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Local Self-Energy Approach for Electronic Structure Calculations
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Using a novel self-consistent implementation of Hedin’s GW perturbation theory, we calculate space-
and energy-dependent self-energy for a number of materials. We find it to be local in real space and
rapidly convergent on second- to third-nearest neighbors. Corrections beyond GW are evaluated and
shown to be completely localized within a single unit cell. This can be viewed as a fully self-consistent
implementation of the dynamical mean field theory for electronic structure calculations of real solids
using a perturbative impurity solver.
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FIG. 1. Diagrammatic representation of the interaction energy
functional � (a) and the self-energy � (b). The first term in both
graphs corresponds to Hartree, the second term is GW [3], and
the third term is a correction to GW.
The construction of a controlled practical approximation
to the many-body problem of solid state physics is a long
sought goal. Controlled approximations are important be-
cause the accuracy of the results can be improved in a
systematic way. Dynamical mean field theory (DMFT) and
its cluster extensions (C-DMFT) [1,2] can be considered as
candidates for such a controlled approximation as they
permit one to improve accuracy in a systematic way in-
creasing the number of electronic states per site and the
number of lattice sites in a cluster.

The central goal is the computation of the one-electron
Green function (its Fourier transform can be measured via
photoemission and inverse photoemission spectroscopy),
G�r; r0; !�, and the self-energy ��r; r0; !�. At the same
time, following Hedin [3], one introduces the effective or
screened interaction W�r; r0; !�. The solution of the full
many-body problem can be formulated as the extremiza-
tion of a functional L�G;W� � Tr lnG� Tr lnW ��G�
�W ���G;W�. It is defined as the Legendre transform of
thermodynamic potential with respect to noninteracting
Green function and bare Coulomb interaction [4]. It
strongly resembles the Luttinger-Ward functional [5] but
has extremum both in the self-energy � and polarizability
�, which plays the role of the self-energy for W.

The interaction functional ��G;W� is then expanded in
a perturbative series. The first few graphs are shown in
Fig. 1(a) and corresponds to the Hartree, the GW, and the
first correction beyond GW. Variations of � over G and W
give us � and �. For the self-energy these diagrams are
given in Fig. 1(b). To solve the corresponding Dyson
equations numerically, one introduces a basis set and cor-
responding expansions for the self-energies, polarizations,
and effective interactions. Cluster DMFT ideas truncate the
functional �, �, and � by setting its variables, i.e., the
Green functions, equal to zero beyond a given range R [2].
When R is one lattice spacing, we have the highly success-
ful single site DMFT. As the range R increases, the ap-
proximation converges to the solution of the full many-
body problem. In this Letter we address the central prob-
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lem of determining the minimal range that is needed to
obtain accurate results for various materials.

There are three different parameters that need to be
increased to achieve convergence: (a) the size of the basis
set Lmax, (b) the order of the perturbation theory kept nmax,
and (c) the range of the graphs Rmax which needs to be kept
to obtain accurate approximation. Rmax depends on L and
n. We do not consider in this Letter the important issue of
convergence as a function of Lmax nor the dependence of
the range on the type of the basis set chosen. Instead we
make the choice of a minimal basis set and focus on the
issues of convergence as a function of n and R.

Keeping Rmax equal to one lattice spacing and nmax � 1
results in the multiband single site DMFT approximation.
Keeping Rmax � 1 and n � 1 corresponds to the famous
GW approximation [3,6–9]. Rmax � 1 and nmax � 1 are
reduced to the localGW approximation introduced by Zein
and Antropov [10], as an approximation to accelerate the
convergence of the GW method. Keeping Rmax�n � 1� �
1, Rmax�n > 1� � 1, and nmax � 1 constitutes the GW �
DMFT approximation [10–13]. Until now, this approxi-
mation has been fully implemented only in the context of
model Hamiltonians [13], and its more realistic implemen-
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tations [12] still contain adjustable parameters such as the
double counting correction.

In this work we present a real-space cluster implemen-
tation of the GW technique which allows us to monitor
directly the locality of the self-energy in the real space. In
addition, we evaluate corrections beyond the GW and
answer the question of their convergency with respect to
the cluster size. We show that the most nonlocal are the
contributions from the diagrams with one loop. It was
recognized early on [14] that the higher the order of the
diagram, the more local it is because ‘‘crossing’’ integra-
tion over internal wave vectors increases the role of large
momentum leading to the locality in real space. Here we
show that in many real solids, the truncation of diagrams
beyond one loop to the range of one lattice constant is
already very accurate.

Our approach allows us to obtain fully self-consistent
results, independent of the starting point where local den-
sity approximation (LDA) to density functional theory [15]
serves in many cases [6–9]. We establish that even in the
case of semiconductors where the Coulomb interactions
have an infinite range due to lack of screening, a reason-
ably small cluster produces very accurate results. The size
of the cluster needed to obtain accurate results is reduced
as the order in perturbation theory increases.

For weakly correlated systems our approach can be
regarded as a trick to simplify and accelerate the solution
of the GW equations and further perturbation corrections
to it. Alternatively, our approach should be viewed as the
first fully self-consistent implementation of an ab initio
cluster DMFT method for solids (with second order per-
turbation theory playing the role of the impurity solver).

We discuss the results of our calculations for a number
of materials, such as simple and transition metals as well as
semiconductors. Especially the latter class represents a
hard case scenario for methodologies based on local self-
energy approximations due to the long range nature of its
statically screened Coulomb interaction. We focus on the
electronic structure of Si, a benchmark in past GW studies.
Some aspects of this problem are still debated, such as the
effect of higher lying energy states, core exchange, and
pseudopotential vs all-electron approximations [16,17].
We focus on the convergence of the electronic structure
as a function of the cluster size used for determination of
the self-energy for a given basis set. We also evaluate
several diagrams beyond GW to examine the issue of
convergency of the whole perturbation theory with respect
to the Coulomb interaction.

Our implementation is based on the linear muffin-tin
orbital (LMTO) method for electronic structure calcula-
tions [18], which has been already used in realizations of
GW [6,19]. The LMTO basis functions separate the wave
vector and radial dependences: �k

��r� � �H
� �r� �P

L�J
L�r�S

k
L�, where Sk

L� are the LMTO structure constants
while �H;J

L are linear combinations of radial wave func-
tions as well as their energy derivatives matched to Hankel
(H) and Bessel (J) functions at the sphere boundary.
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In order to find the matrix elements ����k; i!n� of the
self-energy operator ��r; r0; i!n� in brackets of the
LMTOs for a set of imaginary Matsubara frequencies
!n � �2n� 1��T, we use atomic sphere approximation
and represent real-space vectors r � ��R and r0 � �0 �
R0, where �; �0 are restricted by the unit cell and R;R0 are
the lattice translations. We redenote ��r; r0; i!n� �
�R��; �0; i!n� (due to translational invariance we can al-
ways set R0 � 0). Then, as discussed in Ref. [20],
����k; i!n� has the following structure:

����k;i!n����HH��� �k;i!n��
X
L

��HJ��L �k;i!n�Sk
L�

�
X
L

Sk�
L���JH�L� �k;i!n�

�
X
L

Sk�
L���JJ�LL0 �k;i!n�Sk

L�; (1)

where �����LL0 �k; i!n� �
P
Re

ikR�����LL0 �R; i!n� and the
cluster self-energy is given by the matrix element

�����LL0 �R; i!n� �
Z

�����L ����R��; �0; i!n��
���
L0 ��

0�d�d�0:

(2)

As we see, even if ��r; r0; i!n� can be local (i.e., nonzero
only when both r and r0 are in the same cell), the matrix
elements ����k; i!n�, Eq. (1), acquire some k depen-
dence through the structure constants. It is due to the tails
of the basis functions extended over all space, and it is
quite analogous to the k dependence of local potential
matrix elements in LDA. Such k dependence can be called
‘‘kinematical,’’ and in the following we will distinguish it
from the dynamical k dependence connected to the exis-
tence of R � 0 elements of �R��; �0; i!n�, which is the
main focus of the present work.

In our implementation, we solve the equation for the
dynamically screened interaction W � V � V�W on the
product of basis functions following Ref. [21]. After find-
ing W�r; r0; i!n� the self-energy is calculated either as
��R� � G�R�W�R� (R-space version) or as ��k� �P

kG�k�W�k� q� (k-space version). All calculations are
performed on the imaginary energy axis. Because of the
large frequency behavior of the Green function propor-
tional to 1=i!n, special care should be taken for the direct
exchange contribution to the self-energy (�x � �GV), as
the sum over large !n needs to be done analytically. The
remaining portion, �c � G�V�W�, is due to correlations,
and the sum over internal frequencies is rapidly conver-
gent. Finally, in order to obtain the electronic spectrum for
real frequencies we analytically continue the Green func-
tion using 40th to 60th order Pade’s approximation [22].
For the energies near Ef the accuracy of this procedure is
checked by independent computations of quasiparticle
Green functions.

We perform self-consistent GW calculations for Fe, Ni,
Na, and Si using our newly developed cluster algorithm
3-2
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and obtain the self-energies in real space. To discuss the
results of these calculations, Table I lists the diagonal
matrix elements of the correlational part of the self-energy
��HH�c;ll �R; i!0�, as a function of R for the value of !0 �

�T � �400K. [In case of magnetic ground state
�HH
c;ll �i!0� is for majority spins.] From Table I it follows

that �c;dd�R � 0� dominates in transition metals and falls
off very quickly in nearest neighbors, because of both
small overlap between d orbitals and large screening at
small energies. The �c;ss�R� in these metals falls off more
gradually, but its value is negligible in comparison with d.
It explains why the recently developed one-site approach
[10] is successful in this case. In simple metals like Na and
Al, only �s and �p are significant; they fall off gradually,
but nevertheless on the third coordination sphere they
become small as compared to ��R � 0�, even if they are
multiplied by a number of nearest neighbors at this sphere.
In Si with its two atoms per unit cell (denoted by vectors �),
translation R should be replaced by nearest distance Rij �

R� �i � �j, and both �c;ss�Rij� and �c;pp�Rij� fall off
pretty slowly but nevertheless become very small at R’s
comparable with the size of the unit cell in accord with the
conclusions reached in the pioneering work [8].

Turning to a similar study for the polarizability �
function we should point out that for a semiconductor it
is intrinsically nonlocal because one has to satisfy the
f-sum rule ��k! 0; ! 	 0� ! 0, which requires cancel-
lation between on-site and intersite terms. We examined
how this sum rule is fulfilled for Si, where values of
��R; ! 	 0� are computed for several R’s. We conclude
that this has rather long range expansion and we need
cluster sizes comparable with the Si lattice parameter to
produce the desired accuracy.

We now investigate the convergency of the electronic
structure of Si using the cluster GW method. Both the
direct and indirect energy gaps as well as the valence
band width are calculated by varying the size of the cluster
used when evaluating the correlational part of the self-
energy. The behavior of the electronic structure as a func-
TABLE I. Correlational contribution to the self-energy matrix
element, �HH

c;ll �R; i!0�, in eV as a function of R for Fe, Ni, Na,
Al, and Si. R1 � a=

���
2
p

, R2 � a, R3 � a
���
2
p

in fcc structure;
R1 � a

���
3
p
=2, R2 � a, R3 � a

���
2
p

in bcc structure; R1 �
a

���
3
p
=4, R2 � a=

���
2
p

, R3 � a in diamond structure.

R � 0 R1 R2 R3

Fe: �ss�R� 0.70 0.35 0.16 0.00
Fe: �dd�R� 6.53 0.05 0.08 0.00
Ni: �ss�R� �0:54 0.05 0.03 0.00
Ni: �dd�R� 7.34 0.38 �0:03 0.00
Na: �ss�R� �1:36 0.52 0.30 0.05
Al: �pp�R� 0.46 0.16 �0:08 0.00
Si: �ss�R� 0.95 0.30 0.14 0.03
Si: �pp�R� �1:06 0.05 �0:27 �0:03
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tion of the cluster size is schematically shown on Fig. 2.
They indicate that the nonlocality of the self-energy in Si
approximately extends up to a third coordination sphere.

We have evaluated the first self-energy correction be-
yond GW, ���R�, for Si as a function of the cluster size.
Our obtained on-site values for s and p electrons are as
follows: ��s�0��0:22 eV and ��p�0� � �0:14 eV. The
self-energies at first and second coordination sphere are
given by ��s�R1��0:002 eV, ��p�R1���0:002 eV,
��s�R2� � 0:0003 eV, and ��p�R2���0:0005 eV. We
see that the correction to GW is completely local and per-
mits us to calculate it in the real space which is much less
time consuming. It is also interesting to note that the en-
ergy dependence of this correction exists but at the same
scale as in �GW . To check whether the convergence of the
self-energy in the real space is influenced by higher energy
states we have performed LMTO calculations with dou-
bling the basis set using the so-called multiple kappa tech-
nique. We did not find any significant changes compared to
the data obtained with single kappa minimal LMTO basis.
This is readily understood based on the quasiclassical
argument which was noted earlier in Ref. [23].

We finally would like to address a question on predicting
the energy gaps in semiconductors and insulators widely
discussed in the current literature [16,17]. We have per-
formed such calculations with and without imposing self-
consistency for the Green function, which in the latter case
corresponds to the LDA Green function used in evaluating
the interactions and the self-energies. We refer to these
calculations as the self-consistent and ‘‘first shot’’ ones. In
both cases � was calculated as a product of two corre-
sponding Green functions without inclusion of vertex
terms. We include the core exchange effects, whose im-
portance has been recently pointed out [16]. The results of
these studies are presented in Table II where we list the
obtained energy gaps for a whole series of materials, such
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FIG. 2 (color online). Direct and indirect energy gaps as well
as valence bandwidth for Si in eV calculated by varying the size
of the cluster used when evaluating the correlational part of the
self-energy within the GW method.
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TABLE II. Comparison between calculated energy gaps (eV)
in semiconductors and insulators using non-self-consistent ‘‘first
shot’’ (FS) and self-consistent (SC) GW methods obtained in the
present work, and results of other available GW calculations and
experiment.

FS
(this work)

SC
(this work) FS SC Experiment

C 5.00 5.02 5.33a 
 
 
 5.48b

Si 0.86 1.10 1.24a, 0.85c 1.05c 1.17b

MgO 8.00 5.90 8.2d 
 
 
 7.8e

AlAs 1.33 1.90 2.18a, 1.65f 
 
 
 2.24b

aReference [9].
bReference [24].
cReference [16].
dReference [25].
eReference [26].
fReference [27].
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as C, Si, MgO, and AlAs. The available previous calcu-
lations and experimental data are also listed in Table II for
comparison. As we conclude, our present implementation
shows that all our obtained GW values are well within the
range of the published data by highly accurate pseudo-
potential and linear augmented plane wave based calcula-
tions, which gives us a foundation to believe that our
evaluated corrections beyond GW are correct. However,
due to the use of minimal LMTO basis sets, issues con-
nected with the omission of full potential terms, as well as
errors introduced by energy linearization procedure we are
unable to provide further comments on the GW accuracy.

In conclusion, we have developed a self-consistent clus-
ter DMFT methodology which allows us to monitor the
locality of the self-energy in the real space. As a first
application, we evaluated first contribution in Hedin’s per-
turbation series for the self-energy in Si and found it to be
completely local. Our approach is ideal for resuming the
perturbation theory at the local level as was recently done
in Ref. [13]. This step will allow us to study strongly cor-
related systems completing the first principles C-DMFT
program for solids.
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