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Summary. - A local similarity manifold is defined as a locally affine manifold for which the 
transition functions of an affine atlas are similarity transformations in R ~. The main result 
of this paper is that, for n >= 3, the compact local similarity manifolds (which are not locally 
Euclidean) are given by the formula M = (R~{O}) /G,  where G is a group of covering trans- 
formations such that 

= {ht~th ~ H, k ~ Z},  

H being a finite orthogonal group without fixed points in R'~{0}, and t o being some con- 
formal linear transformation of R" which commutes with H. 

I .  - I n t r o d u c t i o n .  

Locally afiine and locally Eucl idean (i.e., flat Riemannian) manifolds have been 
studied by  m a n y  authors.  (See, for instance, J.  A. WOLF'S book [13]). Therefore,  
it is sensible to discuss also manifolds which have an atlas with t ransi t ion functions 
in other  aifine subgroups. A natural  such subgroup is t ha t  of the s imi lar i ty  transfor- 

mations ~n R ~ 

i = 1  

where (a~) is a real  orthogonal  mat r ix  which yields the orthogonal par t  of (1.1), and 
> 0 is called the module of (1.1). 

For  the sake of simplicity, we agree to consider C ~ connected manifolds only 

in this paper.  
A differentiable manifold M" will be called a local s imilari ty  manifold,  shortly 

X i an 1.s.m., if it  is endowed with an 1.s. s t ructure  i.e. an atlas ((U~, ~)/~ e A ,  (i = 1, ..., 

..., n)}, whose t ransi t ion functions are locally of the form (1.1). 
Obviously, an 1.s. s t ructure  is locally ai~ine, bu t  it is not  necessarilly locally 

Euclidean. Moreover, we shall agree to discuss only those 1.s.m., which are not  
locally Euclidean i.e., unless the contrary  is explieitely stated, the maximal  1.s. atlas 
of M cannot  be reduced to one with transi t ion functions (1.1) of module 1 only. 

(*) Eutrata in Redazione il 30 dicombre 1982. 
(**) This work was supported by the N.S.E.R.C. Canada, grant A4063. 
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(But  the same M may  have,  perhaps,  some locally Euclidean s t ructure  non-related 
to the  given 1.s. s tructure) .  I t  is also clear t ha t  an 1.s.m. is a locally conformally 
flat manifold,  bu t  the converse m a y  not  be t rue  [8, 9]. 

In  the context  of the complex manifolds, 1.s.m. have been studied as locally 
conformMly K~hter-flat manifolds [11, 12], while an essential use of a procedure 
of KODAIRA [7] and KAmo [5] has been made. In  this paper,  we shall t ransfer  the 
same me thod  to real 1.s.m., and our main result  yields the universal  covering of a 
compact  1.s.m. (it mus t  be R" \{0}) ,  and a description of the corresponding group 
of covering t ransformat ions .  Since we feel tha t  the  acces to the 1.s.m. should be 
direct, and not  via complex manifolds, we have wri t ten  this paper  as self-contained 
in spite of the  fact  t ha t  this made us repeat  some of the  proofs of [11, 12]. 

The basic example of a compact  1.s.m. can be obtained as follows. Consider the 
t ransformat ion ~v~: R % { 0 }  -+ R~\{0}  defined b y  

(1.2) 2 ~ = 2 x  ~, ) ~ 1 t ,  0 < 2 < 1 ,  

and denote by  qh~ the infinite cyclic group generated by  ~ .  Then set 

(~.3) RH'~= (Ro\(o))/~. 

This will be called the real Hop] manifold (see [6, 11] for the complex I topf  
manifolds). Using the diffeomorphism 

(1.4) 

given by  (x 0 ~-~ (x~/Ix[, In [xi/ln )~), we get R H ' ~  S~- I •  1 (S l~ denotes always the 
h-dimensional uni t  sphere), which proves tha t  R H  ~ is a compact,  connected for 
n > 1, differentiable manifold, and (1.2) shows tha t  R H  ~ is an 1.s.m. 

2.  - T h e  1 .s .m.  a s  R i e m a n n i a n  m a n i f o l d s .  

Let  M ~' be an 1.s.m. with the  maximal  s t ructural  atlas {( U~, x~)}, and let  us define 
over each U~ the local flat Riemannian  metr ic  G given b y  

(2.1) &2= ~ (dx~)~. 

Over every  intersection LT~ (3 U~ we have then  the transi t ion relation 

(2.2) g~ = c~g~, 
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where o~z ~ @2 > 0, and @~ is the  module of the  corresponding t ransi t ion (1.1), 
and is locally constant  over U~ n Uz. Clearly, {c~o} satisfies the eocycle condition 

(2.3) c~c~r ~ c 

and we shall say tha t  it defines a twisted system of coe]]icients on M. 

Generally, any  maximal  system of local Riemannian metrics g~ defined on 
differentiable manifold M~ and satisfying (2.2), (2.3) will be called a twisted Rieman- 
nian (t.R.) metric on M. Hence,  an 1.s.m. has a canonically associated t.l~. metric 
g = 

Fur thermore ,  it  is impor tan t  t ha t  the Levi-Civita connections V~ of g~ satisfy 
V ~ =  V~ over U ~  U~, because of the fact t ha t  c~  are locally constant .  Hence,  
these connections can be glued up into a global connection V (-~ V~ on U~)~ which 
will be called a t.R. connection. The geodesic lines of V are well defined, and will 
be called twisted geodesics. Locally, t hey  are the usual geodesics of g~. (We recall 
t ha t  systems of local metrics with a global connection were studied in [10]). 

~ow,  let (M, g) be ~ t .R.  manifold. Then (2.3) shows tha t  {ln c~} is a 1-eoeycle 
with values in the sheaf of germs of differentiable functions of M. Therefore,  

(2.4) In c~z = a~--  a~ 

where as: U~-+ R are differentiable functions defined up to the  addit ion of a t e rm 
of the  form ~01~, ~o: M - ~ R .  Since by  (2.4) we have d a ~ =  dgz on U~t~ U~, we 
see t ha t  the local sys tem {da~} defines a closed 1-form co on M (oJ ~- dg~ on U~). co is 
determined up to cohomology, and we call it the  characteristic 1-]orm of the  twisted 
metric.  ( In  [11, 12] this was the  Lee lotto). 

From (2.4) and (2.2) it  follows tha t  

(2.5) y j~  ~_ e~g~ 

provides us with a global Riemannian metr ic  on M which is defined up to a global 
eonformal change ~ ~-. e~y. These metrics y will be called untwisting metrics of g, 
and they  are locally conformal to the metrics g~. I f  we f ix  one such metr ic  ~, a~ 
and, hence, co is also fixed, and we shall refer  to i t  as to the characteristic 1-]orm of 7. 

I t  is easy to unders tand  tha t  the system g contains one of its untwist ing metrics 
iff co is an exact  form. i n  this ease, we just  have to consider a l~iemannian manifold 
(M,y),  which is nothing new. Accordingly, we shall assume hereaf ter  t ha t  ~o is not  
exact,  unless the  cont ra ry  is explicitely stated. In  particular,  the  characterist ic 
1-form of an 1.s.m. is non-exact  (unless the cont rary  is specified) since, otherwise, 
some untwist ing metric y belongs to g, and since this y is flat, the  s t ructure  of the  
manifold is, in fact,  locally Euclidean, which contradicts the  convention of Section 1. 

Conversely, if y is a Riemannian metric on a manifold M, a system g -~ {g~} of 
local Riemannian metrics will be called con]ormally compatible with y if ~ l v o :  e~g~. 
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Then  a relat ion like (2.2) holds, bu t  the  e~a there  m a y  not  be locally cons tan t  func- 
tions, and  we m a y  have  da~= dan on U~(5 U~. However ,  if it happens  t h a t  d ~ =  

= da~, one has c~a = eonst,  and  g is a t.l~. metr ic .  Using classical formulas  (e.g., [2]), 

it is easy  to see t h a t  this happens  iff, for every  ~, ~, g~ and  ga have  the  same para-  
met r ized  geodesics. 

5{ore simple, let us s t a r t  wi th  the  metr ic  y, and  with an  a r b i t r a r y  closed bu t  

not  exact  1-form co on M. Then,  we can t ake  the  local convex neighbourhoods  U~, 
and  funct ions ~ :  U~-->R such t h a t  column-d~,  and  it is clear t h a t  g = e - ~ T I v ~  

will provide  us wi th  a t .R.  met r ic  g on M, for which 7 is an untwis t ing  metr ic .  I f  

we replace 7 b y  eVy and,  s imul taneously ,  co b y  co + d~v, we shall ar r ive  a t  the  
same t .R.  met r ic  g. Hence,  there  is a bi ject ion be tween the  set of the  twis ted  

metr ics  g and  the  set of equivalence classes [(Y, co)l, where (7~, coi) (i = 1, 2) are 

equivalent  if 7~ = e'PT~, co2 ~ co~ -Jr- d~,, ~f ~ Cr176 This means  tha t ,  up to inessential  
changes,  a twis ted  metr ic  can be seen as a pair  consisting of an usual  l~iemannian 

met r ic  and  a closed (non-exact)  1-form. 
I n  par t icular ,  this  v iewpoint  can be used in the  s tudy  of the  l .s .m, by  replacing 

there  the  associated twis ted  met r ic  g wi th  a corresponding pair  (7, co). Indeed,  if 

we s ta r t  wi th  the  pair  (7, co), we can refind the  metr ics  g~, and,  if these are flat, t hey  
can be pu t  under  the  fo rm (2.1). Then,  (2.2) ensures the  t rans i t ion  relat ions (1.1), 

and  we are done. The only remain ing  th ing  is to write down the  fact  t h a t  g~ are 

flat metrics.  Since y = e~ ~o = &r~, there  is a well known relat ion between the  
curva tu re  tensors / ~  and  Rg~ [2], and  it  follows f rom it t h a t  Rg~ = 0 means  

(2.6) R ( x ,  ~:, z ,  w )  = {-{z(x, z)7(:g, w ) - - z ( Y ,  z)r(x,  w) + z(:g, w)7(x, z ) - -  

- ~(x, w)7(~, z)} + ([co[~/~){7(y, z ) 7 ( x ,  w )  - 7(2, z)7(Y, w)}, 

where the  sign of ~he cu rva tu re  tensor  is like in [2], and  

(2.7) L ( X ,  3!) = (Dxco)(.g) + �89 , 

D being the  Levi-Civi ta  connect ion of 7. I n  componentwise  form, these two for- 

mulas  are 

(2.6') 

(2.7') 

I [ 

L , =  D i c o j +  �89 �9 

We shall summar ize  this discussion in 

PROPOSITION 2.] .  -- Up to inessential changes, an l.s.m. M is a R iemannian  

manifold (M, y), on which there is a closed and non-exact 1-form co such that the rela- 

tion (2.6) holds good. 
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RE~AnKS. -- 1) Fo r  the  dimension n = 1, (2.6) holds for every  y and  co, which 

makes  1-dimensional  1.s. s t ructures  uninterest ing.  Therefore,  we shall assume here- 
a f ter  n > 2. 

2) Of course, the  conformal  curva ture  tensor  of a t.l% metr ic  is well defined, 
and  it vanishes in the  case of an  1.s.m. (I-ience, the  Pont r j ag in  classes of an  1.s.m. 

are zero). B u t  we saw no way  of using this p rope r ty  such as to obta in  a charac- 
ter izat ion of the  1.s.m. which would not  contain ~o exp]ieitely. 

3. - The co-closedness lemma. 

I n  some problems,  a more  precise de terminat ion  of the  untwis t ing metr ic  y is 

necessary.  I n  the  compact  orientable case, this can be done b y  using the  following 

LEmlvIA 3.1. (The Co-closedness Lemma) .  - Let (M ~, y) (n > 2) be a compact 

orientable Riemannian mani/oTd, and ~o an arbitrary 1-/orm on M. Then, there is a 
]unction V: M -+ R snch that ~o 47 dv  is co-closed with respect to the metric eVy, and V 
is defined up to the addition o/ a constant term. 

This is a general izat ion of Gauduchon 's  vanishing eccentr ici ty theorem [1], and  

Gauduchon ' s  proof  can be applied to it in a form, which is independent  of his Her-  

mi t ian  f ramework .  Fo r  the  reader ' s  convenience, we shall repea t  the basic details. 

A simple computa t ion  shows t h a t  the  co-eiosedness condition asked by  the  
L e m m a  means  

n - - 2  
(3.1) LJ~v 2 y(dv,  co 47 d~v) 47 ~o~ = 0 .  

l%r  n ~--2, this  equat ion reduces to A V - - - - -  &o, and  V exists since, b y  the  
I-Iodge decomposi t ion theorem,  one mus t  have  - -  &o ~ k 47 A% k ---- const, and,  b y  
in tegra t ing this over M, we get k = 0. 

For  n # 2, the  equat ion (3.1) can be linearized b y  means  of the  subst i tu t ion 
V = [ 2 / ( n - - 2 ) ] 1 n %  ~ > 0, which replaces (3.1) b y  

(3.2) L~defA~ n - - 2  n - - 2  

i te re ,  of course, the  difficulty lies in the  condition ~ > 0. 

Le t  us note  tha t ,  if y itself satisfies the condition of the  L e m m a  i.e., &o = 0, 

the  equat ion (3.2) defines all the  other  solutions, and  since it  is then  an elliptic 

equat ion of the  HoPF t y p e  [4], these solutions are q = const. This proves  the  last  
assert ion of L e m m a  3.1. 

19 - A n n a l i  d i  M a t e m a t i c a  
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The adjoint  of the  opera tor  L is 

(3.3) L* : A -t- ~ , 2 i ( e J ) d  

where i(o)) denotes the  interior p roduc t  b y  co, and  L* is an  elliptic opera tor  of the  

HoPF t y p e  [4], whence ker  L * =  R.  
Fu r the rmore ,  we have  index L = index L * =  index A = 0, and,  therefore  

dim e k e r L  = 1 .  

Hence  (3.2) has a solution % ~ 0, such t ha t  all its solutions are given by  k%, 

k e R.  Moreover~ 

(3.4) fq~o dv = <1, %} # 0 ,  
M 

(dr is the vo lume e lement  and  ( , >  is the  global scalar product) ,  since, otherwise, 

1 J_ ker  L, hence 1 e im L*, which is impossible b y  H o p f ' s  theorem of [4]. There-  

fore, we can assume wi thout  loss of genera l i ty  t h a t  

(3.5) f %  dv = vol M > 0 .  
M 

Fur the rmore ,  let us assume t h a t  %(p) < 0 a t  some p e M, and  let  us chose open 

neighbourhoods U, V, W, such t h a t  p e V c V c W c U, and  %Iv  is < 0 .  Then,  
let  Z be a differentiable funct ion on M with  values in [0, 1], and  such t h a t  Z equals 1 

on V and  0 outside W. This yields 

(3.6) fZ~o dv = -- a ~ (a e R ) ,  
M 

whence (3.5) becomes 

and  we get  

(3.7) 

fx o dv §  - -  X) o dv = vol  M ,  
M M 

f ( 1 - - Z ) q ) o d v : v o l M §  S :  b 2 

M 

(b e R ) .  

Final ly ,  let  us consider 

(a.s) o = z / a = §  ( 1 -  z)/b~> O. 
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Then,  (3.6) and  (3.7) give 

f o% dv 
M 

= (0, %)  = 0 . 

Therefore~ 0 L ker  L~ hence 0 ~ im L*, and~ since 0 > 0, this  is impossible b y  ttopf~s 

theorem [4]. 
The conclusion is t h a t  we mus t  have  ~0 >- 0 everywhere  on M, and finally, L e m m a  2 

of GAUDUCHON [1] (which is outside the H e r m i t i a n  f ramework)  provides us with 

the fur ther  conclusion ~v > 0. Q.e.d. 

F r o m  L e m m ~  3.1 and  Section 2 it follows 

PlCOPOSITION 3.2. -- Let M be a compact orientable mani]old, and let g = {g~} be a 
twisted metric on M. Then, it is always possible to chose an untwisting metric y such 
that its characteristic 1-]orm co is y-harmonic. This metric y is de]ined up to a global 
homothety. 

Fur the rmore ,  under  par t icular  c i rcumstances w satisfies an even s t ronger  restric- 

t ion. ~ a m e l y ,  we have  

PROPOSITION 3.3. -- Let (M ~, g) be a compact orientable t.R. mani/old, as de]ined 
in Section 2. I] all the local metrics g~ have a non-negative t~icci curvature, and i] (y, e)) 
are as in Proposition 3.2, then the 1-]orm ~o is parallel with respect to y. 

Indeed,  f rom y = e "~ g~, da~ ---- w, &o = 0 (see Section 2 for notat ion) the  fol- 
lowing relat ion between the  corresponding Ricci tensors holds good [2, 12] 

n - - 2  n - - 2  

where D denotes the  Levi-Civi ta  connection of y. 

Now, let us r e m a r k  t h a t  

whence 

M 

= O .  

Consequently,  (3.9) yields 

(3.10) f dv = f dv >= O , 
M M 

and a well known result  of BOOSTER [2] tells us t h a t  Diode= 0. Q.e.d. 
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C0g0LL/~Y 3.4. - A compact orientable t.s.m. M has an untwisting metric ~ whose 

characteristic 1-form 09 is ~-parallel. More precisely, an l.s. str~cture of a compact 

orientable manifold can be defined as a pair  (y, 09) consisting of a R iemannian  metric y 

and a nonzero parallel ]-form 09 such that 

Moreover, a normation condition l ~ [ ~ :  a ~ R can be also assumed. 

R~,H/~K. - i f  dim M = n : 2, (3.11) yields R(:,)~jk~ : 0, i.e., y is a flat metr ic  

on M, bu t  (if 09 ve 0) k does not  belong to the system (g~}. Anyway,  we see t h a t  M 
is ei ther  a torus or a Klein bott le ,  with an 1.s. s t ructure.  

In  view of this l~emark, we shall always assume hereaf ter  t ha t  dim M = n ~ 3. 
Fur thermore ,  (3.11) can be used for the de terminat ion  of the Bet t i  numbers,  

and one gets 

P~oeosITIO~- 3.5. - Zet M ~ (n ~ 3) be a compact 1.s.m. Then, the Betti  numbers 

of 3 f  ~ are: 

1) b 0 : b ~ :  b~_~:  b ~ : l ,  b ~ : 0  for 2 ~ i ~ n - -  2, i f  M is orientable; 

2) bo = b~ = I ,  bi = 0 for the other dimensions i, i /  M is nonorientable. 

For  an orientable M the results fo]low from (3.11) by  the  so-called :Boehner 
technique.  The concrete computat ions  needed are those contained in the  proof of 
Theorem 3.9 of [11], and we do not  repeat  t hem here again. Of course, the vanishing 
of the Euler-Poincar6 characterist ic z ( M )  (which follows f rom [09l : const va 0) will 

~lso be used where needed. 
In  the  nonorientable case, there  is a connected oriented double covering M '~, 

f f f t f 

and it  has the  Bet t i  numbers  given above:  b o =  b 1 =  b~_l= b~ : 1, bi = 0 (2 
_< i _  n -  2). B y  well-known propert ies  of finite coverings of a compact  manifold 

(e.g., [3]), one has:  

i) Z ' :  2Z, hence ~/(M) = 0; 

if) bk~ b~, (k = 0, ..., n), hence b , =  0 for i = 2 , . . . ,  n - - 2 ;  

iii) 1 ~ b ~  b'~= 1, hence b~= 1. Then,  b. = 0 since M is nonorientable,  and, 

finally b ._~= 0 since z ( M ) =  0. Q.e.d. 

4. - The quotient structure o f  compact  1.s.m. 

Let  M be an 1.s.m. which has an untwist ing metr ic  y with a parallel  charac- 

teristic form 09. Then,  (3.11) with Di09j= 0 holds. 
The cont ravar ian t  vector  field B of local components  09i is also parallel; we call 

it the  characteristic vector field. Fur thermore ,  the planes orthogonal  to B define a 
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foliation 5 given b y  co = 0, and  the  leaves L of ~- are to ta l ly  geodesic submanifolds  

of (M, y). Hence,  the  curva ture  tensor of L is given b y  

(~.1) R~(X,  Y ,  Z, W) = R(~)(X, ~ ,  Z, W ) ,  

for every  vector  fields which satisfy co(X) = co(I r) = co(Z) = co(W) = O. Now, (4.1) 
and  (3.11) show t h a t  every  such leaf L has the  constant  posi t ive sectional curva ture  

]col2/4, or, b y  asking t h a t  [co[---- 2 (i.e., replacing y wi th  ]co]~/4), L has sectional 

curva tu re  1. F r o m  these remarks ,  and  using Proposi t ion 3.3, and  the  classical de 

R h a m  decomposi t ion theorem [6], we get 

PI~OPOSlTIO~ 4.1. - Let M ~ (n >= 3) be a compact orientable l.s.m. Then, M ~ has 

such an untwisting metric y that S ~-~ x R is the Riemannian universal covering of M ~. 

(The condition n => 3, ensures t ha t  8 " - ~ x R  is s imply connected). 
I n  fact ,  we have  to be more precise abou t  the  metr ic  of S ~-~•  This will be 

the  produc t  metr ic  

(4.2) ds ~ = da 2 4- 4 dt 2 , 

because of the  normat ion  condition [co I----2. Here,  t is the  coordinate on R, and  

B = ~]~t, co = 4 dr. 
Fur the rmore ,  let us consider the diffeomorphism of 8 ~ - ~ •  onto R~\{O}, given 

b y  

(4.3) x ~ =  e-~tu ~ (i = 1, ..., n ) ,  

where u ~ are cartesian coordinates in the copy of R" which contains S n-l, t is an  

abscissa on R,  and  x ~ are cartesian coordinates in R'~\{0}. Then,  an easy computa-  

t ion shows t h a t  the  metr ic  (4.2) is t r ans formed  into 

(4.4) d s ~ = - [ 1 / ~ 1  (x~) 2] (dxJ) ~ . 
- j = l  

Accordingly, Proposi t ion 4.1, can be re formula ted  as 

PROPOSITIOn- 4.2. -- I /  M ~ (n >= 3) is a compact orientable l.s.m., then M ' =  

= ( R ~ ( O } ) / G ,  where G is a group o] covering trans]ormations, consisting ot isometries 

o/ the metric (4.4). 

l~Ioreover, f rom (4.3), and  co = 4 dt, we get 

(4.5) co ---- - -  d In x i ~ , 
i =  
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and by  the  relation between g~, y, co as described in Section 2, we see tha t ,  if the  
coordinates x ~ of (4.4) are used as local coordinates about  x s M, the  metr ic  g~ 

about  x is 

(4.6) g~= ~ (dx0 ~. 
J = l  

Hence,  by  (2.1) the  present  coordinates xJ are related by  an affine t ransforma- 
t ion with linear par t  in O(n) (n-dimensionM orthogonal  group) to the coordinates x~ 
of (2.1) about  x. Next ,  because of (1.1), the t ransformat ions  of G must  be them- 
selves of the  form (1.1). But ,  since these t ransformations fix the  origin of R", ff 
must  consist of t ransformat ions of the form 

(4.7) 2~= @ i a~ xj , 
j = l  

where @ > 0 is the module and (aj)~ O(n) is the  orthogonal component. 
Fur thermore ,  if M is e non-orientable compact  1.s.m:, then  let M'  be its double 

oriented covering, and let e~y (%: M ' - ~  R) be a metr ic  with a parallel characterist ic 
form, conformM to the lift of the  untwist ing metr ic  y of M to M'.  Then, ezy is 
given by  (4.2), (4A), and it  hes the  characterist ic form (4.5). Hence 

~, ~ e - ' ~  _ 

/ 

has the characterist ic  form - -  et in ( ~ (x') ~) - -  dA, and we find agMn the expression 
% 

\ ] 

(4.6) for the local metrics g~ associated to y. Since the universM covcring of M 
and M' is obviously the same, we obtMn now the same result (4.7) for the covering 
group G of M. Since such a group G preserves (4.4), it  follows t h a t  even in the 
nonorientable case M has the metr ic  induced b y  (4.4) which has a parallel charac- 

teristic form. 
The converse, i.e., every  quot ient  (R'~\{0})/G, where G is a group of covering 

t ransformat ions of the  form (4.7), and not  all modules @ are 1, is a compact  1.s.m., 

is also obvious. Hence,  we have proven 

TIt-EOaE~ 4.3. - The class of compact 1.s.m. M ~ (n ~ 3) is defined by the formula 

(4.s) M ' ,=  (R, , \{o})/e,  

where ff is a gro~tp o] covering transformations of the form (4.7) having not all modu- 
les 1. The associated global metric y of such a manifold is then definvd by (4.4), where 
the x ~ are given by cartesian coordinates in R ~. 

In  the sequel, we shall proceed like in [5, 7, 12], and get a more precise descrip- 

t ion of the group G. 
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A t ransformat ion (4.7) is called a contraction if 0 < 9 < 1. I f  t is a contract ion,  
it generates an infinite cyclic group {t} since the different powers t h have different 
modules r Then, (R'N,{0})/{t} is a compact  manifold M'  covered by  R " \ { 0 } ;  in 
order to see this, it suffices to look at  the diffeomorphism (1.4) with 4 replaced by  9. 

LEM-~A 4.4 [5, 7, 12]. - _For every group G o] (4.8), G contains at least one contrac- 
tion. Every contraction t ~ G generates an infinite cyclic group {t} which is a subgroup 
of finite index in G. There is a contraction toe G such that ~(to) is maximal < 1. 

The first assertion is t rue  since otherwise M ~ of (4.8) would not  be compact.  
Then M ' =  (R~{0}) /{ t}  is a compact  covering of M ~ whose fibers have G/{t} points;  

therefore,  G/{t} is a finite set. Fur thermore ,  let us fix such a contract ion t. The 
modules of the elements of a class [r]~t} (v e G) are ~(v)gh(t), and we can find in 
this class a contract ion whose module is the closest possible to 1. Then, since we 
have only a finite number  of classes, a comparison will provide us with the to desired. 

Q.e.d. 

Now, let us denote  

(4.9) 

which is obviously ~n orthogonal normal  subgroup of G. 

P~oPosITIO~ 4,5 [5, 12]. - H is a finite subgroup of G, which commutes with to, 
and 

(4.10) --{ht lh e H, k e z}. 

indeed,  consider a class [r]{to} (z E G). I ts  elements are of the form ~t~o (lc ~ Z), 
and ]et 4 be the  element of maximal  module < 1. Then, since ~(dto 1) > 9(4), we 

mus t  have 9(4to I) ~ 1, whence ~(4) ~ 9(to). By  the definition of to and 4, this is 
impossible unless 9(4) = 9(t0). Therefore, 4 t o l e H ,  and we proved tha t  every  class 
[r]{to} has an element  h e H.  The la t ter  must  be unique since all the  other  elements 
of the same class are of the form ht~o (k ve 0), and they  have a module =/= 1. Hence H 
is finite, (4.10) is justified, and H commutes with to since H is a normal  subgroup 
of G. Q.e.d. 

Conversely, for any  finite subgroup H c O(n), and any  contract ion to of R ~ which 
satisfies 

(4.11) toll = Hto , 

formula (4.10) is a meaningful definition of a group G, and, if G is a covering t rans -  
format ion group, {4.8) yields a corresponding compact 1.s.m. M< 
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Let  us also note tha t  to itself has some module ~0 (0 < ~o< 1), and some ortho- 
gonal component hoe O(n), and (4.11) is equivalent to 

(4.12) hoH = Hho. 

The other condition which we had namely,  tha t  G is a covering t ransformation 
group, is equivMent to the fact tha t  H acts on R'~\{0} without  fixed points. Indeed, 
if this happens, G given by (4.10) is discrete and without  fixed points in R~\{0}, 
whence it follows tha t  G is a covering t ransformation group (see, for instance, [13, 

p. 98]). 
Thereby, we have proven 

TttEOREI~[ 4.6. -- I n  order to obtain all the compact 1.s.m. M ~ (n >= 3) we have to take: 

a) all the finite subgroups H c O(n), which have no ]ixed points in R~\{0}; 

b) for every such H, all the elements hoe O(n) which commute with H (i.e. ho is 
in the normalizer of H in 0(n));  

e) all the numbers 0 < 00< 1. 

Then, M" will be defined by the formulas (4.8) and (4.10). All these manifolds are 
locally isometric with respect to the metrics defined by (4.2). 

Like in the complex case, we also have some more information about  the 
topology of the manifolds above. 

THEO~Eb[ 2.7 [5, 12]. - Every compact 1.s.m. M ~ (n >= 3) is a locally trivial dif- 
ferentiable fibre bundle with base space S ~, fiber S~-I/H, and structure group {h0}, where 
the notation is like in Theorem 4.6. 

Indeed, put t ing again R'~\{0} ~ ,~n-~xR by (x ~) ~--~[x~/!x], (ln ]x[)/lno(to)], we 
see tha t  a t ransformation ht~ acts by  hhko 8n S ~-~, and by ~ = r + k  on R. Now, 
we see tha t  

(4.1a) ~w,=  (R,%{0})/~ = [(R%{o})/H]/(~/m ~ [(S,,-1/H)• 

and these relations yield the following commutat ive  diagram 

(4.14) 

(S'~-*/H) x R ~ R 

M , > S 1 = R / Z  
q 

whose arrows have an obvious significance. Since H and  H '  a recover ing  mappings, 
it follows tha t  q is the fibration stated by Theorem 4.7. Q.e.d. 
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We shall end this p~per by  a few simple remarks about  the groups of Theorem 4.6. 

a) I f  n = 2h + i (h ~ 1), a proper rotat ion has an axis, therefore, H has no 

proper rotat ion except the identity.  For  the same reason H cannot  have two dif- 

ferent improper rotations. Therefore, there are only two groups: H~ which is trivial, 

and H~ which consists of the identi ty and the symmet ry  with respect to the origin. 

I n  both  eases, to can be chosen arbitrarily. The corresponding manifolds M are 

fiber bundles over S ~ whose fiber is either S ~h or R P  2~ (the real projective space). 

b) I f  n ~ 2k (k ~ 2) then, since H has no fixed points in R*~\{0}, H is a sub- 

group of U(k) with the corresponding tea,1 action on R 2~:. The determination of the 

groups H and G in this case is a difficult problem. (See [5] for the ease k = 2). 

h~ote tha t  we refind in this scheme the real t topf  manifolds S~'-1• S ~ (Section 1), 

as well as the manifolds RP~-~•  S ~ (which are non-orientable if n is odd). 

Added in Proofs. - Recently, we became aware of the following papers: N. Kun']~n, Com- 
pact spaces with a local structure determined by the group of similarity transformations in E% 
Indagationes Math., 42 (1950), pp. 411-418, and D. FnI]~D, Closed similarity manifolds, Com- 
ment. Math. Helvetici, 55 (1980), pp. 576-582, where the 1.s.m. are studied by a straight- 
forward geometric method. 
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