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Abstract 

We show that highlights in images of objects with specularly reflecting surfaces provide 

significant information about the surfaces which generate them. A brief survey is given of 

specular reflectance models which have been used in computer vision and graphics. For our 

work, we adopt the Torrance-Sparrow specular model which, unlike most previous models, 

considers the underlying physics of specular reflection from rough surfaces. From this model 

we derive powerful relationships between the properties of a specular feature in an image 

and local properties of the corresponding surface. We show how this analysis can be used 

for both prediction and interpretation in a vision system. A shape from specularity system 

has been implemented to test our approach. The performance of the system is demonstrated 

by careful experiments with specularly reflecting objects. 

1. Introduction 

When light is incident on a surface, some fraction of it is reflected. A perfectly smooth 
surface reflects light only in the direction such that the angle of incidence equals the angle 
of reflection. For rougher surfaces, e.g. the surface of a metal fork, specular effects are 
still observable. In this paper we analyze the properties of specular reflection from rough 
surfaces. 

There are numerous reasons why the study of specular reflection deserves serious 
attention in computer vision. Specular features are almost always the brightest regions 
in an image. Contrast is often large across specularities; they are very prominent. In 
addition, the presence or absence of specular features provides immediate constraints on 
the positions of the viewer and light sources relative to the specular surface. Also, as we 
will show, the properties of a specularity constrain the local shape and orientation of the 
specular surface. 

An ability to understand specular features is valuable for any vision system which must 
interpret images of glossy surfaces. This work, motivated by experience with ACRONYM 
[4], began in order to provide the SUCCESSOR system with the capability to reason about 
specular reflection from metal parts in the ITA project [6]. Images of these parts typically 
contain large specular regions (Figure 1). 
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Figure 1. Typical Image Containing Specularities 

We examine what information can be inferred from an image of a rough surface by 
considering the physics of specular reflection. Particular emphasis is placed on finding 
symbolic quasi-invariant relationships which will hold in many different situations (e.g. 
different source, viewer configurations). In contrast to many intensity-based vision algo- 
rithms, we compute a small number of local surface statistics based on the properties of a 
relatively large number of pixels in an image. This allows us to observe predicted features 
and infer local surface shape in noisy intensity images and in cases where available specular 
models do not completely characterize the physics of specular reflection. 

2. Review of Previous Work 

Researchers in computer graphics have used increasingly realistic specular models. 
Several of these models will be discussed in the next section. In computer vision, however, 
relatively few attempts have been made to exploit the information encoded in specularities. 
Ikeuchi [16] employs the photometric stereo method [24] and uses distributed light sources 
to determine the orientation of patches on a surface. Grimson [11] uses Phong's specular 
model [18] to examine specularities from two views in order to improve the performance of 
surface interpolation. Coleman and Jain [7] use four-source photometric stereo to identify 
and correct for specular reflection components. In more recent work, Blake [2] assumes 
smooth surfaces and single point specularities to derive equations to infer surface shape 
using specular stereo. He shows that the same equations can be used to predict the 
appearance of a specularity on a smooth surface when using a distributed light source. 



Takai, Kimura, and Sata [22] describe a model-based vision system which recognizes objects 

by predicting specular regions. As specular models and insights improve, we expect to see 

more work which makes use of the properties of specular reflection. 

3. Specular Reflectance Models 

Given a viewer, a surface patch, and a light source, a reflectance model quantifies 
the intensity the viewer will perceive. General reflectance models represent the perceived 

intensity I as a sum of two reflection components 

I = ID + ls (1). 

ID represents the intensity of diffusely reflected light and Is represents the intensity of 
specularly reflected light.    In this paper we restrict our attention  to the /5  reflection 

component. 
We note that it is typically easy to separate the /s reflection component from the 

ID reflection component in an image. There are several distinctive properties of specular 
reflection. Over most of a surface /s is zero, but in specular regions Is is usually very 
large relative to ID. In regions where the specular component is nonzero, Is changes much 
more rapidly with surface geometry than ID. Furthermore, the color of the /s reflection 
component is almost always different from the color of the ID reflection component. 

Before discussing the various specular reflectance models, we introduce the reflection 
geometry (Figure 2). We consider a viewer looking at a surface point P which is illuminated 

by a point light source. Define 

V' = unit vector from P in direction of viewer 

N = unit surface normal at P 
L = unit vector from P in direction of source^ 
H =    v. 

+
 
l
:    (unit anjrular bisector of V and L) 

a = cos~
l
(N ■ //) (the angle between N and //) 

Figure 2. The Reflection Geometry 
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In describing specular models, we consider illumination from a single point light source. 
In principle, we lose no generality using this approach. In situations involving distributed 
light sources, we only need to integrate the effects of an equivalent array of point sources. 

A discussion of the geometry of extended sources is given in [14]. 
The simplest specular model assumes that specularities only occur where the angle of 

incidence equals the angle of reflection and L, N, and V all lie in the same plane. This 
corresponds to the situation a = 0 in Figure 2. Unless the surface is locally flat, this 
model predicts that specularities will only be observed at isolated points on a surface. A 
few experiments, however, show that this model is inadequate for most real surfaces. Not 
only are observed specular features usually larger than single points, but highlights often 

occur in places which are not predicted by this model. 
An empirical model for specular reflection has been developed by Phong [18] for com- 

puter graphics. This model represents the specular component of reflection by powers of 
the cosine of the angle between the perfect specular direction and the line of sight. Thus, 
Phong's model is capable of predicting specularities which extend beyond a single point. 
While Phong's model gives a reasonable approximation which is useful in some contexts, 
the parameters of this model have no physical meaning. It is possible to develop more 
accurate models by examining the physics underlying specular reflection. 

The Torrance-Sparrow model [23], developed by physicists, is a more refined model 
of specular reflection. This model assumes that a surface is composed of small, randomly 
oriented, mirror-like facets. Only facets with a normal in the direction of H contribute 
to Is- The model also quantifies the shadowing and masking of facets by adjacent facets 
using a geometrical attenuation factor. The resulting specular model is 

Is = FDA (2) 

where 

F = Fresnel coefficient 
D = facet orientation distribution function 
A = geometrical attenuation factor adjusted for foreshortening 

We will analyze the. effects of each factor in the model in the next few paragraphs. The 

results we present in this paper are derived from equation (2). 
The Fresnel coefficient F models the amount of light which is reflected from individual 

facets. In general, F depends on the incidence angle and the complex index of refraction 
of the reflecting material. Cook and Torrance [8] have shown that to synthesize realistic 
images, F must characterize the color of the specularity. The Fresnel equations predict 
that F is a nearly constant function of incidence angle for the class of materials with a 
large extinction coefficient [21]. This class of materials includes all metals and many other 
materials with a significant specular reflection component. 

The distribution function D. describes the orientation of the micro facets relative to the 
average surface normal N. Blinn [3] and Cook and Torrance [8] discuss various distribution 
functions. All of these functions are very similar in shape. In agreement with Torrance 
and Sparrow we use the Gaussian distribution function given by 



D = Ke-(
a/m)

'    (3) 

where K is a normalization constant. Thus, for a given a, D is proportional to the fraction 

of facets oriented in the direction H. The constant m indicates surface roughness and is 

proportional to the standard deviation of the Gaussian. Small values of m describe smooth 

surfaces for which most of the specular reflection is concentrated in a single direction. Large 

values of m are used to describe rougher surfaces with larger differences in orientation 

between nearby facets. These rough surfaces produce specularities which appear spread 

out on the reflecting surface. Figure 3 shows the effect of different values of m. 

incident ray reflected rays 

Figure 3a. Specular Distribution for Small m 

incident ray 
reflected rays 

Figure 3b. Specular Distribution for Large m 

The factor A quantifies the effects of a geometrical attenuation factor G corrected for 

foreshortening by dividing by (N - V). 



A = S^ (4) 
N-V 

G is derived by Torrance and Sparrow in [23]. They assume that each specular facet 
makes up one side of a symmetric v-groove cavity. Prom this assumption, they examine 
the various possible facet configurations which correspond to shadowing or masking. The 

expression is 

.  /    2(JV ■ H)(N ■ V) 2(N ■ H)(N ■ L) \ 

G
-

mm
\

1
'       (V-H)       •       (V-B)       /    (5)' 

We will show that in applications it is often possible to use a simpler expression for G. 
Let \x be the angle between N and V. As /J, increases from 0 to f, the viewer gradually 

sees a larger part of the reflecting surface in a unit area in the view plane. Therefore, as (i 

gets larger, there are correspondingly more surface facets which contribute to the intensity 
perceived by the viewer. We take this phenomenon into account in (4) by dividing by 

N-V. 

4. Shape from Specularity 

In this section, we demonstrate how we can use (2) to determine local surface proper- 
ties from specularities. In almost all situations we do not require the full generality of (2) 
to infer these local properties. Our first assumption is that F is a constant with respect to 
viewing geometry. This is a very good approximation for metals and for many other mate- 
rials. We can further simplify (2) by observing that the exponential factor in (3) changes 
much faster than any of the terms of A. Therefore, except for a small range of angles near 
grazing incidence, A can be considered constant across the specularity. We will discuss 
the consequences of this assumption later. Hence, the form of (2) used to determine local 

surface properties is 

Is = K'e-^'
m)2

       (6), 

where K' is a constant. 

Referring again to the geometry of Figure 2, we assume that the viewer and light 
source are distant relative to the dimensions of the surface. Therefore V and L may be 
regarded as constant; hence their angular bisector H is also constant. We assume that 
the positions of the viewer and light source are known. Finally, since the distance from 
the viewer to the surface is large, we can approximate the perspective projection of the 

imaging device with an orthographic projection. 

4.1. Inferring Local Surface Shape 

For a surface M on which the Gaussian curvature is locally nonzero, we will be able to 
locate a single point P0 of maximum intensity in the image of the specularity. From (6) we 



see that this point corresponds to the local surface orientation N = H (i.e. or = 0). Given 

such a surface where H is known, we can immediately determine the surface orientation 

at P0. 
Figure 4 shows a typical intensity surface for a specular image. 

Figure 4. Specular Intensity Surface for a Curved Surface 

The level sets arc image curves of constant specular intensity.   P0 corresponds to a = 0. 
As predicted by (6), specular intensity decreases as we move away from P0. 

After locating P0, we can transform the specular intensity image to the a angle image. 
Consider equation (6). If /' is the specular intensity corresponding to an arbitrary image 
point P' near P0) then the angle a at the surface point imaging to P' is given by 

|0| = m^_lnj£. (7) 

We see that a is determined only up to sign. This will cause the sign of the normal 
curvature computed at P0 to be ambiguous. In applications, this ambiguity can usually 
be resolved by considering other cues. From (7) we can compute the absolute value of a 

corresponding to each point P' in a neighborhood of P0- The image of |a| values is called 

the a angle image. 
From the a angle image, we can compute local curvature properties of the surface. Let 

Tp0(M) be the tangent space to M at P0. To compute curvatures, we take a finite number 
n of straight line samples of the o angle image intersecting P0. To insure uniform angular 
resolution on  the surface,  these samples must be taken in equally spaced directions in 



TP (M) In general, equally spaced directions in the image will not correspond to equally 
spaced directions in the tangent space. Thus, given a direction in the tangent space to the 
surface at P0, we need to determine the corresponding direction in the image. 

Consider a 3-D coordinate system such that the viewer is looking down the z-axis and 

P0 is at the origin (Figure 5). 

A 

image  plane 

Y 

X 

Figure 5. The Projection Geometry 

At P we have A7 = // so that the vector // is normal to the tangent space to the 
surface at P. Wc choose to define angles in the tangent space in the counterclockwise 
sense fromj = 0 and in the half space x > 0. Denote the normal to the surface at P by 

yV = (NltN7, N3). The tangent space to the surface at P is given by 

Nlx + N2y+N3z = 0       (8) 

Along y=0. the unit vector V0 >n <•"« tangent space is 
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yo = ( /..   \>*>   J!L_)   (9) 
V ^ + -^    V Ni + ^i2 

To simplify the notation let 

Ki =     .       
3      ,      I<2 =     .      * (10) 

V Ni + N? 0Vf + N? 

Let 0 be the angle of interest in the tangent space. The goal is to find a unit vector 
Vi = (xi,yi,zi) which lies in the tangent space and makes an angle 9 with V0. The angle 
6 provides the constraint 

x1K1 + ziK2 = cos9      (11), 

From (8) we must require 

xiNi+y1N2+ziN3=0      (12), 

and since V\ is a unit vector we have 

x\ + vl +zf = l     (13). 

The equations (11), (12), (13) may be solved uniquely for x1,y1,z1 in the half space x > 
0. Briefly, the solution is 

where 

-R2 + ^/Rl-iR1R3 

*' = 2R,      (14) 

x\ = C4 - C5zi       (15) 

-X!Ni      zxNz 
yi = —=i —     (16) 

No No 

Ri = CxCl + C2 - C3C5      (17a) 

R2 = -2C1C^Cb + C3C4i      (176) 
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i23 = CiC4
2-l      (17c) 

if? 
d = 1 + -=£      (18a) 

NI 

N
2 

(186) 

n       2iViiV3 
(18c) 

cos 9 

4 =  üTi 
(18d) 

^      A'2 
(18e) 

A special case occurs when iV2 = 0. For this case we use (11) - (13) to arrive at 

—N\cos9 .„„. 
*l =  zr

1         (19) 
K1Ni-K2N2 

cos9-z1K2       (t) , 
Xl
 = K,       (20) 

y\ ^{l-zl-xD       (21) 

We use (14) - (21) to compute the components of V\. 

Assuming an orthographic projection and examining the geometry of Figure 5, we see 
that the rci,yi components of Vi give us the projected vector we are seeking in the image. 

Let 9' be the image angle corresponding to V\. Then 

& = tan-
1
(^)       (22) 

Xi 

The next step is to use the a image to compute the normal curvature of the surface 
in the direction 9. The normal curvature is computed by taking a straight line L in the 
a image which intersects P0 and is in the direction 9'. Under orthographic projection, L 
will project to a line V in TPo(M). The goal is to compute the normal curvature of the 
curve C C M where C is the orthogonal projection of L' onto M. Since C projects to a 
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line in Tp0(M), the magnitude of the geodesic curvature \Kg\ of C is 0 [17]. Thus local 
changes in a along C are due primarily to normal curvature along C. We compute the 
normal curvature Kn in the direction 6 by 

da 

as 
(23) 

Po 

where s is arc length in the direction 6. In other words, we are differentiating the a image 
along L with respect to arc length on the surface. From the local character of specularities, 
we see that, to a very good approximation, arc length on the surface is equal to length in 
Tp0(M). Therefore, length in the image and arc length on the surface are related by the 
scale factor \/x\ + y\. Thus, computing normal curvature on the surface has been reduced 
to differentiation in the a. image. 

If we let 6 vary in the range 0 < 8 < 2ir we can compute Kn in any number of directions 
at Po • The principal curvatures of M at Po are defined to be the maximum and minimum 
values of Kn; the corresponding directions are called the principal directions. Hence, using 
this technique it is possible to describe M locally to second order in terms of principal 
curvatures and principal directions. In the context of shape from shading [13], Bruss[5] 
and Deift and Sylvester [9] examine the assumptions required to generate higher order 
surface descriptions from an a image. 

4.2. Special Cases 

In this subsection we examine specular reflection from special classes of surfaces. 
In 4.2.1. and 4.2.2. we consider surfaces which are locally singly curved and planar 
respectively. For these surfaces, the Gaussian curvature is locally zero. In 4.2.3. we 
examine the case of corners and edges where surface normal is discontinuous but where 
specularities are frequently observed. 

4.2.1.Singly Curved Surfaces 

If one principal curvature of a surface is zero in a specular region (i.e. the surface is 
locally singly curved), we will not be able to infer immediately the local orientation as we 
did for a doubly curved surface. To understand why, consider Figure 6. Figure 6 shows a 
viewer looking at a tilted cylinder. To make the example concrete, assume that L is such 
that H = V. For this configuration there will be no point on the surface for which a = 0 
(recall that H is essentially constant), yet we will still observe a specularity in the image 
if at some point a is small enough to give a significant value for Is in (6). Define (f> to be 
the smallest value of a for a given surface-source-viewer configuration. Figure 7 shows a 
specularity generated by a cylinder which is oriented so that (f> is 20°. Note that a specular 
model which assumes a smooth surface would not predict a specularity for this case. 
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ire G.   Viewer Observing a Singly Curved Surface 

Figure 7. Specularity for a Tilted Cylinder 
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We observe that it is typically easy to detect that a surface is singly curved at a 
specularity. This is because we will observe a line of maximum intensity (along the line of 
zero curvature) instead of the point maximum we observe for the doubly curved case. 

Figure 8 is a plot of J5 for a singly curved surface in a direction perpendicular to the 
lines of zero curvature as we change <f>. It is worth noting that both the magnitude and 
shape of /s change as ^ increases. Consequently, it is possible to recover significant local 

shape information for this class of surfaces. 

PIXELS 

Figure 8. Is for different values of <f> 

4.2.2.Planes 

For a planar surface, N is constant. Hence, recalling our basic assumptions, IS is 
constant across a plane. If the plane is oriented such that or is small enough, then a viewer 
will perceive an /s reflection component. As with the singly curved surface, the magnitude 
of the perceived intensity will depend on a. If a is not sufficiently small, then ls will be 
zero at all points on the plane. These observations provide us with two useful pieces of 

information: 

1. Glossy surfaces which don't generate spccularitics over a range of orientations are 

probably planar. 
2. Surfaces which produce a specularity of constant intensity over a 2-1) region in the 

image are locally planar. 
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4.2.3. Corners and Edges 

Specularitiesare often observed at places of discontinuous surface normal on an object. 

Typical examples of these discontinuities are edges and corners on a polyhedron. For an 
ideal edge on a polyhedron, the surface normal is discontinuous across the edge (Figure 9). 

tf, 

/N 

■> & 

Figure 9. An Ideal Edge 

For an ideal edge joining two planes, we should not expect to observe a specularity 
unless either Nx or A2 is oriented in a direction which is sufficiently close to the perfect 
specular direction 11. But for this case, as discussed in 4.2.2., we would expect to observe 
a spread out specular feature on one of the two planes joined by the edge. So why do we 
frequently see specular reflections along edges? On real polyhedra, surface normals are 
usually continuous across edges. Instead of the normal vector changing discontinuously, 
the normal usually changes smoothly from Ä\ to N7 by taking values which are linear 
combinations of Nx and N2. As we cross an edge, the surface normal moves rapidly through 
a large range of angles. If any of these normals is oriented in a direction sufficiently near 
the direction /?, we will observe a specularity. Therefore, we often observe a specularity 

on an edge.  Figure 10 shows an image of an edge specularity. 
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Figure 10. Image of an Edge Specularity 

The situation is similar for trihedral vertices. As with edges, the normal vector is usually 
continuous at a corner. For trihedral vertices, the normal vector typically takes on values 
which z?z linear combinations of the three normals corresponding to the three planes 

defining the vertex. 
Frcro experiments with polyhedra, we have developed a useful model for the behavior 

of surface normal across edges. Define r to be the edge sharpness parameter and assume 
the coordinate system of Figure 11. P\ and P2 denote two planes intersecting to form an 
edge. 

M 
/N 

Pi 

Figure II. The Geometry of a Rounded Edge 
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The y axis is aligned in the direction of Nx and the originjs a distance r from Pi such that 

the normal to the surface /\ begins to turn away from Ni when x becomes positive. The 

model for the normal as it turns from Ni to 7V2 is 

N = 
s/? —j 

— Ni + -N2    for   0 < x < r\Ni x 7V2|      (24) 
r 

In other words, the normal is assumed to turn through a curve of constant curvature 
-. Here the parameter r is used to specify the sharpness of the edge. Small values of r 
indicate sharp edges, while larger values of r indicate more rounded edges. Figure 12 shows 
the profile of a specularity across a sharp 90° edge which is similar to the profile predicted 
by the continuous normal variation of (24). 

Figure 12. Specular Intensity Profile Across an Edge 

4.3.  Predicting A 

In the previous analysis we have assumed that over most configurations of viewer, 
source, and surface the adjusted geometrical attenuation factor A of (4) will have a small 
constant value across the specularity. For large angles of incidence, however, the character 
of A changes remarkably (Figure 13). In particular, for large angles of incidence (glancing 

incidence) we see that 

1. A becomes large relative to its value for other incidence angles (Figure 13). 
2. A causes a shift in the peak of the specular profile toward larger angles of incidence. 
3. A causes the specular profile to be unsymmetric as a function of a. 
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It is not surprising that when these effects are present in an image, they are rather easy to 

detect. For this reason, it is useful to make qualitative predictions about A in applications 

where large angles of incidence are possible. 

—i— 
1.5 

INCIDENCE ANGLE (RADIANS) 

Figure 13.  Plot of A as function of incidence angle 

5.  The Laboratory Setup 

A laboratory arrangement has been set up to test the derived relationships (Figure 
14). This section of the paper describes the laboratory setup. Section 6 examines factors 
which must be considered to successfully interpret real images. In Section 7, we describe 
an implemented system which has been used to infer local surface properties from specu- 
larities. Section 8 presents experimental results. 

Figure 14. The Laboratory Setup 

17 



To insure accurate measurements, the experiments are conducted on a 4x6 foot optical 
table. High precision rotation and translation stages are used to position the objects being 
viewed. A halogen light source with a 5 mm wide filament is placed 20 feet from the 
object surface to approximate a point source. Monochromatic image data is obtained 
using a video camera and an image digitizer. A 210 mm lens is used with the video camera 
to obtain high resolution across the specularity. The resulting images are in the form of 
256x256 arrays of pixels. Each pixel has eight bits of gray level resolution. A precise 
positioning device has been built to position the camera relative to the surface. Camera- 
object distances of at least 24 inches are enforced to insure that the assumed distant object 
condition is met. Using this setup, it is possible to obtain more than 40 pixels across a 
specular feature which is less than a centimeter wide on the surface. Metal cylinders and 
spheres of varying curvature are used to test the predicted relationships (Figure 15). 

Figure 15. Some Experimental Specular Surfaces 

6. Practical Considerations 

This section examines factors which must be considered to enable a shape from spec- 
ularity system to successfully interpret real images. 

6.1. Gaussian Blur 

Unfortunately, the formation of an image by an optical system introduces some amount 
of degradation. We can model this degradation as a convolution with a spatially invariant 
Gaussian point spread function [1]. The standard deviation of this blur is typically less 
than one pixel. For small specular features, taking into account the effects of this blur 
allows a more accurate determination of surface shape. 
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Our system uses a module called BLURINVERT to deblur the input specular image. 
For general 2-dimensional functions, inverting Gaussian blur is an unstable process. How- 
ever, an explicit deblurring convolution kernel has been derived under certain assumptions 
in [15]. The 1-D continuous version of the kernel is given by 

_x2     (N-\)/2 
e 

MN{X)
 
=
 1^¥    £   t-1)*^)     (25) 

* k=0 

where N is an odd integer denoting the order of the kernel and H2k is the Hermite poly- 
nomial of degree 2k. Larger values of N give better deblurring filters (i.e. they recover 
exactly a larger space of blurred input functions), but are more costly to compute. The 
value of N that is chosen in applications depends on the intensity characteristics of the im- 
ages that will be processed by the system. Using a 2-dimensional discrete version of (25), 
the BLURINVERT module allows our system to produce accurate shape descriptions from 
small specular features in images. 

6.2. Quantization Effects 

On a surface of high curvature, it is unlikely that we will measure the correct maximum 
specular intensity K' in (6). The problem is that for highly curved surfaces we are unable 
to shrink a pixel down to where the surface area it images is approximately planar. Even 
within the single pixel of maximum intensity, a is changing and cannot be considered 
constant. Hence the intensity value at the maximum pixel will be an average specular 
intensity over a small range of a and will not give the true K' of (6). This must be 
corrected for in applications. An artifact of this phenomenon is that measured K' seems 
to increase as surface curvature decreases. It follows that if we wish to measure K' for a 
material, we should use a surface of small curvature, ideally a plane. 

Since specularities are usually the brightest features in images, specular intensities are 
often too large to be represented in the number of bits per pixel allowed by the digitizing 
hardware or within the dynamic range of the camera. If this is the case, the specularity is 
truncated. Figure 16 shows I for a truncated specularity. The obvious way to deal with 
this situation is to avoid it. One avoidance technique is to take multiple images in which 
differing amounts of light are allowed to reach the camera. This can be achieved either by 
adjusting the lens aperture or by using filters. Another possible solution is to control the 
illumination to eliminate the possibility of truncation. 

19 



PIXELS 

Figure 16. A Truncated Specularity 

If inferences must be made from a single image, then it is arguably better to allow 
truncation to occur. In the case where input images have eight bits per pixel, intensities will 
ran«c from 0 to 255. In many applications it is possible to weaken the incident illumination 
so that no truncation occurs. In doing this, however, we cause pixels on the /5 curve which 
previously had significant specular intensities (on the truncated specular feature) to have 
negligible specular intensities. The net effect of eliminating truncation is to decrease the 
width of the specular feature and make measurements more susceptible to small errors. 

7.  A Shape from Specularity System 

A system has been implemented which computes local surface properties from images 
of specular surfaces [12]. The system currently stands alone, but will be used in the more 
general context of the SUCCESSOR vision system. The shape from specularity system 
is primarily designed to perform the computations described in Section 4. This section 

describes the implementation of the system. 

7.1. Overview of System Structure 

At a high level of abstraction, the problem is best solved in two steps. The first step is 
to deblur the input specular intensity image. The second step is to compute local surface 

properties from the image resulting from step 1. 
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The system designed to solve the problem preserves this two step structure. Figure 

17 is a diagram of the modules in our system with arcs indicating module interactions. 

From this diagram we see that there is a clean separation between the deblurring task and 

the task of computing local surface properties. First the main program invokes a function 

called BLURINVERT to deblur the input image. After the deblurring task is completed, 

the function CURVATURES is called to compute local surface properties. The next two 

subsections give overviews of the BLURINVERT and CURVATURES functions. 

Figure 17. System Structure 

7.2. Overview of BLURINVERT 

The BLURINVERT function is used to deblur the Gaussian blurred input image. 
This is accomplished in two stages. First, the deblurring convolution kernel is generated 
by DEBLUR. Then the CONVOLVE function is called to perform the convolution of the 
blurred input image with the constructed deblurring kernel. Two functions are used by 
DEBLUR to manipulate the Hermite polynomials required to generate the deblurring filter. 
The function HERMITE uses a dynamic programming scheme to compute coefficients of 
all Hermite polynomials up to some specified degree. The function HEVAL is used to 
evaluate Hermite polynomials at fixed values of the polynomial parameter. 

7.3. Overview of CURVATURES 

Given a debiurred specular intensity image, the CURVATURES function computes 
the principal curvatures and directions of the surface at specular points. CURVATURES 
first uses the function LOGIMAGE to transform the intensity image into the a angle image 
of Section 4. The CURVATURES function then systematically computes 1-D curvature at 
different directions in the tangent space to the surface. The function PROJECT is used 
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to compute the metric transform between the tangent space to the surface and the image. 
This is necessary to insure that the system samples the angle image at equidistant angles 
on the surface. The function SAMPLE is used to sample the a angle image in a specified 
direction. Finally, the function LINEAR is used to compute the least squares curvature 
given the data generated by PROJECT and SAMPLE. 

8. Experimental Results 

The system described in Section 7 has consistently generated accurate surface descrip- 
tions from images of specular surfaces. In this section we give examples of our system's 
performance on real images of metal objects illuminated by a point source. Figures 18(a), 
19(a), and 20(a) are images of circular cylinders of varying radii. Each cylinder is oriented 
such that its axis is perpendicular to the axis of the imaging device. Figure 21(a) is the 
image of a sphere. The actual statistics of the surfaces are given in Table 1. The dotted 
lines in the images indicate the direction of maximum curvature as determined by the 
system. Figures 18(b), 19(b), 20(b), and 21(b) are plots of intensity along the dotted lines 
in 18(a), 19(a), 20(a), and 21(a). Note that in Figure 21 the specularity is truncated, but 
we are still able to compute accurate surface statistics. Table 2 gives the second order 
surface statistics computed by the system. Error represents the percent of error in the 
computation of the largest curvature of the surface. The small errors can be attributed 
to quantization effects, noise introduced during the measurement process, and the various 
simplifications made to the specular model. 

9. Summary and Implications 

Understanding specular reflection is important for any vision system which must in- 
terpret a world containing glossy objects. Using a model developed by optics researchers, 
we have shown that we can accurately predict the appearance of specular features in an 
image. In addition we have shown how to compute the local orientation and principal 
curvatures and principal directions of a specular surface by examining image intensities 
on a specularity. These statistics give a complete local characterization of the surface up 
to second order. Unlike previous work, our derivations have included the effects of surface 
roughness and microstructure on the appearance of specular features. 

A system has been implemented which computes local surface properties from images 
of specular objects. A laboratory setup has been arranged which allows us to capture 
images to test our system. The system has consistently produced accurate surface descrip- 
tions despite the fact that the high intensity and small spatial extent of specularities makes 
measurements difficult. Significant aspects of the implementation are discussed in Section 
7. Examples of experimental results are given in Section 8. 

The ability to predict intensity-based features such as specularities opens up inter- 
esting possibilities for model-based vision. Previous model-based vision systems have re- 
stricted their predictions to the structure of edges which will be observed for a given model. 
An ability to predict intensity-based features will significantly enhance the top-down ca- 
pabilities of a model-based vision system. Clearly it is advantageous to be able to make 
stronger predictions about an image by using additional information about the imaging 
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Figure 18(a) 
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Figure 19(a) 
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Figure 19(1) 
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Figure 20(a) 
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Figure 21(a) 
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Figure 21(b) 
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Object *l Oi K-2 o? 

cylinder^ 0.286 0.0 0.0 1.571 

cylinder? 0.400 0.0 0.0 1.571 

cylinder^ 1.333 0.0 0.0 1.571 

sphcrci 0.500 — 0.500 — 

Table 1. Actual Surface Statistics 

Object *i Ox K7 0-2 Error 
cylindcrj 0.297 0.0 0.001 1.571 3.9% 
cylinder-^ 0.397 0.0 0.001 1.571 0.9% 
cylinder^ 1.35G 0.0 0.002 1.571 1.7% 

sphcrcj 0.514 0.0 0.534 1.571 2.8% 

Table 2. Computed Surface Statistics 

process. Another important advantage of predicting intensity-based features is that this 
prediction can provide strong guidance to low level intensity-based visual processes. By 
making predictions about the appearance of intensity patches in an image we can hope to 
further unify the goals of the low level and high level mechanisms of a model-based vision 

system. 
More important than being able to predict the appearance of speculanties from sur- 

face models is our system's ability to invert the process. We have shown how to infer 
local second order surface shape from specular images. This capability provides a vision 
system with strong generic information about a surface in a scene using strictly bottom-up 
processing. Inferring shape information from specularity is particularly important when 
viewing metal surfaces because other shape cues such as shading and texture are often not 
present. For other kinds of surfaces, shape information from specularity can be combined 
with shape information obtained using other cues to improve the 3-D surface descriptions 

generated by a vision system. 
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