
Annals of Operations Research 4(1985/6)285 -305 285

LOCAL SEARCH IN ROUTING PROBLEMS WITH TIME WINDOWS

M.W.P. SAVELSBERGH

Department of Operations Research and System Theory, Centre for Mathematics and

Computer Science, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

Abstract

We develop local search algorithms for routing problems with time windows.

The presented algorithms are based on the k-interchange concept. The presence of

time windows introduces feasibility constraints, the checking of which normally

requires O(N) time. Our method reduces this checking effort to 0(1) time. We also

consider the problem of finding initial solutions. A complexity result is given and

an insertion heuristic is described.

Keywords and phrases

Local search, vehicle routing problem, traveling salesman problem, k-interchange,

NP-completeness, computational complexity, time windows, heuristics.

1. Introduction

Physical distribution is becoming more and more the subject of mathematical

research. Among the great variety of distribution problems, two prevail: the routing

of (capacitated) vehicles through a collection of points to pick up or deliver goods, the

vehicle routing problem (VRP), and the scheduling of vehicles to meet time or pre

cedence constraints imposed upon their routes, the vehicle scheduling problem (VSP).

We will consider here a problem where the spatial aspect of routing is blended with the

temporal aspect of scheduling, because time window constraints must be respected.

Time window constraints form one of the extensions of the basic problem which arise

in practical applications. Very little research has been done on this subject. Solomon

[12, 13] modifies existing heuristics for the VRP to handle time windows, and

Christofides et al. [l] use state space relaxations to obtain bounds to be used in

enumerative methods.

©J.C. Baltzer A.G., Scientific Publishing Company

286 M. W.P. Savelsbergh, Local search in routing problems with time windows

We will restrict ourselves to local search procedures for routing problems with

time windows. About twenty years ago, Croes [2] and Lin [6] introduced the notion

of k-interchanges to improve solutions of the trave/ing salesman problem (TSP)

(Croes for k = 2 and Lin for k = 3). Several other papers have since been written that

examine issues related to the application of this method. Lin and Kernighan [7]

generalized it, and Papadimitriou and Steiglitz [9] reported results on its worst-case

behaviour. The method has also been applied with considerable success to other classes

of problems. Kanellakis and Papadimitriou [4] adapted the method for the use in

asymmetric TSPs and Psaraftis [10] examined the use of k-interchanges in precedence

constrained routing problems.

In this paper, a local search method based on the k-interchange concept will

be presented which takes time windows into account. For the description of the

method we will restrict ourselves to the TSP. However, the techniques presented are

of a more general nature and can be applied in other types of routing problems as well.

The presence of time windows in a TSP implies that we are not just looking for a cycle,

but for a route starting and finishing at specific points in time. Therefore, we will

consider the TSP with time windows (TSPTW) in which a vertex will be specified (the

depot in vehicle routing problems) at which the salesman starts and finishes. This has

the advantage that the presented method can easily be incorporated in cluster first

route second approaches to the VRP with time windows.

The approach we will follow draws from the k-interchange procedure by Lin

[6] for the TSP. As in the TSP, a k-interchange is a substitution of k links of a tour

with k other links. In contrast to the (standard) TSP where the processing of a single

k-interchange takes 0(1) time, testing in a straightfoward way whether a single TSPTW

interchange does not violate the time window constraints requires O(N) time, where

N indicates the size of the problem (in this case the number of vertices). We will

develop a method that performs this test in 0 (1) time. In the second part of the paper,

we will take a closer look at the question of finding an initial feasible tour. It turns

out that the problem of deciding whether there exists a feasible tour at all is NP

complete in the strong sense. This result justifies the use of a heuristic procedure for

the construction of an initial tour.

2. Local search for the standard TSP

In the TSP we are given a finite set V of vertices and a distance ti,j for each

pair of vertices i, j E V. The problem is to find a tour with minimal total length,

where a tour is a closed path that visits each vertex exactly once (for further infom1a

tion on the TSP, we refer to [5]). A TSP tour of N = IV I vertices can be described by

a sequence (1, 2, ... , i, ... , N), where i represents the ith vertex of the tour. It is

clear that a TSP tour has N links. We make the additional assumption that the distance

matrix is symmetric and satisfies the triangle inequality.

M. W.P. Savelsbergh, Local search in routing problems with time windows 287

Recall that a k-interchange is a substitution of k links of a tour with k other

links. A tour is said to be k-optimal (k-opt) if it is impossible to obtain a tour of

shorter length by replacing k of its links by another set of k links. Since the compu

tational effort rises rapidly with k, we only consider the cases k = 2 and k = 3.

i i+l i i+l

(a) (b)

Fig. 1. A 2-interchange.

We start with the case k = 2. Performing a single 2-interchange on a TSP tour

involves the substitution of two of its links, say (i, i + 1) and (j, j + 1) in fig. 1 (a), with

two other links, in this case (i, j) and (i + 1, j + 1) in fig. 1 (b).

Such an interchange results in a local tour improvement if and only if the

following condition holds:

ti,i+ 1 + tj,j+ 1 > ti,j + ti+ l,j+ 1 .

Notice that the orientation of the path (i + 1, ... , j) is reversed in the new tour. (In

the sequel, when we are referring to a 2-interchange, we will always mean the deletion

of the links (i, i + 1) and (j, j + 1) from the current tour and their replacement by the

links (i, j) and (i + 1, j + 1).) The total number of possible 2-interchanges equals the

number of subsets of two links that can be formed from the set of N links that make

up the tour. This number is equal to (~), which implies a time complexity of O(N2)

for the verification of 2-optimality.

In contrast to the case k = 2, where the two links (i, i + 1) and (j, j + 1) that

will be deleted uniquely identify the two links (i, j) and (i + 1, j + 1) that will replace

them, in the case k = 3 there are eight ways of substituting any given triplet oflinks

with a triplet of other links. Figures 2(b) and 2(c) show two of the eight possible

3-in terchanges that can be performed by deleting the links (i, i + 1), (j, j + 1) and

(k, k + 1) of an initial TSP tour [fig. 2(a)].

288 M. W.P. Savelsbergh, Local search in routing problems with time windows

i i+l i i+J

k+I k k+I k

(a) (b)

Fig. 2. Two ways to perform a 3-interchange.

For all cases, conditions similar to the one given for the case k = 2 can be given

to obtain local tour improvement. There is one important difference between the two

3-interchanges shown in fig. 2, namely the fact that in the latter the orientation of the

paths (i + 1, ... ,j) and (j + 1, ... , k) is preserved, whereas in the former this orienta

tion is reversed. The total number of possible 3-interchanges is proportional to the

number of subsets of three links that can be formed from the set of N links that make

up the tour. This number is equal to (1j), which implies a time complexity of O(N3)

for the verification of 3-optimality.

Because the computational effort to verify 3-optimality becomes considerable

if the number of vertices increases, proposals have been put forward to take only a

subset of all possible 3-interchanges into account. We will consider the proposal by

Or [8). His procedure considers only those 3-interchanges that would result in a string

of one, two, or three consecutive vertices being inserted between two other vertices.

To see how the Or-opt procedure works, the reader is referred to fig. 3. In this tour,

the string of three consecutive vertices i, i + 1 and i + 2 is relocated between j and

j + 1. The time complexity to verify Or-optimality is O(N2).

j j +I j+I

i+2 i+l i

i+2 i+l i

(a) (b)

Fig. 3. An Or-interchange.

--~

M. W.P. Savelsbergh, Local search in routing problems with time windows 289

3. Local search for the TSP with time windows

In the TSPTW we are given in addition to the travel time t~i for each pair of

vertices i, j E V, for each vertex i a time window, denoted by [ei, IJ , where e i specifies

the earliest service time and l; the latest service time. The latter bound is strict in the

sense that departing later than Ii is not allowed and causes the tour to become in

feasible, whereas arriving earlier than e i does not lead to infeasibility but merely

introduces waiting time at vertex i. Throughout the paper, we will assume that there

is no actual service time at any vertex. This means that we can (and will) depart from

a vertex as soon as possible. The following quantities, given a feasible tour (I, ... , N),

will be very helpful for the description of the algorithm:

Ai, the arrival time at i;

Di : = max(Ai' e;), the departure time at i;

Wi: = D;-A1, the waiting time at i.

We make the following observations:

A. <D.~ A. < e.~ W. > 0;
I I "7°' I I "7°' I

A.= D.~ e . .;;;:;; A.~ W. = 0.
I I "7°' I I "7°' I

The conditions for local tour improvement in theTSPTW strongly depend on

the chosen objective. We consider two objectives below. As to our notation, a quantity

with superscript new indicates that the value is taken to be the one which would

result if the interchange were carried out; the subscript still refers to the ordering of

the current tour.

(1) Minimize the time spent on actual traveling:

lN-1 l
min .I ti, i+ t + tN,1 .

I= l

With this objective, a 2-interchange is both feasible and profitable if and only if th1

following conditions are satisfied:

the actual travel time is reduced:

290 M. W.P. Savelsbergh, Local search in routing problems with time windows

the new tour is feasible:

i

i < k .:;;;; 1·: Dnew = D. + t . . + ' (Wnew + t 1) .:;;;; lk;
k I I,/ L p p- ,p

p = k+ I

i

j < k.:;;;; N: n;ew =Di+ ti,j + I (Wpnew + tp-1,p)

p = i+ 2

k-1

+ wnew + t + , (Wnew + t) or;;: I
i+t i+1,j+1 L p p,p+l """"' k ·

p = j+ I

(2) Minimize the completion time of the tour:

With this objective, a 2-interchange is both feaible and profitable if and only if the

following conditions are satisfied:

the arrival time at j + 1 is decreased:

and part of the gain can be carried through to the vertex where the salesman

finishes:

the reversed part of the tour is feasible:

j

. < k or;;: • D + L (Wpnew) or;;: [I """"'I : . t . . + + t 1 """"' k.
I I,/ p- ,p

p = k + 1

The second condition needs some further consideration. If this condition is violated,

the interchange will not alter the completion time of the tour. It will only reduce the

completion time of the path from 1 to k - 1, for the smallest k for which violation

occurs. The question arises whether it is wise to carry out an interchange if only part

of the route is completed earlier. We have adopted the following criterion:

~---------~----------~----------------

M. W.P. Savelsbergh, Local search in routing problems with time windows 291

A 2-interchange that reduces the completion time of an initial part of the

tour but not of the complete tour is .carried out if and only if it also re

duces the actual total travel time.

The main problem with the use of k-interchange procedures in the TSPTW is

checking the feasibility of an interchange. A 2-interchange will reverse the path

(i + 1, ... , j). But this means one has to check the feasibility of all the vertices on

the new path. In a straightforward implementation, this requires O(N) time for each

2-interchange. This will result in a time complexity of O(N3) for the verification of

2-optimality. By employing an efficient search strategy, we can reduce the checking

effort to 0(1) time for each 2-interchange.

The description of the algorithm which follows is based on the second ob

jective extended with the rule specified above. Other objectives require only minor

adjustments.

We employ the following lexicographic search strategy. We choose the links

(i, i + 1) in the order in which they appear in the current tour starting with (1, 2).

After fixing a link (i, i + 1) we choose the links (j, j + 1) to be equal to (i + 2, i + 3),

(i + 3, i + 4), ... , (N - 1, N), in that specific order (see fig. 4). Now consider all

4 4 5

2

(a) (b) (c)

Fig. 4. The lexicographic search strategy.

possible interchanges for a fixed link (i, i + 1). Using the ordering of the 2-inter

changes given above implies that in each newly examined 2-interchange, the p~th
(i + 1, ... , j - 1) of the previously considered 2-interchange is expanded by th.e lmk

(j - I j). Therefore it is possible, using the information available from the previously

consid~red 2-interchange, to compute the length and to check the feasibility of the

path from (i + 1, ... , j) in constant time. To accomplish this, we de~ne the fol~ow

ing quantities (here and in the sequel, the link appearing as a superscnpt determines

on which interchange the information is based):

292 M. W.P. Savelsbergh, Local search in routing problems with time windows

PFS(i.i+ i) possible forward shift in time of the departure time at j
causing no violation of the time-window constraints along
the path (j, ... , i + l);

PFS(i,j+ l) = min { l - (D.(j,j+ r) + iI t) }
i+l.;.k.;,j k J p=kp,p+l

(The theorem below justifies this definition.)

TWT(j, i + 1) : total waiting time on the path (j, ... , i + 1) (excluding
possible waiting time at j, including possible waiting time

ati+l);

j- 1

TWT(j,j+ i) = I w<j,j+ i).
k ,

k = i+ 1

TTT(j, i + 1) : total travel time, excluding the periods of waiting, of the path

< j, . .. , i + 1 L

j- I

TTT(j' i + I) = I t k' k + I ;

k"' i+ I

If we are currently examining the interchange determined by the link (j, j + 1),
the path (j - 1, ... , i) of the previously considered interchange is expanded by the
link (j, j - J). This usually results in a change of the departure time at j - 1 (and thus
in the change of the departure time of possibly all the other vertices on the path

(j - L ... , i + 1) 1 . If we define

Sl:IIFT(j,j+ I):= D_(j,j+ I) + t. . - D(j- l,j)
I J,;-I j-1 '

then the following result holds.

THEOREM

Expanding the path (j - 1, ... , i + 1) with the link (j - 1, j) is feasible if and

only if

SHIFT(j,j+ I) ;;;;;; PFS(j- l,j) .

Proof

[-+]

[+-]

M. W.P. Savelsbergh, Local search in routing problems with time windows 293

j- I

feasible -+ D.u. i + 1 > + ""' t ..; z
I L p, p +I k

p=k

-+ D.<i.i+ 1> + t. . < l
I J,J-1 k

j-2

- I tp,p+I

p=k

-+ SHIFTU.i+ 1> ..; PFs<i- i.j) .

Note that D~j,j + 1) ~ Dli - i,j) for i + 1 < k < j - 1. The only vertices for

which infeasibility can occur are those for which np.i+ 1> =f:. nF- 1.i>. A necessary

condition for this to occur is that there is no waiting time on the path (j, . .. , k) after

the interchange is carried out. We have that

SHIFT(i.i+ 1> ..; ppsU- 1.i>

-+ D.U.i+ 1> + t. . - D~i- t.i) < I - (di- 1.il + i-;;: t)
I 1.1-1 1-1 k 1-1 L p.p+l

p=k

j-1

-+ Dfi·i+ 1) + I
p=k

j- 1

-+ D}i·i+ 1) + I
p=k

t < I
p, p + 1 k

j- I

t + ""' p,p+I L
wU.i+ 1> < l

k k
p=k

0

Because the triangle inequality holds, traveling directly from i to j takes less

time than through i + 1, i + 2, ... , j - I, so we do not have to worry about feasibility

at j. To test if part of the gain can be carried through to the vertex where the salesman

finishes is a trivial matter if we know the vertex with highest index for which the

departure time coincides with the earliest service time. This vertex can be determined

294 M. W.P. Savelsbergh, Local search in routing problems with time windows

in advance. To check the feasibility at j + 1 and test for local improvement is also

easy because it only requires the exact departure time at vertex i + 1 plus local

distances, and it is not difficult to see that

D.<i.i+ l) = D.<i.i+ l) + TTT(i,i+ l) + TWT(j.j+ l) .
1+ 1 J

If we take a closer look at the definition ofSHIFT(i,j+l) given above, we see

that it covers two different cases (fig. 5):

SHIFTU.i + 1) < 0: Because the triangle inequality guarantees that the new arrival

at j - 1 is never earlier than the old arrival, it must have been

the case that the old arrival and old departure did not coincide.

This means that the old departure was equal to the opening of

the time window. But then ISHIFT(j,j+ l) I is exactly the wait

ing time at j - 1.

SHIFT(;,;+ l) ;;i. 0: Now SHIFT(i.i + l) is exactly the difference between the new

arrival time and the old arrival time at j - 1, that is, the for

ward shift in time.

Updating of the quantities involved takes a constant amount of time. We

.,resent the updating formulae below:

TTr<i.i+ l) = TTru- 1.;> + t . . 1 ;
J,J-

TWT(i,;+ l) = max(TWT(i- l,i) - SHIFTU.i+ l), O);

PFS<i.i+l) = min(PFS(i-l,i) -SHIFT<i.i+ 1>, l. - D.U.i+ 1>L
I I

It is easily verified that the transformations for TWT (i.i + 1) and TTT (i.i + 1) are

correct. The correctness of the transformation for PFS U.i + 1) can be proved as follows.

Define

mfs~i.i + 1) : maximal forward shift in time of the departure time at j

causing no violation of the time window constraints at k;

(
j-1)

mfs<i.i+ l): = l - D.Ui+ 1> + """" t .
k k 1 L p,p + 1

p=k

M. W.P. Savelsbergh, local search in routing problems with time windows 295

- SHIFT(j ,j+I)<O
SHIFT(j,j+\)

vertex j-1:

D(j,j-I)= D(j+\,j)
j-1 J-1

vertex j:

vertex j-1:

vertex j:

1.
J

(a)

(. +I)
~HIFT J,] 1t

ej-1

D(j ,j-1)

j-1

(b)

1.
J

Fig. 5. Schematic presentation of the possible shifts.

We have that

mfs~i.i+ i) = l - (D.<i.i+ 1>
k 1- 1

j- I)

+ I tp.p + 1

p=k

= mfis(i- l,j) - SHIFT<i.i+ l)
k .

1 . I r

t--+

t--+

t---+

296 M. W.P. Savelsbergh, Local search in routing problems with time windows

But that means that

PFS(j,j+ 1> = min {m[s<i.i+ !)}
i+ 1 ""k .;;.j k

= min(/. - D.U.i+I)~ min {mfs(j,j+i)})
I I i+l .;;.k.;;,j-1 k

= min(l. - D.U.i+ 1>; min {mfsU- i,j) - SHIFTU.i+ 1>})
I I i+l.;;.k.;;,j-l k

= min(/. - D.U.i+ 1>; PFS(i,j- i) - SHIFT(i,j+ 1>).
I I

It is easy to see that the time complexity for each individual 2-interchange

is reduced to 0(1) because the necessary feasibility checks and tests for local improve

ment plus the updating of all quantities involved require 0(1) time. This gives an

overall time complexity of O(N2) for the verification of 2-optimality.

Next, we will consider the Or-interchanges and we start with the case where

only one vertex is moved. Because the concepts presented in this part only slightly

differ from those described for the 2-interchanges, we will take a more intuitive and

informal approach. It is also left to the reader to adjust the formulae for the objectives

given for the 2-interchanges in order to make them applicable to the Or-interchanges.

It we look at fig. 6, we see that the orientation of the path (j + 1, ... , i - 1) is pre

served. This makes it easy to handle the feasibility checks. We also see that there are

i+I i-1

i

j+l j j+I

(a) (b)

Fig. 6. An Or-interchange where only one vertex is moved.

two possibilities for relocating the vertex i. We can relocate i earlier (backward re

location) or later (forward relocation) in the current tour. Therefore, the search splits

into two separate parts, namely a backward search and a forward search. We order the

successively tested Or-interchanges in the same way as we did with the 2-interchanges.

An Or-interchange is fully determined by the following quantities:

M. W.P. Sav.elsbergh, Local search in routing problems with time windows 297

PROFIT the gain when going directly from i - 1 to i + 1

Ai+1 - (Di-1 + ti-1 i+1);

LOSS the loss if we use i as an intermediate when going from j to j + I

plus for the backward search:

PFS (i. i + 1 > : possible forward shift in time of the departure time at j + 1

causing no violation of the time window constraints on the path

(j+ 1, ... 'i-1);

PFs<i.i+ 1> = min {1 - (n. + \:.
1

t)}
. 1 ,.;: k .;;; . - I k J + I L p, p +I
j+ "' I p=j+I

Twr<i.i+ 1>: total waiting time on the path (j +I, ... , i-1);

i- 1

rwr<i.i+ 1> = ' W(j.j+l)
L k ,

k = j+ 1

plus for the forward search:

PBS U.i + 1) : possible backward shift in time of the departure time at i + I
causing no extra waiting time on the path from (i + 1, ... , j);

PBs<i.i+ 1> = min {D -e }.
i+! .;;;k..:j-1 k k

Note that after fixing the vertex i, we can compute in advance all the values of

PFS (j, i + 1) by walking backward through the current tour starting at i - 1 and the

values of PBS (i.i + 1) by walking forward through the current tour starting at i + 1. In

each step, updating is performed according to the following rules:

PFS U.i+l) W + . (/ D PFS(j+i,i+ 2 >)·, = i+ 1 mm i+ t - i+ 1 ;

PBS<i.i+ 1> = min(D. - e.; PBs<i- 1.i>).
J I

298 M. W.P. Savelsbergh, Local search in routing problems with time windows

The other quantities (PROFIT, LOSS, TWT(j,j + 1>) are also easy to compute and it

is simple to include the necessary feasible check for LOSS during these computations.

Now such an Or-interchange during the backward search is feasible if and only if

LOSS :.;:; PFs<i.i+ i) ,

and profitable (with respect to the partial completion time) if and only if

PROFIT > LOSS - TWT<i.i+ 1>,

and during the forward search it is feasible and profitable (with respect to the partial

completion time) if and only if

min(PBS(i,j+ 1>, PROFIT) > LOSS.

The Or-interchanges where the string of vertices being moved consists of

more than one vertex can be treated similarly. Only the computation of LOSS requires

some more work. Furthermore, if our objective is just to minimize the time the

vehicle is away from the depot, we can decrease the number of tested interchanges.

Let i* be the vertex with highest index for which the earliest service time and de

parture time coincide. We only have to consider strings of consecutive vertices with

higher indices than i*. A very attractive feature of the Or-interchanges implemented

as described above is the fact that checking Or-optimality (moving only strings of a

fixed length k) requires O(N2) time.

The techniques described above for the 2-interchanges and Or-interchanges

can also be used to implement the verification of k-optimality (for all possible k)

subject to time windows in time O(Nk).

k-interchange procedures are very sensitive for the number and tightness of

the time windows. If there are many tight time windows, then the number of tested

k-interchanges is greatly reduced because of early detection of infeasibility. Therefore,

the number of tight time windows can be used as a decision parameter which invokes

a 3-interchange procedure in case this number is large.

4. The initial solution

The local search methods described in the previous section require an initial

feasible tour. Finding such a tour is a nontrivial problem since (in contrast to the

standard TSP) we have the following theorem.

M. W.P. Savelsbergh, Local search in routing problems with time windows 299

THEOREM

The problem of finding a feasible tour for the TSPTW is NP-complete in the

strong sense, even in the case where the distance matrix is symmetric and satisfies

the triangle inequality.

Proof

We will start from the following problem, that is known to be NP-complete

in the strong sense [3] :

3-PARTITION

Instance

A finite set A= {a 1 ,a 2 , ... , a3ml of 3m elements, a bound BE z+ and a

'size' s(ai) E z+ for each ai EA, with B/4 < s(ai) < B/2 and

L s(a) = mB.

ajE A

Question

Can A be partitioned into m mutaully disjoint sets S 1, S2 , ... , Sm such that,

for 1 .;;;:; i.;;;:; m

L s(ai) = B?

a;ES;

(Notice that the above constraints on the item size imply that every Si must contain

exactly three elements from A).

Given an instance of 3-PARTITION, we construct the following instance of TSPTW.

There are 4m - 1 vertices, the 'partition' vertices 1, ... , 3m and the 'splitting' vertices

3m + 1, ... ,4m - 1. Each partition vertex j has a window [O,mB] and a weight

w; = s(a;) (j = 1, ... , 3m). Each splitting vertex j has a window [(j- 3m)B,(j-3m)B]

and a weight w; = O(j = 3m + 1, ... , 4m - 1). The distance matrix T = (tii) is now

defined in terms of the weights by t;i = (w; + w;)/2.

Note that the length of any tour is equal to mB and that the windows are de

fined in such a way that the partition vertices can be visited at any time, while the

splitting vertices must be visited at specific points in time that lie B apart. Since the

length of a path between two splitting vertices is equal to the sum of the weight~

associated with the vertices on that path, in any feasible tour the total weight mB i

split up in parts of weight B each. This implies that there exists a feasible tour if ana

only if 3-PARTITION has a solution.

300 M. W.P. Savelsbergh, Local search in routing problems with time windows

The theorem claims NP-completeness for the special case of the TSPTW in

which the distance matrix is symmetric and satisfies the triangle inequality. The

matrix T as defined above is symmetric, and if it does not satisfy the triangle in

equality, then we add a suitably large number to each vertex weight to ensure that

it holds, modify the windows accordingly, and observe that the proof carries

through. D

This result justifies the use of a heuristic approach in finding an initial feasible

solution. Solomon [12] described and analyzed several heuristics for the VRP with

time windows and found that the insertion heuristics performed best. With this in

mind, we developed a sequential insertion heuristic based on criteria which include

both the spatial and temporal aspects of the problem in searching for an initial feasible

solution. The insertion heuristics for the TSP [4] use two criteria, c 1 (i, u, j) and

c2 (i, u,j) to determine which new customer to insert into the route under construction,

where (i, j) is a link of the route and u is yet unrouted. Let (i1,i2 , ... ,im) be the

current route. For each unrouted vertex, we first compute its best insertion place in

the emerging route, using the first criterion, as follows:

Next, the best vertex u * to be inserted in the route is selected, using the second

criterion, as the one for which:

Vertex u* is then inserted in the route between iu* and iu* + 1 . This procedure con

tinues until all the vertices are routed.

Certain difficulties arise when one wants to apply this heuristic to the TSPTW.

Inserting u between iP and iP + 1 could affect all the arrival times at vertices iP + 1 ,

ip + 2 , ... , im, which may result in an infeasible tour. This means that we need the

quantity

(
N- I)

PFS := lN - Dk+ I tp.p+I '

p=k

which is similar to the one used in the previous section to check the feasibility of an

insertion.

Which criteria to use strongly depends on the tightness of the time windows

involved. If a time window is relatively wide, the spatial aspect is more important,

M. W.P. Savelsbergh, Local search in routing problems with time windows 301

but if a time window is quite tight, then the temporal aspect becomes dominant.
Therefore, we introduce two phases: first the vertices with tight time windows are
routed and next the vertices with large time windows. (The definition of tight and
large can be set according to the user's preference.)

Contrary to Solomon [12] our aim is not, primarily, to minimize a certain
objective function, but just to find a feasible solution. This will be apparent from the
criteria stated below, where our main concern is to keep the route under construction
as flexible as possible.

Note that it is the first criterion used by an insertion heuristic that determines
the place where a vertex will be inserted in the emerging route. The second criterion
only serves as a guideline to choose between the vertices available for insertion. There
fore, in trying to achieve our goal, creating a feasible tour, we have to rely primarily
on the first criterion.

Let us define the 'extra mileage 1 cost of city u with respect to the link (i, j)
by:

em(i, u,j) : = max(D. + t. ; e) + t . - A ..
l l,U U U,J J

In phase l, where the vertices with tight time windows are routed, the temporal
aspect is dominant. The criteria c 1 Uu. u, iu + 1) and c2 (iu*• u*, iu*+ 1) to be used are:

c 1 (iu' u, iu + 1) = max {min(l - max(Di + ti u ~ e)~
p = I, ... ,m - 1 feasible u P P'

PFSi - em (i , u, i + 1) f
p + l p p

The first criterion is guided by the remaining flexibility of the route under construction
with respect to the time windows, whereas the second criterion searches for the vertex
whose inclusion will lead to the smallest increase in length of the tour. In phase 2,
where the vertices with large time windows are routed, feasibility problems play a
minor role and we can concentrate on the spatial aspect. Therefore, we interchange

the criteria c 1 (iu, u, iu + 1) and c2 (iu*• u*, iu* + 1) and obtain:

302 M. W.P. Savelsbergh, Local search in routing problems with time windows

c (i u i) = min {em (i , u, i 1) f
2 u' ' u + 1 p = 1, ... ,m - 1 feasible P P +

c1(iu*'u*,iu*+I) = max jmin(l -max(D + ti u;e);
u unrouted u u u• u

PFS1. - em (i , u, i 1) f .
u u u +

5. Computational results

In order to test the computational performance of the described algorithms,
we need a set of test problems for the TSPTW. Because no such set is available in the
literature, we constructed one ourselves. The problems of this test are based on a well
known TSP instance, introduced by Smith and Thompson [10]. This instance has 48
vertices and coordinates in the interval [l, 2000]. To obtain TSPTW instances, we
randomly generated time windows for a subset of customers. The construction is
guided by four parameters, namely the percentage of customers which receives a time
window (p), the maximum route time (mrt) allowed for the vehicle, and two para
meters (a: and m which bound the width of a time window. The test problems are now
generated by the following procedure.

(1) Randomly identify customers who will receive a time window until the
desired percentage is reached.

(2) For each of these customers j the center of the time window is drawn
from a uniform distribution over the interval [t lj, mrt - t lj] , thereby
ensuring that the center is reachable from the depot; randomly generate
the width of the interval where the width is bounded from below by
a: X mrt and from above by ~ X mrt.

We have embedded the described methods for the 2-interchange and Or-inter
changes in three different test programs, the difference between the programs being
the acceptance of a feasible interchange. The first is guided primarily by the spatial
aspects (objective 1), whereas the second is guided primarily by the temporal aspects
of the problem (objective 2). The third is the one we proposed in sect. 3 (objective 2
plus extension). All programs consist of three calls of the Or-interchange procedure
(trying to move vertex strings of length three, two, and one, respectively) followed by
one call of the 2-interchange procedure.

The programs were written in C and run on the PDP-11/70 computer at the
Academic Computer Centre in Amsterdam (SARA). The run times listed in the tables
are those provided by the UNIX profiling facility.

M. W.P. Savelsbergh, Local search in routing problems with time windows 303

Table l

Average results for the initial tour and the three test programs

Total time Waiting time Travel time

Initial tour 16288.6 865.4 15423.2

Program I 15428.2 1658.7 13771.3
Program II 14488.0 220.2 14267 .8
Program III 14531.7 558.6 13937.l

Table 2

Average number of tested and performed interchanges for the Or-interchange algorithm with

strings of three, two, and one consecutive vertices being relocated, respectively

Or-opt (3) Or-opt (2) Or-opt (1) Time Or-opt

(ms)

No. test No. perf No. test No. perf No. test No. perf

Program I 1960.3 1.2 2891.0 3.2 2636.2 2.7 327.26

Program II 3670.0 4.5 7136.0 7.2 10405 .1 13.3 720.88

Program III 3370.7 4.0 5228.0 5.2 7842.4 9.8 612.86

Table 3

Average number of tested and performed interchanges for the 2-interchange algorithm

2-opt Time 2-opt

(ms)

No. test No. perf

Program I 1068.8 4.9 106.68

Program II 926.5 2.7 80.03

Program Ill 863.4 2.9 76.67

304 M. W.P. Savelsbergh, Local search in routing problems with time windows

The results given in tables 1, 2 and 3 are based on ten randomly generated

problems with parameters mrt, a,~ and p set to 15, OOO, 0.025, 0.200 and 25, re

spectively. Travel times between vertices were taken to be equal to the corresponding

Euclidean distance. Table 1 clearly illustrates the influence of the chosen objective

on the interchange algortihms. Table 2 and 3 provide some additional information on

the performance of the algorithm. We see that the choice of objective has some impact

on the computational effort to reach and verify Or-optimality and that the number of

actually performed interchanges is small compared to the number of tested inter

changes. Very attractive are the computational times, which are less than one second

for a combination of one call of the 2-interchange procedure and three calls of the

Or-interchange procedure.

6. Conclusions

We have described two techniques that enable us to modify the k-interchange

concept for local improvement in routing problems in such a way that time windows

can be handled without increasing the time complexity. We also proved that the prob

lem of deciding whether or not there exists a feasible solution for the TSP with time

windows is NP-complete in the strong sense and with this in mind, constructed an

insertion heuristic which tries to combine the spatial and temporal aspects of the

problem. The computational results obtained when the described techniques were

implemented together with the initial tour heuristic are very satisfactory. The grow

ing importance of time windows in practical distribution problems is an encourage

ment for fundamental research in this area. Hopefully, this paper will contribute to

its exploitation.

Acknowledgements

The author would like to express his thanks to Ben Lageweg and Jan Karel

Lenstra for their stimulating comments. This research was supported by the Nether

lands Foundation for the Technical Sciences (STW) through Grant No. CWI-22.0348.

References

(1) N. Christofides, A. Mingozzi and P. Toth, Space state relaxation procedures for the compu

tation of bounds to routing problems, Networks 11(1981)145.

(2) A. Croes, A method for solving traveling salesman problems, Oper. Res. 5(1958)791.

(3 I M.R. Garey and D.S. Johnson, Computers and Intractability: A Gui.de to the Theory of NP
Completeness (Freeman, San Francisco, 1979).

[4) P.C. Kanellakis and C.H. Papadimitriou, Local search for the asymmetric traveling salesman

problem, Oper. Res. 28(1980)1086.

M. W.P. Savelsbergh, Local search in routing problems with time windows 305

[5] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.), The Trave/ing

Salesma.nProblem (Wiley, Chichester, 1985).

[6] S. Lin, Computer solutions to the traveling salesman problem, Bell System Tech. J. 44(1965)

2245.

[7] S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling salesman

problem, Oper. Res. 21(1973)498.

[8] I. Or, Traveling Salesman-type Combinatorial Problems and Their Relation to the Logistics

of Blood Banking, Ph.D. Thesis, Dept. of Industrial Engineering and Management Sciences,

Northwestern University (1976).

[9] C.H. Papadimitriou and K. Steiglitz, Some examples of difficult traveling salesman problems,

Oper. Res. 26(1978)434.

[10] H.N. Psaraftis, k-interchange procedures for local search in a precedence-constrained routing

problem, Eur. J. Oper. Res. 13(1983)391.

[11] T.H.C'. Smith and G.L. Thompson, A LIFO implicit enumeration search algorithm for the

symmetric traveling salesman problem using Held and Karp's 1-tree relaxarion, Ann. Discrete

Math. 1(1977)479.

[12] M.M. Solomon, Vehicle routing and scheduling with time window constraints: Models and

algorithms, Working Paper 83-02-01, Dept. of Decision Sciences, University of Pennsylvania

(1983).

[13] M.M. Solomon, On the worst-case performance of some heuristics for the vehicle routing

and scheduling problem with time window constraints, Working Paper 83-05-03, Dept. of

Decision Sciences, University of Pennsylvania (1983).

