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Abstract

We present a systematic treatment of alignment distance
and local similarity algorithms on trees and forests. We
build upon the tree alignment algorithm for ordered trees
given by Jiang et. al (1995) and extend it to calculate lo-
cal forest alignments, which is essential for finding local
similar regions in RNA secondary structures. The time
complexity of our algorithm is O(|F1| · |F2| · deg(F1) ·
deg(F2) · (deg(F1) + deg(F2)) where |Fi| is the number
of nodes in forest Fi and deg(Fi) is the degree of Fi. We
provide carefully engineered dynamic programming imple-
mentations using dense, two-dimensional tables which con-
siderably reduces the space requirement. We suggest a
new representation of RNA secondary structures as forests
that allow reasonable scoring of edit operations on RNA
secondary structures. The comparison of RNA secondary
structures is facilitated by a new visualization technique for
RNA secondary structure alignments. Finally, we show how
potential regulatory motifs can be discovered solely by their
structural preservation, and independent of their sequence
conservation and position.

1. Motivation

1.1. Introduction

RNA is a chain molecule, mathematically a string over
a four letter alphabet. It is built from nucleotides contain-
ing the basesA(denine),C(ytosine),G(uanine), andU(racil).
By folding back onto itself, an RNA molecule forms struc-
ture, stabilized by the forces of hydrogen bonds between
certain pairs of bases (A–U, C–G, G–U), and dense stacking
of neighbouring base pairs.

The investigation of RNA secondary structures is a chal-
lenging task in molecular biology. RNA molecules have
a large variety of functions in the cell which often depend

on special structural properties. Evolutionary conserved tR-
NAs [22] and rRNAs [7] carry out protein synthesis. Small
nuclear RNAs are important for the splicing of pre-mRNAs
[24] and small nucleolar RNAs act as guide RNAs for the
modification of other RNA molecules [13]. The untrans-
lated terminal regions (UTRs) of mRNAs can contain regu-
latory motifs which play a role for posttranscriptional gene
regulation. Such motifs can affect the mRNA localization
[9], mRNA degradation [6] and translational regulation [5].
Therefore, discovering such similar motifs inside otherwise
unrelated structures is important for the investigation of
posttranscriptional gene regulation events. To use an anal-
ogy from sequence search: We need an equivalent to the
Smith-Waterman algorithm[21], applicable to structures.

String edit distance [25] clearly is the most successful
model in sequence comparison. It is used in document pro-
cessing, file comparison, molecular sequence analysis, and
numerous other applications of approximate string match-
ing. The basic model is that one string is “edited” into an-
other string by a sequence of edit operations, such as sin-
gle character replacement (R), deletion (D) or insertion (I).
The weights associated with the edit operations sum up to
an overall score, and the edit sequence giving the minimal
score defines the edit distance of the two strings. Equiva-
lently, the editing process, ignoring the order of edit opera-
tions, can be represented as an alignment. This equivalence
does not generalize to trees, as already mentioned in [1].
For each tree alignment one can construct a corresponding
sequence of edit operations, but not vice versa. One can un-
derstand editing as finding a largest common sub-structure,
while aligning means finding the smallest common super-
structure (In fact, this depends on the scoring scheme.).
Which model is favourable depends on the problem.

1.2. Previous work

The first generalization of the edit model from strings
to rooted ordered trees is due to [23], algorithmically im-
proved in [31] and implemented and applied to computa-

Proceedings of the Computational Systems Bioinformatics (CSB’03) 
0-7695-2000-6/03 $17.00 © 2003 IEEE 



tional biology in [20]. Edit distance models on unordered
trees are considered in [32, 29]. Problem variations on
rooted and/or unrooted trees are considered in [15, 31, 26].
Algorithms that calculate local similarity of trees in the tree
editing model are presented in [26, 28].

An alignment model for trees was first proposed in [12]
and a faster algorithm for similar trees is provided in [10].
A problem similar to ours is studied by Wang and Zhang.
In [27] they study thesimilar consensus problem for trees:
“For fixed k, find two tree patterns (i.e. connected sub-
graphs)F ′ and G′ of treesF andG within a distancek
such that the sum of nodes ofF ′ andG′ is maximal”. The
unit distance function is hard-wired into the algorithm, and
the authors conclude that it remains a challenging problem
to incorporate more sophisticated cost functions. In anal-
ogy to Smith-Waterman [21], we use similarity rather than
distance and solve the problem of finding the most similar
subforests allowing arbitrary scoring schemes.

2. Results

2.1. Outline

The contributions of this article are four-fold:

• We give a systematic generalization of the alignment
distance model from strings to trees and forests.

• We introduce several variants of similarity problem on
forests and provide efficient algorithms that solve these
problems.

• We provide carefully engineered dynamic program-
ming implementations using dense, two-dimensional
tables which considerablyreduces the space require-
ment.

• We introduce a new representation for RNA secondary
structures as forests which allows reasonable scoring
when comparing structures.

Regulatory elements, once known, can be searched for
by a variety of approaches. Our local alignment algorithm,
by contrast, can discover new conserved structural motifs
without prior knowledge about their shape and position.
While we exemplify this by a study of iron responsive ele-
ments [14], the reader must keep in mind that our approach
locates these elements solely because of their structural con-
servation. As a consequence, it can discover previoulsy un-
known, potentially regulatory elements.

2.2. Visualization of structure alignments

RNA secondary structures are represented graphically as
circle plots, dot plots, mountain plots or 2D plots. We utilize
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Figure 1. Secondary structure of the E.coli
tRNA for leucine, taken from the Genomic
tRNA Database [17].

this pool of methods for drawing alignments of RNA sec-
ondary structures. Since bases paired in a structureS1 can
be aligned to bases unpaired in a structureS2, the presenta-
tion of a common secondary structure leaves some choice.
For an alignmentA of structuresS1, S2, we draw an RNA
secondary structure “S2-at-S1” that highlights the differ-
ences as deviations ofS2 fromS1, or vice versa, “S1-at-S2”.
Both are alternative visualizations of the same alignmentA.
The drawings can be annotated using all the information of
the alignment, e.g. show alternative base pairings.

Figure 2 shows an alignment of the structures of the
E.coli tRNA for alanine (Anticodon GGC) and for leucine
(Anticodon CAA) as found in the Genomic tRNA database
[17], in the formSAla-at-SLeu. The unaligned structures
are shown in Figure 1 and 6.

2.3. Experiments

We applied our local structure alignment algorithm to
search for regulatory structural motifs in untranslated ter-
minal regions (UTRs) of mRNAs. One of the best investi-
gated regulatory motifs in UTRs is the iron responsive ele-
ment (IRE). It is a specific stem-loop structure that can be
found in many mRNAs where it regulates for example the
translational efficiency of these mRNAs depending on the
amount of iron in the cell [8]. UTRs which are known to
contain IREs were taken from the UTR data base [18]. Then
their structures were predicted withmfold 3.1 [33]. We al-
ways investigated suboptimal structures, because one can-
not be sure that the energetically best structure is the biolog-
ically correct one. We calculated structure alignments for
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Figure 2. 2D-plot of the structure alignment of
the tRNAs for alanine (Figure 6) and leucine
(Figure 1). Bases printed in black show struc-
ture elements that occur in both structures
with the same sequence. Sequence vari-
antions are displayed by using red letters.
Bases or base pairs that can only be found in
alanine are printed in blue, while bases that
only occur in leucine are printed in green.

the predicted structures with our tool using the local align-
ment option. The reader is encouraged to make his own
experiments with the online version of our structure align-
ment tool, RNA-forester at the url http://bibiserv.
techfak.uni-bielefeld.de/rna-forester.

In Figure 3(a) the local alignment of the 5’UTRs of the
human ferritin heavy chain mRNA (5HSA015337) and the
mouse ferritin heavy chain mRNA (5MMU002159) is dis-
played. Here the IRE is not only conserved in structure but
also in sequence. In contrast, the local structure alignment
of the 5’UTR of the human ferritin heavy chain mRNA
and the 3’UTR of the human transferrin receptor mRNA
(3HSA008842) (see Figure 3(b)) shows numerous compen-
satory mutations in the IRE.

This example also demonstrates that we are not restricted
to small structures (the ferritin 5’UTRs are in a size range
of 200 nucleotides), because here we calculated the local
structure alignment of a 5’UTR (208 nucleotides) and a
much larger 3’UTR (2464 nucleotides). Although it occurs
at completely different positions in the two UTRs, we de-
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Figure 3. (a) Local structure alignment of
the human and mouse ferritin heavy chain
5’UTRs. (b) Local structure alignment of the
human ferritin heavy chain 5’UTR and the hu-
man transferrin receptor 3’UTR.

tected the IRE again (Figure 3(b)).
This shows that our approach can discover arbitrary con-

served structural motifs in a larger structure, independent of
their position and primary sequence.

3. A Uniform Notion of Alignment and Simi-
larity of Strings, Trees and Forests

3.1. Preliminaries

Let Σ be a set of symbols, thealphabet. Thegap symbol
‘-‘, not inΣ, will play the special role to indicate deletions.
We defineΣ- = Σ ∪ {-} and thepair alphabet Σ2 =
Σ- × Σ- \ {(-,-)}.

We considerrooted, ordered, node-labelled trees, called
trees for short. An (ordered)forest is a sequence of trees. A
functionlabel assigns a label to each node in a tree or forest.
We useF(Σ) for the set ofΣ-labelled forests. Where con-
venient, we identify a tree with the forest containing only
this tree. Astring overΣ is a tree inF(Σ) where each node
has at most one descendant. This latter definition implies
that and how the string case is embedded into our general-
ization to trees.

3.2. Alignments of structures

In the tree edit model [23], deleting a tree nodev means
that the children of nodev become the children of the par-
ent node ofv. Moreover, ifv has any siblings, the deletion
preserves the preorder relation of these nodes. Ifv is a root
node, then its children have no common ancestor any more,
and they split up into a forest. Figure 4 gives an example
of the deletion operation. We speak of deletions and in-
sertions when editingT into T ′, but an insertion intoT is
nothing but a deletion fromT ′, and hence requires no extra
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Figure 4. (a) a tree with nodes a, . . . , f ; (b) the
tree after node c has been deleted.
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Figure 5. A is an alignment of F and G.

definition. In contrast to the operational view of editing one
structure into another, an alignment is a declarative model,
a data structure rather than a process.

Our central notion is the following generic view of
an alignment: Analignment of two structures, with la-
bels from some alphabet, is the same type of structure,
with labels from the pair alphabet. Labels of the form
(a, b), (a,-), (-, b) with a, b ∈ Σ denote the edit opera-
tionsR, D, andI, respectively. Here this notion applies to
(pairs of) strings, trees, and forests. Clearly, it generalizes
to graphs, as well as to alignments of more than two items,
but this is beyond our present scope. We now formalize this
view.

LetA ∈ F(Σ2). Its component wise projectionsA|1 and
A|2 are elements ofF(Σ-).

Definition 1
Let F ∈ F(Σ-). π(F ) ∈ F(Σ) is the forest that results
from successive deletion of nodes v with label(v) = -.

It is easy to show that the order of node deletions is irrel-
evant and thusπ(F ) is uniquely defined.

Definition 2
Let F, G ∈ F(Σ). A ∈ F(Σ2) is an alignment of F and G
iff F = π(A|1) and G = π(A|2).
Since strings and trees are special cases of forests, Defi-
nitions 1 and 2 apply to these as well. An example of a
pairwise tree alignment is given in Figure 5.

We now turn to scoring alignments. We are not interested
in arbitrary alignments of certain forests, but just in those

that satisfy an optimality criterion. For distance problems,
optimality means minimality, while for similarity problems
optimality means maximality. Distances are not negative,
and the distance between two forests is 0 iff the forests are
equal. A localized variant of distance makes no sense, as
empty forests always have the minimal distance of 0. Sim-
ilarity is slightly more flexible, allowing for positive and
negative score contributions. The similarity of two equal
trees is a positive number in most scoring schemes, and we
can (and will) ask for the most similar subtrees or subforests
of the given forests. Note that a tree contains many sub-
forests. Hence it makes sense to look not only for the best
match to a tree in a forest, but also vice versa.

Given ascoring function σ : Σ2 → �, the similarity
score of an alignmentA ∈ F(Σ2) is defined by

σ(A) =
∑

v node inA

σ(label (v))

The global similarity of forests F and G, written as
gsσ(F, G), is the maximal score that can be obtained by an
alignment ofF andG. An alignment ofF andG is optimal
if it achieves this score.

Problem gsσ(F, G): Computegsσ(F, G) and an optimal
alignment ofF andG.

3.3. Forest representation of RNA secondary struc-
tures

An RNA structure is denoted by an RNA sequence and
the set of bases that form bonds. Representing the bonds
as arcs over the sequence, an RNA structure is an RNA
secondary structure iff the arcs are not crossing. A coarse
grained representation of RNA secondary structures which
uses the structural elements hairpin loop (H), bulge (B), in-
terior loop (I) and multi-loop (M) as its basic elements is
proposed in [19]. This encoding produces small forests, but
developing a scoring scheme on this level of abstraction is
a difficult problem. Following [16] we can represent RNA
secondary structures as forests on the level of paired and
unpaired bases. The parent and sibling relationship of the
forest nodes is determined by the nesting of base pair bonds.
The5′ to 3′ nature of the RNA molecule imposes the order
among sibling nodes. Figure 6 shows a 2D plot of a RNA
molecule and Figure 7 depicts the corresponding forest rep-
resentation.

Bases that pair in one structure can be unpaired in a re-
lated structure because the pair is not stable in terms of en-
ergies or a mutation of one base forbids a pairing. Accord-
ingly, the bases that are involved in these events should be
replaced by each other. The RNA representation in Figure
7 is not suitable for creating an adequate scoring scheme
for these basic events. Clearly, each node of an RNA forest
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Figure 6. Secondary structure of the E.coli
tRNA for alanine taken from the Genomic
tRNA Database [17]

is involved in exactly one edit operation in a forest align-
ment (This holds for the tree editing approach as well).
Since a base pair is encoded as a single node, the score
for deleting the pairing between basesa and u would be
σ((a, u),-) + σ(-, a) + σ(-, u). We extend the forest rep-
resentation to allow explicit scoring of base pair deletions.
Pairing bases are represented by three connected nodes: The
P-node stands for the base pair bond and is labelled with P.
Its children nodes are ordered according to the5′ to 3′ or-
dering of the bases and the leftmost and rightmost child are
the bases that pair. The children nodes of a P-node can be P-
nodes, if they are that are not leftmost or rightmost. Figure
8 gives an example of ourextended RNA forest representa-
tion.

The alphabet of labels of our extended forest represen-
tation is Σ = {P, a, c, g, u}. Since we are only inter-
ested in comparing the structure of RNAs, we ignore the
primary sequence. This is facilitated by a reduced al-
phabetΣP,B = {P, B} where B stands for base-node.(A
scoring schemeσ such thatσ(a1, b1) = σ(a2, b2) for
a1, a2, b1, b2 ∈ {a, c, g, u} has the same effect.) We use the
following scoring scheme for given constantsbr, bd, pr, pd:
σ(B, B) = br, σ(B,-) = σ(-, B) = bd, σ(P, P ) =
pr, σ(P,-) = σ(-, P ) = pd. A replacement of a P-node
and a B-node is not meaningful in our model. Therefore,
the scoring contribution for this case must beσ(P, B) =
σ(B, P ) = −∞.

In [11] a set of edit operations is suggested that con-
sider both primary sequence and structure of RNA. These
are base-replacement, base-indel, basepair-replacement,
basepair-indel (indel stands forinsertion or deletion). The
latter two operations treat a basepair and the pairing bases as
a unit. Calculating the edit distance (not alignment distance)

Figure 7. Forest representation of the RNA
shown in Figure 6. Pairing bases correspond
to internal nodes which labels are the bases
that pair. Unpaired bases correspond to leaf
nodes and their label is a single base.

of structures represented as shown in Figure 7 is suggested
in [30] and corresponds to an edit model that concerns the
four mentioned edit operations. Additionally, [11] extends
these edit operations by new ones that consider a base-
pair separately of the pairing bases. These arebasepair-
breaking which is the deletion of the bond andbasepair-
altering which is the breaking of a bond because a base that
pairs in one sequence is deleted in the other. If both bases
are deleted, the edit operation would be a basepair-indel.
Our model of aligning extended RNA forests provides the
tree counterparts for these edit operations, but the scoring is
different from [11] for some cases. Figure 9 shows how our
model is related to the described edit operations.

3.4. Local similarity of RNA forests

Calculating global similarity of RNA secondary struc-
tures is not sufficient when the focus is to find similar re-
gions. This holds particularly if the regions are at positions
that are far apart due to their5′ position.

Local similarity means finding the maximal similarity
between two substructures. If these substructures are ex-
tended, the score decreases. This requires a scoring scheme
that balances positive and negative scoring contributions.
Otherwise, the similarity of the whole structures would al-
ways achieve the maximum score. It is generally assumed
that an alignment of two empty structures scores zero.

A substring of a string is a prefix of a suffix, and local
similarity on strings means the highest similarity over all
pairs of substrings. The problem of finding most similar
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Figure 8. Extended forest representation of
the RNA shown in Figure 6. A base pair is
represented explicitly by a P-node. The left-
most and rightmost child of a P-node are the
bases that pair.

(complete) suffixes is not of great interest in the domain
of strings. Moving from strings to forests, local similarity
problems come in a greater variety.

The key notion for the local similarity problems on trees
is the closed subforest:

Definition 3
A sequence v1, . . . , vn of sibling trees in F such that vi+1 is
the right brother of vi for i ∈ [1, n−1] is a closed subforest
(csf) of F .

Note that the empty forest and forestF itself arecsfs of
F . It is quite obvious thatF ′′ is acsf of F , if F ′ is acsf of
F andF ′′ is acsf of F ′ (closed subforest transitivity).

On trees, the counterpart of a suffix is a subtree. Finding
the most similar subtreesis an interesting problem, and it
generalizes to the following problem.

Problem lcsfsσ(F, G,): The local closed subforest simi-
larity problem consists in finding the most similarcsfs F ′

and G′ of F and G. That is, one seekslcsfsσ(F, G) =
maxF ′,G′(gsσ(F ′, G′)) over allcsfs F ′ andG′ of F andG,
respectively.

Small-in-large is an intermediate between global and lo-
cal similarity:

Problem silcsfsσ(F, G): Thesmall-in-large closed subfor-
est similarity problem means to match a “small” forestF
completely against allcsfs of the “larger”G. That is, one
wants to computesilcsfsσ(F, G) = maxG′(gsσ(F, G′))
over allcsfs G′ of G.

Continuing the analogy, the prefix of a (sub)treeT is a
treeT ′ that is obtained by removing subtrees fromT . This
is called atree pattern, and gives rise to the problem of local

(a) basepair replacement
The scoring contribution is
pr + 2 ∗ br.

(b) basepair deletion The
scoring contribution ispd +
2 ∗ bd.

(c) bond breaking The scor-
ing contribution ispd.

(d) basepair altering The
scoring contribution is2 ∗
pd + 2 ∗ bd + br .

Figure 9. (a)-(d) show how the alignment
structure is related to edit operations, and
show their scoring contributions.

pattern similarity on trees and forests which is not consid-
ered here.

We can now turn to solve thelcsfsσ(F, G) and the
silcsfsσ(F, G) problem.

4. The Dynamic Programming Similarity Al-
gorithm

Dynamic programming is characterized by solving a
problem in a recursive fashion and tabulating intermedi-
ate results that are re-used. Following the advice of [3, 4],
we initially consider recursion and tabulation separately and
put them together afterwards. In this way, we reproduce the
recurrences of [12], adapted to similarity scoring, in a (as
we hope) more lucid fashion. Then we carefully treat tabu-
lation. This is actually the more challenging issue here and
interesting modifications and improvements over [12] are
achieved. Finally, the basic global similarity algorithm is
adapted to the problem variants.

Recall that a forestF is a sequence of trees. Let|F |
be the number of nodes inF and len(F ) be the number
of trees inF , i.e. the length of sequenceF . Let i :F be
the forest consisting of the firsti trees ofF (prefix), while
F : j is the forest consisting of the lastj trees ofF (suffix).
For each nodev in F , preF (v) is the index ofv in a pre-
order traversal ofF . We useF [i] to identify a node by its
index, i.e. F [preF (v)] = v. If F is not the empty forest,
F [1] is the root node of the first tree inF . Let F ↓ be the
forest consisting of the children trees ofF [1] andF→ = F:
(len(F )− 1) be the forest of the right sibling trees ofF [1].
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Note thatF ↓ andF→ can be the empty forest.

4.1. The search space of forest alignments

To calculate similarity of forests, one must consider all
their alignments, thesearch space. We can enumerate all
alignments of two forests in a structurally recursive fash-
ion. SupposeA is an alignment ofF andG. Depending
on label(A[1]), the possible forestsA↓ andA→ are deter-
mined. Our case analysis is based on Definition 2.

Lemma 1 Let A be an alignment of F, G ∈ F(Σ). If F
or G are empty forests, A is either the empty forest, or its
labels are solely deletions or solely insertions. If F and G
are both non-empty forests, then label (A[1]) is of the form
(a, b), (-, b) or (a,-) for some a, b ∈ Σ. This leads to the
following case distinction:

1. If label (A[1]) = (a, b), then the following is true:

• a = label(F [1]) and b = label (G[1]),

• A↓ is an alignment of F ↓ and G↓ and A→ is an
alignment of F→ and G→.

2. If label (A[1]) = (a,-), then the following is true:

• a = label(F [1]),

• for some r ∈ [0, len(G)], A↓ is an alignment of
F ↓ and r:G and A→ is an alignment of F → and
G: (len(G) − r).

3. If label (A[1]) = (-, b), then the following is true:

• b = label(G[1]),

• for some r ∈ [0, len(F )], A↓ is an alignment
of r : F and G↓ and A→ is an alignment of
F: (len(F ) − r) and G→.

Figure 10 gives a graphical view of Lemma 1. The search
space of all possible alignments ofF andG is determined
by cases 1, 2, and 3, and by all possible choices of the split
positionr in cases 2 and 3.

Scoring the alignments of the search space follows the
same structurally recursive pattern. The similarity ofF
andG is the maximum of the scoresσ(a, b), σ(a,-) and
σ(-, b), each added to the similarity scores of the appropri-
ate subforests. Clearly, Bellman’s principle of optimality
[2] is satisfied. To turn our case analysis into a dynamic
programming algorithm, we only need to add tabulation of
intermediate results.

F G

Alignment of F and G

(a) Case 1

G
split forest 

F

Alignment of F and G

(b) Case 2

Figure 10. Graphical illustration of Case 1 and
2 of Lemma 1. The shaded triangle stands for
F ↓ and the shaded rectangle for F→. Each
prefix/suffix pair of G is indicated by the ver-
tical line “splitting” G.

4.2. Tabulation

A dynamic programming tabulation method is based on
a mapping from subproblems to table indices. In our case,
subproblems are defined by subforests, and tabulation is
more sophisticated than in the case of string comparison.
The following insight considerably simplifies the tabulation
problem for forest alignments:

Lemma 2 All subforests considered in Lemma 1 are closed
subforests of F or of G. By the closed subforest transitivity
(see Section 3.4), all subforests considered in the recursive
search space construction are closed subforests.

We need a mapping fromcsfs to table indices, which al-
lows for efficient transitions fromcsf F ′ to F ′↓ andF ′→,
see Lemma 1. For a transparent description of our algo-
rithms, we use a two stage mappingβF · αF . The function
αF provides a mapping fromcsfs of F to index pairs, and
βF maps these index pairs to linear table indices. In this
way, we reduce table dimension and space consumption in
practice.

For any non-emptycsf F ′ of F , we defineαF (F ′) =
(preF (F ′[1]), len(F ′)). The empty forest is represented
ambiguously by any index pair(i, 0). Figure 11 illustrates
this mapping. If(i, j) is an index pair representing acsf ,
theni is called thenode index andj thelength index.

Let nocF [i] be the number of children ofF [i] andrbF [i]
be the pre-order index of the right brother node ofF [i]. If
there is no such right brother, thenrbF [i] = 0. If F ′ is
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a (1)

b (2)

c (3) d (4)

b (5)

c (6) d (7)

f (8) g (9)

e (10)

f (11) g (12)

f (13) g (14)(5,2)

Figure 11. The pre-order number of a node is
shown in parentheses behind its label. Index
pair (5,2) represents the boxed closed subfor-
est.

a non-emptycsf and αF (F ′) = (i, j), thenαF (F ′↓) =
(i + 1,nocF [i]) andαF (F ′→) = (rbF [i], j − 1). That is,
αF (F ′↓) andαF (F ′→) can be computed in constant time,
givenαF (F ′). SplittingF ′ into r:F ′ andF ′: (len(F ′) − r)
yields the subforests represented by(i, r) and(rbr

F [i], j−r)
whererbr

F is ther-fold application ofrbF . Since the splits
will be determined in order of increasingr, the amortized
cost of each split isO(1).

Now one can derive matrix recurrences to specify the
dynamic programming algorithm calculating forest similar-
ity. We just have to substitute the subforests of Lemma 1
by the corresponding index pairs, and switch from enumer-
ation of the search space to maximization of similarity. A
four-dimensional matrixS4

σ such thatS4
σ(αF (F ′), αG(G′))

is the similarity ofcsfs F ′ andG′ of F andG, respectively,
would allow straightforward tabulation. Ifp andq are the
maximum numbers of sibling nodes inF andG, respec-
tively, this tabulation technique requiresO(|F | · p · |G| · q)
space. It wastes space for two reasons:

• The empty forest is represented ambiguously by all in-
dex pairs(i, 0).

• Let i′ be the number of siblings to the right ofF [i]
includingF [i]. Let k′ be the number of siblings to the
right of G[k] includingG[k]. For all i′ < j ≤ p and
k′ < l ≤ q, (i, j) and(k, l) do not representcsfs, and
henceS4

σ((i, j), (k, l)) is not used.

The concrete shape of the forests to be aligned deter-
mines the number of unused entries inS4

σ. Even in the
best case, when all internal nodes in the trees have the same
out-degreep, nearly half of the table is not used. This be-
comes worse if the node degree varies. Our second stage
mapping,βF , from index pairs to indexes eliminates all un-
used entries. It is defined byβF (i, 0) = 0 andβF (i, j) =
offsetF [i] + j for j �= 0, whereoffsetF [i] is the number
of non-emptycsfs having a node index less thani. Table
offsetF can be precomputed inO(|F |) time and space. We

define the right inverseβ−1
F of βF by β−1

F (0) = (1, 0) and
β−1

F (βF (i, j)) = (i, j) for βF (i, j) �= 0.

4.3. Implementation based on matrix recurrences

We now combine our previous ideas to give a dense tab-
ulating algorithm calculating global forest similarity. We
compute a matrixSσ defined by

Sσ(βF (αF (F ′)), βG(αG(G′))) = gsσ(F ′, G′) (∗)

for all csfs F ′ and G′ of F and G, respectively. Since
αF (F ) = (1, len(F )) andαG(G) = (1, len(G)), the value
in Sσ(βF (1, len(F )), βG(1, len(G))) gives the global sim-
ilarity of F and G. The recurrences forSσ are given in
Figure 12.

To complete the dynamic programming algorithm, we
must consider the order of evaluating the entries inSσ. Each
element must be evaluated before it is used. EvaluatingSσ

row by row or column by column, as done in the dynamic
programming algorithm for string similarity [21], does not
work here. Let us consider the data dependencies in the re-
currences of Figure 12. Obviously,Sσ(0, 0) can be initial-
ized to zero. IfβF (i, j) > 0, thenSσ(βF (i, j), 0) depends
on entriesSσ(βF (i+1,nocF [i]), 0) andSσ(βF (rbF [i], j−
1), 0). That is, either the node index strictly increases,
or if rbF [i] = 0, then j = 1 and henceβF (rbF [i], j −
1) = 0. If βG(k, l) > 0, then the corresponding holds
for Sσ(0, βG(k, l)). If βF (i, j) > 0 and βG(k, l) > 0,
then in the delete case,Sσ(βF (i, j), βG(k, l)) depends on
Sσ(βF (i + 1,nocF [i]), βG(k, r)) and Sσ(βF (rbF [i], j −
1), βG(rbr

G[k], l − r)) for somer ∈ [0, l]. Thus either
the node index strictly increases, or the length index de-
creases. The corresponding holds for the insert case. Thus
we can evaluateSσ in decreasing order of the node index
and increasing order of the length index. This is done in the
DP Algorithm shown in Figure 12. The iteration over the
length index makes use of a tablemaxcsflenF , defined by
maxcsflenF [i] = max{j | (i, j) is acsf of F}.

Algorithm 1 tabulatesgsσ(F, G) of all pairs ofcsfs F ′

andG′ of F andG, see(∗). (All pairs are required for the
local similarity algorithm. Global similarity only requires a
subset thereof [12].) Thus, scanning the matrixSσ for max-
imum elements solves thelcsfsσ(F, G) problem. Matrix
Sσ also contains the answer to thesilcsfsσ(F, G) problem,
sincesilcsfsσ(F, G) = maxy(Sσ(βF (1, len(F )), y)) is the
sought similarity.

If one is not only interested in the similarity value, but
also in optimal alignments, these can be computed by back-
tracking. To facilitate this, the split positionr should be
stored with each optimal value resulting from a deletion or
an insertion.
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Sσ(x, y) =




0 if x = 0 andy = 0 (1)

σ(label (F [i],-))
+Sσ(βF (i + 1,nocF [i]), 0))
+Sσ(βF (rbF [i], j − 1), 0) if x > 0 andy = 0 (2)

σ(label (-, G[k]))
+Sσ(0, βG(k + 1,nocG[k]))
+Sσ(0, βG(rbG[k], l − 1)) if x = 0 andy > 0 (3)

max




replace(x, y)
delete(x, y)
insert(x, y)


 otherwise (4)

where(i, j) = β−1
F (x) and(k, l) = β−1

G (y)

replace(x, y) = σ(label (F [i]), label (G[k]))
+Sσ(βF (i + 1,nocF [i]), βG(k + 1,nocG[k]))
+Sσ(βF (rbF [i], j − 1), βG(rbG[k], l − 1))

delete(x, y) = σ(label (F [i]),-)

+ max
0≤r≤l

{
Sσ(βF (i + 1,nocF [i]), βG(k, r))
+Sσ(βF (rbF [i], j − 1), βG(rbr

G[k], l − r))

}

insert(x, y) = σ(-, label(G[k]))

+ max
0≤r≤j

{
Sσ(βF (i, r), βG(k + 1,nocG[k]))
+Sσ(βF (rbr

F [i], j − r), βG(rbG[k], l − 1))

}

Algorithm 1.
Sσ(0, 0) := 0
for i := |F | downto 1 do

for j := 1 to maxcsflenF [i] do
CalculateSσ(βF (i, j), 0)

for k := |G| downto 1 do
for l := 1 to maxcsflenG[k] do

CalculateSσ(0, βG(k, l))
for i := |F | downto 1 do

for k := |G| downto 1 do
for j := 1 to maxcsflenF [i] do

for l := 1 to maxcsflenG[k] do
Calculate Sσ(βF (i, j), βG(k, l))

Figure 12. The recurrences for Sσ and the corresponding DP Algorithm computing the entries of Sσ

in an appropriate order. Cases (1)–(3) of the recurrences involving empty forests are obvious. The
similarity of two non-empty forests is determined by the maximum score for alignments A that have
a replacement, or a deletion, or an insertion at the root. The functions replace, delete, and insert reflect
the case distinction in Lemma 1.

4.4. Efficiency analysis

maxcsflenF can be precomputed inO(|F |) time and
space, sincemaxcsflenF [i] = 1, if i = |F | and
maxcsflenF [i] = offsetF [i + 1] − offsetF [i], otherwise.
Let deg(F ) = max{maxcsflenF [i] | i ∈ [1, |F |]}. Let
p = deg(F ) andq = deg(G). According to the recurrences
of Figure 12, eachSσ(x, y) is calculated inO(p + q) time.

Since each entry inSσ is calculated exactly once, the overall
time complexity of Algorithm 1 depends on the size ofSσ.
This in turn depends on the number ofcsfs in F andG. Con-
sequently, Algorithm 1 runs inO(|F | · p · |G| · q) space and
O(|F |·p·|G|·q·(p+q)) time. Note that the asymptotic space
complexity is not reduced by using dense two-dimensional
tables, as proposed above. However, the space reduction
can be huge in practice. For example, when comparing the
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small and the large RNA secondary structure (see last ex-
ample of Section 2.3), we have handled pairs of trees, for
which the four-dimensional table requires 1071 megabytes,
while the corresponding dense two-dimensional table re-
quires 39 megabytes of space. This is a 27-fold improve-
ment.
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