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Abstract

This paper describes an efficient neighborhood search procedure for the
probabilistic dial-a-ride problem. This procedure requiresO(n4) computations
compared to O(n6) if computed from scratch. Two heuristics with this search
procedure embedded are developed for solving the problem: a tabu search
heuristic and a hybrid GRASP-tabu search heuristic. Computational results
show that tabu search is superior over GRASP-tabu search on the probabilistic
dial-a-ride problem, and by incorporating the search technique resulted in
faster heuristics.
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1 Introduction

In the Dial-a-Ride Problem (DARP) there are n users who specify transportation
requests between given origins and destinations. Users may provide a time window
on their desired departure or arrival time, or on both. A fleet of m vehicles based
at a common depot is available to operate the routes. Each vehicle has a given
capacity. The time each user spends in the vehicle is bounded by a threshold. The
DARP consists of constructing a set of feasible minimum cost routes. A common
application of the DARP arises in door-to-door transportation of the elderly and
the disabled (Madsen et al. 1995, Ioachim et al. 1995, Borndörfer et al. 1997, Toth
and Vigo 1997).

The DARP resembles the Vehicle Routing Problem with Pickup and Delivery
(VRPPD) (Savelsbergh and Sol 1995), but has some extensions since it considers
transportation of people rather than goods: Each user specifies time windows of
possible pickup and delivery times, as well as an upper bound on the riding time. A
common characteristic of DARP instances is that the vehicle capacity constraints
are tight.

The DARP is a deterministic model in the sense that all requests are known
with certainty when designing vehicle routes. It is defined on a complete graph
G = (V,A), with vertex set V = P∪D∪{0}, P = {1, . . . , n} and D = {n+1, . . . , 2n}
and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Subsets P and D contain vertices
representing origins and destinations for the transportation requests, while 0 denotes
the depot. Each vertex pair (i, i + n) represents a request for transportation from
origin i to destination i + n. With every vertex i ∈ P is associated a non-negative
load qi, and with all i > 0 we associate a non-negative service duration di, and a time
window [ei, li]. The depot is also associated with a time window [e0, l0] representing
the operating hours. For notational convenience we also define qi+n = −qi for all
i ∈ P. Each arc (i, j) is associated with a traveling cost cij and a travel time tij .
Finally, let L denote the maximum ride time of a user. The DARP consists of
designing m vehicle routes on G such that (i) every route starts and ends at the
depot; (ii) for every request i, vertices i and i + n belong to the same route and
vertex i + n is visited later than vertex i; (iii) the load of vehicle k does not exceed
at any time a preset bound Qk; (iv) the service at vertex i begins in the interval
[ei, li], and every vehicle leaves the depot and returns to the depot in the interval
[e0, l0]; (v) the ride time of any user does not exceed L; (vi) the total routing cost
of all vehicles is minimized.

In practice it cannot always be assumed that all requests are known at the time
when the vehicle routes have to be constructed. In this paper we formulate the
Probabilistic Dial-a-Ride Problem (PDARP), where operational constraints are the
same as in the deterministic version of the problem, but now each user i requires
service only with probability pi. Assume, that we want to design vehicle tours to
be used for a given period of time (more than one day) and that for this period,
the set of user requests on a daily basis varies. In order to ensure regularity of
service, and for the drivers to be acquainted with the users and with the area they
are servicing, the routes are not reoptimized every day. The only adjustments of
the initial decisions that are made on a daily basis, is that vertices of users that
do not require service are eliminated while keeping the routes order-consistent with
the original ones. The aim is to design a solution that minimizes expected travel
cost. The probabilistic DARP is a generalization of two problems: the Probabilistic
Traveling Salesman Problem (PTSP); and the Probabilistic Pickup and Delivery
Traveling Salesman Problem (PPDTSP). The PTSP was first introduced by Jaillet
(1985, 1988) where each vertex is presented with a probability. In the first stage a
Hamiltonian tour which go through all the vertices are constructed and the vertices
that are present are revealed. In the second stage, the tour is followed by skipping
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the absent vertices. Jaillet described theoretical properties, bounds and also several
heuristics for this problem. Laporte et al. (1994) describe an exact algorithm for
determining an a priori TSP tour of least expected cost. This is the basis for
Beraldi et al. (2003) who have studied the PPDTSP, and developed an efficient
neighborhood search procedure.

Our problem is an extension of the latter problem where there are m capaci-
tated vehicles instead of one, time windows are present, and user convenience (e.g.
maximum ride time of each user) is also considered. Finding a feasible solution to
the DARP is NP-hard (Savelsbergh and Sol 1995) and this trivially generalizes to
the PDARP. The purpose of this work is to device a heuristic method that with
reasonable computational effort provides good, but not necessarily optimal, solu-
tions to PDARP. To this end a fast neighborhood search procedure is essential,
and we demonstrate how computational savings can be achieved when evaluating a
proposed neighborhood. Two heuristics for the PDARP where this neighborhood
search procedure is embedded, are developed.

The remainder of this paper is organized as follows. In Section 2 we briefly
review the literature for the DARP and for stochastic vehicle routing problems. A
mathematical formulation of the PDARP is given in Section 3. The computation of
the expected cost of an a priori PDARP solution is described in Section 4. Section 5
presents the neighborhood evaluation procedure, while descriptions of a tabu search
heuristic and a hybrid GRASP-tabu search heuristic are presented in Sections 6 and
7, respectively. This is followed by computational results in Section 8, and by the
conclusion in Section 9.

2 Literature review

Much research has been done on the DARP over the past 20 years. Psaraftis
(1980, 1983) developed dynamic programming algorithms for the single-vehicle case
for both static and dynamic DARP. The complexity of the dynamic programming
algorithm is O(n23n), and thus limits the size of problems that can be solved to
be between 8 to 10 users. Although the method is not able to solve larger problem
instances, the proposed approach could still be used as a subroutine in a multi-
vehicle method given the number of requests for each vehicle is sufficiently small.

Sexton and Bodin (1985a, 1985b) treated the single-vehicle case as a subproblem
in the multi-vehicle context for which the developed algorithm iterates between
solving a routing problem and the associated scheduling problem. Their algorithm
is based on Benders decomposition to solve the problem through the alternation
between these two components. Computational experiments were carried out using
actual data from Gaithersburg, Maryland, and Baltimore, Maryland, where the
number of users varies from 7 to 20. The computational study also showed that
this method is robust and fast.

In Healy and Moll (1995) a heuristic based on edge exchanges and the idea of
sacrificing is developed. Like the former method, their strategy alternates back
and forth between an optimize phase and a sacrifice phase. The first phase refers
to finding a local minimum using local search with travel length as the primary
objective. The next phase searches for solutions which are superior in a sacrificing
sense to the current one, x. The objective in this phase is the relative factor of the
travel length of x and the size of the neighborhood of x. Results are reported on
randomly generated data, where the number of users varies from 10 to 100.

An early algorithm of the multi-vehicle DARP was proposed by Jaw et al. (1986)
for which a sequential insertion heuristic is developed. Some service quality con-
straints are included in their model where an upper bound on the riding time for
each user is set, and also time restrictions for when a user can be picked up and
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dropped off. The algorithm chooses the users with the earliest pick up times and
inserts them into the routes so as to minimize the extra cost of inserting a new
user. Results are reported on simulated data of 250 users and on real data from
Friedrichschafen, Germany, involving 2617 users.

Madsen et al. (1995) solved a real-life problem involving scheduling services for
elderly and disabled people in Copenhagen, Denmark. The problem is characterized
by time windows, multiple capacities and multiple objectives. Their proposed in-
sertion heuristic, called REBUS, is a modified version of the one developed by Jaw
et al. (1986). The algorithm has been tested on real-life cases involving 24 vehicles
and 300 users. REBUS is capable of determining solutions of good quality in small
amount of computing time.

Ioachim et al. (1995) developed a method based on clustering. A cluster is a
temporary set of users that can feasibly be serviced by the same vehicle. Their
approach is to construct a large number of clusters that satisfy all the constraints
involved. Computational experiments were conducted on instances ranging from 50
to 250 users, and also on a real-life problem of 2545 users. Their study shows that
their technique based on column generation is superior in terms of solution quality,
to the parallel insertion approach.

Toth and Vigo (1997) studied a real-life problem involving scheduling service for
handicapped people. They developed a parallel insertion heuristic which is capable
of determining good solutions for large instances in a small amount of comput-
ing time where intermediate infeasible solutions are allowed. A tabu thresholding
procedure is also developed to further improve the solution obtained from the par-
allel method. Results are reported on instances ranging from 276 to 312 requests,
showing a great improvement compared with the hand-made solutions.

Borndörfer et al. (1997) also studied a real-life problem arising in Berlin. Like
many others, their method is a two-phase approach where clusters of users are
created first and then chaining these clusters into feasible vehicle routes. Both the
clustering and the chaining approach use set partitioning to identify the best set of
clusters such that each request is contained in exactly one cluster, and the best set
of vehicle routes covering each cluster exactly once. The computational experiments
were conducted on problem instances ranging from 859 to 1771 requests.

Cordeau and Laporte (2003b) developed a tabu search heuristic for the multi-
vehicle static DARP. Their problem includes constraints such as time windows,
vehicle capacity, route duration and the maximum ride time of any user. For each
iteration the heuristic removes a request and reinserts it into another route. A
feature of their method is the ability of accepting intermediate infeasible solutions.
Computational experiments were conducted on randomly generated data ranging
from 24 to 144 users and on real-life data involving 200 and 295 users.

Cordeau (2003) studied the same problem as described above. He proposed a
branch-and-cut algorithm which uses new valid inequalities for the DARP and also
known inequalities for the VRPPD and the VRP. Results are reported on randomly
generated data ranging from 16 to 32 users. The study shows that the method is
able to reduce the CPU time and the number of nodes in the branch-and-bound
tree compared with CPLEX.

Attanasio et al. (2004) studied the dynamic DARP where the main objective is
to accept as many requests as possible. Their approach is based on a tabu search
heuristic developed for the static case (Cordeau and Laporte 2003b). Computational
experiments were carried out on the same set of instances described under the static
case, and the results show an advantage of applying parallel computing in solving
real-time vehicle routing problems. For overviews of the DARP and VRPPD, the
reader is referred to Cordeau and Laporte (2003a) and Desaulniers et al. (2002),
respectively.

The PDARP is a stochastic vehicle routing problem and has, to our knowledge,
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not been addressed explicitly. The PTSP was introduced and analyzed by Jaillet
(1985, 1988), and Bertsimas (1988) explored this problem further. In the thesis
of Jaillet (Jaillet 1985) properties, bounds, asymptotic results and heuristics with
worst-case performance were described.

A direct extension of the PTSP is the Probabilistic Vehicle Routing Problem
(PVRP). As in the PTSP, the absent vertices are skipped in the second stage. Bert-
simas studied this problem in his thesis (Bertsimas 1988) and described properties,
bounds and heuristics.

Waters (1989) compared three operating policies of scheduling vehicle routes
when some customers do not require a visit in a period. He estimated the potential
savings of semi-fixed routes or variable routes over fixed routes. For a practical
situation, rescheduling does not make it worthwhile to utilize variable routes.

Bertsimas et al. (1990) studied the idea of a priori optimization as a strategy
competitive to the strategy of reoptimization. They derived some bounds for the
PTSP and PVRP. Based on the ideas of local optimality the authors developed
two heuristics for the PTSP. Numerical results show that the obtained solutions are
near-optimal.

Laporte et al. (1994) proposed an Integer L-shaped method for PTSP and have
solved to optimality instances involving up to 50 vertices.

For reviews and surveys on stochastic vehicle routing problems, the reader is
referred to Gendreau et al. (1996) and Kenyon (2000).

3 Model

The PDARP can be formulated as a stochastic integer linear program. Let ξ = (ξi)
denote a vector of Bernoulli random variables, where ξi is equal to 1 if i requires
service (with probability pi). As in Jaillet (1988), vertices with pi = 1 are referred
to as black vertices, while vertices with 0 < pi < 1 are white vertices. We assume
there is at least one white vertex. The problem is modeled as a two-stage stochastic
program with recourse. In the first stage, an a priori solution over G must be
determined before any information on the presence of white vertices is available. In
the second stage, requested vertices are visited in the same order as they appear
in the a priori solution, while unrequested vertices are skipped. For a particular
instance of ξ of the second stage, a number of vertices are skipped, resulting in
some cost reduction D(x, ξ). The negative of the expectation of this cost reduction,
is referred to as the recourse function, and written R(x) = −EξD(x, ξ). A closed
form formula for this function is given in Section 4.

For each arc (i, j) ∈ A and vehicle k ∈ K (with |K| = m), let xijk = 1 if vehicle
k travels directly from vertex i to vertex j, and xijk = 0 otherwise. For each vertex
i ∈ V and each vehicle k ∈ K, let Bik be the time vehicle k starts to service vertex
i, and Qik be the load of vehicle k after visiting vertex i. Finally, for each user i,
Lik denotes the ride time of user i on vehicle k.

The PDARP consists of determining an a priori solution whose expected cost is
minimum, and can be stated (based on Cordeau (2003)) as

min
∑

k∈K

∑

i∈V

∑

j∈V
cijxijk + R(x) (1)

subject to
∑

k∈K

∑

j∈V
xijk = 1 ∀i ∈ P (2)

∑

j∈V
xijk −

∑

j∈V
xi+n,jk = 0 ∀i ∈ P, k ∈ K (3)
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∑

j∈V
x0jk = 1 ∀k ∈ K (4)

∑

j∈V
xjik −

∑

j∈V
xijk = 0 ∀i ∈ P ∪ D, k ∈ K (5)

∑

i∈V
xi0k = 1 ∀k ∈ K (6)

Bik + di + tij −Mijk(1− xijk) ≤ Bjk ∀i ∈ V, j ∈ V, k ∈ K (7)
Qik + qj −Wijk(1− xijk) ≤ Qjk ∀i ∈ V, j ∈ V, k ∈ K (8)
Lik = Bi+n,k − (Bik + di) ∀i ∈ P, k ∈ K (9)
ei ≤ Bik ≤ li ∀i ∈ V, k ∈ K (10)
ti,i+n ≤ Lik ≤ L ∀i ∈ P, k ∈ K (11)
max{0, qi} ≤ Qik ≤ min{Qk, Qk + qi} ∀i ∈ V, k ∈ K (12)
xijk ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K (13)

where

Mijk = max{0, li + di + tij − ej} ∀i ∈ V, j ∈ V, k ∈ K (14)
Wijk = min{Qk, Qk + qi} ∀i ∈ V, j ∈ V, k ∈ K (15)

Constraints (2) and (3) impose that each request (i.e. the pick-up and drop-off
nodes) is served exactly once and by the same vehicle. Constraints (4)-(6) ensure
that vehicle k starts from the depot and terminates its route at the depot. Time and
load consistencies are handled by constraints (7) and (8). The ride time of each user
is defined by the equalities (9) and is bounded by constraints (11). Time windows
and load constraints are imposed by (10) and (12). Finally, the nonnegativity and
binary requirements are given by (13).

The validity of constraints (7) and (8) is ensured by (14) and (15).

4 Expected cost of an a priori solution

Beraldi et al. (2003) showed how to compute the expected cost of an a priori tour
for one vehicle where they did not have any constraints besides the precedence ones.
Although our problem is an extension of theirs, it is a more difficult and complicated
problem which involves routing of several vehicles, capacity, time windows and ride
time constraints. In this section we will provide the computation of the expected
cost of an a priori solution of the PDARP.

Let C(x) be the total cost of solution x and EC(x) its expected value. We
let τk = Pk ∪ Dk ∪ {0} be the set of vertices visited by vehicle k of solution x,
where Pk = {i ∈ P :

∑
j∈V xijk = 1} and Dk = {j ∈ D :

∑
i∈V xijk = 1} (for

notational convenience, dependence on x is suppressed). Denote the vertices in τk by
ik0 = ik,nk+1 = 0, ik1, ik2, . . . , iknk

where 0 ≤ u < v ≤ nk means that iku is visited
prior to ikv by vehicle k. Given two vertices iku, ikv ∈ τk \{0}, u < v, let Iuv

k1 = {u}
if ikv = iku +n, and Iuv

k1 = {u, v} otherwise, Iuv
k2 = {r ∈ {u+1, . . . , v−1} : ikr ≤ n}

and Iuv
k3 = {r ∈ {u + 1, . . . , v − 1} : ikr ≥ n + 1, ikr = ikr′ + n, r′ ∈ {1, . . . , u− 1}}.

The expected cost of x can be computed through the probabilities of direct travel
between any pair of nodes.

Given an a priori solution x, the probability p(iku, ikv) that a given arc is tra-
versed by vehicle k is determined as follows:

• p(i, j) = 0 if {i, j} * τk;
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• p(iku, ikv) = 0 if v < u;

• p(iku, ikv) = 0 if ∃ h ∈ {u + 1, . . . , v − 1} such that ikv = ikh + n;

• p(iku, ikv) = 0 if ∃ w ∈ {u + 1, . . . , v − 1} such that ikw = iku + n;

• p(iku, ikv) = ∏

h∈Iuv
k1

pih

∏

r∈Iuv
k2

(1− pir
)

∏

w∈Iuv
k3

(1− piw
) (16)

otherwise.

Thus, the expected cost EC(x) of the a priori solution x is given by

EC(x) =
∑

k∈K

2n∑
u=0

2n+1∑
v=u+1

p(iku, ikv)cikuikv
(17)

with 2n + 1 being the depot.
Formula (17) is identical to the objective function stated in (1), i.e., R(x) =

EC(x)−∑
k∈K

∑
i∈V

∑
j∈V cijxijk.

5 Neighborhood evaluation

Let the tours of the current solution be {τk}k∈K, where τk is defined as in Section
4. A tour is infeasible if one of the constraints (2)-(13) is violated.

5.1 Definition of the neighborhood

In the case of the PPDTSP, a neighbor x′ of x can be obtained through a move
which eliminates a vertex from a route and reinserts it in some other position in the
same route. The evaluation of such a neighborhood is described in Beraldi et al.
(2003) where they successfully reduced the amount of computations from O(n5) to
O(n3). In this section we define a similar neighborhood, where we take into account
that a vertex can be moved from one tour to another, and that such a move implies
that the change of tour also must apply to the companion vertex. We focus on
efficient evaluation of the neighborhood in order to limit the computation time.

We say that x′ is a neighbor of x if for some k, k̂ ∈ K, x′ can be obtained through
a move which eliminates some iks and ikw = iks + n from τk and reinserts them in
τk̂. This definition includes the special case where k = k̂, i.e. the solution obtained
by reinsertion of (iks, ikw) in τk is considered to be a neighbor. Let N (x) be the
resulting neighborhood.

Clearly, |N (x)| = O(n3). If EC(x′) is computed from scratch through (16)-(17),
we arrive at O(n3) operations ((17) takes O(n2), and (16) takes O(n) for a given
pair (iku, ikv)). A complete neighborhood evaluation that takes O(n6) time is not
desirable, and below we show how the calculations of the expected cost EC(x′),
for all x′ ∈ N (x), can be accomplished in O(n4) time. The idea is to evaluate the
neighbors of x in a specific order, such that any neighbor solution x′ is evaluated
by calculating the difference in expected cost from its predecessor in that order.
To this end, the order must be chosen such that only minor updates are necessary
when moving from one neighbor to its successor.
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5.2 Evaluation order

Let k ∈ K, s ∈ {1, . . . , nk − 1}, w ∈ {2, . . . , nk}, where ikw = iks + n, be given. We
now demonstrate how to evaluate all x′ ∈ N (x) where iks and ikw are assigned new
positions.

First we evaluate all solutions where the position of iks is fixed whereas ikw is
moved forward. Routes encountered this way are (in the given order):

τk = (ik0, . . . , ik,s−1, iks, ik,s+1, . . . , ik,w−1, ikw, ik,w+1, . . . , ik,nk
, ik,nk+1) ;

(ik0, . . . , ik,s−1, iks, ik,s+1, . . . , ik,w−1, ik,w+1, ikw, . . . , ik,nk
, ik,nk+1) ;

...
(ik0, . . . , ik,s−1, iks, ik,s+1, . . . , ik,w−1, ik,w+1, . . . , ik,nk

, ikw, ik,nk+1) .

Starting from the last solution above, we next move iks one position forward,
and fix it there while ikw is moved backward. This goes on until ikw succeeds iks:

(ik0, . . . , ik,s−1, ik,s+1, iks, . . . , ik,w−1, ik,w+1, . . . , ik,nk
, ikw, ik,nk+1) ;

(ik0, . . . , ik,s−1, ik,s+1, iks, . . . , ik,w−1, ik,w+1, . . . , ikw, ik,nk
, ik,nk+1) ;

...
(ik0, . . . , ik,s−1, ik,s+1, iks, ikw, . . . , ik,w−1, ik,w+1, . . . , ik,nk

, ik,nk+1) .

Alternating between sequences of forward and backward moves of ikw, and mov-
ing iks one position forward after each such pass, we finally arrive at the solution:

(ik0, . . . , ik,s−1, ik,s+1, . . . , ik,w−1, ik,w+1, . . . , ik,nk
, iks, ikw, ik,nk+1)

Note that a single forward move of iks follows the forward passes of ikw, whereas
the backward passes require that first ikw and then iks are moved one position
forward before the next pass starts.

In order to evaluate the remaining solutions, let the vehicles be ordered arbi-
trarily except that k has to be last, and let k̂ denote the first vehicle. The next
solution to be considered is obtained by transferring iks and ikw to the start of the
route of vehicle k̂. Then the above procedure is repeated for this route, eventually
iks and ikw reach the end of the route, and are transferred to the successor of k̂.
When all routes thus have been visited, the two nodes are finally reinserted in the
start of τk.

After this reinsertion, we apply the process to route k again, but now we stop
as soon as all solutions not encountered before are evaluated. It is easily seen that
if s is odd, the stopping criterion is that iks and ikw are back in positions s and
w, respectively. When s is even, we stop when iks is in position s and ikw is in
position s + 1. It should be noted that in the latter case nk − w + 1 solutions are
evaluated twice. This extra effort could by simple means have been avoided, but
doing so would reduce the running time only marginally.

The above demonstrates that a move from x to any x′ ∈ N (x) can be accom-
plished by a sequence of elementary moves of either of the following types:

1. Move a pick-up node one position forward in its current route

2. Move a drop-off node one position forward in its current route

3. Remove the two last nodes from a route, where the last node is the drop-off
companion of the second last, and reinsert them as the leading nodes of some
route.
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5.3 Probability updates

Algorithms 1-3 perform all necessary updates of the probability matrix when one
elementary move of types 1-3, respectively, is applied to the current solution. Since
all updates follow the same pattern, we explain only the updates needed in the case
where a pick-up node is moved one position forward, and its current successor is a
drop-off node. Details for all cases are given in the algorithms.

Consider the route (ik0, ik1, . . . , ikr, . . . , iks, ik,s+1, . . . , ikw, . . . , iknk
, ik,nk+1) where

ikw = iks + n and ik,s+1 = ikr + n. Write u = s + 1. It is seen from (16) that by
moving iks one position forward, the factor 1−piku

is introduced in the probabilities
of arcs (ikh, iks) for all h = r + 1, . . . , s − 1. The probability of traveling directly
from iks to ikh, where h = s + 2, . . . , w − 1, becomes p(iku, ikh)piks

/piku
. This is

because the path from iks to ikh after the move coincide with the path from iku to
ikh before the move, except that iks is visited in place of iku. Similar observations
can be made for all other affected arcs, and we refer to Algorithm 1 for details.

Algorithm 1 ProbUpdatePick(k, s)
Require: 1 ≤ s ≤ nk − 2 and 1 ≤ iks ≤ n.
Ensure: The current probability matrix p is overwritten with new probabilities

induced by a forward move of iks.
Find w ∈ {s + 2, . . . , nk} such that ikw = iks + n.
if ik,s+1 ≥ n + 1 then

u = s + 1
Find r ∈ {1, . . . , s− 1} such that iku = ikr + n
for all h = r + 1, . . . , s− 1 do

p(ikh, iku) = p(ikh, iks)piku
/piks

p(ikh, iks) = p(ikh, iks)(1− piku
)

for all h = s + 2, . . . , w − 1 do
p(iks, ikh) = p(iku, ikh)piks

/piku

p(iku, ikh) = p(iku, ikh)(1− piks
)

p(ikr, iku) = p(ikr, iks)/piks

p(ikr, iks) = 0
p(iks, ikw) = p(iku, ikw)/piku

else
r = s + 1
Find u ∈ {s + 2, . . . , nk} such that iku = ikr + n
for all h = 0, . . . , s− 1 do

p(ikh, ikr) = p(ikh, iks)pikr
/piks

p(ikh, iks) = p(ikh, iks)(1− pikr
)

for all h = s + 2, . . . , min{u, w} − 1 do
p(iks, ikh) = p(ikr, ikh)piks

/pikr

p(ikr, ikh) = p(ikr, ikh)(1− piks
)

if u < w then
p(iks, iku) = p(ikr, iku)piks

p(ikr, iku) = p(ikr, iku)(1− piks
)

else
p(iks, ikw) = p(ikr, ikw)/pikr

p(ik,s+1, iks) = p(iks, ik,s+1)
p(iks, ik,s+1) = 0
p(ik,s+1, ikw) = 0
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Algorithm 2 ProbUpdateDrop(k, w)
Require: 2 ≤ w ≤ nk − 1 and n + 1 ≤ ikw ≤ 2n.
Ensure: The current probability matrix p is overwritten with new probabilities

induced by a forward move of ikw.
Find s ∈ {1, . . . , w − 1} such that ikw = iks + n.
if ik,w+1 ≥ n + 1 then

u = w + 1
Find r ∈ {1, . . . , w − 1} such that iku = ikr + n
for all h = max{s, r}+ 1, . . . , w − 1 do

p(ikh, iku) = p(ikh, ikw)piku
/pikw

p(ikh, ikw) = p(ikh, ikw)(1− piku
)

for all h = w + 2, . . . , nk + 1 do
p(ikw, ikh) = p(iku, ikh)pikw

/piku

p(iku, ikh) = p(iku, ikh)(1− pikw
)

if r < s then
p(iks, iku) = p(iks, ikw)piku

p(iks, ikw) = p(iks, ikw)(1− piku
)

else
p(ikr, iku) = p(ikr, ikw)/pikw

p(ikr, ikw) = 0
else

r = w + 1
Find u ∈ {r + 1, . . . , nk} such that iku = ikr + n
for all h = s + 1, . . . , w − 1 do

p(ikh, ikr) = p(ikh, ikw)pikr
/pikw

p(ikh, ikw) = p(ikh, ikw)(1− pikr
)

for all h = w + 2, . . . , u− 1 do
p(ikw, ikh) = p(ikr, ikh)pikw

/pikr

p(ikr, ikh) = p(ikr, ikh)(1− pikw
)

p(iks, ikr) = p(iks, ikw)pikr

p(ikw, iku) = p(ikr, iku)pikw

p(ikr, iku) = p(ikr, iku)(1− pikw
)

p(iks, ikw) = p(iks, ikw)(1− pikr
)

p(ik,w+1, ikw) = p(ikw, ik,w+1)
p(ikw, ik,w+1) = 0

Algorithm 3 ProbUpdateTour(k, k̂)
Require: nk ≥ 2, 1 ≤ ik,nk−1 ≤ n and iknk

= ik,nk−1 + n.
Ensure: The current probability matrix p is overwritten with new probabilities

induced by a removing the two last nodes of tour k and inserting them at the
start of tour k̂
i = ik,nk−1, j = iknk

for all h = 1, . . . , nk − 2 for which ikh > n do
p(ikh, 2n + 1) = p(ikh, i)/pi

p(ikh, i) = 0
p(0, i) = pi

p(j, 2n + 1) = p(ik̂µ, 2n + 1)pi(1− pik̂µ−n)/pik̂µ−n

/* ik̂µ denotes the first drop-off location in route k̂ */
for all h = 1, . . . , nk̂ for which ik̂h ≤ n do

p(j, ik̂h) = p(0, ik̂h)pj

p(0, ik̂h) = p(0, ik̂h)(1− pi)

10



5.4 Running time analysis

Proposition 1. The described neighborhood search procedure takes O(n4) steps.

Proof. Since each of the O(n) requests can be placed into O(n2) different com-
binations of positions, there are O(n3) solutions to be evaluated. The suggested
sequence of elementary moves ensures that one new solution is visited in every move.
In each move, either of Algorithms 1-3 computes new probabilities in O(n) time,
and hence the total running time is O(n4).

6 Tabu search

Our heuristic is based on tabu search, a metaheuristic that guides the local search
process beyond a local optimum. It was originally proposed by Glover (1986),
and has been applied to numerous applications of continuous and combinatorial
optimization problems with much success (see Glover (1997) and Glover and Laguna
(1997) for surveys on tabu search applications). Tabu search starts from an initial
solution x0 and iteratively moves to a new solution found from the neighborhood
of the current solution x. Since the search may be trapped in a local minimum,
or it may visit earlier visited solutions, anti-cycling rules must be implemented. A
basic mechanism is the short term memory or the recency based memory, and its
purpose is to keep track of recent moves or solutions made in the past. The tabu list
is the tool of achieving this by recording recently made moves or visited solutions.
Whenever the algorithm attempts to move to a solution forbidden by the tabu list,
the move is banned. This rule forces other solutions to be explored. However,
this feature is not strict, as it can be overridden when some aspiration criterion is
satisfied. A common criterion is that the objective function value be the best ever
seen. If this is the case, it is obvious that this solution has never been encountered
before.

6.1 Notation of the heuristic

A feature of our algorithm is the possibility to explore the infeasible part of the
solution space. Gendreau et al. (1994) introduced this by penalizing infeasible
solutions, and later several others have embedded this into their work (Cordeau
et al. 1997, Cordeau et al. 2001, Cordeau and Laporte 2003b). An advantage of
allowing infeasible solutions is that a feasible solution can be obtained from another
feasible solution through a number of intermediate infeasible solutions, which may
never be encountered if only feasible solutions were allowed. By allowing the search
to be shifted back and forth between feasible and infeasible parts of the solution
space, it will be guided into unexplored or less explored regions of the solution
space. This strategy is called strategic oscillation. We let X denote the set of
solutions satisfying constraints (i) and (ii). A solution x ∈ X consists of m vehicle
routes starting and ending at the depot, and for every request, both the origin and
destination vertices belong to the same route and the destination vertex is visited
after its origin. All the other constraints may be violated.

Let t(x) =
∑2n

i=0

∑m
k=1 max{0, Bik − li}, q(x) =

∑m
k=1

∑nk

i=1 max{0, Qik − Qk}
and r(x) =

∑n
i=1

∑m
k=1 max{0, Lik − L} denote total violation of time windows,

load and ride time constraints, respectively. Each solution x is evaluated by a cost
function z(x) = EC(x)+αt(x)+βq(x)+ γr(x), where α, β and γ are dynamically-
adjusted parameters.

11



6.2 Initial solution

An initial solution is found by constructing routes in a greedy manner. In the
current route, some i and i + n, which so far have not been assigned to a route, are
inserted in positions such that the expected increase in travel cost is minimized. The
selection of the pair (i, i + n) is also made with respect to this criterion. This goes
on until there are no more unrouted requests or the current route covers dn/me
requests. In the case of the latter stopping criterion, which is added in order to
have a balanced assignment of requests to routes in the initial solution, the above
is repeated for some other, currently empty route. During the construction process,
constraints (i) and (ii) are ensured to be satisfied, whereas, all other constraints
may be violated.

6.3 Tabu moves

Given the neighborhood defined in Section 5.1, any move is identified by a tuple
(k, i, k̂, s, w). The move in question is to remove the pickup-node i, along with its
corresponding drop-off node i + n from route k, and reinsert them in positions s
and w in route k̂. If k̂ 6= k, all moves where i and i + n are moved back to route
k, regardless of the position, are declared tabu for θ iterations, where θ is a user
defined parameter. A forbidden move will still be chosen if it is the best solution
encountered so far. If k̂ = k, all moves involving moving i and i + n within route k,
regardless of the position, are declared tabu for θ iterations.

6.4 Frequency based memory

Since the tabu status of a move expires after θ iterations, we add a memory of
longer duration to the heuristic. The goal is to explore regions of the solution space
that have not been visited yet, and by penalizing frequently made moves this can
be achieved. The search will be directed to less explored regions. For any solution
x ∈ N (x), whenever z(x) ≥ z(x), a penalty is added to z(x). We only penalize
non-improving moves, since improving ones have to be encouraged. The penalty
φ(x) is defined to be λEC(x)

√
nmϑik. The factor ϑik denotes the frequency of

the pair (i, k), i.e. the number of times request i has been moved to route k from
some other route, and λ is a user defined parameter which controls the intensity of
diversification. The suggested formula can be intuitively explained as follows: The
penalty should be proportional to the expected total solution cost, to the size of the
problem and to the frequency of a move. The number of moves is dependent on the
size of the problem, and using the factor

√
nm seems to somehow compensate for

the problem size. The use of such a factor was first suggested by Taillard (1993) in
the context of the vehicle routing problem.

6.5 Search process

The tabu search algorithm starts off with the initial solution described in Section
6.2. In each iteration it selects a solution x̄ ∈ N (x) that minimizes z(x) + φ(x) and
is non-tabu or satisfies the aspiration criterion. The penalty factor α, β and γ are
initially set equal to 1 and are adjusted as follows: if there are no violation of the
time windows the value of α is divided by a factor of 1+δ, otherwise it is multiplied
by this factor. Similar rules also apply to β and γ for violations of load and ride
time constraints. This process terminates after η iterations and the best solution
found during the search is the final solution.

12



7 GRASP

In this section, we describe our second heuristic which is a hybrid GRASP-tabu
search heuristic. GRASP (Greedy randomized adaptive search procedures, Feo and
Resende 1995) is a multi-start process, where each iteration consists of two phases:
construction and local search. The construction phase builds an initial solution,
and is improved by local search. The best solution from all the GRASP iterations
is returned as the best overall solution. The GRASP procedure for minimizing a
function f is given in Algorithm 4. The reader is referred to Pitsoulis and Resende
(2002) for a tutorial and survey on GRASP applications.

Algorithm 4 GRASP
f(x∗) = ∞
for i = 1 to η do

x =GreedyRandomized(ω)
x =LocalSearch(x)
if f(x) < f(x∗) then

x∗ = x
f(x∗) = f(x)

return x∗

7.1 Construction phase

Algorithm 5 shows the steps of constructing a greedy randomized solution. The
input to this phase is the parameter ω which controls the amount of greediness and
randomness in this phase. We assign requests to one vehicle at a time, and we
start by randomly selecting a request i and insert its associated vertices i and i + n
sequentially in the vehicle. This solution defines the current value of the binary
vector x. The partial neighborhood of x, Nk(x), is defined as all solutions that
can be reached from x by inserting an unrouted request in route k. Every solution
x̂ ∈ Nk(x) satisfies constraints (i) and (ii), whereas all other constraints may be
violated. The probabilistic component of this phase is characterized by randomly
choosing one of the best neighbor solutions x̂, but not necessarily the best one. Let
x be the best solution found in Nk(x) and let x be the worst solution found in
Nk(x). The list of the best neighbor solutions are stored in the RCL (restricted
candidate list), and these solutions are no more than ω(z(x)− z(x)) away from the
best one. In order to balance the assignment of the requests, each vehicle may have
a maximum of dn/me requests assigned to it.

7.2 Local search

The local search phase is done by tabu search. The description of this is given in
Algorithm 6. This is very much like the tabu search heuristic described in Section
6, except that frequency based memory is not incorporated in the algorithm. Since
this search is to be integrated with a multi-start process, it is normally run in a
relatively small number of iterations, and hence the benefit of a frequency based
memory is expected to be modest.

7.3 Reactive GRASP

The parameter ω has an effect on the solution quality and diversity during the
construction phase, and also on the impact of this phase on the final solution of
the heuristic. As it is rather time consuming to calibrate this parameter, Prais

13



Algorithm 5 GreedyRandomized
Require: ω

Set j = 0 and x∗ = 0.
for k = 1, . . . , m do

Randomly select a request to initiate vehicle k, let x be the corresponding
binary vector (0 for all other routes).
Set i = 1 and j = j + 1.
while i < dn/me and j < n do

Initialize Nk(x).
x = arg mint∈Nk(x){z(t)}
x = arg maxt∈Nk(x){z(t)}
RCL = {t ∈ Nk(x) : z(t) ≤ z(x) + ω(z(x)− z(x))}
Select randomly solution x̂ ∈ RCL.
Set x = x̂, i=i+1 and j=j+1.

x∗ = x∗ + x
return x∗

Algorithm 6 LocalSearch
Require: x

If x is feasible, set x∗ = x and EC(x∗) = EC(x); otherwise set EC(x∗) = ∞.
Set α = 1, β = 1 and γ = 1.
for i = 1, . . . , π do

Select a solution x ∈ N (x) that minimizes z(x) and is non-tabu or satisfies the
aspiration criterion.
If x is feasible and EC(x) < EC(x∗), set x∗ = x and EC(x∗) = EC(x).
Set the reverse move tabu for θ iterations.
Compute t(x), q(x) and r(x), and update α, β and γ.
Set x = x.

return x∗

14



and Ribeiro (2000) introduced the Reactive GRASP for which ω is self-adjusted
according to the quality of previously found solutions. This will give the heuristic
an appropriate level of greediness and randomness. Algorithm 7 shows how this is
done.

Algorithm 7 Reactive GRASP
EC(x∗) = ∞
ρi = 1/r, ζi = 0, σi = 0, i = 1, . . . , r
for k = 1, . . . , η do

Randomly select ω = ωi from W using probabilities ρ1, . . . , ρr.
σi = σi + 1
x =GreedyRandomized(ω)
x =LocalSearch(x)
if EC(x) < EC(x∗) then

x∗ = x
EC(x∗) = EC(x)

ζi = ζi + EC(x)
if mod (k, ε) == 0 then

Wi = ζi/σi, i = 1, . . . , r
%i = EC(x∗)/Wi, i = 1, . . . , r
ρi = %i/

∑r
j=1 %j , i = 1, . . . , r

return x∗

At each GRASP iteration ω is chosen randomly from a discrete set W =
{ω1, . . . , ωr}. The probability that ωi is chosen is ρi. Reactive GRASP changes
the probabilities {ρ1, . . . , ρr} every ε iterations to favor the values of ω that pro-
duce good solutions. Let EC(x∗) be the value of the best solution found so far
and let Wi be the average value of the solutions found using ωi in the construction
phase. At every ε iterations the values of %i (see Algorithm 7) and ρi, i = 1, . . . , r,
are updated to reflect the changes made in previous iterations.

8 Computational experiments

To our knowledge, no benchmark instances for the PDARP exist, and therefore
we extended test instances provided by Cordeau and Laporte (2003b). The test
instances contain between 24 and 144 requests, and between 3 and 13 vehicles. The
vertices are clustered around a certain number of seed points in the area [−10, 10]2.
For each vertex, the service time di is equal to 10 and the load qi is equal to 1
for all i ∈ P. A part of the instances (group a) has narrow time windows and the
other part (group b) has wide time windows. The vehicle capacity is set to 6, and
the maximum ride time L is set to 90. All these instances are available from the
Internet at http://www.hec.ca/chairedistributique/data/darp/.

Four groups of modified instances were created. In each group the percentage of
black vertices is fixed to 0%, 25%, 50% and 75%, respectively, and the black vertices
were chosen randomly (all vertices having equal probability to be chosen). Since
the original test instances do not contain request probabilities, the white vertices
are assigned probabilities drawn randomly from the uniform distribution on the
interval (0, 1).

The results from the tabu search (TS) heuristic were obtained with the following
parameter settings: η = 1000, θ = [7.5 log10 n] (where [y] is the nearest integer to
y), δ = 0.5 and λ = 0.015, and for the reactive GRASP-tabu search (GRASP-
TS) heuristic: η = 50, θ = [7.5 log10 n], δ = 0.5, ε = 20, π = 100 and W =
{0.1, 0.2, . . . , 1}. Parameters θ, δ and λ were obtained from Cordeau et al. (2001)
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for a similar tabu search heuristic for the vehicle routing problem with time windows.
The other parameters have not been specifically tuned for the experimentation. The
heuristics were coded in C++ and all experiments were carried out on a Pentium
4, 2.53 GHz computer.

Tables 1-4 show the expected costs of the best solutions from the two heuristics
for each of the twenty instances of groups 1-4, respectively. The best results of any
of the two heuristics are reported in the rightmost column labeled “best”, while the
percentage deviation from the best is given within the parentheses of each heuristic.
Since no optimal solutions are known for any of the problem instances, using the best
solutions obtained by the two presented heuristics as benchmarks seems reasonable.
Under the current parameter settings for TS, setting η = 10 for GRASP-TS, the
two methods can be fairly compared as the computing times are approximately the
same and the time needed to construct the initial solutions is insignificant. The
tables show in general that TS performs very well compared to GRASP-TS for all
the four groups of instances, with average deviations of less than 2% and with group
2 instances being the best with an average deviation of 0.55%. On the other hand,
GRASP-TS was not able to find a feasible solution for an instance of group 2 (see
Table 2), and the average deviations are between 5.36% and 8.35%. However, there
are a few instances in which better results were obtained by GRASP-TS for each
group of instances. We want to see how GRASP-TS performs when the number
of starting points are increased, and the results of the evolution of η varying from
10 to 50 are presented in Tables 1-4. As η increased, GRASP-TS managed in
average to produce better solutions (in the best cases, the gaps were reduced to be
between 2.87% and 6.30%). Still, TS remains the superior one. When η reached 50
for GRASP-TS, the computing time is roughly five times as much as for TS, and
although the gaps between the two heuristics are reduced, GRASP-TS is still far
away from the best known results (especially for the group 2 instances).

One way of explaining the superiority of TS may be the use of the diversification
strategy, frequency based memory, which implies that different parts of the solution
space are explored. The concept of diversification is also utilized by GRASP-TS,
since the heuristic constructs different initial solutions at each iteration. The main
difference between these two methods is that TS remembers every move it has made
since the first iteration, while GRASP-TS is more or less memoryless. The basic
version of GRASP is totally memoryless, but in our implementation of GRASP-TS
we employed the idea of reactive GRASP in which parameter ω that lead to good
solutions will be favored when constructing the initial solutions. Diversification is
achieved by both methods, but realized through different concepts. An observation
that can be drawn from this experiment is that in order to overcome local optima
and to approach near-optimal solutions, it seems to be more useful to remember its
entire search history than just restarting the search without any knowledge of its
past.

The computing times for the neighborhood search procedure is documented in
Table 5. The second column in Table 5 refers to the number of requests, while the
third column refers to the number of vehicles of a particular problem instance. The
computing time for TS-O is in seconds for TS assessing neighbor solutions using
formula (16), while the computing time for TS-N is in seconds for TS using the
presented technique described in Section 5. As these computational times represent
the times needed for searching the neighborhood in one iteration, they are also valid
for the hybrid GRASP-TS since the local search procedure used is tabu search. As
presented in Table 5, using our presented technique for updating the probabilities
results in great savings in computing time.
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Table 5: Computation times

Problem n m TS-O TS-N

R1a 24 3 2.03 0.08
R2a 48 5 11.55 0.47
R3a 72 7 36.39 1.28
R4a 96 9 64.91 2.51
R5a 120 11 106.93 4.23
R6a 144 13 197.20 7.45
R7a 36 4 5.63 0.22
R8a 72 6 50.40 1.63
R9a 108 8 168.32 4.88
R10a 144 10 378.63 10.11
R1b 24 3 1.67 0.08
R2b 48 5 12.25 0.46
R3b 72 7 36.19 1.38
R4b 96 9 64.26 2.60
R5b 120 11 107.77 4.14
R6b 144 13 204.64 7.33
R7b 36 4 5.50 0.24
R8b 72 6 49.70 1.80
R9b 108 8 169.95 4.91
R10b 144 10 379.20 10.34

Avg. 102.64 3.31

9 Conclusion

In this paper we have defined and formulated the probabilistic dial-a-ride problem,
and proposed an efficient neighborhood search procedure for the problem. This
technique makes it possible to update the probabilities faster than the straightfor-
ward approach if the search is conducted in a certain order. We have also developed
a tabu search heuristic and a hybrid GRASP-tabu search heuristic for the PDARP.
Computational results show that, with the suggested neighborhood evaluation tech-
nique embedded in the described heuristics, considerable speed-up is achieved. The
experiments also show that tabu search performs better than GRASP.
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