
 

Local search in physical distribution management

Citation for published version (APA):
Kindervater, G. A. P., & Savelsbergh, M. W. P. (1992). Local search in physical distribution management.
(Memorandum COSOR; Vol. 9230). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/e4661a5d-477e-4321-9b55-d45d408d1437


EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum COSOR 92-30

Local Search in Physical

Distribution Management

G.A.P. Kindervater

M.W.P. Savelsbergh

Eindhoven, August 1992

The Netherlands



Eindhoven University of Technology

Department of Mathematics and Computing Science

Probability theory, statistics, operations research and systems theory
P.O. Box 513

5600 MB Eindhoven - The Netherlands

Secretariate: Dommelbuilding 0.03

Telephone: 040-47 3130

ISSN 0926 4493



Local Search in Physical Distribution Management

GAP. Kindervater

Erasmus University

P.D. &x 1738, 3000 DR Rotterdam

The Netherlands

M.W.P. Savelsbergh

Eindhoven University of Technology

P.O. Box 513,5600 MB Eindhoven

The Netherlands

1. Introduction

Physical distribution management presents a variety of decision making problems at the three levels of stra­
tegic, tactical and operational planning. Decisions relating to the location of facilities (plants, warehouses or
depots) may be viewed as strategic, while problems of fleet size and fleet mix determination can be termed
tactical. On the operational level, two problems prevail: the routing of capacitated vehicles through a collec­
tion of customers to pickup or deliver goods, and the scheduling of vehicles to meet time or precedence con­
straints imposed upon their routes.

The importance of effective and efficient distribution management is evident from its associated costs.
Physical distribution management at the operational level, which is considered in this paper, is responsible

for an important fraction of the total distribution costs. Small relative savings in these expenses could already

account for substantial savings in absolute terms. The significance of detecting these potential savings has

become increasingly apparent due to the escalation of the costs involved, such as capital and fuel costs and
driver salaries.

Not surprisingly, there is a growing demand for planning systems that produce economical routes.

Although cost optimization is often the primary objective for purchasing computerized systems for physical

distribution management, there are other benefits that should not be underestimated. The introduction of such
systems enables companies to maintain a higher level of service towards their customers, it makes them less
dependent of their planners, it supplies better management information facilities, and it makes the conduct of
work faster and simpler.

Besides its obvious practical importance, physical distribution management also provides some fascinating

basic models, such as the traveling salesman problem, the vehicle routing problem, and the pickup and

delivery problem. Consequently, researchers from the fields of operations research, mathematics, and com­

puter science, have spent man-centuries in trying to develop solution approaches for these problems. For an
extensive survey of models and solution methods in vehicle routing and scheduling see Bodin, Golden,
Assad & Ball [1983).

In the last decade, enormous theoretical as well as practical advances have been made. Certainly one of

the most important advances is the incorporation of 'real world' characteristics, such as time windows and
precedence relations, into the basic models.

Some of the resulting vehicle routing and scheduling models will be discussed in this paper. The first is the
vehicle routing problem with lime windows (VRPTW) [Desrochers, Lenstra, Savelsbergh & Soumis 1988),



2

which is defined as follows. A number of vehicles, each with a given capacity. is located at a single depot

and must serve a number of geographically dispersed customers. Each customer has a given demand and

must be served within a specified time window. The objective is to minimize the total cost of travel.

The special case in which the vehicle capacities are infinite is called the multiple traveling salesman prob­

lem with time windows (m-TSPTW). It arises in school bus routing problems. The problem here is to deter­

mine routes that start at a single depot and cover a set of trips. each of which starts within a time window.

There are no capacity constraints. since each trip satisfies those by definition and vehicles moving between

trips are empty.

The second model is the pickup and delivery problem with time windows (pDPTW) [Dumas. Desrosiers &

Soumis 1991]. Again. there is a single depot, a number of vehicles with given capacities. and a number of

customers with given demands. Each customer must be served to pick up goods at his origin during a

specified time window. and to deliver the items at his destination during another specified time window. The

objective is to minimize total travel cost

The special case in which all customer demands are equal is called the dial-a-ride problem (DARP). It

arises in transportation systems for the handicapped and the elderly. In these situations. the temporal con­

straints imposed by the customers strongly restrict the total vehicle load at any point in time. and the capacity

constraints are of secondary importance. The cost of a route is a combination of travel time and customer dis­

satisfaction.

An important consideration in the formulation and solution of vehicle routing and scheduling problems is

the required computational effort associated with various solution techniques. Virtually all vehicle routing

and scheduling problems belong to the class of NP-hard problems. This indicates that it is difficult to solve

even small instances of a problem to optimality with a reasonable computational effort. As a consequence,

when we have to solve real-life problems, we should not insist on finding an optimal solution, but instead on

finding an acceptable solution within an acceptable amount of computation time. To accomplish this we have

to resort to approximation algorithms.

Approximation algorithms for vehicle routing and scheduling problems usually have two phases: a con­

struction phase, in which an initial feasible solution is constructed, and an improvement phase, in which an

attempt is made to improve that initial solution by repeatedly searching a specified neighborhood for a better

one. This paper focuses on the techniques developed for the improvement phase.

To the best of our knowledge. most iterative improvement methods that have been applied to the vehicle

routing and scheduling problems are extensions of the well-known k-exchange algorithms, which have been

studied extensively in the context of the traveling salesman problem, see for instance Bentley & Johnson

[1993]. Extensions are needed to handle the side constraints imposed by the vehicle routing and scheduling

problem under consideration.

Actually. the main thrust of the research in this area has not been on how to handle side constraints. which

is trivial, but on how to handle side constraints efficiently, which is non-trivial.

The paper is organized as follows. In Section 2, the heart of the paper, we will present a survey of the vari­

ous methods that have been proposed to implement k-exchange methods for constrained variants of the TSP

efficiently. In Section 3, we will see how these methods can be used in a situation with multiple routes.

2. The traveling salesman problem with side constraints

In the traveling salesman problem, one is given a complete undirected graph G with vertex set {I, ... ,n}

and a travel time d jj for each edge {i,j}, and one wishes to find a Hamiltonian cycle, i.e., a cycle passing

through each vertex exactly once, of minimum total duration.

We consider two local search strategies for the TSP. In both cases, the neighborhoods considered are tours

that can be obtained from an initial Hamiltonian cycle by replacing a set of k of its edges by another set of k

edges. Such replacements are called k-exchanges, and a tour that cannot be improved by a k-exchange is said

to be k-optimal. For two reasons, we only consider k-exchanges for k ~ 3 . First, k-exchanges for k>3 are sel­

domly used in iterative improvement methods for vehicle routing and scheduling problems. Second, k­

exchanges for k ~ 3 suffice to illustrate the techniques we want to discuss. In the end, it should be clear how

the presented techniques can be extended to the general case.



3

I

I

I

Y

Figure 1. A 2-exchange.

(1) Try to improve the tour by replacing 2 of its edges by 2 other edges, i.e., a 2-exchange, and iterate until

no further improvement is possible. An example of a 2-exchange is given in Figure 1.

Figure 2. A forward Or-exchange.

(2) Try to improve the tour by relocating a chain of 1consecutive vertices and iterate until no further

improvement is possible. This type modification of the tour involves the replacement of a set of three edges,

with a restriction on the choice of edges. Hence, the neighborhood is a subset of the 3-exchange neighbor­

hood. Since the procedures involved are conceptually the same for all values of 1, we will restrict ourselves

to 1=1. This type of exchanges was first considered by Or [1976], and are, therefore, called Or-exchanges.
We speak of aforward Or-exchange if the vertex is moved to a place further on the tour (cf. Figure 2), and of

a backward Or-exchange otherwise (cf. Figure 3).

Figure 3. A backward Or-exchange.



4

The complicating side constraints that appear in the VRP1W and PDP1W and that we want to incorporate

are:

• precedence relations between vertices;

• collections or deliveries at vertices;

• time windows at vertices.

We will consider each of these side constraints separately, but it should be clear that most of the techniques

presented can easily be used to produce a variant that handles a combination of them. We start by introduc­

ing the three variants of the TSP for which we will study the exchange procedures in more detail.

In the TSP with precedence constraints, we are given, in addition to the travel times djj between each pair

of vertices (i,j), precedence constraints specifying that some pairs of vertices have to be visited in a

prescribed order. The single-vehicle dial-a-ride problem, where a single vehicle has to pick up and deliver n

customers, is an example of the TSP with precedence constraints. Given a precedence related pair of vertices

u-w, we will often refer to the origin u and the destination v, the meaning of which is obvious.

In the TSP with collections and deliveries, we are given, in addition to the travel times between vertices,

for each vertex i an associated load qj that can be either positive or negative depending on whether the load

has to be collected or delivered. The salesman uses a vehicle with fixed capacity Q.
In the TSP with time windows, we are given, in addition to the travel times, for each vertex i a time win­

dow on the departure time, denoted by [ej,lj], where ej specifies the earliest service time and 1; the latest ser­

vice time. Arriving earlier than ei introduces a waiting time at vertex i; arriving after 1; leads to infeasibility.

We will use the following notation: Aj will denote the arrival time at vertex i, D j will denote the departure

time at vertex i, and Wi will denote the waiting time at vertex i.

For notational convenience, we will assume that the current tour is given by the sequence

(1,2, ... ,i, ... , n,n +1), where the origin 1 and the destination n +1 denote the same vertex, and i represents

the i-th vertex. We also assume that a 2-exchange replaces two edges {i,i + I} and {j,j+ I}, with j>i, by the

edges {i,j} and {i+l,j+l}, and that an Or-exchange involves the substitution of edges {i-l,i}, {i,i+l} and

{j,j+I} by {i-l,i+l}, {j,i} and {i,j+l}.

The main difficulty with the use of exchange procedures in the TSP with side constraints is testing the

feasibility of an exchange, as opposed to the TSP where one only has to test whether the exchange is

profitable and one does not have to bother about feasibility. A 2-exchange, for instance, will reverse the path

(i+l, . .. ,j), which means that one has to check the feasibility of at least all the vertices on the new path

with respect to those constraints. In a straightforward implementation this requires O(n 2
) time in the TSP

with precedence constraints, and 0 (n) time in the TSP with collections and deliveries and the TSP with time

windows.

By applying preprocessing techniques [psaraftis 1983, Solomon, Baker & Shaffer 1988], tailored updating

schemes [Solomon, Baker & Shaffer 1988], and lexicographic search strategies [Savelsbergh 1986, 1990,

1992] several researchers have been able to incorporate the various side constraints with an acceptable or

even without an increase in computation times.

Before focusing on improvement methods of a given tour, it is worthwhile to mention the influence of the

side constraints on the construction of an initial feasible tour. In the TSP with precedence relations, an initial

tour can be obtained in polynomial time by visiting the vertices in topological order. In the other two cases,

the problem of deciding whether a feasible tour exists is NP-complete [Savelsbergh 1990].

2.1. Preprocessing

Psaraftis [1983] was the first to study k-exchange procedures for a constrained variant of the TSP. He studied

2-exchanges and Or-exchanges in the context of the single vehicle dial-a-ride problem. The dial-a-ride prob­

lem is a TSP with precedence constraints in which each vertex is related to precisely one other vertex.

First, we examine the 2-exchanges. A straightforward test for feasibility in this case requires O(n 2
) time.

This can be seen as follows. The only way that a 2-exchange can be infeasible is if there is at least one pre­

cedence related pair of vertices on the segment of the tour that is reversed. The simplest way to find out

whether such a pair of vertices exists is to examine all pairs of vertices in the segment. This requires O(n 2
)



5

time, and would lead to an overall complexity for verification of 2-optimality of O(n 4
).

Psaraftis shows how this can be reduced to 0 (n 2) by performing a screening procedure in the beginning of

the algorithm which determines the feasibility of every possible 2-exchange. Information from the screening

procedure is stored in a feasibility matrix to be examined during the execution of the actual algorithm.

The screening procedure is based on the following observation: if firstdesj denotes the first destination of a

precedence relation for which both origin and destination lie beyond i, then the exchange of (i,i +I} and

(j,j+l} with {i,j} and {i+l,j+l} is feasible if and only if j<firstdesj. The screening procedure first com­

putes the values firstdesj and then constructs the feasibility matrix feas, i.e., feasjj= I if j<firstdesj and

feasjj =0 otherwise. Psaraftis shows that the values firstdes j can be computed in O(n 2) time, thus proving

that verification of 2-optimality can be done in 0 (n 2) time.

Next, we examine the Or-exchanges. An advantageous feature of Or-exchanges is that they are direction

preserving, i.e., the segments determined by the deletion of (i-I,i}, (i,i+I}, and (j,j+l} are traversed in

the same direction in the final tour. Therefore, if these segment are feasible in the original tour, they will also

be feasible in the final tour. There is only one situation which leads to infeasibility: a precedence related pair

of vertices with origin i and destination in the segment (i+l, ... ,j) for a forward Or-exchange and a pre­
cedence related pair of vertices with origin in the segment (j+I, ... ,i-1) and destination i for a backward

Or-exchange, since the order, in which the vertex i and the segment are traversed in the final tour, is

reversed.

Similar screening procedures can be developed for both forward and backward Or-exchanges. For forward

Or-exchanges, we need the following observation: if firstdesj denotes the first destination of a precedence

relation with origin i, then the exchange of (i-l,i}, {i,i+l} and {j,j+l} with [i-l,i+l}, [j,i} and (i,j+l}

is feasible if and only if j<firstdesj. An analogous observation can be made for backward-Or-exchanges.

The values firstdesj can be computed in O(n 2
) time, thus proving an overall complexity of O(n 2

) for

verification of Or-optimality.

Solomon, Baker & Schaffer {l988] have adapted the above presented preprocessing scheme for the TSP with

time windows. The idea is to identify precedence relations between pairs of vertices based on their time win­

dows. If ej+djplj. then vertex j has to precede vertex i. Note that the use of this type of preprocessing does

not eliminate the need for further checking of feasibility; it may be used as a filter to reduce the nwnber of

complete feasibility checks required.

2.2. Direction preserving exchanges

Solomon, Baker & Schaffer [1988] have carried out an extensive computational study on the efficient imple­

mentation of k-exchange procedures for the TSP with time windows. Their implementation incorporated the

preprocessing scheme discussed above, as well as tailored updating mechanisms for direction preserving

exchanges. These updating mechanisms are based on the observation that if the direction in which we

traverse a path is unchanged, we can check the feasibility of each vertex on the path by simply looking at the

change in arrival time.

Consider a path (u,u+l, . .. ,v) with associated departure times and suppose that the departure time at the

first vertex of the path is decreased. This defines a push backward

where Du and D ~ e w define the current and the new departure time at vertex u. The push backward at the next

vertex on the path can be computed by

BU +1 =min[Bu,Du+1-eu+l}'

Obviously, all vertices on the path remain feasible and the departure times DI; need to be adjusted sequen­

tially for k=u, ... ,vas long as BI;>O.

Similarly, consider a path (u,u+l, . .. ,v) with associated departure times and suppose that the departure

time at the first vertex of the path is increased. This defines a push forward



6

The push forward at the next vertex on the path can be computed as follows

FU+1 =max {Fu-Wu+l> OJ,

where WU +1 denotes the waiting time at vertex u+1. Obviously, if Fu>O some vertices on the path could

become infeasible. The vertices on the path have to be checked sequentially. At a vertex k (ug~v), it may

happen that Di;+Fi;>Ii; in which case the path is no longer feasible, or Fi;=O which indicates that the path

from vertex k to vertex v has not been changed.

Observe that in the worst case testing the feasibility of an exchange takes 0 (n) time. However, in practice,

the use of a push backward and a push forward leads to a substantial reduction in the number of vertices

being examined for time feasibility. Note that these techniques are only useful in direction preserving

exchanges.

2.3. Lexicographic search

Savelsbergh [1986, 1990, 1992] introduced an approach that can be used to incorporate all three side con­

straints in exchange procedures without increasing the time complexity of verification of local optimality.

The basic idea is the use of a specific search strategy in combination with a set of global variables such

that testing the feasibility of a single exchange and maintaining the set global variables requires no more than

constant time. Because the search strategy is of crucial importance, we present it first.

Lexicographic search/or 2-exchanges. We choose the edges {i,i +I} in the order in which they appear in the

current route starting with i=l up to i=n-2; this will be referred to as the outer loop. After fixing an edge

{i,i+l}, we choose the edge {j,j+l} successively equal to {i+2,i+3}, {i+3,i+4}, ... , {n,n+l) (cf. Figure

4); this will be referred to as the inner loop.

Figure 4. The search strategy for 2-exchanges.

Now consider all possible exchanges for a fixed edge {i,i +I}. The inspection of the 2-exchanges in the order

given above implies that in the inner loop the previously reversed path (i+l, ... ,j-l), corresponding to the

substitution of {i,i +I} and {j-1,j} with {i,j -I} and {i+1,j}, is expanded by the edge {j -1,j}.

Lexicographic search/or forward Or-exchanges. We choose vertex i in the order of the current route start­

ing with i equal to 2. After fixing i, we choose the edge {j,j+l} to be {i+l,i+2}, {i+2,i+3), ... , {n,n+l}

consecutively. That is, the edge {j,j+l} 'walks forward' through the route. Note that in the inner loop in

each newly examined exchange the path (i+l, . .. ,j-l) of the previously considered exchange is expanded

with the edge {j -1,j}.

Lexicographic search/or backward Or-exchanges. We choose vertex i in the order of the current route start­

ing with i equal to 2. After fixing i, we choose the edge {j,j+l} to be {i-2,i-l}, {i-3,i-2}, ... , {l,2} in

that order. That is, the edge {j,j+1J 'walks backward' through the route. Note that in the inner loop in each

newly examined exchange the path (j+2, ... , i-I) of the previously considered exchange is expanded with

the edge U+l,j+2).



7

Now that we have presented the search strategy, let us return to the feasibility question. In order to test the

feasibility of a single 2-exchange, we have to check all the vertices on the reversed path (i+l,. '. ,j) and on

the path (j+I, ... ,n+I), and in order to test the feasibility of a single forward (or backward) Or-exchange,

we have to check besides vertex i the vertices on the paths (i+I, ... ,j) and (j+I, ... ,n+I) (or

(j+I, ... ,i-I) and (i+I, ... ,n+I». In a straightforward implementation this takes O(n) time for each sin­

gle exchange. We will present an implementation that requires only constant time per exchange.

The idea is to define an appropriate set of global variables, which will of course depend on the constrained

variant of the TSP we are considering, in such a way that

• the set of global variables makes it possible to test the feasibility of an exchange in constant time, i.e., the

feasibility of all the vertices on the paths in question can be checked in constant time, and

• the lexicographic search strategy makes it possible to maintain the correct values for the set of global vari­

ables in constant time, i.e., the update of the global variables when we go from one exchange to the next

one can be done in constant time.

To see how these ideas work out in actual implementations, we show the pseudo-code of a general frame­

work for a 2-exchange procedure.

(* replace edges {i,i +I} and {j,j+ I} by edges (i,j) and (i +I,j+I) *)

procedure TwoExchange

(* input: a route given as (1, ... ,n+1) *)

(* output a route that is 2-optimal *)

REPEAT:

for if-I to n-2 do

InitGlobal (i,G)

for j f-i+2 to n do

if ProfitableExchange (i,j,G) and

FeasibleExchange (i,j,G)

then

PerformExchange (i,j)

gotoREPEAT

UpdateGlobal (i,j,G)

(* outer loop: fix edge {i,i +I} *)

(* initialize global variables *)

(* inner loop: fix edge {j,j+I} *)

(* test whether the exchange is profitable *)

(* test whether the exchange is feasible *)

(* update global variables for the next iteration *)

END:

Although the above pseudo-code looks rather simple, defining a set of global variables in such a way that, in

combination with the lexicographic search strategy, the functions InitGlobalO, ProfitableExchange 0, Feasi­

bleExchangeO, and UpdateGlobalO do what they are supposed to do and take only constant time, is often not

so obvious.

Reexamining a 2-exchange, a forward Or-exchange and a backward Or-exchange, we see that the algo­

rithms have to be able to handlf1 reversing a path, relocating a path backward and relocating a path forward.

As these three types of changes Icomprise all the possibilities that can occur in a k-exchange (for arbitrary k),

the techniques can be used to implement k-exchange algorithms for the TSP with side constraints for arbi­

trary k without increasing the time complexity beyond 0 (n k).

Precedence relations

As a first illustration of the proposed technique we show how precedence relations can be handled. Obvi­

ously, we cannot improve the time complexity of 0 (n 2) of Psaraftis' implementation for the verification of

2-optimality. In fact, we will just present an alternative and simpler implementation of his idea. Attach a

label to each vertex u with information on the first vertex on the tour for which a precedence relation u-w
exists: }irstu =min (v Iu-w ).



8

2-Exchanges. Recall that the exchange of {i.i+I} and {j.j+I} with {i.j} and {i+I.j+I} is feasible if and

only if j<firsldes;. where firstdes; denotes the first destination of a precedence relation for which both origin

and destination lie beyond i. This is equivalent to stating that a 2-exchange is feasible if and only if there is

no precedence related pair of vertices on the path that is reversed. Hence. at any stage infonnation concern­

ing this path is sufficient. The lexicographic search strategy makes it possible to gather the required

knowledge using a single global variable. We introduce the variable F to denote the first destination of a pre­

cedence relation for which the corresponding origin is on the path that is to be reversed. Feasibility of a 2­

exchange is now established by verifying that the vertex denoted by the variable F is not on the reversed

path.

All we have to do now is to show that we can ensure that the global variable F contains the right infonna­

tion when it is examined. The lexicographic search strategy provides a simple way to accomplish this. In the

outer loop. whenever we expand the path (1 •... ,i-I) with the edge {i-I,i}, we set F equal to firsl;+l. In

the inner loop, whenever we expand the path (i+I, ... ,j-I) with the edge {j-I,j}, we set F equal to the

minimum of its current value andfirs1j.

Or-exchanges. A forward Or-exchange is feasible if and only if there is no pair of precedence-related ver­

tices with the first being i and the other on the path (i+I •... •j). Whenever we try to expand the path

(i +1•... , j -1) with the edge {j-I.j} and i ~ j, i.e.• vertex i is a predecessor of vertex j. the expansion will

only result in infeasible exchanges. Similarly, a backward Or-exchange is feasible if and only if there is no

pair of precedence-related vertices with the first on the path U+1, ... , i-I) and the other being i. Whenever

we try to expand the path U+2, ... , i-I) with the edge {j +I.j+2} and j +1~i, i.e., vertex j +1 is a predeces­

sor of vertex i. the expansion will only result in infeasible exchanges.

Before discussing collections and deliveries and time windows. we take another close look at a k-exchange

and the lexicographic search strategy. A k-exchange is the substitution of k links of a tour with k other links.

The first step is the deletion of k links. i.e.• the tour is broken up into k paths. The second step is the addition

of k other links. i.e., the k paths are concatenated in a different order to fonn a new tour.

More specifically, a 2-exchange deletes the links {i,i+l} and {j,j+I}, with j>i, to fonn the paths

(1, ...• i), (i+I, ... •j), and U+I, ... ,n+I), and then adds the links {i,j} and {i+I,j+1J to obtain the new

tour (1, ... ,i,j, . .. ,i+I,j+I, ... ,n+I), a forward Or-exchange deletes the links {i-I,i}, {i,i+I} and

{j,j+I} to fonn the paths (1 •... ,i-I), (i). (i+I, ... •j), and U+I, ,n+I), and then adds the links

{i-I,i+I}, {j,i} and {i,j+I} to obtain the new tour (1, ... ,i-I,i+I, ,j,i.j+I•... ,n+I). and a back-

ward Or-exchange deletes the links {i-I,i}, {i.i+I} and {j,j+l} to fonn the paths (1, ... ,j),

U+I, ...• i-l), (0, and (i+I, ... ,n+I), and then adds the links {i-I,i+I}, {j,i} and [i,j+I} to obtain the

new tour (1, ... ,j.i.j+l, .. . ,i-I,i+I, ... ,n+I).

The key feature of the lexicographic search strategy is that in consecutive iterations the k paths that result

after the deletion of the k links differ by at most a single vertex. The proposed implementation scheme for k­
exchange methods associates a set of global variables with each of these paths containing infonnation on its

feasibility and its profitability. The global variables are chosen such that initializing the global variables for a

single vertex path, and computing the values of the global variables for a concatenated path, takes constant

time.

Collections and deliveries

The following three quantities turn out to be sufficient for the analysis of feasibility for the TSP with collec­

tions and deliveries.

• The maximum load L(,.:~ ... ,u.) on the path (u I, ...• Uk), assuming the vehicle is empty when it arrives at

vertex UJ, i.e.,



9

• The minimum load L~ ....w.> on the path (Ul"" ,Uk), assuming the vehicle is empty when it arrives at

vertex U 1, i.e.,

L Jmn
( . ) =minl~:~LI:l~· ..:q
"11"· t". .=:.J~ ~J~ IlJ -

• The final load Lrc::,~ . ......) on the path (u 10 ••• ,Uk), assuming the vehicle is empty when it arrives at vertex

Ul' i.e.,

L final ='\"' . q(..,.....w.> ""'lSiSk ... •

Initializing these quantities for a single vertex path (u) is trivial: L(,.)x =L<.*' =Lrc::)al = q... The next proposi­

tion shows that if we concatenate two (vertex-disjoint) paths, we can compute the quantities for the resulting

path from the quantities of its constituent paths in constant time.

Proposition. If two (vertex-ctisjoint) feasible paths (Ulo ••• ,Uk) and (VI' ••• ,VI), with associated maximal
loads L max and L max minimal loads L min and L min and final loads L final and(", ) (V, V/), (.., ) (V, V,), (.., )

Lr:.~ .. ..V,), are concatenated, the same values for the resulting path (u 10 •••• Ub V 10 •••• VI) are given by:

Lmax -max(Lmax Lfinal +Lmax
}( v, •...• V,) - (.., ••••• w.>' ( ) (V, V,) ,

L min - min [Lmin L final +Lmin } and
(.., V, v/) - (.., ). (.., ) (V, .... •V,) •

L final =L final +L final
( v, •...• V,) (.., ) (V, •.••• V,),

Proof: Trivial. 0

From the discussion on k-exchanges and the lexicographic search strategy, it should be clear that the above

proposition shows that checking the feasibility of an exchange, Le., Lfe... II+l) ~Q and Lct ... II+l) ~ O . as

well as updating between consecutive iterations can be done in constant time.

Time windows

Under the assumption that on its way a vehicle always departs at a vertex as early as possible, which is the

best choice from a feasibility point of view, a path can be completely specified by giving the sequence in

which the vertices are visited and the departure time at the first vertex of the path.

The following quantities turn out to be extremely useful in the analysis of feasibility and profitability of k­
exchanges in the TSP with time windows.

• The total travel time T(.., ) on the path (u 1, ..• ,Uk), Le.,

T( )=I:1Si dd ,.

• The earliest departure time E (u, ) at vertex Uk of the path (u 10 ••• ,Uk), assuming vertex U 1 is left at

the opening of its time window, i.e.•

E (.., )= maxlSiSk(ej+T( )}.

• The latest arrival time L(u, ) at vertex Ul of the path (u 1, .•• ,Uk), such that the path remains feasible.

i.e.,

L (u.. .......) = minlSi Sk (lj-T (u, • ...•u,) } •

Other interesting quantities can be obtained using the above values. So is, for example. the waiting time on

the path (Ulo •••• Uk) equal to E(u, )-e..,-T(u, ).

The following proposition shows that if we concatenate two paths (u 1, ••• ,Uk) and (V 1••••• VI). we can
compute the same quantities for the resulting path (u 1, ... ,Uj;,VI • ••• ,VI) from the quantities of its consti­

tuent paths in constant time.



10

Proposition. If two (vertex-disjoint) feasible paths (u I •...• Uk) and (v I •...•VI). with associated total travel

times T(u" .......) and T(v,•... ,v,). earliest departure times E(u" ... ,...) and E(v" ...• v,). and latest arrival times

L (u" ,u.) and L(v" ,v,), are concatenated. the resulting path is feasible if and only if

E(u ,u.)+d....v,Q(v ,v,) and the same values for the resulting path are given by:

T(u, ,v,•... , v,) =T (u )+d ,v,+T(v ,v,).

E(u" , ,v ,v,) =max{E(u )+du••v,+T(v v,)' E (v, •... ,v,)}, and

L(u,•... , ,v" ,v,) =min (L(u, •... ....). L(v" .... v,)-T(u,•... ,...)-d... ,v, }.

Proof: Trivial. 0

From the discussion on k-exchanges and the lexicographic search strategy. it should be clear that this propo­

sition shows that checking the feasibility of a k-exchange as well as updating between consecutive iterations

can be done in constant time.

The presence of time windows also allows for the specification of a variety of objective functions. such as

minimize the total travel time. i.e.• T (1, ... ,11+1). minimize the completion time. i.e.• E (I •...•11+1). and minimize

the route duration. i.e.• max {E (I, ...•1I+l)-L(I, ... ,11+1). T (I, ...• II+I)}'

2.4. Parallel implementations

Nowadays. many computers are able to perfonn a number of operations in parallel. Such computers have a

greater processing power than a serial one. thus making it possible to obtain substantial speedups. In this sec­

tion. we will discuss the verification of local optimality on a parallel random access machine (pRAM). a

machine model in which an unbounded number of processors operate in parallel and communicate with each

other in constant time through a shared memory. The shared memory allows simultaneous reads from the

same location but disallows simultaneous writes into the same location. Although the PRAM is hardly a real­

istic computer model. the resulting algorithms can be adequately used for implementation on any 'real­

world' machine and the overhead introduced is only minimal (see for example Alt. Hagerup, Mehlhorn &

Preparata [1987] and Karlin & Upfal [1988]).

Before addressing the issue of local optimality. we will first consider an elementary problem and describe

a basic technique in parallel computing for its solution. The algorithm consists of two phases. In some simple

situations, only the first phase is needed.

The problem is to find the partial sums of a given sequence of n numbers. For the sake of simplicity. let

n =2m and suppose that the n numbers are given by a",all+l, ...•a 211-1' We wish to find the partial sums

bll+j =all+' •. +a,,+j for j =0•... ,n-I. The following procedure is due to Dekel & Sahni [1983]:

for 1~m-l downto 0 do

par [ 2 / ~ j = : ; 2 / + I _ l ] a j ~ a 2 j + a 2 j + l ;

b 1 ~al;

for 1~ 1 to m do

par [ 2 ' ~ j ~ 2 / + I _ l ] bj ~ if j odd then b (j-l)12 else bjl2-aj+1 .

Here, a statement of the fonn 'par [ r e ; ; j ~ ] Sj' denotes that the statements Sj are executed in parallel for all

values of j in the indicated range.

The computation is illustrated in Figure 5. In the first phase. represented by solid arrows, the sum of the

aj's is calculated. Note that the a-value corresponding to a non-leaf node is set equal to the sum of all a­
values corresponding to the leaves descending from that node. In the second phase. represented by dotted

arrows, each parent node sends a b-value (starting with b 1 =a I) to its children: the right child receives the

same value. the left one receives that value minus the a-value of the right child. The b-value of a certain node

is therefore equal to the sum of all a-values of the nodes of the same generation. except those with a higher

index. This implies. in particular, that at the end we have b,,+j =a,,+' .. +all+j for j =0, ... •n-l.



11

1=0

1=1

1=2

1=3

(* compute the effect of all possible 2-exchanges *)

(* search for the best 2-exchange 01<)

Figure 5. Partial sums: an instance with n =8.

The algorithm requires O(logn) time and n processors. This can be improved to O(logn) time and

o(n/log n) procesSCl"S by a simple device. First, the set of n numbers is partitioned into nllog n groups of size

log n each, and n/log n processors determine the sum of each group in the traditional serial way in log n time.

After this aggregation process, the above algorithm computes the partial sums over the groups; this requires

O(nllogn) processors and O(logn) time. Finally, a disaggregation process is applied with the same proces­

sor and time requirements. The total computational effort is o(log n'n/log n)= O(n), as it is in the serial

case. This is called a/ull processor utilization or a perfect speedup.

In the form given above, the algorithm does not work for operations such as maximization. The partial

sums algorithm uses subtraction, which has no equivalent in the case of maximization. We therefore present

a version of the partial sums algorithm which is not quite so elegant as the original one, but which has the

desired property since it makes use of addition only. It also runs in O(logn) time using O(nllogn) proces­

sors:

for 1~m-l downtoO do

par [ 2 ' ~ j ~ 2 ' + l - l ] a j ~ a 2 j + a 2 j + l ;

for 1~ 0 to m do
par [ 2 ' ~ j ~ 2 ' + l - l ]

bj ~ if j = 2' then aj else if j odd then b U- 1)l2 else bU-2)I2+aj'

We now return to the verification of local optimality. The following procedure decides whether or not the

tour (l, 2, ... ,n,n+1) is 2-optimal:

par [ 1 ~ < j ~ n ] Ojj ~ djj+dj+lj+l-dj.j+l-dj,j+l;

Omin ~min{ojj 11~<j~};

if~~

then (l,2, ... , n,n+I) is a 2-optimal tour

else let i* and j*, with i* <j* , be such that llj*j* =~,
(1, ... , i*,j*,j* -1, ... , i*+1,j* +I, ... ,n+1) is a shorter tour.

For the verification of Or-optimality of the tour (1,2, ... ,n,n +1), we obtain almost the same algorithm:



12

par [ 1 < i < j ~ & ISj<i -I<n] Oij +- min {di-1,i+1+dj,i+di,j+1-di-1,i-di,i+1-dj,j+1 };
0min +-min{Oij II<i<j~ or ISj<i-l<n};

i f O m m ~

then (1,2, ... ,n,n +I) is an Or-optimal tour

else let i* and j*, with I <i* <j*Sn or ISj* <i* -I <n, be such that Oi*j* =Omin,
if i*<j*

then (I, ,i*-I,i*+I, ,j*,i*,j*+I, ...•n+l) is a shorter tour

else (I, ,j*,i*,j*+I, ,i* -I,i* + I, ...• n + I) is a shorter tour.

By adapting the first phase of the partial sums algorithm such that it computes the minimum of a set of

numbers and also delivers an index for which the minimum is attained, the above procedures can be imple­

mented to require 0 (log n) time and 0 (n 2/1og n) processors. The total computational effort is

O(logn'n 2/1ogn)= O(n 2
), as it is in the serial case. Hence, we have obtained a perfect speedup.

Although the serial and parallel implementations seem similar, there is a basic distinction. When the tour

under consideration is not 2-optimal. the serial algorithm will detect this after a number of steps that is some­

where in between I and (2)' In the parallel algorithm, confirmation and negation of 2-optimality or Or­

optimality always take the same amount of time.

Precedence relations

In Section 2.3 we have seen that the introduction of precedence relations into the basic model did not

influence the time complexity in the sequential case. The idea used there cannot be applied in the parallel

case since it is inherently sequential. It turns out, however, that a preprocessing phase as done by Psaraftis

[1983] (see also Section 2.1) has an appropriate parallel equivalent. The preprocessing enables us to decide

on local optimality of a given tour in the same way as before, without an increase in the time and processor

requirements.

We consider the tour (1,2, ... ,n,n + I), which is assumed to be feasible. Further let the set of precedence

relations be given by {ik~ j" IISkSm}. where i k ~ jk denotes that vertex ik must be visited before vertex j".

For technical reasons, it is convenient to assume that the set of relations contains the relations i ~ n + l for

each vertex i ( l g ~ + I ) .

2-optimality. We start by considering all partial paths along the tour, and then construct the tours that can be

obtained by a 2-exchange.

(1) For each path (i,i+I •. .. •j-I,j), we define first(i,i+1, ... ,j-1.j) as the smallest numbered vertex v for

which there exists a precedence relation k ~ v , where k is a vertex on the path. This path from vertex i to ver­

tex j can be reversed and still satisfies the precedence constraints if and only if first (i,i+1, .... j-1.j)>j.

The computation of the values first(i.i+1 .... ,j-1,j) is done in two steps. First we look at paths of one vertex

and then we consider longer ones. This leads to the following computations:

par [ I g ~ +1] first (i) +- minI v li~v, ISv~+I};

par [ISiSn +1] par [ i S j ~ + I] first (i.i+1 ..... j-1,j) +- min [first (k) IiSkSj}.

The first step requires O(logn) time with O(n 2/1ogn) processors, using the first phase of the partial sums

algorithm, with addition replaced by taking the minimum. for all vertices in parallel. The second step also
takes 0 (log n) time and 0 (n 2/10g n) processors by applying both phases of the partial sums algorithm, with

addition replaced by taking the minimum. again for all vertices in parallel.

(2) Since a tour that arises from a feasible tour after performing a 2-exchange is feasible if and only if the

path that is reversed remains feasible, we can verify 2-optimality of the given tour by:



13

par [ I ~ < j ~ ] Oij ~ dij+di+l.j+l-di.i+l-dj.j+l;

Omm ~ min {Oij Ifirst(i.i+I .....j-1J»j, I ~ < j ~ } ;
i f O m m ~

then (1,2, ... , n,n +I) is a 2-optimal tour

else leti* andj*, with i* <j*, be such that Oi0j* =Omm and first (iO.iO +1 .....j*-I.j*)>j*,
(1, ... ,i*,j*,j*-I, ... , i* +I,j* +I, ... ,n +I) is a better feasible tour.

For this phase, we also need O(logn) time and O(n 2110gn) processors. Hence, for the complete process of

verification of 2-optimality of a given tour the presence of precedence relations does not affect the time and

processor requirements, and the total computational effort is the same as in the sequential case.

Or-optimality. The algorithm for the verification of Or-optimality proceeds along the same lines as above.

Again, we have two phases.

(1) For each vertex i (I~~+I), we define first (i) as the smallest numbered vertex v for which there exists

a precedence relation i-:,v, and we define last(i) as the highest numbered vertex v for which there exists a

precedence relation v-:,i.

par [ I ~ ~ + I ] first(i) ~ min[v li-:'v, l : : ; ; ; v ~ + I } ;

par [ I ~ ~ + I ] last(i) ~max[v Iv-:,i, l : : ; ; ; v ~ + I } .

(2) Verification of optimality with resPect to Or-exchanges is established by:

par [I<i < j ~ & I::;;;j<i -I<n] Oij ~ min{di- l.i+1+dj.i+di,j+l-di-l.i-di.i+l-dj.j+1 };

Omin ~min[min{oij lfirst(i»j, I <i<j::;;;n}, min{oij Ilast (i)::;;;j, l::;;;j<j+l::;;;i-l<i~}};

ifOmm~

then (1,2, ... ,n,n+l) is an Or-optimal tour

else let i* and j* be such that Oi0i" =Omm and the corresponding Or-exchange is feasible,

if i*<j*

then (1, ...• i* -I,i* + I, ,j*,i*,j* +I, , n+ I) is a shorter tour

else (I, ... ,j*,i*,j* +I, ,i* -I,i* +I, ,n+ I) is a shorter tour.

As in the case of 2-optimality, we can perform the computation in 0 (log n) time with 0 (n 2110g n) proces­

sors, thus achieving a perfect speedup.

Collections and deliveries

We will now present a parallel algorithm for the verification of local optimality for the traveling salesman

problem with collections and deliveries. We assume that customer i has a (nonzero) demand qi, and interpret

a positive value as a pick-up of goods and a negative one as a delivery. Further, let the maximum capacity of

the vehicle be Qand let the given tour (1,2, ... ,n,n+l) be feasible. We consider the case of 2-optimality.

In the sequential algorithm, we introduced the quantities c;ax,Lr;m and L ~ n a 1 as respectively the maximum

load, the minimum load and the final load on the path p assuming the vehicle is empty when it arrives at the

first vertex on the path. We will first compute these values for all partial paths along the given tour and then

for the tours that can be obtained by a 2-exchange.

(1) We start with the paths along the given tour in both directions.

par [ I ~ ~ + I ] par [ i : : ; ; ; j ~ + l ] L ~ I ....•j-l.j) ~ s u m { q k li::;;;k::;;;j};

par [ I ~ ~ + I ] par [ i : : ; ; ; j ~ + I ] LU.j-I i+l.i) ~sum{qk Ij~~};

par [ I ~ ~ + I ] par [ ~ : : ; ; ; ! ~ + I ] L ~ : l ,j_l.j) ~ m a x [ L ~ I H.k) l i ~ : : ; ; ; j ) ;
par [ l : : ; ; ; l ~ + I ] par [ l : : ; ; ; J ~ + l ] L U.j - I•... .i+l.i) ~ max {LU,j-I k+l.k) IJ~~};

par [ I ~ ~ + I ] par [ i : : ; ; ; j ~ + I ] Lt'+I ....•j_l.j) ~ m i n { L ~ i ~ I , k-I.k) li::;;;k::;;;j};

par [ 1 : : ; ; ; i ~ + I ] p a r [ i : : ; ; ; j ~ + I ] LW-I..... i+l.i) ~min{Lu.f-I k+I.k) Ij~~}.



14

Using the partial sums algorithm, we can compute all values in o(log n) time with 0(n 2110gn) processors.
(2) The next step is to construct the tours that can be obtained from a 2-exchange and to compute the max-

imum and minimum load on these tours, using the proposition of the previous section.

Par [lg<j'$',n]Lfinal +-Lfinal +Lfinal .
par [ I g < j $ ' , n ] L ~ ~ X " , i , i i+l) + - ~ ~ { i ~ x U'''iii:;i{' +Lmax }.

(I,,,. ,i,i i+l) (~'''' .i), ~ ,i) (i., ... •i+l) ,
par [Ig<j$',n] L ~ " ,i,i•.. .• i+l) +-min{L~ .. ,i),L(I.~I i)+L~" .i+I)}'

and

Par [Ig<j'$',n] L fin(1al .. . 1 . 1 I) +-L final(1 . . . 1)+Lfinalu I 1)'
I'" ,I..}•.•• • '+ .j+ , ... •11+ , ... ,I,}•...• '+ + , ... •11+ ,

Par [Ig<j'$',n] Lmax .. .. +-max(Lmax .. . Lfinal .. . +LrtIf'x }.(I, ... ,',J....•1+l.J+l.... .11+1) (I .... .I,J, ... .1+1), (1 .... ,1./.....1+1) (j+I.... ,11+1) ,

Par [1<i <j'$',n] L mtn .. .. +- min(Lmin .. . L final .. . +L ~ }- (I, ... .',J, ... .I+I.J+I.... .11+1) (I.... .I.J, ... ,1+1), (I, ... .I,J, ... .1+1) U+I..... 11+1) .

For this part we need 0(1) time and 0(n 2
) processors, or o(log n) time and 0(n 2/log n) processors.

(3) We decide whether or not a tour is 2-optimal by:

par [Ig<j$',n] Oii+- dii+di+l.i+l-di.i+l-di,i+l;
o . +-min(o"ILm(lax .. I . I . I)<Q Lmtn(I' .. I . 1 . I)~ Ig<j'$',n}'nun lJ , .. "l,j+ , ... ,'+ ,/... ,,1&+ -, , .. ,,1,/+ •...• ,+ ,j, ... ,I1+ - , ,

ifOmm~

then (1,2, ... ,n,n+I) is a 2-optimal tour

else let i* and j*, with i* <j* be such that oi*i* =Omin and the corresponding 2-exchange is feasible,
(1, ... , i*,j*,j* -1, ... , i* +I,j* +1, ... ,n +1) is a better feasible tour.

As a result, we an algorithm that runs in 0 (log n) time with 0 (n 2/log n) processors.

The verification of Or-optimality can be done along similar lines. The main difference is that we do not
have to consider reversed paths, and that we consider different intermediate points on the tours. It will be
clear that the parallel algorithm for verification of Or-optimality has the same time and processor require­
ments as for verification of 2-optimality.

Time windows

Finally, we will present a parallel algorithm for verifying 2-optimality of a time-constrained TSP tour. It

requires 0 (log n) time and 0 (n 2110g n) processors, and thereby has the same resource requirements as in the

unconstrained case. We do not deal with the verification of Or-optimality, because it can be done along the
same lines with very much the same adaptations as in the previous case.

Again, we consider the tour (1,2, .. , ,n,n+I), which is assumed to be feasible, and start by considering all
partial paths along the tour. This enables us to construct the tours that can be obtained by a 2-exchange. For

each path (u I, ... ,Uk), we define A(u" ... ,u.)(t) as the earliest possible arrival time at vertex Uk when travel­

ing along the path from vertex UI to vertex Uk after arriving at vertex UI at time t. Note thatA(I..... II+I)(eJ>
is the arrival time at vertex n +1 of the given tour.

Our algorithm has three phases.

(1) First, we compute the functions A for paths consisting of only one edge.

Next, we compute the functions A for all paths along the tour in both directions by composition.

par [Ig$',n+U par [ i ~ j $ ' , n + 1] A (i.i+l ,i-I.i)(t) +- (A U-1.i )0 ••• oA(i.i+l»(t);

par [lg$',n +1] par [ i ~ j $ ' , n +1] A (i,i-l i+I,i)(1) +- (A (i+l.i)o ... oA U.i-I»(t).

By considering all possibilities, one can show that each of these functions has one of the three shapes shown

in Figure 6. Composing functions is an associative operation. Hence, we can use the partial sums algorithm
for obtaining the functions A in parallel. Since a composition of two functions of the type described here can



15

be derived in constant time, we can in fact determine all functions A in OOogn) time with O(n2 /10gn) pro­

cessors.

001-1-------

0'--------0'------__ 0'--------
t t

Figure 6. The three possible shapes of the functions A.

t

(2) Given the functions A for all paths along the tour, we can compute them for the tours that are obtained

after the replacement of the edges (i,i+l) and {j,j+l} by the edges (i,j) and (i+l,j+ll:

par [lg < j ~ ] A(l •... ,i.j, ...• i+l,j+I, ... •10+1) (t) ~ (A (;+1•... , 10+1) oA (i+l,j+l)oA(;•... . i+l)oA (i.j)oA (I, ... •i)(t).

For this phase we need 0(1) time and O(n2
) processors, or O(logn) time and O(n 21l0gn) processors.

(3) We decide whether or not the given tour is 2-optimal in the same way as in the case without time win-

dows:

A m i n ~ min (A (I •... •i.j, ... ,i+l.j+I, ... ,1I+l)(eI> 1 1 g < j ~ } ;

if A(l•...• 1 I + 1 ) ( e l ) ~ m i n
then (l,2, , .. , n,n +1) is a 2-optimal tour

else leti* andj*, with i* <j*, be such thatA(l •.... i.,j•....• i.+I.j.+I •... ,II+1 =A min ,

(1, ... ,i*,j*,j*-I, ... ,i* +1,j* +1, ... ,n+l) is a betterfeasible tour.

For this last phase, the same time and processor bounds as before suffice. So, we end up with an algorithm

that runs in 0 (log n) time using 0 (n 2/10g n) processors, which is the same as in all the other cases.

We will end this section by considering the verification of k-optimality for fixed k>2. In all cases, we can

derive a logarithmic-time algorithm along similar lines. One has to take into account that, given kedges,

several k-exchanges are possible. Further, the influence of a k-exchange on a tour is more complex. How­

ever, the running time remains O(logn) using O(ntllogn) processors, which is optimal with respect to the

number 8(n t) of k-exchanges.

2.5 Variable-depth exchanges

The neighborhoods considered so far are tours that can be obtained from an intial tour by replacing a set of

edges of fixed cardinality by another set of edges. Not surprisingly, the quality of an exchange may improve

considerably, when the neighborhood is enlarged by increasing the cardinality of the set of edges to be

replaced. Unfortunately, the computational effort required to search the neighborhood becomes much greater

as well. Lin & Kernighan [1973] developed an effective and efficient variable-depth exchange procedure for

the unconstrained TSP by dynamically determining the cardinality of the set of edges to be replaced, thus

finding a good balance between the computational effort and the quality of the solution.

The algorithm by Van der Bruggen, Lenstra & Schuur [1990] is based on the same principles and is able to

handle the side constraints efficiently by using the lexicographical search strategy. It works as follows (cf.

Figure 7).

Apply the lexicographic search strategy until a feasible and profitable 2-exchange is found. Now, instead

of actually performing the exchange, continue the search for a 2-exchange on the path that has not been

affected by the exchange. Repeat this as long as the combined exchanges are profitable. In this way, in a sin­

gle step, a series of exchanges is examined from which the best is selected. From the previous section it must



16

r B - - B - - - - - - - ~
I I

I

Y
I

I

I I

~-------&O____J
(a) The initial tour.

"--m--G
I

I

I I

~-------&O____J
(b) The tour after the first step.

(c) The tour after the second step.

Figure 7. A variable depth exchange.

be clear that this procedure can be efficiently implemented, both sequentially as in parallel.

There are many variants of this procedure. Any type of exchange, e.g, Or-exchange or 3-exchange, can be

used as a basic improvement step in the procedure. Also, the best possible exchange can be chosen at each

step, instead of the first feasible and profitable one encountered.



17

3. Edge-exchanges for the vehicle routing problem

After analyzing iterative improvement methods for the TSP, we now turn to the VRP. Two tyPes of decisions

have to be made to obtain a solution to a VRP: assignment decisions to determine which vehicle will serve

which customers and routing decisions to determine in which order the customers assigned to a vehicle will

be visited. The local search methods in the previous section try to improve the routing decisions. Another

possibility is to improve the assignment decisions. Improving assignment decisions may even be more effec­

tive when we consider the fact that in most VRPs the number of customers per vehicle is fairly small, i.e., the

resulting TSPs are fairly simple. It is uncommon to find VRPs where the number of customers per vehicle

exceeds 30 customers. More often we are in a situation where the number of customers per vehicle is much

less; in the order of 5 to 15. In that case, it is unrealistic to hope for major improvements when routing deci­

sions are revised. However, the total number of customers is usually large. Therefore, there is much more

potential for improvement when assignment decisions are revised. In view of the above, it is strange that

there is very little known about effective and efficient local search methods that revise assignment decisions.

Savelsbergh [1992] describes three k-exchange neighborhoods for the VRP that relocate vertices between

two routes. The neighborhoods are chosen such that testing optimality over the neighborhood requires 0 (n 2
)

time. For presentational convenience, we will first describe relocations of single vertices. Possible extensions

will be given later on. Further, we will use the notation prei and SUCi to denote the predecessor and successor

of vertex i, and, in the figures, split the depot

Relocation. The edges [prei,i}, {i,sucd and (j,SUCj) are replaced by {pre;,sucd, (j,i) and {i,sucj], i.e.,

vertex i from the origin route is placed in the destination route. A relocation is pictured in Figure 8.

Figure 8. A relocation.

Exchange. The edges {prei,i}, {i,suc;}, {prej,j} and [j,SUCj} are replaced by [pre;,j}, (j,sucd, {prej,i}

and {i,SUCj}, i.e., two vertices from different routes are simultaneously placed into the other routes. An

exchange is pictured in Figure 9.

Figure 9. An exchange.



18

Crossover. The edges {i,suc;} and {j,SUCj} are replaced by {i,SUCj} and {j,sucd, i.e., the crossing links of

two routes are removed. A crossover is pictured in Figure 10. As a special case, it can combine two routes
into one. Note that if a crossover is actually performed, the last part of either route will become the last part

of the other.

Figure 10. A crossover.

The extension of the lexicogrnphic search strategy to these three neighborhoods is straightforward. We

choose i in reverse order of the first route. After i has been fixed, we choose j in reverse order of the second

route. To test the feasibility and profitability of an exchange, we proceed as before, the routes are split into

paths and the concatenation propositions are applied to obtain the necessary information.

The above described iterative improvement methods can easily be extended to larger neighborhoods by

the introduction of paths instead of vertices. The paths have to be checked but that involves only local infor­

mation. Figure 11 illustrates some possible extensions.

References

H. ALT, T. HAGERUP, K. MEHLHORN, F.P. PREPARATA (1987). Deterministic simulation of idealized parallel

computers on more realistic ones. SIAM J. Comput. 16, 808-835.

J.L. BENTLEY, D.S. JOHNSON (1993). A case study for the traveling salesman problem. E.H.L. AARTS, J.K.

LENSTRA (eds.). Local Search in Combinatorial Optimization, Wiley, Chichester, to appear.

L. BODIN, B. GOLDEN, A ASSAD, M. BALL (1983). Routing and scheduling of vehicles and crews - The state of

the art. Comput. Oper. Res. 10,63-211.

LJ.J. VAN DER BRUGGEN, J.K. LENSTRA, P.C. SCHUUR (1990). A Variable Depth Approach for the Single­

Vehicle Pickup and Delivery Problem with Time Windows, COSOR Memorandum 90-48, Eindhoven

University of Technology.

M. DESROCHERS, J.K. LENSTRA, M.W.P. SAVELSBERGH, F. SOUMIS (1988). Vehicle routing with time windows:

optimization and approximation. B.L. GOLDEN, AA ASSAD (eds.). Vehicle Routing: Methods and Studies,

North Holland, Amsterdam, 65-84.

E. DEKEL, S. SAHNI (1983). Binary trees and parallel scheduling algorithms. IEEE Trans. Comput. C-32, 307­

315.

Y. DUMAS, J. DESROSIERS, F. SOUMIS (1991). The pickup and delivery problem with time windows. European

J. Oper. Res. 54, 7-22:

A.R. KARLIN, E. UPFAL (1988). Parallel hashing - an efficient implementation of shared memory. J. Assoc.

Comput. Mach. 35, 876-892.

S. LIN, B.W. KERNIGHAN (1973). An effective heuristic algorithm for the traveling salesman problem. Oper.

Res. 21,498-516.

I. OR (1976). Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics ofBlood

Banking, P h . D ~ Thesis, Dept of Industrial Engineering and Management Sciences, Northwestern Univer­
sity.

H.N. PSARAFI1S (1983). k-Interchange procedures for local search in a precedence-constrained routing



19

(a) Relocation of a path.

(b) Exchange of two paths.

(c) A crossover plus 2-exchange.

Figure 11. Possible extensions of the neighborhoods.

problem. European J. Oper. Res. 13, 391-402.

R.A. RUSSELL (1977). An effective heuristic for the m-tour traveling salesman problem with some side con­

straints. Oper. Res. 25, 517-524.

M.W.P. SAVELSBERGH (1986). Local search for routing problems with time windows. Ann. Oper. Res. 4, 285­
305.

M.W.P. SAVELSBERGH (1990). Efficient implementation of local search methods for the vehicle routing prob­
lems with side constraints. European J. ofOper. Res. 47, 75-85.

M.W.P. SAVELSBERGH (1992). The vehicle routing problem with time windows: minimizing route duration.
ORSA J. on Computing 4,146-154.



20

M.M. SOLOMON, E.K. BAKER, J.R. SCHAFFER (1988). Vehicle routing and scheduling problems with time win­

dow constraints: efficient implementations of solution improvement procedures. B.L. GOllEN, A.A. ASSAD

(008.). Vehicle Routing: Methods and Studies, North-Holland, Amsterdam, 85-105.



List of CaSaR-memoranda - 1992

Number Month Author Title

92-01 January F.W. Steutel On the addition of log-convex functions and sequences

92-02 January P. v.d. Laan Selection constants for Uniform populations

92-03 February E.E.M. v. Berkum Data reduction in statistical inference

H.N. Linssen

D.A. Overdijk

92-04 February H.J .C. Huijberts Strong dynamic input-output decoupling:

H. Nijmeijer from linearity to nonlinearity

92-05 March S.J.L. v. Eijndhoven Introduction to a behavioral approach

J .M. Soethoudt of continuous-time systems

92-06 April P.J. Zwietering The minimal number of layers of a perceptron that sorts

E.H.L. Aarts

J. Wessels

92-07 April F .P.A. Coolen Maximum Imprecision Related to Intervals of Measures

and Bayesian Inference with Conjugate Imprecise Prior

Densities

92-08 May I.J.B.F. Adan A Note on "The effect of varying routing probability in

J. Wessels two parallel queues with dynamic routing under a

W.H.M. Zijm threshold-type scheduling"

92-09 May I.J.B.F. Adan Upper and lower bounds for the waiting time in the

G.J.J.A.N. v. Houtum symmetric shortest queue system

J. v.d. Wal

92-10 May P. v.d. Laan Subset Selection: Robustness and Imprecise Selection

92-11 May R.J .M. Vaessens A Local Search Template

E.H.L. Aarts (Extended Abstract)

J .K. Lenstra

92-12 May F.P.A. Coolen Elicitation of Expert Knowledge and Assessment of Im-

precise Prior Densities for Lifetime Distributions

92-13 May M.A. Peters Mixed H 2 / H oo Control in a Stochastic Framework

A.A. Stoorvogel



Number

92-14

92-15

92-16

92-17

92-18

92-19

92-20

92-21

92-22

92-23

Month

June

June

June

June

June

June

June

June

June

June

Author

P.J. Zwietering

E.H.L. Aarts

J. Wessels

P. van der Laan

J.J.A.M. Brands

F.W. Steutel

R.J.G. Wilms

S.J.1. v. Eijndhoven

J .M. Soethoudt

J .A. Hoogeveen

H. Oosterhout

S.1. van der Velde

F .P.A. Coolen

J .A. Hoogeveen

S.L. van de Velde

J .A. Hoogeveen

S.L. van de Velde

P. van der Laan

T.J .A. Storcken

P.H.M. Ruys

-2-

Title

The construction of minimal multi-layered perceptrons:

a case study for sorting

Experiments: Design, Parametric and Nonparametric

Analysis, and Selection

On the number of maxima in a discrete sample

Introduction to a behavioral approach of continuous-time

systems part II

New lower and upper bounds for scheduling around a

small common due date

On Bernoulli Experiments with Imprecise Prior

Probabilities

Minimizing Total Inventory Cost on a Single Machine

in J ust-in-Time Manufacturing

Polynomial-time algorithms for single-machine

bicriteria scheduling

The best variety or an almost best one? A comparison of

subset selection procedures

Extensions of choice behaviour

92-24 July l.C.G.J.M. Habets Characteristic Sets III Commutative Algebra:

overview

an

92-25

92-26

July

July

P.J. Zwietering Exact Classification With Two-Layered Perceptrons

E.H.L. Aarts

J. Wessels

M.W.P. Savelsbergh Preprocessing and Probing Techniques for Mixed Integer

Programming Problems



-3-

Number Month Author Title

92-27 July LJ.B.F. Adan Analysing EklErlc Queues

W.A. van de

Waarsenburg

J. Wessels

92-28 July O.J. Boxma The compensation approach applied to a 2 x 2 switch

G.J. van Houtum

92-29 July E.H.L. Aarts Job Shop Scheduling by Local Search

P.J .M. van Laarhoven

J.K. Lenstra

N.L.J. Ulder

92-30 August G.A.P. Kindervater Local Search in Physical Distribution Management

M.W.P. Savelsbergh


