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Abstract 

We develop local search algorithms for routing problems with time windows. 

The presented algorithms are based on the k-interchange concept. The presence of 

time windows introduces feasibility constraints, the checking of which normally 

requires O(N) time. Our method reduces this checking effort to 0(1) time. We also 

consider the problem of finding initial solutions. A complexity result is given and 

an insertion heuristic is described. 
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1. Introduction 

Physical distribution is becoming more and more the subject of mathematical 

research. Among the great variety of distribution problems, two prevail: the routing 

of (capacitated) vehicles through a collection of points to pick up or deliver goods, the 

vehicle routing problem (VRP), and the scheduling of vehicles to meet time or pre

cedence constraints imposed upon their routes, the vehicle scheduling problem (VSP). 

We will consider here a problem where the spatial aspect of routing is blended with the 

temporal aspect of scheduling, because time window constraints must be respected. 

Time window constraints form one of the extensions of the basic problem which arise 

in practical applications. Very little research has been done on this subject. Solomon 

[ 12, 13] modifies existing heuristics for the VRP to handle time windows, and 

Christofides et al. [ l ] use state space relaxations to obtain bounds to be used in 

enumerative methods. 
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We will restrict ourselves to local search procedures for routing problems with 

time windows. About twenty years ago, Croes [2] and Lin [6] introduced the notion 

of k-interchanges to improve solutions of the trave/ing salesman problem (TSP) 

(Croes for k = 2 and Lin for k = 3). Several other papers have since been written that 

examine issues related to the application of this method. Lin and Kernighan [7] 

generalized it, and Papadimitriou and Steiglitz [9] reported results on its worst-case 

behaviour. The method has also been applied with considerable success to other classes 

of problems. Kanellakis and Papadimitriou [ 4] adapted the method for the use in 

asymmetric TSPs and Psaraftis [10] examined the use of k-interchanges in precedence 

constrained routing problems. 

In this paper, a local search method based on the k-interchange concept will 

be presented which takes time windows into account. For the description of the 

method we will restrict ourselves to the TSP. However, the techniques presented are 

of a more general nature and can be applied in other types of routing problems as well. 

The presence of time windows in a TSP implies that we are not just looking for a cycle, 

but for a route starting and finishing at specific points in time. Therefore, we will 

consider the TSP with time windows (TSPTW) in which a vertex will be specified (the 

depot in vehicle routing problems) at which the salesman starts and finishes. This has 

the advantage that the presented method can easily be incorporated in cluster first

route second approaches to the VRP with time windows. 

The approach we will follow draws from the k-interchange procedure by Lin 

[6] for the TSP. As in the TSP, a k-interchange is a substitution of k links of a tour 

with k other links. In contrast to the (standard) TSP where the processing of a single 

k-interchange takes 0(1) time, testing in a straightfoward way whether a single TSPTW 

interchange does not violate the time window constraints requires O(N) time, where 

N indicates the size of the problem (in this case the number of vertices). We will 

develop a method that performs this test in 0 ( 1) time. In the second part of the paper, 

we will take a closer look at the question of finding an initial feasible tour. It turns 

out that the problem of deciding whether there exists a feasible tour at all is NP

complete in the strong sense. This result justifies the use of a heuristic procedure for 

the construction of an initial tour. 

2. Local search for the standard TSP 

In the TSP we are given a finite set V of vertices and a distance ti,j for each 

pair of vertices i, j E V. The problem is to find a tour with minimal total length, 

where a tour is a closed path that visits each vertex exactly once (for further infom1a

tion on the TSP, we refer to [ 5] ). A TSP tour of N = IV I vertices can be described by 

a sequence (1, 2, ... , i, ... , N), where i represents the ith vertex of the tour. It is 

clear that a TSP tour has N links. We make the additional assumption that the distance 

matrix is symmetric and satisfies the triangle inequality. 
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Recall that a k-interchange is a substitution of k links of a tour with k other 

links. A tour is said to be k-optimal (k-opt) if it is impossible to obtain a tour of 

shorter length by replacing k of its links by another set of k links. Since the compu

tational effort rises rapidly with k, we only consider the cases k = 2 and k = 3. 

i i+l i i+l 

(a) (b) 

Fig. 1. A 2-interchange. 

We start with the case k = 2. Performing a single 2-interchange on a TSP tour 

involves the substitution of two of its links, say (i, i + 1) and (j, j + 1) in fig. 1 (a), with 

two other links, in this case (i, j) and (i + 1, j + 1) in fig. 1 (b ). 

Such an interchange results in a local tour improvement if and only if the 

following condition holds: 

ti,i+ 1 + tj,j+ 1 > ti,j + ti+ l,j+ 1 . 

Notice that the orientation of the path (i + 1, ... , j) is reversed in the new tour. (In 

the sequel, when we are referring to a 2-interchange, we will always mean the deletion 

of the links (i, i + 1) and (j, j + 1) from the current tour and their replacement by the 

links (i, j) and (i + 1, j + 1 ).) The total number of possible 2-interchanges equals the 

number of subsets of two links that can be formed from the set of N links that make 

up the tour. This number is equal to (~), which implies a time complexity of O(N2 ) 

for the verification of 2-optimality. 

In contrast to the case k = 2, where the two links ( i, i + 1) and (j, j + 1) that 

will be deleted uniquely identify the two links (i, j) and (i + 1, j + 1) that will replace 

them, in the case k = 3 there are eight ways of substituting any given triplet oflinks 

with a triplet of other links. Figures 2(b) and 2(c) show two of the eight possible 

3-in terchanges that can be performed by deleting the links (i, i + 1 ), (j, j + 1) and 

(k, k + 1) of an initial TSP tour [fig. 2(a)]. 
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i i+l i i+J 

k+I k k+I k 

(a) (b) 

Fig. 2. Two ways to perform a 3-interchange. 

For all cases, conditions similar to the one given for the case k = 2 can be given 

to obtain local tour improvement. There is one important difference between the two 

3-interchanges shown in fig. 2, namely the fact that in the latter the orientation of the 

paths (i + 1, ... ,j) and (j + 1, ... , k) is preserved, whereas in the former this orienta

tion is reversed. The total number of possible 3-interchanges is proportional to the 

number of subsets of three links that can be formed from the set of N links that make 

up the tour. This number is equal to (1j ), which implies a time complexity of O(N3 ) 

for the verification of 3-optimality. 

Because the computational effort to verify 3-optimality becomes considerable 

if the number of vertices increases, proposals have been put forward to take only a 

subset of all possible 3-interchanges into account. We will consider the proposal by 

Or [8). His procedure considers only those 3-interchanges that would result in a string 

of one, two, or three consecutive vertices being inserted between two other vertices. 

To see how the Or-opt procedure works, the reader is referred to fig. 3. In this tour, 

the string of three consecutive vertices i, i + 1 and i + 2 is relocated between j and 

j + 1. The time complexity to verify Or-optimality is O(N2 ). 

j j +I j+I 

i+2 i+l i 

i+2 i+l i 

(a) (b) 

Fig. 3. An Or-interchange. 
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3. Local search for the TSP with time windows 

In the TSPTW we are given in addition to the travel time t~i for each pair of 

vertices i, j E V, for each vertex i a time window, denoted by [ei, IJ , where e i specifies 

the earliest service time and l; the latest service time. The latter bound is strict in the 

sense that departing later than Ii is not allowed and causes the tour to become in

feasible, whereas arriving earlier than e i does not lead to infeasibility but merely 

introduces waiting time at vertex i. Throughout the paper, we will assume that there 

is no actual service time at any vertex. This means that we can (and will) depart from 

a vertex as soon as possible. The following quantities, given a feasible tour (I, ... , N), 

will be very helpful for the description of the algorithm: 

Ai, the arrival time at i; 

Di : = max(Ai' e;), the departure time at i; 

Wi: = D;-A1, the waiting time at i. 

We make the following observations: 

A. <D.~ A. < e.~ W. > 0; 
I I "7°' I I "7°' I 

A.= D.~ e . .;;;:;; A.~ W. = 0. 
I I "7°' I I "7°' I 

The conditions for local tour improvement in theTSPTW strongly depend on 

the chosen objective. We consider two objectives below. As to our notation, a quantity 

with superscript new indicates that the value is taken to be the one which would 

result if the interchange were carried out; the subscript still refers to the ordering of 

the current tour. 

(1) Minimize the time spent on actual traveling: 

lN-1 l 
min .I ti, i+ t + tN,1 . 

I= l 

With this objective, a 2-interchange is both feasible and profitable if and only if th1 

following conditions are satisfied: 

the actual travel time is reduced: 
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the new tour is feasible: 

i 

i < k .:;;;; 1·: Dnew = D. + t . . + ' (Wnew + t 1 ) .:;;;; lk; 
k I I,/ L p p- ,p 

p = k+ I 

i 

j < k.:;;;; N: n;ew =Di+ ti,j + I (Wpnew + tp-1,p) 

p = i+ 2 

k-1 

+ wnew + t + , (Wnew + t ) or;;: I 
i+t i+1,j+1 L p p,p+l """"' k · 

p = j+ I 

(2) Minimize the completion time of the tour: 

With this objective, a 2-interchange is both feaible and profitable if and only if the 

following conditions are satisfied: 

the arrival time at j + 1 is decreased: 

and part of the gain can be carried through to the vertex where the salesman 

finishes: 

the reversed part of the tour is feasible: 

j 

. < k or;;: • D + L (Wpnew ) or;;: [ I """"'I : . t . . + + t 1 """"' k. 
I I,/ p- ,p 

p = k + 1 

The second condition needs some further consideration. If this condition is violated, 

the interchange will not alter the completion time of the tour. It will only reduce the 

completion time of the path from 1 to k - 1, for the smallest k for which violation 

occurs. The question arises whether it is wise to carry out an interchange if only part 

of the route is completed earlier. We have adopted the following criterion: 
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A 2-interchange that reduces the completion time of an initial part of the 

tour but not of the complete tour is .carried out if and only if it also re

duces the actual total travel time. 

The main problem with the use of k-interchange procedures in the TSPTW is 

checking the feasibility of an interchange. A 2-interchange will reverse the path 

(i + 1, ... , j). But this means one has to check the feasibility of all the vertices on 

the new path. In a straightforward implementation, this requires O(N) time for each 

2-interchange. This will result in a time complexity of O(N3 ) for the verification of 

2-optimality. By employing an efficient search strategy, we can reduce the checking 

effort to 0(1) time for each 2-interchange. 

The description of the algorithm which follows is based on the second ob

jective extended with the rule specified above. Other objectives require only minor 

adjustments. 

We employ the following lexicographic search strategy. We choose the links 

(i, i + 1) in the order in which they appear in the current tour starting with (1, 2). 

After fixing a link (i, i + 1) we choose the links (j, j + 1) to be equal to (i + 2, i + 3 ), 

(i + 3, i + 4), ... , (N - 1, N), in that specific order (see fig. 4). Now consider all 

4 4 5 

2 

(a) (b) (c) 

Fig. 4. The lexicographic search strategy. 

possible interchanges for a fixed link (i, i + 1 ). Using the ordering of the 2-inter

changes given above implies that in each newly examined 2-interchange, the p~th 
(i + 1, ... , j - 1) of the previously considered 2-interchange is expanded by th.e lmk 

(j - I j). Therefore it is possible, using the information available from the previously 

consid~red 2-interchange, to compute the length and to check the feasibility of the 

path from (i + 1, ... , j) in constant time. To accomplish this, we de~ne the fol~ow

ing quantities (here and in the sequel, the link appearing as a superscnpt determines 

on which interchange the information is based): 
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PFS(i.i+ i) possible forward shift in time of the departure time at j 
causing no violation of the time-window constraints along 
the path (j, ... , i + l); 

PFS(i,j+ l) = min { l - (D.(j,j+ r) + iI t ) } 
i+l.;.k.;,j k J p=kp,p+l 

(The theorem below justifies this definition.) 

TWT(j, i + 1 ) : total waiting time on the path (j, ... , i + 1) (excluding 
possible waiting time at j, including possible waiting time 

ati+l); 

j- 1 

TWT(j,j+ i) = I w<j,j+ i). 
k , 

k = i+ 1 

TTT(j, i + 1) : total travel time, excluding the periods of waiting, of the path 

< j, . .. , i + 1 L 

j- I 

TTT( j' i + I) = I t k' k + I ; 

k"' i+ I 

If we are currently examining the interchange determined by the link ( j, j + 1 ), 
the path (j - 1, ... , i) of the previously considered interchange is expanded by the 
link ( j, j - J ). This usually results in a change of the departure time at j - 1 (and thus 
in the change of the departure time of possibly all the other vertices on the path 

(j - L ... , i + 1) 1 . If we define 

Sl:IIFT(j,j+ I):= D_(j,j+ I) + t. . - D(j- l,j) 
I J,;-I j-1 ' 

then the following result holds. 

THEOREM 

Expanding the path (j - 1, ... , i + 1) with the link (j - 1, j) is feasible if and 

only if 

SHIFT(j,j+ I) ;;;;;; PFS(j- l,j) . 
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j- I 

feasible -+ D.u. i + 1 > + ""' t ..; z 
I L p, p +I k 

p=k 

-+ D.<i.i+ 1> + t. . < l 
I J,J-1 k 

j-2 

- I tp,p+I 

p=k 

-+ SHIFTU.i+ 1> ..; PFs<i- i.j) . 

Note that D~j,j + 1) ~ Dli - i,j) for i + 1 < k < j - 1. The only vertices for 

which infeasibility can occur are those for which np.i+ 1> =f:. nF- 1.i>. A necessary 

condition for this to occur is that there is no waiting time on the path (j, . .. , k) after 

the interchange is carried out. We have that 

SHIFT(i.i+ 1> ..; ppsU- 1.i> 

-+ D.U.i+ 1> + t. . - D~i- t.i) < I - (di- 1.il + i-;;: t ) 
I 1.1-1 1-1 k 1-1 L p.p+l 

p=k 

j-1 

-+ Dfi·i+ 1) + I 
p=k 

j- 1 

-+ D}i·i+ 1) + I 
p=k 

t < I 
p, p + 1 k 

j- I 

t + ""' p,p+I L 
wU.i+ 1> < l 

k k 
p=k 

0 

Because the triangle inequality holds, traveling directly from i to j takes less 

time than through i + 1, i + 2, ... , j - I, so we do not have to worry about feasibility 

at j. To test if part of the gain can be carried through to the vertex where the salesman 

finishes is a trivial matter if we know the vertex with highest index for which the 

departure time coincides with the earliest service time. This vertex can be determined 
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in advance. To check the feasibility at j + 1 and test for local improvement is also 

easy because it only requires the exact departure time at vertex i + 1 plus local 

distances, and it is not difficult to see that 

D.<i.i+ l) = D.<i.i+ l) + TTT(i,i+ l) + TWT(j.j+ l) . 
1+ 1 J 

If we take a closer look at the definition ofSHIFT(i,j+l) given above, we see 

that it covers two different cases (fig. 5): 

SHIFTU.i + 1) < 0: Because the triangle inequality guarantees that the new arrival 

at j - 1 is never earlier than the old arrival, it must have been 

the case that the old arrival and old departure did not coincide. 

This means that the old departure was equal to the opening of 

the time window. But then ISHIFT(j,j+ l) I is exactly the wait

ing time at j - 1. 

SHIFT(;,;+ l) ;;i. 0: Now SHIFT(i.i + l) is exactly the difference between the new 

arrival time and the old arrival time at j - 1, that is, the for

ward shift in time. 

Updating of the quantities involved takes a constant amount of time. We 

.,resent the updating formulae below: 

TTr<i.i+ l) = TTru- 1.;> + t . . 1 ; 
J,J-

TWT(i,;+ l) = max(TWT(i- l,i) - SHIFTU.i+ l), O); 

PFS<i.i+l) = min(PFS(i-l,i) -SHIFT<i.i+ 1>, l. - D.U.i+ 1>L 
I I 

It is easily verified that the transformations for TWT (i.i + 1) and TTT (i.i + 1) are 

correct. The correctness of the transformation for PFS U.i + 1) can be proved as follows. 

Define 

mfs~i.i + 1) : maximal forward shift in time of the departure time at j 

causing no violation of the time window constraints at k; 

( 
j-1 ) 

mfs<i.i+ l): = l - D.Ui+ 1> + """" t . 
k k 1 L p,p + 1 

p=k 
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- SHIFT(j ,j+I )<O 
SHIFT(j,j+\) 

vertex j-1: 

D(j,j-I)= D(j+\,j) 
j-1 J-1 

vertex j: 

vertex j-1: 

vertex j: 

1. 
J 

(a) 

( . +I ) 
~HIFT J,] 1t 

ej-1 

D(j ,j-1) 

j-1 

(b) 

1. 
J 

Fig. 5. Schematic presentation of the possible shifts. 

We have that 

mfs~i.i+ i) = l - (D.<i.i+ 1> 
k 1- 1 

j- I ) 

+ I tp.p + 1 

p=k 

= mfis(i- l,j) - SHIFT<i.i+ l) 
k . 

1 . I r 

t--+ 

t--+ 

t---+ 
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But that means that 

PFS(j,j+ 1> = min {m[s<i.i+ !)} 
i+ 1 ""k .;;.j k 

= min(/. - D.U.i+I)~ min {mfs(j,j+i)}) 
I I i+l .;;.k.;;,j-1 k 

= min(l. - D.U.i+ 1>; min {mfsU- i,j) - SHIFTU.i+ 1>}) 
I I i+l.;;.k.;;,j-l k 

= min(/. - D.U.i+ 1>; PFS(i,j- i) - SHIFT(i,j+ 1>). 
I I 

It is easy to see that the time complexity for each individual 2-interchange 

is reduced to 0(1) because the necessary feasibility checks and tests for local improve

ment plus the updating of all quantities involved require 0(1) time. This gives an 

overall time complexity of O(N2 ) for the verification of 2-optimality. 

Next, we will consider the Or-interchanges and we start with the case where 

only one vertex is moved. Because the concepts presented in this part only slightly 

differ from those described for the 2-interchanges, we will take a more intuitive and 

informal approach. It is also left to the reader to adjust the formulae for the objectives 

given for the 2-interchanges in order to make them applicable to the Or-interchanges. 

It we look at fig. 6, we see that the orientation of the path (j + 1, ... , i - 1) is pre

served. This makes it easy to handle the feasibility checks. We also see that there are 

i+I i-1 

i 

j+l j j+I 

(a) (b) 

Fig. 6. An Or-interchange where only one vertex is moved. 

two possibilities for relocating the vertex i. We can relocate i earlier (backward re

location) or later (forward relocation) in the current tour. Therefore, the search splits 

into two separate parts, namely a backward search and a forward search. We order the 

successively tested Or-interchanges in the same way as we did with the 2-interchanges. 

An Or-interchange is fully determined by the following quantities: 
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PROFIT the gain when going directly from i - 1 to i + 1 

Ai+1 - (Di-1 + ti-1 i+1); 

LOSS the loss if we use i as an intermediate when going from j to j + I 

plus for the backward search: 

PFS (i. i + 1 > : possible forward shift in time of the departure time at j + 1 

causing no violation of the time window constraints on the path 

(j+ 1, ... 'i-1); 

PFs<i.i+ 1> = min {1 - (n. + \:.
1 

t )} 
. 1 ,.;: k .;;; . - I k J + I L p, p +I 
j+ "' I p=j+I 

Twr<i.i+ 1>: total waiting time on the path (j +I, ... , i-1); 

i- 1 

rwr<i.i+ 1> = ' W(j.j+l) 
L k , 

k = j+ 1 

plus for the forward search: 

PBS U.i + 1 ) : possible backward shift in time of the departure time at i + I 
causing no extra waiting time on the path from (i + 1, ... , j); 

PBs<i.i+ 1> = min {D -e }. 
i+! .;;;k..:j-1 k k 

Note that after fixing the vertex i, we can compute in advance all the values of 

PFS (j, i + 1) by walking backward through the current tour starting at i - 1 and the 

values of PBS (i.i + 1) by walking forward through the current tour starting at i + 1. In 

each step, updating is performed according to the following rules: 

PFS U.i+l) W + . (/ D PFS(j+i,i+ 2 >)·, = i+ 1 mm i+ t - i+ 1 ; 

PBS<i.i+ 1> = min(D. - e.; PBs<i- 1.i>). 
J I 
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The other quantities (PROFIT, LOSS, TWT(j,j + 1>) are also easy to compute and it 

is simple to include the necessary feasible check for LOSS during these computations. 

Now such an Or-interchange during the backward search is feasible if and only if 

LOSS :.;:; PFs<i.i+ i) , 

and profitable (with respect to the partial completion time) if and only if 

PROFIT > LOSS - TWT<i.i+ 1>, 

and during the forward search it is feasible and profitable (with respect to the partial 

completion time) if and only if 

min(PBS(i,j+ 1>, PROFIT) > LOSS. 

The Or-interchanges where the string of vertices being moved consists of 

more than one vertex can be treated similarly. Only the computation of LOSS requires 

some more work. Furthermore, if our objective is just to minimize the time the 

vehicle is away from the depot, we can decrease the number of tested interchanges. 

Let i* be the vertex with highest index for which the earliest service time and de

parture time coincide. We only have to consider strings of consecutive vertices with 

higher indices than i*. A very attractive feature of the Or-interchanges implemented 

as described above is the fact that checking Or-optimality (moving only strings of a 

fixed length k) requires O(N2 ) time. 

The techniques described above for the 2-interchanges and Or-interchanges 

can also be used to implement the verification of k-optimality (for all possible k) 

subject to time windows in time O(Nk). 

k-interchange procedures are very sensitive for the number and tightness of 

the time windows. If there are many tight time windows, then the number of tested 

k-interchanges is greatly reduced because of early detection of infeasibility. Therefore, 

the number of tight time windows can be used as a decision parameter which invokes 

a 3-interchange procedure in case this number is large. 

4. The initial solution 

The local search methods described in the previous section require an initial 

feasible tour. Finding such a tour is a nontrivial problem since (in contrast to the 

standard TSP) we have the following theorem. 
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THEOREM 

The problem of finding a feasible tour for the TSPTW is NP-complete in the 

strong sense, even in the case where the distance matrix is symmetric and satisfies 

the triangle inequality. 

Proof 

We will start from the following problem, that is known to be NP-complete 

in the strong sense [3] : 

3-PARTITION 

Instance 

A finite set A= {a 1 ,a 2 , ... , a3ml of 3m elements, a bound BE z+ and a 

'size' s(ai) E z+ for each ai EA, with B/4 < s(ai) < B/2 and 

L s(a) = mB. 

ajE A 

Question 

Can A be partitioned into m mutaully disjoint sets S 1, S2 , ... , Sm such that, 

for 1 .;;;:; i.;;;:; m 

L s(ai) = B? 

a;ES; 

(Notice that the above constraints on the item size imply that every Si must contain 

exactly three elements from A). 

Given an instance of 3-PARTITION, we construct the following instance of TSPTW. 

There are 4m - 1 vertices, the 'partition' vertices 1, ... , 3m and the 'splitting' vertices 

3m + 1, ... ,4m - 1. Each partition vertex j has a window [O,mB] and a weight 

w; = s(a;) (j = 1, ... , 3m). Each splitting vertex j has a window [(j- 3m)B,(j-3m)B] 

and a weight w; = O(j = 3m + 1, ... , 4m - 1 ). The distance matrix T = (tii) is now 

defined in terms of the weights by t;i = (w; + w; )/2. 

Note that the length of any tour is equal to mB and that the windows are de

fined in such a way that the partition vertices can be visited at any time, while the 

splitting vertices must be visited at specific points in time that lie B apart. Since the 

length of a path between two splitting vertices is equal to the sum of the weight~ 

associated with the vertices on that path, in any feasible tour the total weight mB i 

split up in parts of weight B each. This implies that there exists a feasible tour if ana 

only if 3-PARTITION has a solution. 
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The theorem claims NP-completeness for the special case of the TSPTW in 

which the distance matrix is symmetric and satisfies the triangle inequality. The 

matrix T as defined above is symmetric, and if it does not satisfy the triangle in

equality, then we add a suitably large number to each vertex weight to ensure that 

it holds, modify the windows accordingly, and observe that the proof carries 

through. D 

This result justifies the use of a heuristic approach in finding an initial feasible 

solution. Solomon [12] described and analyzed several heuristics for the VRP with 

time windows and found that the insertion heuristics performed best. With this in 

mind, we developed a sequential insertion heuristic based on criteria which include 

both the spatial and temporal aspects of the problem in searching for an initial feasible 

solution. The insertion heuristics for the TSP [ 4] use two criteria, c 1 (i, u, j) and 

c2 (i, u,j) to determine which new customer to insert into the route under construction, 

where (i, j) is a link of the route and u is yet unrouted. Let (i1,i2 , ... ,im) be the 

current route. For each unrouted vertex, we first compute its best insertion place in 

the emerging route, using the first criterion, as follows: 

Next, the best vertex u * to be inserted in the route is selected, using the second 

criterion, as the one for which: 

Vertex u* is then inserted in the route between iu* and iu* + 1 . This procedure con

tinues until all the vertices are routed. 

Certain difficulties arise when one wants to apply this heuristic to the TSPTW. 

Inserting u between iP and iP + 1 could affect all the arrival times at vertices iP + 1 , 

ip + 2 , ... , im, which may result in an infeasible tour. This means that we need the 

quantity 

( 
N- I ) 

PFS := lN - Dk+ I tp.p+I ' 

p=k 

which is similar to the one used in the previous section to check the feasibility of an 

insertion. 

Which criteria to use strongly depends on the tightness of the time windows 

involved. If a time window is relatively wide, the spatial aspect is more important, 
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but if a time window is quite tight, then the temporal aspect becomes dominant. 
Therefore, we introduce two phases: first the vertices with tight time windows are 
routed and next the vertices with large time windows. (The definition of tight and 
large can be set according to the user's preference.) 

Contrary to Solomon [12] our aim is not, primarily, to minimize a certain 
objective function, but just to find a feasible solution. This will be apparent from the 
criteria stated below, where our main concern is to keep the route under construction 
as flexible as possible. 

Note that it is the first criterion used by an insertion heuristic that determines 
the place where a vertex will be inserted in the emerging route. The second criterion 
only serves as a guideline to choose between the vertices available for insertion. There
fore, in trying to achieve our goal, creating a feasible tour, we have to rely primarily 
on the first criterion. 

Let us define the 'extra mileage 1 cost of city u with respect to the link (i, j) 
by: 

em(i, u,j) : = max(D. + t. ; e ) + t . - A .. 
l l,U U U,J J 

In phase l, where the vertices with tight time windows are routed, the temporal 
aspect is dominant. The criteria c 1 Uu. u, iu + 1 ) and c2 (iu*• u*, iu*+ 1 ) to be used are: 

c 1 (iu' u, iu + 1 ) = max {min(l - max(Di + ti u ~ e)~ 
p = I, ... ,m - 1 feasible u P P' 

PFSi - em (i , u, i + 1 ) f 
p + l p p 

The first criterion is guided by the remaining flexibility of the route under construction 
with respect to the time windows, whereas the second criterion searches for the vertex 
whose inclusion will lead to the smallest increase in length of the tour. In phase 2, 
where the vertices with large time windows are routed, feasibility problems play a 
minor role and we can concentrate on the spatial aspect. Therefore, we interchange 

the criteria c 1 (iu, u, iu + 1 ) and c2 (iu*• u*, iu* + 1 ) and obtain: 
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c (i u i ) = min {em (i , u, i 1 ) f 
2 u' ' u + 1 p = 1, ... ,m - 1 feasible P P + 

c1(iu*'u*,iu*+I) = max jmin(l -max(D + ti u;e ); 
u unrouted u u u• u 

PFS1. - em (i , u, i 1 ) f . 
u u u + 

5. Computational results 

In order to test the computational performance of the described algorithms, 
we need a set of test problems for the TSPTW. Because no such set is available in the 
literature, we constructed one ourselves. The problems of this test are based on a well
known TSP instance, introduced by Smith and Thompson [10]. This instance has 48 
vertices and coordinates in the interval [l, 2000]. To obtain TSPTW instances, we 
randomly generated time windows for a subset of customers. The construction is 
guided by four parameters, namely the percentage of customers which receives a time 
window (p ), the maximum route time (mrt) allowed for the vehicle, and two para
meters (a: and m which bound the width of a time window. The test problems are now 
generated by the following procedure. 

( 1) Randomly identify customers who will receive a time window until the 
desired percentage is reached. 

(2) For each of these customers j the center of the time window is drawn 
from a uniform distribution over the interval [t lj, mrt - t lj] , thereby 
ensuring that the center is reachable from the depot; randomly generate 
the width of the interval where the width is bounded from below by 
a: X mrt and from above by ~ X mrt. 

We have embedded the described methods for the 2-interchange and Or-inter
changes in three different test programs, the difference between the programs being 
the acceptance of a feasible interchange. The first is guided primarily by the spatial 
aspects (objective 1 ), whereas the second is guided primarily by the temporal aspects 
of the problem (objective 2). The third is the one we proposed in sect. 3 (objective 2 
plus extension). All programs consist of three calls of the Or-interchange procedure 
(trying to move vertex strings of length three, two, and one, respectively) followed by 
one call of the 2-interchange procedure. 

The programs were written in C and run on the PDP-11/70 computer at the 
Academic Computer Centre in Amsterdam (SARA). The run times listed in the tables 
are those provided by the UNIX profiling facility. 
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Table l 

Average results for the initial tour and the three test programs 

Total time Waiting time Travel time 

Initial tour 16288.6 865.4 15423.2 

Program I 15428.2 1658.7 13771.3 
Program II 14488.0 220.2 14267 .8 
Program III 14531.7 558.6 13937.l 

Table 2 

Average number of tested and performed interchanges for the Or-interchange algorithm with 

strings of three, two, and one consecutive vertices being relocated, respectively 

Or-opt (3) Or-opt (2) Or-opt (1) Time Or-opt 

(ms) 

No. test No. perf No. test No. perf No. test No. perf 

Program I 1960.3 1.2 2891.0 3.2 2636.2 2.7 327.26 

Program II 3670.0 4.5 7136.0 7.2 10405 .1 13.3 720.88 

Program III 3370.7 4.0 5228.0 5.2 7842.4 9.8 612.86 

Table 3 

Average number of tested and performed interchanges for the 2-interchange algorithm 

2-opt Time 2-opt 

(ms) 

No. test No. perf 

Program I 1068.8 4.9 106.68 

Program II 926.5 2.7 80.03 

Program Ill 863.4 2.9 76.67 
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The results given in tables 1, 2 and 3 are based on ten randomly generated 

problems with parameters mrt, a,~ and p set to 15, OOO, 0.025, 0.200 and 25, re

spectively. Travel times between vertices were taken to be equal to the corresponding 

Euclidean distance. Table 1 clearly illustrates the influence of the chosen objective 

on the interchange algortihms. Table 2 and 3 provide some additional information on 

the performance of the algorithm. We see that the choice of objective has some impact 

on the computational effort to reach and verify Or-optimality and that the number of 

actually performed interchanges is small compared to the number of tested inter

changes. Very attractive are the computational times, which are less than one second 

for a combination of one call of the 2-interchange procedure and three calls of the 

Or-interchange procedure. 

6. Conclusions 

We have described two techniques that enable us to modify the k-interchange 

concept for local improvement in routing problems in such a way that time windows 

can be handled without increasing the time complexity. We also proved that the prob

lem of deciding whether or not there exists a feasible solution for the TSP with time 

windows is NP-complete in the strong sense and with this in mind, constructed an 

insertion heuristic which tries to combine the spatial and temporal aspects of the 

problem. The computational results obtained when the described techniques were 

implemented together with the initial tour heuristic are very satisfactory. The grow

ing importance of time windows in practical distribution problems is an encourage

ment for fundamental research in this area. Hopefully, this paper will contribute to 

its exploitation. 
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