = fo 2 S� : jNS(A)\NS�(o)j > jNS�(o)j=2g:It is easy to observe the following properties.Claim 3.1. 1. If X;Y � S are disjoint then
apture(X) and 
apture(Y ) are disjoint.2. If X � Y then 
apture(X) � 
apture(Y ).We now partition S into sets A1; A2; : : : ; Ar and S�into sets B1; B2; : : : ; Br su
h that for all i; 1 � i � r�1,jAij = jBij and Bi = 
apture(Ai). As before, we 
all afa
ility in S bad if it 
aptures at least one fa
ility in S�,and good otherwise. Our partition of S would have theproperty that every Ai; 1 � i � r�1 would have exa
tlyone bad fa
ility; thus r � 1 equals the number of badfa
ilities. The set Ar 
ontains only good fa
ilities and itfollows from the pre
eding dis
ussion that jArj = jBrj.Our pro
edure to de�ne these partitions is des
ribed inFigure 4.Claim 3.2. The pro
edure de�ned in Figure 4 termi-nates with a partition of S; S�, satisfying the propertieslisted above.Proof. Note that at the start of ea
h iteration ofthe for-loop, jSj = jS�j. In ea
h iteration we removeexa
tly one bad fa
ility from S and hen
e in step 1 wewill always be able to �nd a bad fa
ility. Note thatat step 3.1 our pro
edure maintains the invariant thatjAij < jBij. Sin
e jSj = jS�j and ea
h bad fa
ilityin S n Ai 
aptures at least one fa
ility in S� n Bi, itfollows that there is a good fa
ility in S nAi. This sameargument ensures that the while-loop terminates.Now we de�ne the swaps as follows. If for some i,we have, jAij = jBij � p then we 
onsider the swap



pro
edure Partition;for i = 1 to r � 1 dofiteration i g1. Ai  fbg where b 2 S be any bad fa
ility;2. Bi  
apture(Ai);3. while jAij 6= jBij do3.1. Ai  Ai [ fgg where g 2 S n Ai be any good fa
ility;3.2. Bi  
apture(Ai);4. S  S nAi;S�  S� n Bi;Ar  S;Br  S�;end. Figure 4: A pro
edure to de�ne the partitionshAi; Bii. From the lo
al optimality of S we have thefollowing inequality.
ost((S n Ai) [Bi)� 
ost(S) � 0:Note that even if Ai \Bi 6= ; or S \ Bi 6= ;, the aboveinequality 
ontinues to hold.If on the other hand, for some i, we have, jAij =jBij = q > p, we swap ea
h fa
ility o 2 Bi with ea
h ofthe q� 1 good fa
ilities s 2 Ai. Note that if i 6= r, thereare exa
tly q � 1 good fa
ilities in Ai and for i = r, wesele
t any q � 1 out of q good fa
ilities in Ar. For ea
hsu
h swap hs; oi, we have,
ost(S � s+ o)� 
ost(S) � 0:We add su
h q(q � 1) inequalities and multiply themby a fa
tor 1=(q � 1). Thus, ea
h good fa
ility in Ai is
onsidered in at most q=(q � 1) � (p+ 1)=p swaps.For ea
h fa
ility o 2 S�, NS�(o) is partitioned asfollows.1. Let i, 1 � i � r, be su
h that jAij � p, so that theswap hAi; Bii was 
onsidered above. We 
onsiderthe part, pAi = NS(Ai) \NS�(o).2. Let i, 1 � i � r, be su
h that jAij > p. We
onsider the parts ps = NS(s) \ NS�(o) for ea
hs 2 Ai.Now, for ea
h fa
ility o 2 S�, we 
onsider a 1-1 andonto mapping � : NS�(o)! NS�(o) with the followingproperty.Property 3.2. For all parts p = pAi or ps de�nedabove, su
h that jpj � 12 jNS�(o)j, we have, �(p)\ p = ;.As this 
ondition is imposed only on the parts that haveat most half the number of 
lients in NS�(o), su
h amapping � exists. While doing a swap hAi; Bii (resp.hs; o0i), we would be able to reassign 
lients j 2 NS(Ai)\NS�(o) (resp. NS(s) \ NS�(o)) to the fa
ility s0 62 Ai(resp. s0 6= s) that serves �(j) in S.The swaps de�ned above together satisfy the follow-ing properties:1. Ea
h fa
ility in S� is swapped-in to extent exa
tly1.

2. Ea
h fa
ility in S is swapped-out to extent at most(p+ 1)=p.3. If a swap hA;Bi is 
onsidered, 
apture(A) � B.Re
all that in the single swap analysis, as ea
h fa
ilityin S was getting swapped-out at most twi
e, we got a(1+2�2) approximation result. Here (p+1)=p repla
es2 and the same argument gives a (1 + 2� (p+ 1)=p) =3 + 2=p approximation result.
3.5 Tight exampleIn Figure 5, we show an instan
e where a lo
ally opti-mum solution, with respe
t to the p-swap heuristi
, has
ost (3+2=p) times the 
ost of the global optimum. Thelo
ally optimum solution is given by fs1; s2; : : : ; skg,and the optimum solution is given by fo1; o2; : : : ; okg.It is easy to verify that we 
an not de
rease the 
ostby performing any p-swaps. The 
ost of our solution is3k � 2 � k�1p+1 , and the 
ost of the optimal solution isk � k�1p+1 . This ratio approa
hes (3 + 2=p) as k tends toin�nity. Hen
e our analysis of the lo
ality gap is tight.
4. UNCAPACITATED FACILITY LOCA-

TIONIn fa
ility lo
ation problems, we are given 
osts fi �0 for opening the fa
ilities i 2 F . The un
apa
itatedfa
ility lo
ation problem is to identify a subset S � Fand to serve the 
lients in C by the fa
ilities in S su
hthat the total fa
ility 
ost plus the total servi
e 
ost isminimized. That is, if a 
lient j 2 C is assigned to afa
ility �(j) 2 S then we want to minimize 
ost(S) =Pi2S fi +Pj2C 
�(j)j . As in k-median, for a �xed S,serving ea
h 
lient by the nearest fa
ility in S, minimizesthe servi
e 
ost.
4.1 A local search procedureWe present a lo
al sear
h pro
edure for the metri
un
apa
itated fa
ility lo
ation problem with a lo
alitygap of exa
tly 3. The operation op is now de�ned as,op(S) := 8<: S + s0; for s0 62 S;S � s; for s 2 S;S � s+ s0; for s0 62 S and s 2 S: (3)
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Figure 5: Tight example for the p-swapsThese operations 
orrespond to adding, dropping andswapping the fa
ilities. Again, as there are polynomiallymany ops to be 
he
ked for admissibility, the algorithmterminates in polynomial time.Charikar and Guha [1℄ proved a lo
ality gap of 3 fora lo
al sear
h pro
edure where the operation was ofadding a fa
ility and dropping zero or more fa
ilities.Korupolu et.al. [8℄ 
onsidered the operations of adding,deleting and swapping a fa
ility but 
ould only prove alo
ality gap of 5.
4.2 The analysisFor any set of fa
ilities S0 � F , let 
ostf (S0) =Pi2S0 fi denote the fa
ility 
ost of the solution S0. Also,let 
osts(S0) be the total 
ost of serving the 
lients in Cby the nearest fa
ilities in S0.Lemma 4.1 (Servi
e 
ost).
osts(S) � 
ostf (S�) + 
osts(S�)Proof. Consider an operation in whi
h a fa
ility o 2S� is added. Assign all the 
lients NS�(o) to o. From thelo
al optimality of S we get, fo+Pj2NS�(o)(oj�sj) �0. Note that even if o 2 S, this inequality 
ontinues tohold. If we add su
h inequalities for every o 2 S�, weget the desired inequality.Now, we analyze the fa
ility 
ost 
ostf(S). As before,we assume that � is a 1-1 and onto mapping satisfyingthe property 3.1. In addition, we assume that if jNS(s)\NS�(o)j > 12 jNS�(o)j then for all j 2 NS(s)\NS�(o) forwhi
h �(j) 2 NS(s), we have that �(�(j)) = j. It is easyto see that su
h a mapping exists. Re
all that a fa
ilitys 2 S is 
alled good if s does not 
apture any o, thatis, for all o 2 S�, jNS(s) \ NS�(o)j � 12 jNS�(o)j. Thefa
ility 
ost of good fa
ilities 
an be bounded easily asfollows. Consider an operation in whi
h a good fa
ilitys 2 S is dropped. Let j 2 NS(s) and �(j) 2 NS(s0).As s does not 
apture any fa
ility o 2 S�, we have thats0 6= s. If we assign j to s0, we get, for a good fa
ilitys 2 S,�fs + Xj2NS(s)(oj + o�(j) + s�(j) � sj) � 0 (4)

For bounding the fa
ility 
ost of a bad fa
ility s 2 Swe pro
eed as follows. Suppose a bad fa
ility s 
apturesthe fa
ilities O � S�. Let o 2 O be the fa
ility nearestto s. We 
onsider the swap hs; oi. The 
lients j 2 NS(s)are now assigned to the fa
ilities in S� s+ o as follows.1. Suppose �(j) 2 NS(s0) where s0 6= s. Then, j isassigned to s0. Let j 2 NS�(o0). We have, 
js0 �
jo0 + 
o0�(j) + 
�(j)s0 = oj + o�(j) + s�(j).2. Suppose �(j) 2 NS(s). Let j 2 NS�(o0). Then, bythe property of the mapping �, the fa
ility s 
ap-tures the fa
ility o0 and hen
e o0 2 O. The 
lientj is now assigned to the fa
ility o. From triangleinequality, 
jo � 
js + 
so. Sin
e o is nearer tos than o0 is, 
so � 
so0 � 
js + 
jo0 . Therefore,
jo � 
js + 
js + 
jo0 = sj + sj + oj .Thus for the swap hs; oi we get the following inequality.fo � fs + Xj2NS� (o);�(j)2NS (s)(oj � sj) + Xj 62NS� (o);�(j)2NS (s)(sj + sj + oj � sj)+ X�(j)62NS(s)(oj + o�(j) + s�(j) � sj) � 0: (5)Now 
onsider an operation in whi
h a fa
ility o0 2 O�ois added. The 
lients j 2 NS�(o0) for whi
h �(j) 2NS(s), are now assigned to the fa
ility o0 and this yieldsthe following inequality.fo0 + X�(j)2NS (s);j2NS� (o0)(oj � sj) � 0 for ea
h o0 2 O � o: (6)Adding inequality (5) with inequalities (6) one for ea
ho0 2 O � o, we get, for a bad fa
ility s 2 S,Xo02O fo0 � fs + 2 Xj2NS(s);�(j)2NS (s) oj+ Xj2NS(s);�(j)62NS (s) (oj + o�(j) + s�(j) � sj) � 0 (7)Now, if we add the inequalities (4) for all good fa
ilitiess 2 S together with the inequalities (7) for all bad fa
il-



ities s, we get, 
ostf (S�)�
ostf (S)+2 �
osts(S�) � 0.This proves the following lemma.Lemma 4.2 (Fa
ility 
ost).
ostf (S) � 
ostf(S�) + 2 � 
osts(S�)Combining Lemmas 4.1 and 4.2, we get the followingresult.Theorem 4.3. The lo
al sear
h pro
edure for the met-ri
 un
apa
itated fa
ility lo
ation problem where opera-tion op is de�ned asop(S) := 8<: S + s0; for s0 62 S;S � s; for s 2 S;S � s+ s0; for s0 62 S and s 2 S;has a lo
ality gap 3.The algorithm des
ribed above extends very simplyto the 
ase when the 
lients j 2 C have arbitrary de-mands dj � 0 to be served. Using standard s
aling te
h-niques [1℄ our algorithm 
an be improved to a
hieve a1 +p2 � 2:414 approximation.
4.3 Tight exampleIn Figure 6, we show an instan
e where a lo
al opti-mum has 
ost 3 times the 
ost of the global optimum.The lo
ally optimum solution 
onsists of a single fa
ilitys. The optimum solution 
onsists of fo0; o1; : : : ; okg.Clearly, we 
annot delete the fa
ility s. It is easy toverify that we 
an not de
rease the 
ost of our solutionby either adding any fa
ility from the optimum, or byany swap whi
h involves bringing in a fa
ility from theoptimum and deleting s. The 
ost of 
urrent solution is3k+ 1, while the 
ost of the optimum solution is k+ 1.Hen
e our analysis of the algorithm is tight.
5. THE CAPACITATED FACILITY LO-

CATION PROBLEMIn the 
apa
itated fa
ility lo
ation problem, alongwith the fa
ility 
osts fi � 0, we are given 
apa
itiesui > 0 for ea
h i 2 F . We 
an open multiple 
opies ofa fa
ility i. Ea
h 
opy in
urs a 
ost fi and is 
apableof serving at most ui 
lients. Note that the 
apa
i-ties ui may be di�erent for di�erent fa
ilities i. Theproblem is to identify a multi-set S of fa
ilities and toserve the 
lients in C by the fa
ilities in S su
h that the
apa
ity 
onstraints are satis�ed and the total fa
ility
ost plus the total servi
e 
ost is minimized. If a 
lientj 2 C is assigned to a fa
ility �(j) 2 S then we want tominimize 
ost(S) =Pi2S fi +Pj2C 
�(j)j . Now, for a�xed S, in order to minimize the servi
e 
ost, we solvea min
ost 
ow problem. The 
lients j 2 C send unitamount of 
ow to the fa
ilities in S su
h that the 
a-pa
ity 
onstraints are satis�ed. Su
h a min
ost 
ow 
anbe 
omputed eÆ
iently.In the remainder of this se
tion we let S and S� bethe multi-sets of the fa
ilities opened in the output andoptimum solutions respe
tively.

5.1 A local search algorithmIn this se
tion, we prove a lo
ality gap of at most 4on a lo
al sear
h pro
edure for the 
apa
itated fa
ilitylo
ation problem des
ribed above. The operation op isnow de�ned as follows.op(S) := 8<: S + s0; for s0 2 F ;S � T + l � s0; for s0 2 F; T � Sand l 2 Z+ (8)The operation S � T + l � s0 stands for dropping thefa
ilities in T and opening l new 
opies of s0 where l issuÆ
iently large so that the 
lients j 2 NS(T ) 
an beserved by these new 
opies of s0, that is, l�us0 � jNS(T )j.As in the 
ase of the un
apa
itated fa
ility lo
ation, werestri
t this operation so that all 
lients in NS(T ) areserved by the fa
ility s0. The 
ost of the new solution isnow given by
ost(S) + l � fs0 +Xs2T 0��fs + Xj2NS(s)(
s0j � 
sj)1A :Given a fa
ility s0 2 F , we use the Pro
edure T-Huntdes
ribed in Figure 7 to �nd a subset T � S of fa
il-ities. Here m = jCj is the upper bound on the num-ber of new 
opies of s0 that we need to open. Drop-ping a fa
ility s 2 T gives an extra jNS(s)j 
lients tobe served by the new fa
ility s0. A 
lient j 2 NS(s)where s 2 T now travels a extra distan
e of at most(
s0j � 
sj). Thus, dropping a fa
ility s 2 T gives asaving of fs�Pj2NS(s)(
s0j � 
sj). Due to the 
apa
ity
onstraints, a 
opy of s0 
an serve at most us0 
lients.This motivates us to de�ne the following Knapsa
k prob-lem. For a fa
ility s 2 S, de�ne weight(s) = jNS(s)jand profit(s) = fs �Pj2NS(s)(
s0j � 
sj). The ora-
le Knapsa
k(W ) returns a multi-set T � S su
h thatPs2T weight(s) �W and profit(T ) =Ps2T profit(s)is maximized.It is interesting to note that sin
e we are permittingany subset of fa
ilities, T , from our 
urrent solution, S,to be dropped, the number of operations are exponentialin jSj. However, by 
ounting the 
hange in 
ost due toea
h su
h operation in a spe
i�
 way, we are able to givea polynomial time pro
edure (the pro
edure T-hunt) toidentify admissible operations. It might be 
ase thatT-hunt is not able to identify any admissible operations,while there are operations, as de�ned by op, whi
h areadmissible. However, our analysis will work only withthe assumption that T-hunt 
ould not �nd admissibleoperations.
5.2 The analysisLemma 5.1. For any T � S and any s0 2 F , wehave,djNS(T )j=us0e � fs0 +Xs2T jNS(s)j � 
ss0 � Xs2T fs:Proof. The algorithm terminated with the outputS. Hen
e for the solution S and for the fa
ility s0, the
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Figure 6: Tight example for un
apa
itated fa
ility lo
ation algorithm.Pro
edure T-Hunt.1. For l = 1 to m do,2. T  Knapsa
k(l � us0).3. If 
ost(S) + l � fs0 � profit(T ) � (1� �p(n;m) )
ost(S),then return T .4. return \no admissible swap".Figure 7: A pro
edure to �nd a subset T � S of fa
ilitiesPro
edure T-Hunt must have returned \no admissibleswap". Hen
e,l � fs0 � profit(T )= l � fs0 �Xs2T 0�fs � Xj2NS(s)(
s0j � 
sj)1A < 0But, for a 
lient j 2 NS(s), we have, 
s0j � 
sj � 
ss0 .Therefore we have the lemma.As the output S is lo
ally optimum with respe
t toadditions, the Lemma 4.1 
ontinues to bound the servi
e
ost of S. We restate the Lemma 4.1 here.Lemma 5.2 (Servi
e 
ost).
osts(S) � 
ostf (S�) + 
osts(S�)Now, we bound the fa
ility 
ost of S. Consider adire
ted graph G = (V;E) with lengths on edges, where,V = fvs j s 2 Sg [ fwo j o 2 S�g [ fsinkg;E = f(vs; wo) j s 2 S; o 2 S�g [ f(wo; sink) j o 2 S�g:The lengths of (vs; wo) and (wo; sink) are 
so and fo=uorespe
tively. The 
ost of routing unit amount of 
owalong any edge is equal to the length of that edge. Wewant to simultaneously route jNS(s)j units of 
ow fromea
h vs to the sink.Lemma 5.3. We 
an simultaneously route jNS(s)j unitsof 
ow from ea
h vs to the sink su
h that the total rout-ing 
ost is at most 
osts(S) + 
osts(S�) + 
ostf (S�).

Proof. Consider the 
lients j 2 C. If j 2 NS(s) \NS�(o) then route one unit of 
ow along the path vs !wo ! sink. Triangle inequality implies, 
so � sj + oj .Also, for a fa
ility o 2 S�, the routing 
ost on the edge(wo; sink) is jNS�(o)j �fo=uo � djNS�(o)j=uoe�fo, whi
hin turn is the 
ontribution of o to 
ostf (S�). Thus, therouting 
ost of this 
ow is at most 
osts(S)+
osts(S�)+
ostf (S�).In the 
ow with the minimum routing 
ost, for ea
hvs, the 
ow of jNS(s)j units is routed along the shortestpath from vs to the sink. That is, along vs ! wo !sink, where o is su
h that 
so+fo=uo is minimized, tiesbeing broken arbitrarily. For ea
h o 2 S�, let To � Sdenote the set of fa
ilities s that route their 
ow via wo.As this gives a minimum 
ost 
ow, from Lemma 5.3, wehave, 
osts(S) + 
osts(S�) + 
ostf (S�)� Xo2S� Xs2To jNS(s)j(
so + fo=uo): (9)Now, applying Lemma 5.1 to To and o, we get,djNS(To)j=uoe � fo + Xs2To jNS(s)j � 
so � Xs2To fs:Hen
e,fo + jNS(To)j=uo � fo + Xs2To jNS(s)j � 
so � Xs2To fs:



Adding these inequalities for all o 2 S�, we get,Xo2S� fo + Xo2S� Xs2To jNS(s)j(
so + fo=uo)� Xo2S� Xs2To fs = 
ostf (S): (10)The inequalities (9) and (10) together imply
ostf (S) � 2 � 
ostf (S�) + 
osts(S�) + 
osts(S)This inequality together with Lemma 5.2 gives the fol-lowing lemma.Lemma 5.4 (Fa
ility 
ost).
ostf (S) � 3 � 
ostf (S�) + 2 � 
osts(S�)Combining Lemmas 5.2 and 5.4, we obtain the fol-lowing result.Theorem 5.5. The lo
al sear
h pro
edure for the met-ri
 
apa
itated fa
ility lo
ation problem with the opera-tion op de�ned as in (8) has a lo
ality gap of 4.Again using s
aling te
hniques [1℄ the algorithm 
anbe improved to obtain a 2+p3 � 3:732 approximation.The tight example given in Se
tion 4.3 for the un
a-pa
itated fa
ility lo
ation problem shows that a lo
allyoptimum solution for this problem 
an have 
ost 3 timesthe 
ost of the global optimum.
6. CONCLUSIONS AND OPEN PROB-

LEMSIn this paper, we provided tighter analysis of lo
alsear
h pro
edures for the k-median and un
apa
itatedfa
ility lo
ation problems. Our sharper analysis leadsto a 3 + 2=p-approximation algorithm for the k-medianwith a running time of O(np). For 
apa
itated fa
il-ity lo
ation, when multiple 
opies of a fa
ility 
an beopened, we introdu
e a new operation and show howa weaker version of this operation 
an be performed inpolynomial time. This leads to a lo
al sear
h pro
e-dure with a lo
ality gap of at most 4. We leave openthe problem of obtaining tight bounds on the lo
alitygap of this pro
edure. It would be interesting to iden-tify su
h operations for other variants of fa
ility lo
ationproblems.
7. ACKNOWLEDGEMENTSArya, Garg, Khandekar and Pandit �rst published apreliminary version of this paper whi
h did not in
ludethe results in Se
tions 3.3 and 3.4. After this versionwas distributed, Meyerson-Munagala and Arya-Garg-Khandekar-Pandit independently obtained the resultsin Se
tions 3.3 and 3.4. Garg and Khandekar would liketo thank R. Ravi, Amitabh Sinha and Goran Konjevodfor useful dis
ussions.

8. REFERENCES[1℄ M. Charikar and S. Guha. Improved
ombinatorial algorithms for the fa
ility lo
ationand k-median problems. In Pro
eedings of the 40thAnnual Symposium on Foundations of ComputerS
ien
e, O
tober 1999.[2℄ F. Chudak. Improved approximation algorithmsfor un
apa
itated fa
ility lo
ation problem. InPro
eedings of the 6th Conferen
e on IntegerProgramming and Combinatorial Optimization,June 1998.[3℄ F. Chudak and D. Shmoys. Improvedapproximation algorithms for 
apa
itated fa
ilitylo
ation problem. In Pro
eedings of the 10thAnnual ACM-SIAM Symposium on Dis
reteAlgorithms, January 1999.[4℄ F. Chudak and D. Williamson. Improvedapproximation algorithms for 
apa
itated fa
ilitylo
ation problems. In Pro
eedings of the 7thConferen
e on Integer Programming andCombinatorial Optimization, June 1999.[5℄ S. Guha and S. Khuller. Greedy strikes ba
k:Improved fa
ility lo
ation algorithms. InPro
eedings of the 9th Annual ACM-SIAMSymposium on Dis
rete Algorithms, January 1998.[6℄ K. Jain and V. Vazirani. Primal-dualapproximation algorithms for metri
 fa
ilitylo
ation and k-median problems. In Pro
eedings ofthe 40th Annual Symposium on Foundations ofComputer S
ien
e, O
tober 1999.[7℄ S. Lin and B. W. Kernighan. An e�e
tiveheuristi
 algorithm for the traveling salesmanproblem. Operations Resear
h, 21, 1973.[8℄ M. Korupolu and C. Plaxton and R. Rajaraman.Analysis of a lo
al sear
h heuristi
 for fa
ilitylo
ation problems. In Pro
eedings of the 9thAnnual ACM-SIAM Symposium on Dis
reteAlgorithms, January 1998.[9℄ M. Korupolu and C. Plaxton and R. Rajaraman.Analysis of a lo
al sear
h heuristi
 for fa
ilitylo
ation problems. Te
hni
al Report 98-30,DIMACS, June 1998.[10℄ D. Shmoys and E. Tardos and K. Aardal.Approximation algorithms for fa
ility lo
ationproblems. In Pro
eedings of the 29th Annual ACMSymposium on Theory of Computing, May 1997.[11℄ M. Charikar and S. Guha and E. Tardos andD. Shmoys. A 
onstant-fa
tor approximationalgorithm for the k-median problem. InPro
eedings of the 31th Annual ACM Symposiumon Theory of Computing, May 1999.


