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ABSTRACT

In this paper, we analyze local search heuristics for the
k-median and facility location problems. We define the
locality gap of a local search procedure as the maximum
ratio of a locally optimum solution (obtained using this
procedure) to the global optimum. For k-median, we
show that local search with swaps has a locality gap of
exactly 5. When we permit p facilities to be swapped
simultaneously then the locality gap of the local search
procedure is exactly 3 + 2/p. This is the first analysis
of local search for k-median that provides a bounded
performance guarantee with only k medians. This also
improves the previous known 4 approximation for this
problem. For Uncapacitated facility location, we show
that local search, which permits adding, dropping and
swapping a facility, has a locality gap of exactly 3. This
improves the 5 bound of Korupolu et al. We also con-
sider a capacitated facility location problem where each
facility has a capacity and we are allowed to open mul-
tiple copies of a facility. For this problem we introduce
a new operation which opens one or more copies of a
facility and drops zero or more facilities. We prove that
local search which permits this new operation has a lo-
cality gap between 3 and 4.

1. INTRODUCTION
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The problem of locating facilities in a manner so that
they can effectively serve a set of clients has been the
subject of much research. While one could consider
fairly general measures of effectiveness of a set of loca-
tions in serving the clients, one measure that is typically
used is the distance between the client and the facility
that is serving it. Since by opening a lot of facilities, we
can be near every client, it also makes sense to take into
account the number of facilities opened in judging the
quality of a solution. These two measures, typically re-
ferred to as the service cost and the facility cost, can be
combined in many ways to obtain interesting variants to
the general facility location problem. For instance, in
k-median we require that at most k facilities be opened
and the total service cost, measured as the sum of the
distances of each client to the nearest open facility, be
minimum. Instead of setting a limit on the total number
of facilities that could be opened, we sometimes asso-
ciate with every facility, a cost of opening that facility.
The facility cost of a solution is then the sum of the
costs of the facilities that are opened and the quality
of the solution is measured by the sum of the facility
and service costs. This, in fact, is the classical facility
location problem. Note that in this setting the facility
costs need not be same and would, in general depend
on the location at which the facility is being opened. A
generalization of the classical facility location problem
arises when we associate a capacity with each facility,
which measures the maximum number of clients that
the facility can serve. Further variants of this capac-
itated facility location (CFL) problem arise when we
bound the number of facilities that can be opened at a
certain location. Thus in k-CFL, we can open at most
k facilities at any location.

Local search techniques have been very popular as
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is facility location.

For an instance I, let global(/) denote the global
optimum and local(7) be the locally optimum solution
provided by a certain local search heuristic. We call the
supremum of the ratio global(I)/local(I), the locality
gap of this local search procedure. For 1-CFL with uni-
form capacities, Korupolu et al. [8, 9] argued that any
procedure that permits adding, dropping or swapping
a facility has a locality gap of at most 8. Their analy-
sis was subsequently refined and tightened by Chudak
and Williamson [4] to yield a locality gap of at most
6. For the uncapacitated version, Korupolu et al. [8, 9]
provide a bound of 5 on the locality gap when the only
operations permitted are those of adding, dropping or
swapping a facility. Charikar and Guha [1] introduced
an operation which permits adding a facility and drop-
ping many, and showed that this local search procedure
has a locality gap of exactly 3. For k-median Korupolu
et al. [8, 9] gave a local search procedure which permit-
ted adding, deleting and swapping facilities and gave
a solution with k(1 + €) having a service-cost at most
3 + 5/e times the optimum k-median solution.

A different approach to facility location was employed
by Shmoys, Tardos and Aardal [10] and Charikar, Guha,
Shmoys and Tardos [11]. They formulated the problems
as linear programs and rounded the optimum fractional
solution to obtain a 6% approximation for k-median and
a 3 approximation for the uncapacitated facility loca-
tion problem. Jain and Vazirani [6] gave an alternate
3 approximation algorithm for the uncapacitated facility
location problem (UFL) using the primal-dual schema.
They also observed that k-median can be viewed as a
Lagrange-relaxation of UFL and utilized this to give a
6 approximation algorithm for k-median. Charikar and
Guha [1] improved this to a 4 approximation. Guha
and Khuller [5] employed randomization to improve the
approximation guarantee of UFL to 2.408. This was
further improved to (1 +2/e) by Chudak [2] and finally
to 1.728 by Charikar and Guha [1]. Similar ideas were
used by Chudak and Shmoys [3] to obtain a 3 approx-
imation algorithm for co-CFL when the capacities are
uniform. Jain and Vazirani [6] obtained a 4 approxi-
mation algorithm for co-CFL when the capacities were
non-uniform by solving a related UFL problem using
their primal-dual algorithm.

Our Results: In this paper, we analyze local search
heuristics for three problems.

1. For k-median, we show that local search with
single swaps has a locality gap of 5. This is the first
analysis of local search for k-median that provides a
bounded performance guarantee with only k medians.
We also show that doing multiple swaps, that is, drop-
ping at most p facilities and opening the same number
of new facilities yields a locality gap of 3+2/p. This im-
proves on the 4 approximation algorithm for k-median
by Charikar and Guha [1]. Our analysis of the locality
gap is tight, that is, for an infinite family of instances
there is a locally optimum solution whose service cost
is (3 + 2/p) times that of the global optimum.

2. For UFL, we show that local search, which permits

adding, dropping and swapping a facility, has a locality
gap of 3. This improves the 5 bound of Korupolu et
al. [8]. Our analysis of the algorithm is tight, that is, we
show a locally optimal solution which has cost 3 times
that of the optimum solution. Using standard scaling
techniques [1] our algorithm can be improved to achieve
a1+ /2~ 2.414 approximation.

3. For co-CFL, we consider the setting when the ca-
pacities are non-uniform and argue that local search,
where the only operation permitted is to add multiple
copies of a facility and drop zero or more facilities, has
a locality gap of at most 4. As for UFL, we give a poly-
nomial algorithm that uses Knapsack as a subroutine to
search a subspace of adjacent solutions. We also show
an instance where the polynomial time algorithm can-
not find an adjacent solution of lower cost and which has
cost 3 times the optimum. Again using scaling tech-
niques [1] the algorithm can be improved to obtain a
2 + /3 = 3.732 approximation.

The paper is organized as follows. Section 2 intro-
duces some notation. In Section 3, we prove a locality
gap of 5 for the k-median problem when only single
swaps are permitted; in Section 3.3, we show how the
above analysis can be extended to argue a locality gap of
3+ 2/p when up to p facilities can be swapped simulta-
neously. Section 4 and Section 5 discuss the algorithms
for UFL and oco-CFL respectively. Section 6 concludes
with some open problems.

2. NOTATION AND PRELIMINARIES

In the k-median and facility location problems, we
are given two sets: F| the set of facilities and C, the
set of clients. There is a specified distance c¢;; > 0 be-
tween every pair ¢,j € F'U C. In these problems, the
goal is to identify a subset of facilities S C F and to
serve the clients in C by the facilities in S, such that
some cost function is minimized. The facilities in S are
said to be open. The metric versions of these problems
assume that the distances c¢;; are symmetric and satisfy
the triangle inequality.

The algorithm that we analyze is described in Fig-
ure 1. Here ¢ > 0 is a constant, n = |F| is the number
of facilities, m = |C] is the number of clients and p(n, m)
is a polynomial in n and m. The cost function cost(S)
and the operation op(S) will be defined differently for
different problems.

Algorithm Local Search.

1. S < an arbitrary feasible solution.
2. While 3 an operation op such that,
cost(op(S)) < (1 — m)cost(S),
do S « op(9).
3. return S.

Figure 1: A generic local search algorithm for
k-median and facility location problems

An operation op is called admissible for S if cost(op(S))



< (1 — €/p(n, m))cost(S). At any execution of the step
2 of the algorithm, there will be at most a polynomial
number of ops to be checked for admissibility. Also dur-
ing each admissible op, the cost of the current solution
decreases by a factor of at least e/p(n, m). If S* denotes
an optimum solution and Sp denotes the initial solu-
tion, then the number of ops that the algorithm does
is at most log(cost(So)/cost(S™))/log % where
p(n,m) is some polynomial in n = |F| and m = |C|. As
log(cost(So)) is polynomial in the input size and per-
forming each op takes a polynomial time, this algorithm
terminates in polynomial time.

When there are no admissible operations, we know
that every operation op reduces the cost by factor of at
most €/p(n, m), that is,

cost(op(S)) > (1—

————) cost(S).

p(n,m)

To simplify the exposition, we work with the simplifying
assumption that no operation improves the cost of the
solution, that is, for every operation op,

cost(op(S)) > cost(S).

We will add at most p(n,m) of such inequalities to
conclude that cost(S) < a - cost(S™) for some a > 1.
Adding the corresponding original inequalities implies
that cost(S) < a(l + €)cost(S™). Thus our proof that a
certain local search procedure has locality gap a trans-
lates into a (1 + €) approximation algorithm.

We use the following notations. Let S denote the
output of the algorithm and S* denote an optimum so-
lution. The cost of serving a client j, or the service
cost of j, is the distance between j and the facility that
serves it. Let s; and o; denote the service costs of j in
the solutions S and S* respectively. Let Ng(s) denote
the set of clients in C' that are served by a facility s € S
in the solution S. Similarly, let Ng-(0) denote the set
of clients in C that are served by a facility o € S in
the solution S*. For a subset A C S and B C 5™, let
Ns(A) =U,c4 Ns(s) and Ns+(B) =, g Ns+(0)-

3. THE K-MEDIAN PROBLEM

In the k-median problem, we are given an input pa-
rameter k, 0 < k < |F|. The problem is to identify a
subset S C F' of at most k facilities and to serve the
clients in C by the facilities in S such that the total
service cost is minimized. Thus, if a client j € C is
served by a facility o(j) € S, then we want to mini-
mize cost(S) = 3 . Co(j);- For afixed S, serving each
client by the nearest facility in S, minimizes this cost.

3.1 Local search with swaps

The only operation permitted in the local search pro-
cedure is a swap. A swap is effected by closing a facility
s € S and opening a facility s’ € S. We start with an
arbitrary set of k facilities and keep improving our so-
lution with such swaps till it is possible to do so. The
algorithm is described in Figure 1. The operation op is
defined as,

op(S):=8—s5+s forse€Sands &8

This swap will be denoted by (s, s').
3.2 The analysis

We now show that the local search procedure as de-
fined above has a locality gap of 5. From the local opti-
mality of S, we know that any swap (s,0) for s € S and
o€ S,

cost(S — s+ 0) > cost(S) forall s€ S,0e S* (1)

Note that even if SNS™ # @, the above inequalities hold.
We combine these inequalities to show that, cost(S) <
5 - cost(S™).

Consider a facility o € S*. We partition Ng=(0) into
subsets p; = Ns+(0) N Ng(s) for s € S. Consider a
1-1 and onto mapping 7 : Ng=(0) — Ns~(0) with the
following property.

PrROPERTY 3.1. For all s € S such that,
[ps| < %|N9* (0)|, we have, w(ps) Nps = 0.

It is easy to see that such a mapping m exists.

Ng-=(0)

Figure 2: A matching m on Ng+(0)

We say that a facility o € S™ is captured by a facility
s € S if s serves more than half the clients served by
o, that is, |Ns(s) N Ns«(0)| > 3|Ns=(0)|. Note that a
facility o € S* is captured by at most one s € S. We
call a facility s € S, bad if it captures some facility in
S* and good otherwise.

We now consider k swaps, one for each facility in
S*. If some bad facility s € S captures exactly one
facility o € S then we consider the swap (s, 0). Suppose
[ facilities in S (and hence [ facilities in S™) are not
considered in such swaps. These [ facilities in S are
either good or bad, and the bad facilities capture at
least two facilities in S*. Hence there are at least [/2
good facilities in S. Now, consider [ swaps in which the
remaining [ facilities in S* get swapped with the good
facilities in S such that each good facility is swapped-
out at most twice.

It is easy to verify that the swaps considered above
satisfy the following properties.

1. Each o € S” is swapped-in exactly once.

2. Each s € S is swapped-out at most twice. This is
because a facility in .S that captures more than one
facility in S™ is never swapped-out and a facility
that captures exactly one facility in S is swapped
only with the facility that it captures.



3. If a swap (s,0) is considered, the facility s does
not capture any facility o' # o.

Figure 3: Reassigning the clients in Ns(s) U
Ns-+(0).

We now analyze these swaps by considering an arbi-
trary swap (s,0). We place an upper bound on the in-
crease in cost due to this swap by reassigning the clients
in Ns(s) U Ns«(0) to the facilities in S — s + o as fol-
lows. Refer to Figure 3. The clients j € Ns«(0) are now
assigned to o. Consider a client j° € Ns(s) N Ns=(0'),
for o' # 0. As s does not capture o', we have |[Ns(s) N
Ns=(0")] < 3|Ns=(0')| and hence by the property of m,
we have that 7(j') € Ns(s). Let m(j') € Ns(s'). Note
that the distance that the client j' travels to the near-
est facility in S — s + o is at most c;;y. Also from
triangle inequality, Cjr gt < Cj'o F Con(j'y T Cx(j)s' =
0ji + 0x(j') + Sx(j). The remaining clients continue to
be assigned to the old facilities. From inequality (1) we
have,

cost(S — s+ o) — cost(S) > 0.

Therefore,
> (05 —s5)
JENgx (o)
+ D (o F oG +sa —si) 20 (2)
JENg(s),
J#Ngx (o)

As each facility o € S* is swapped-in exactly once,
the first term of the inequality (2) added over all the k
swaps gives exactly, cost(S™) — cost(S). For the second
term, we use the fact that each s is swapped-out at
most twice. Also for any j € C, as s; is the shortest
distance from j to a facility in S, we get, using triangle
inequality, 0j + 0, (j) + Sx(;j) = s;j- Thus the second term
of the inequality (2) added over all the k swaps is not
greater than 2. - (0j+0r(j)+8x(j)—8;). Butasmis1-
1 and onto mapping, Y00 = 2 jec On(g) = cost(ST)
and Zjeo(s,,(j) —s;) = 0. Thus, 221.60(0]- + 0x(j) +
Sx(j) — 8j) =4 - cost(S™). Combining the two terms we
get, cost(S™) —cost(S)+4-cost(S™) > 0. Thus we have
the following theorem.

THEOREM 3.1. A local search procedure for the met-
ric k-median problem with operations defined as, op(S) :=
S—5s+s forse S and s’ ¢ S, has a locality gap at
most 5.

The above algorithm and analysis extend very sim-
ply to the case when the clients j € C' have arbitrary
demands d; > 0 to be served.

3.3 Local search with multi-swaps

In this section, we generalize the algorithm in Sec-
tion 3 to consider multi-swaps in which up to p facilities
could be swapped simultaneously. The operation op is
now defined as,

op(S) :=(S\A)UB forACSand BCF\S

such that |A| = |B| < p.

This swap will be denoted by (A, B), and we prove that
the locality gap of the k-median problem with respect
to this operation is exactly (3 + 2/p).

3.4 Analysis

We extend the notion of capture as follows. For a
subset A C S, we define,

capture(A) = {o € S : [Ns(A)NNg-(0)| > |Ns=(0)|/2}.
It is easy to observe the following properties.

Cramv 3.1 1. If XY C S are disjoint then
capture(X) and capture(Y) are disjoint.

2. If X CY then capture(X) C capture(Y).

We now partition S into sets Ay, A2,..., A, and S~
into sets By, B2, ..., B, such that forall 4,1 <i <r—1,
|A;| = |B;i| and B; = capture(A;). As before, we call a
facility in S bad if it captures at least one facility in S™,
and good otherwise. Our partition of S would have the
property that every 4;,1 < i < r—1 would have exactly
one bad facility; thus r — 1 equals the number of bad
facilities. The set A, contains only good facilities and it
follows from the preceding discussion that |A,| = |B.|.
Our procedure to define these partitions is described in
Figure 4.

CrAM 3.2. The procedure defined in Figure 4 terma-
nates with a partition of S, S™, satisfying the properties
listed above.

ProOF. Note that at the start of each iteration of
the for-loop, |S| = |S*|. In each iteration we remove
exactly one bad facility from S and hence in step 1 we
will always be able to find a bad facility. Note that
at step 3.1 our procedure maintains the invariant that
|Ai| < |B;|]. Since |S| = |S*| and each bad facility
in S\ A; captures at least one facility in S™ \ B, it
follows that there is a good facility in S'\ A;. This same
argument ensures that the while-loop terminates. [

Now we define the swaps as follows. If for some i,
we have, |A;| = |B;| < p then we consider the swap



procedure Partition;
fori=1tor—1do
{iteration i }

1. A; < {b} where b € S be any bad facility;

2. B; < capture(A4;);
3. while |A;| # |B;| do

3.1. A; «+ A; U{g} where g € S\ A; be any good facility;

3.2. B; < capture(A;);

4. S(—S\AZ7
S* « S§*\ B;;
A, S;
B, «+ S7;

end.

Figure 4: A procedure to define the partitions

(A;, B;). From the local optimality of S we have the
following inequality.

cost((S'\ A;) U B;) — cost(S) > 0.

Note that even if A; N B; # 0 or SN B; # (), the above
inequality continues to hold.

If on the other hand, for some i, we have, |A;| =
|B;| = q > p, we swap each facility o € B; with each of
the ¢ — 1 good facilities s € A;. Note that if i # r, there
are exactly ¢ — 1 good facilities in A; and for i = r, we
select any g — 1 out of ¢ good facilities in A,. For each
such swap (s, 0), we have,

cost(S — s+ o) — cost(S) > 0.

We add such g(g — 1) inequalities and multiply them
by a factor 1/(¢ — 1). Thus, each good facility in A; is
considered in at most ¢/(q — 1) < (p+ 1)/p swaps.

For each facility o € S*, Ng=«(0) is partitioned as
follows.

1. Let 4, 1 <14 <, be such that |4;| < p, so that the
swap (A;, B;) was considered above. We consider
the part, pa; = Ns(Ai) N Ns=(0).

2. Let i, 1 < 4 < r, be such that |4;| > p. We
consider the parts ps = Ns(s) N Ns= (o) for each
s € A;.

Now, for each facility o € S*, we consider a 1-1 and
onto mapping w : Ng=(0) = Ng=(0) with the following
property.

PrROPERTY 3.2. For all parts p = pa, or ps defined
above, such that |p| < %|N5* (0)|, we have, m(p)Np=0.

As this condition is imposed only on the parts that have
at most half the number of clients in Ng=(0), such a
mapping 7 exists. While doing a swap (A4;, B;) (resp.
(s,0")), we would be able to reassign clients j € Ng(A;)N
Ns=(0) (resp. Ns(s) N Ns=(0)) to the facility s’ ¢ A;
(resp. s’ # s) that serves m(j) in S.

The swaps defined above together satisfy the follow-
ing properties:

1. Each facility in S* is swapped-in to extent exactly
1.

2. Each facility in S is swapped-out to extent at most
(r+1)/p.

3. If a swap (A, B) is considered, capture(A) C B.

Recall that in the single swap analysis, as each facility
in S was getting swapped-out at most twice, we got a
(142 x2) approximation result. Here (p+1)/p replaces
2 and the same argument gives a (1+2 x (p+1)/p) =
3 + 2/p approximation result.

3.5 Tight example

In Figure 5, we show an instance where a locally opti-
mum solution, with respect to the p-swap heuristic, has
cost (3+2/p) times the cost of the global optimum. The
locally optimum solution is given by {si, s2, ..., sk},
and the optimum solution is given by {01, 02, ..., or}.
It is easy to verify that we can not decrease the cost
by performing any p-swaps. The cost of our solution is

3k —2 — ’;%, and the cost of the optimal solution is

k— %. This ratio approaches (3 + 2/p) as k tends to
infinity. Hence our analysis of the locality gap is tight.

4. UNCAPACITATED FACILITY LOCA-
TION

In facility location problems, we are given costs f; >
0 for opening the facilities ¢ € F. The uncapacitated
facility location problem is to identify a subset S C F
and to serve the clients in C by the facilities in S such
that the total facility cost plus the total service cost is
minimized. That is, if a client j7 € C is assigned to a
facility o(j) € S then we want to minimize cost(S) =
Yies fit 2 ,c0 ()i As in k-median, for a fixed S,
serving each client by the nearest facility in S, minimizes
the service cost.

4.1 Alocal search procedure

We present a local search procedure for the metric
uncapacitated facility location problem with a locality
gap of exactly 3. The operation op is now defined as,

S+, for s' ¢ S;

op(S) =< S —s, for s € S (3)
S—s+s', fors’ @S andseS.
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Figure 5: Tight example for the p-swaps

These operations correspond to adding, dropping and
swapping the facilities. Again, as there are polynomially
many ops to be checked for admissibility, the algorithm
terminates in polynomial time.

Charikar and Guha [1] proved a locality gap of 3 for
a local search procedure where the operation was of
adding a facility and dropping zero or more facilities.
Korupolu et.al. [8] considered the operations of adding,
deleting and swapping a facility but could only prove a
locality gap of 5.

4.2 The analysis

For any set of facilities S' C F, let costs(S') =
> icg fi denote the facility cost of the solution S’. Also,
let costs(S’) be the total cost of serving the clients in C
by the nearest facilities in S’.

LeEMMA 4.1  (SERVICE COST).

costs(S) < costy(S™) + costs(S™)

Proor. Consider an operation in which a facility o €
S* is added. Assign all the clients Ng+(0) to o. From the
local optimality of S we get, fo + ZjENS* (0 (05 —83) >
0. Note that even if o € S, this inequality continues to
hold. If we add such inequalities for every o € S*, we
get the desired inequality. [

Now, we analyze the facility cost cost;(S). As before,
we assume that 7 is a 1-1 and onto mapping satisfying
the property 3.1. In addition, we assume that if | Ns(s)N
Ns«(0)| > 1|Ns+(0)| then for all j € Ns(s)N Ns- (o) for
which 7(j) € Ns(s), we have that w(n(j)) = j. It is easy
to see that such a mapping exists. Recall that a facility
s € S is called good if s does not capture any o, that
is, for all 0 € S*, |Ns(s) N Ns«(0)| < 3|Ns=(0)|. The
facility cost of good facilities can be bounded easily as
follows. Comnsider an operation in which a good facility
s € S is dropped. Let j € Ng(s) and w(j) € Ns(s').
As s does not capture any facility o € S*, we have that
s’ # s. If we assign j to s', we get, for a good facility
s€ES,

—ft Z (0j + 0nii)y + 52y —55) = 0 (4)

JENs(s)

For bounding the facility cost of a bad facility s € S
we proceed as follows. Suppose a bad facility s captures
the facilities O C S™. Let o € O be the facility nearest
to s. We consider the swap (s, 0). The clients j € Ng(s)
are now assigned to the facilities in S — s + o as follows.

1. Suppose m(j) € Ns(s') where s’ # s. Then, j is
assigned to s'. Let j € Ns-(0'). We have, ¢;o <
Cjo' + Coln(j) F Cr(j)s’ = 0j + On(j) + Sx(j)-

2. Suppose m(j) € Ns(s). Let 5 € Ns«(0'). Then, by
the property of the mapping 7, the facility s cap-
tures the facility o' and hence o' € O. The client
j is now assigned to the facility o. From triangle
inequality, ¢jo < ¢js + ¢s0. Since o is nearer to
s than o' is, cso < €50 < €js + ¢jor. Therefore,
Cjo < Cjs + Cjs + Cjor = 85 + 85 + 0j.

Thus for the swap (s,0) we get the following inequality.

fo—fst D (05 —si)+ Y (sj+s;+0j —s5)

JENgGx (o), iENg= (o),

m(j)ENg(s) m(j)ENg(s)
+ Y (05 +ox() +5x) —55) > 0. (5)
()¢ Ns ()

Now consider an operation in which a facility o’ € O —o
is added. The clients j € Ng«(0') for which m(j) €
Ns(s), are now assigned to the facility o’ and this yields
the following inequality.

fot Y (0j=5) >0
m(j)ENg(s),
FENgx (o)

for each o' € O —o. (6)

Adding inequality (5) with inequalities (6) one for each
o' € O — o, we get, for a bad facility s € S,

Dofo—fi¥2 D o

o'€eO JENg(s),

m(j)ENg(s)
>

(0j +0xjy + 52y —85) 2 0 (7)
JENg(s),
m(j)¢Ng(s)

Now, if we add the inequalities (4) for all good facilities
s € S together with the inequalities (7) for all bad facil-



ities s, we get, cost§(S™) —costs(S)+2-costs(S*) > 0.
This proves the following lemma.

LEMMA 4.2 (FACILITY COST).

costf(S) < costs(S*) +2 - costs(S™)

Combining Lemmas 4.1 and 4.2, we get the following
result.

THEOREM 4.3. The local search procedure for the met-
ric uncapacitated facility location problem where opera-
tion op is defined as

S+, for s' & S,
S — s, for s € S
S—s+s, fors' ¢S andse€S,

op(S) :=

has a locality gap 3.

The algorithm described above extends very simply
to the case when the clients j € C have arbitrary de-
mands d; > 0 to be served. Using standard scaling tech-
niques [1] our algorithm can be improved to achieve a
1+ /2 = 2.414 approximation.

4.3 Tight example

In Figure 6, we show an instance where a local opti-
mum has cost 3 times the cost of the global optimum.
The locally optimum solution consists of a single facility
s. The optimum solution consists of {oo, 01, ..., or}.
Clearly, we cannot delete the facility s. It is easy to
verify that we can not decrease the cost of our solution
by either adding any facility from the optimum, or by
any swap which involves bringing in a facility from the
optimum and deleting s. The cost of current solution is
3k + 1, while the cost of the optimum solution is k + 1.
Hence our analysis of the algorithm is tight.

5. THE CAPACITATED FACILITY LO-
CATION PROBLEM

In the capacitated facility location problem, along
with the facility costs f; > 0, we are given capacities
u; > 0 for each 7 € F. We can open multiple copies of
a facility <. Each copy incurs a cost f; and is capable
of serving at most u; clients. Note that the capaci-
ties u; may be different for different facilities i. The
problem is to identify a multi-set S of facilities and to
serve the clients in C by the facilities in S such that the
capacity constraints are satisfied and the total facility
cost plus the total service cost is minimized. If a client
j € C is assigned to a facility o(j) € S then we want to
minimize cost(S) = 3", fi + 30 ;c0 Co(j);- Now, for a
fixed S, in order to minimize the service cost, we solve
a mincost flow problem. The clients j € C send unit
amount of flow to the facilities in § such that the ca-
pacity constraints are satisfied. Such a mincost flow can
be computed efficiently.

In the remainder of this section we let S and S* be
the multi-sets of the facilities opened in the output and
optimum solutions respectively.

5.1 Alocal search algorithm

In this section, we prove a locality gap of at most 4
on a local search procedure for the capacitated facility
location problem described above. The operation op is
now defined as follows.

S+s, for s’ € F;
op(8):=X S—T+1-§,forseF, TCS (8)
and l € ZT

The operation S — T + [ - s' stands for dropping the
facilities in T and opening ! new copies of s’ where [ is
sufficiently large so that the clients j € Ns(T') can be
served by these new copies of s', that is, l-ugy > |Ns(T)|.
As in the case of the uncapacitated facility location, we
restrict this operation so that all clients in Ng(T) are
served by the facility s’. The cost of the new solution is
now given by

cost(S) +1-fo+ D | —fo+ D (coj —cs)

seT JENg(s)

Given a facility s’ € F, we use the Procedure T-Hunt
described in Figure 7 to find a subset T' C S of facil-
ities. Here m = |C] is the upper bound on the num-
ber of new copies of s’ that we need to open. Drop-
ping a facility s € T gives an extra |Ns(s)| clients to
be served by the new facility s’. A client j € Ns(s)
where s € T now travels a extra distance of at most
(csj — ¢sj). Thus, dropping a facility s € T gives a
saving of fo =37 v () (Cs1j — €s5). Due to the capacity
constraints, a copy of s’ can serve at most u, clients.
This motivates us to define the following Knapsack prob-
lem. For a facility s € S, define weight(s) = |Ns(s)|
and profit(s) = fs — > ng (o) (€s'j — €sj). The ora-
cle Knapsack(W) returns a multi-set T C S such that
Y ser weight(s) < W and profit(T) = 3 ., profit(s)
is maximized.

It is interesting to note that since we are permitting
any subset of facilities, 7', from our current solution, S,
to be dropped, the number of operations are exponential
in |S|. However, by counting the change in cost due to
each such operation in a specific way, we are able to give
a polynomial time procedure (the procedure T-hunt) to
identify admissible operations. It might be case that
T-hunt is not able to identify any admissible operations,
while there are operations, as defined by op, which are
admissible. However, our analysis will work only with
the assumption that T-hunt could not find admissible
operations.

5.2 The analysis

LemMA 5.1. For any T C S and any s' € F, we
have,

[Ns(T)|/ugr] - for + D INs(s)| - coer > D fs.

seT seT

Proo¥. The algorithm terminated with the output
S. Hence for the solution S and for the facility s, the
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Figure 6: Tight example for uncapacitated facility location algorithm.

Procedure T-Hunt.

1. Forl=1 tom do,
T < Knapsack(l - ugy).

w N

then return 7.
4. return “no admissible swap”.

If cost(S)+1- fo —profit(T) < (1 —

cost(S),

:u(nim))

Figure 7: A procedure to find a subset T C S of facilities

Procedure T-Hunt must have returned “no admissible
swap”. Hence,

l- fo —profit(T)
= l'fs’_z fs_ Z (cs’j_csj) <0
seT JENg(s)

But, for a client j € Ns(s), we have, cy; — ¢sj > Cqqr.
Therefore we have the lemma. [

As the output S is locally optimum with respect to
additions, the Lemma 4.1 continues to bound the service
cost of S. We restate the Lemma 4.1 here.

LEMMA 5.2
costs(S) < costp(S™) + costs(S™)

(SERVICE COST).

Now, we bound the facility cost of S. Consider a
directed graph G = (V, E)) with lengths on edges, where,

V={vs|s€S} U {w, | 0 € §*} U {sink},

E = {(vs,w,) | s € S,0€ 5"} | {(wo, sink) | 0 € S”}.

The lengths of (vs, wo) and (wo, sink) are cso and fo/uo
respectively. The cost of routing unit amount of flow
along any edge is equal to the length of that edge. We
want to simultaneously route |Ns(s)| units of flow from
each vs to the sink.

LEMMA 5.3. We can simultaneously route |Ns(s)| units
of flow from each vs to the sink such that the total rout-
ing cost is at most costs(S) + costs(S™) + costy(S™).

PRrROOF. Consider the clients j € C. If j € Ns(s) N
Ns+(0) then route one unit of flow along the path v, —
w, — sink. Triangle inequality implies, cso < 55 + 0;.
Also, for a facility o € S™, the routing cost on the edge
(1o, 5ink) is [Ns- (0))- fo /1o < [|Ns+ (0)]/1t,]- fo, which
in turn is the contribution of o to cost;(S™). Thus, the
routing cost of this flow is at most costs(S)+costs(S*)+
costy(S™). O

In the flow with the minimum routing cost, for each
vs, the flow of | Ns(s)| units is routed along the shortest
path from vs to the sink. That is, along vs = w, —
sink, where o is such that cso + fo/u, is minimized, ties
being broken arbitrarily. For each o € S*  let T, C S
denote the set of facilities s that route their flow via w,.
As this gives a minimum cost flow, from Lemma 5.3, we
have,

costs(S) + costs(S™) + cost(S™)
> )Y INs(8)|(cso + fouo)- (9)

0€ES* seT,

Now, applying Lemma 5.1 to 7, and o, we get,

[INs (L)l fuo] - fo+ 37 INs(3)] -0 > D fo

s€T, s€T,

Hence,

fo+ INs(To)|/to - fot D INs(s)|-coo = D f.

s€ET, se€T,



Adding these inequalities for all 0 € S*, we get,

S ft 33T INs()l (oo + fofuo)

0ES* 0€ES* s€T,
> > > fo = costs(S). (10)
0€ES* s€T,

The inequalities (9) and (10) together imply
cost(S) < 2-costf(S™) + costs(S™) + costs(S)

This inequality together with Lemma 5.2 gives the fol-
lowing lemma.

LEMMA 5.4 (FACILITY COST).

cost(S) < 3-costs(S™)+2-costs(S™)

Combining Lemmas 5.2 and 5.4, we obtain the fol-
lowing result.

THEOREM b5.5. The local search procedure for the met-
ric capacitated facility location problem with the opera-
tion op defined as in (8) has a locality gap of 4.

Again using scaling techniques [1] the algorithm can
be improved to obtain a 2+ /3 ~ 3.732 approximation.
The tight example given in Section 4.3 for the unca-
pacitated facility location problem shows that a locally
optimum solution for this problem can have cost 3 times
the cost of the global optimum.

6. CONCLUSIONS AND OPEN PROB-
LEMS

In this paper, we provided tighter analysis of local
search procedures for the k-median and uncapacitated
facility location problems. Our sharper analysis leads
to a 3 + 2/p-approximation algorithm for the k-median
with a running time of O(n”). For capacitated facil-
ity location, when multiple copies of a facility can be
opened, we introduce a new operation and show how
a weaker version of this operation can be performed in
polynomial time. This leads to a local search proce-
dure with a locality gap of at most 4. We leave open
the problem of obtaining tight bounds on the locality
gap of this procedure. It would be interesting to iden-
tify such operations for other variants of facility location
problems.
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