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ABSTRACT

Singular value decomposition �SVD� is a coherency-based

technique that provides both signal enhancement and noise

suppression. It has been implemented in a variety of seismic

applications — mostly on a global scale. In this paper, we use

SVD to improve the signal-to-noise ratio of unstacked and

stacked seismic sections, but apply it locally to cope with co-

herent events that vary with both time and offset. The local

SVD technique is compared with f-x deconvolution and me-

dian filtering on a set of synthetic and real-data sections. Lo-

cal SVD is better than f-x deconvolution and median filtering

in removing background noise, but it performs less well in

enhancing weak events or events with conflicting dips. Com-

bining f-x deconvolution or median filtering with local SVD

overcomes the main weaknesses associated with each indi-

vidual method and leads to the best results.

INTRODUCTION

Enhancement of signal embedded in background noise is an im-

portant issue in seismic data processing. By improving the quality of

the seismic images, the results of subsequent processing or interpre-

tation are much facilitated. The quality of the seismic image can be

improved by means of different methods. Here we discuss three of

these: f-x predictive deconvolution filtering, median filtering, and

local singular value decomposition �SVD�. We illustrate the advan-

tage and disadvantage of each of these techniques for signal-to-noise

enhancement.

Signal enhancement in the f-x domain was introduced by Canales

�1984�. It is a widely accepted and used technique in the oil and gas

industry. The idea behind f-x deconvolution is based on signal pre-

dictability. Events that are linear or quasi-linear in the t-x domain are

equivalent to a superposition of harmonics in the f-x domain. In the

presence of noise, autoregressive models �AR� are suitable to predict

a superposition of harmonics. F-x deconvolution is effective in at-

tenuating random noise. It can handle conflicting dips and does not

require dip steering, i.e., alignment of events, to flatten them. On the

other hand, if the noise level is high, it is known to distort signal lev-

els significantly �Spitz and Deschizeaux, 1994�.

Median filtering is another technique that is also widely accepted

in the oil and gas industry �Bednar, 1983�. It operates by selecting

the middle value of a sequence of numbers ordered by ascending

magnitude. These numbers are taking from a moving window ap-

plied to the data. Median filter is effective in removing glitches on

data as well as enhancing discontinuities. It has a simple implemen-

tation; however, it requires dip steering prior to signal enhancement.

Singular value decomposition is a powerful tool to detect and en-

hance laterally coherent signals in multitrace recordings. It has been

implemented in a variety of seismic applications like dip filtering,

VSP up/down wavefield separation, and residual statics corrections

�Ulrych et al., 1988�. SVD is suitable for data where coherent events

can be aligned laterally. For example, this includes NMO-corrected

CMP �common-midpoint� gathers and stacked sections. Coherent

signals in multitrace data are extracted using an eigenvalue decom-

position of the data-covariance matrix, after initial alignment of

events by means of dip steering. This is done by including the contri-

bution of the largest singular values only, since these represent the

laterally coherent signals, while the smallest singular values are re-

lated to the background noise.

SVD can be applied to enhance the signal-to-noise ratio S/N in

data sections containing laterally coherent events. Instead of apply-

ing this technique globally, i.e., on the entire data section in one go,

as is usually done with this method �Andrews and Patterson, 1976�,

we apply it using a local window sliding in space and time. Local

SVD, contrary to global SVD, can cope with short and quickly vary-

ing events.

In this paper, we investigate the use of local SVD to enhance the

S/N in seismic data. Data within a local window are first extracted.

Dip steering is then applied to align any laterally coherent signal and

SVD is used thereafter for signal enhancement. Finally, the output

data of the SVD are shifted back to their original pre-aligned posi-
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tions. A window sliding in both time and space is employed to cover

the entire section.

The outline of this paper is as follows. First, we present the princi-

ples of SVD for signal enhancement. We then show results for syn-

thetic and real data �unstacked and stacked gathers�. We end with a

discussion on performance and parameter settings for the proposed

technique.

THEORY

In the proposed coherency-based technique for S/N enhancement,

a data window is first extracted from the noisy input section. Dip

steering is then applied on the extracted data to align the coherent

events laterally, and SVD is used to enhance them. The output data

are shifted back to their original pre-alignment positions to construct

a local cleaned-up section. This is repeated sequentially throughout

the input section. The locally enhanced section is mapped, in the out-

put section, to the same location as the extracted window in the glo-

bal section. By using a sliding window while averaging all overlap-

ping, locally enhanced sections, a new seismic section is created

with an enhanced S/N. The window is moved along the time and

space directions to cover the entire input section. A percentage over-

lap is defined in order to remove edge artifacts. The next subsections

discuss this procedure in more detail.

Dip steering

Dip steering is applied on the windowed data to flatten events, so it

displays a larger level of lateral coherency. This is essential for the

SVD decomposition to work effectively. Dip steering is based on es-

timating the time delays between the different traces in the data win-

dow and a reference trace using crosscorrelation. The maximum of

the crosscorrelation indicates the time delay. Each trace is then shift-

ed by its corresponding time delay.

The choice of the reference trace is an important issue. In our case,

it is obtained by stacking the traces in the data window. This choice

turns out to be robust when the noise level is relatively high or when

most events are already correctly aligned, for example, after an

NMO correction has been applied on a CMP gather. The reference

trace is updated after each crosscorrelation pass by stacking the re-

sulting shifted traces. The process of crosscorrelation, shifting, and

stacking is repeated until the process converges.

SVD

The data in the analysis window are represented with an �m�n�

data matrix, X, consisting of m traces and n time samples per trace

�generally m � n �. The SVD of a data matrix X, assumed of rank

r�m, leads to a linear orthogonal expansion of the data given by

Golub and Loan �1996�

X = UrDrVr
T = �

k=1

r

�kukvk
T, �1�

where the matrix Ur = �u1,u2, . . . ,ur� contains the r left singular

vectors, Dr = diag��1,�2, . . . ,�r� is a diagonal matrix containing the

singular values �i and the matrix Vr = �v1,v2, . . . ,vr� represents the r

right singular vectors. The vectors uk are called the propagation vec-

tors and the vectors vk the eigen-wavelets �Vrabie et al., 2004�. The

positive quantities �k, sorted as �1 ��2 � ¯ ��r, can be shown to

be the positive square roots of the eigenvalues of the data covariance

matrix XXT. The term ukvk
T is an �m�n� matrix of rank one called

the kth eigenimage of X. Orthogonality of the SVD expansion en-

sures that the propagation vectors and the eigen-wavelets are orthog-

onal,i.e., vi
Tvj = ��i − j� and ui

Tuj = ��i − j� with � the Kronecker

function.

Laterally coherent events in the data window create a linear de-

pendence among the traces. The data then show a high degree of

trace-to-trace correlation and can therefore be reconstructed from a

few eigenimages only. The SVD-enhanced signal X̂svd is obtained by

rank reduction, i.e., by taking only the contribution of the first p

eigenimages into account �Freire and Ulrych, 1998�. That is,

X̂svd = �
k=1

p

�kukvk
T. �2�

SVD acts as a data-driven, low-pass filter by rejecting highly uncor-

related traces. In most of the applications where local SVD is used, p

is set to 1 or 2. In our method we assume that there is a single event in

the window, so only a single eigenimage is needed for the recon-

struction and thus S/N enhancement.

COMPARISON OF METHOD

In this section, we compare the performance of local SVD, f-x

deconvolution, and median filtering for signal enhancement. We

consider three types of data: a synthetic gather, an NMO-corrected

CMP gather, and a stacked section.

For f-x deconvolution, we use a short-time Fourier analysis with a

sliding temporal window with an overlap of 50% to remove edge

effects. The median filter is applied locally after dip steering, similar

to SVD. It is set up in two sequential steps, where we apply a median

filter of length 3 and 5, respectively. In each step, the median filtering

is applied until convergence to obtain the so-called root signal �Arce,

2005�. Because the median filter is applied after dip steering, the fil-

ter length cannot exceed the window width used in the dip steering.

Synthetic data

We consider a noiseless synthetic section that consists of 80 traces

with 256 samples per trace �Figure 1a�. This section contains some

interesting features often encountered in real data: a lateral event

with decreasing amplitude level �A�, a dipping event �B�, an isolated

event �C�, a discontinuity �D�, and two events with different ampli-

tudes and conflicting dips �E�. Zero-mean Gaussian noise is added to

create a more realistic section �Figure 1d�.

The sliding window for dip steering, which is common to median

filtering and local SVD, consists of m = 20 traces and n = 32 time

samples. The SVD window has a 50% overlap to prevent edge arti-

facts. We set p = 1 for the rank reduction in all final sections. For f-x

deconvolution, we use a temporal window of 32 samples and 50%

overlap to cope with the nonstationarity of the data. Prediction filter-

ing is done with an AR model of order four fitted with 20 samples.

For the purpose of comparison, we investigate the use of global SVD

where we set p � 5, i.e., five eigenimages are used in the reconstruc-

tion. A value of p larger than 2 is used in the global SVD to include

more details in the reconstructed section.

V60 Bekara and Van der Baan



Global SVD �Figure 1b� partially boosts those

lateral events with a relatively high S/N. How-

ever, it completely fails to retrieve the isolated

event and does not succeed in boosting any of the

dipping events. On the other hand, local SVD

�Figure 1e� is effective in removing most of the

background noise and retrieving the isolated and

dipping events. It is partially able to retrieve the

conflicting dips, specially the stronger one.

Though local SVD fails to retrieve events with

low S/N �top right of Figure 1e�, the boosted sig-

nal preserves the original amplitude variation.

F-x deconvolution performs best in terms of

boosting the different events and retrieving the

conflicting dips, except maybe for the isolated dip

�Figure 1�. Remarkably, it does not manage to

preserve amplitude variation as well as local SVD

does. On the other hand, it is the only method that

interpolated the discontinuity. In this case, this is

an unwanted artifact, but it is often seen as a desir-

able feature. It is not as effective as the local

methods in removing the background noise. Me-

dian filtering �Figure 1f� also succeeds in retriev-

ing the coherent events, but it did least well in

terms of suppression of background noise. As for

the conflicting dips, it is able to retrieve only the

strongest one.

The main drawback of f-x deconvolution and

median filtering, i.e., their tendency to retain

some background noise, can be remedied by

combining f-x deconvolution or median filtering

with local SVD. Figure 2a and b shows the result

of feeding the output of f-x deconvolution and

median filtering to local SVD. Clearly, the back-

ground noise is largely suppressed as compared

with Figure 1c and f.

Finally, to have more insight on the filtering ef-

fect of each method, we plot the residual sections

�i.e., difference plots, section before minus sec-

tion after filtering� for each technique as shown in

Figure 3. Among all the techniques, local SVD

�Figure 3a� has removed less signal, followed by

f-x deconvolution. Remarkably, although apply-

ing local SVD after f-x deconvolution or median

filtering reduces the background noise best, it has

also a tendency to leak some signal into the resid-

ual sections as shown in Figure 3e and f.

It is evident that when applying local SVD af-

ter f-x deconvolution or median filtering, a trade-

off between noise suppression and signal remov-

al is taking place. This trade-off is determined by

the number of eigenimages included in the local

SVD computation. In Figure 3e and f, one eigen-

image is used, which corresponds to a maximum

noise-suppression configuration, and results con-

sequently in the removal of signal components.

By including more eigenimages, we potentially

reduce this drawback, at the expense, however, of

leaving some background noise.
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Figure 1. Signal enhancement of synthetic section: �a� noiseless data, �d� noisy data and
results using different techniques: �b� global SVD, �c� f-x deconvolution, �e� local SVD,
and �f� median filtering. Local SVD performs better than global SVD. All methods except
global SVD boost the S/N. F-x deconvolution interpolates the discontinuous event �D�,
but performs well for the isolated event �C�. Median filtering is the least effective in re-
moving background noise.
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Figure 2. Signal enhancement of synthetic section: combination of classical techniques
with local SVD. �a� F-x deconvolution + SVD. �b� Median filter + SVD. Most of the
background noise left in Figure 1c and f is removed in �a� and �b�, respectively.
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Moveout-corrected CMP gather

Here we consider an unstacked NMO-corrected CMP gather con-

sisting of 76 traces with 2500 samples per trace. The sliding window

for the local method consists of m = 10 traces and n = 100 time sam-

ples, with a percentage overlap of 50%. We set again p = 1 for di-

mension reduction in all final sections. For the f-x deconvolution, we

use a short-time Fourier analysis with a sliding temporal window of

100 samples and an overlap of 50%. We again use 20 samples to esti-

mate an autoregressive filter of order 4. Figure 4a contains the origi-

nal NMO-corrected CMP data while Figure 4b to d shows the results

after signal enhancement using, respectively, local SVD, f-x decon-

volution, and median filtering.

We obtain results similar to the synthetic data section. The local

SVD method �Figure 4b� removes most of the background noise

present in the raw data �Figure 4a�. F-x deconvolution �Figure 4c�

and median filtering �Figure 4d� perform quite similarly in terms of

noise suppression and coherency boosting. F-x deconvolution actu-

ally maps some of the noiselike signal into the muted area �e.g., trace

number 30 at time � 400 m sec�. All methods perform similarly in

terms of coherency boosting of the strong events. However, f-x

deconvolution wins in terms of its ability to interpolate discontinu-

ous events, along with boosting events with weak energy.
The tendency of f-x deconvolution and median filtering to retain

some background noise can be largely prevented by combining them

with local SVD as we have done for the synthetic data. Figure 5a and

b shows the results of respectively feeding the output of f-x decon-

volution and median filtering to the local SVD technique. Clearly,

the background noise is largely suppressed as compared with Figure

4c and d. Masked and isolated events are also preserved along with

the interpolated ones.
The residual plots for each technique are shown in Figure 6. Very

similar remarks to the synthetic data example are observed. Local

SVD shows the smallest amount of removed signal, followed this

time by median filtering and then f-x deconvolution. Clearly, the

noise suppression ability achieved by applying local SVD after me-

dian filtering or f-x deconvolution is balanced by the drawback of

removing useful signal in addition to noise. This

trade-off is more severe with median filtering

�Figure 6d� than with f-x deconvolution �Fig-

ure 6c�.

Stacked section

In Figure 7a, we consider finally a stacked sec-

tion. We apply the same methods and with the

same parameter values, except that for the local

window we use a length of 50 samples. The win-

dow length of the short-time Fourier analysis in

the f-x deconvolution is 50 samples. The results

are displayed in Figure 7b to d after respectively

applying local SVD, f-x deconvolution, and me-

dian filtering.

Similar results are again obtained as before.

Local SVD performs the best in terms of suppres-

sion of background noise �bottom of Figure 7b�.

The f-x deconvolution �Figure 7e� and median

filtering �Figure 7d� show comparable perfor-

mance, but f-x deconvolution has better interpo-

lation capabilities. Combining f-x deconvolution

and median filtering with local SVD again gives

the best results �Figure 8a and b�. Once more, a

considerable amount of the background noise left

by f-x deconvolution and median filtering is re-

moved by applying local SVD afterwards.

Inspection of residual sections shows again

that the enhanced suppression of background

noise, obtained by combining local SVD with f-x

deconvolution or median filtering, was counter-

acted by an increased smoothing of the reflections

and an increased signal removal.

DISCUSSION

Parameter settings

How do the parameters of the local SVD meth-

od affect its performances?
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Figure 3. Residual plots for the different signal enhancement techniques �synthetic sec-
tion�: �a� local SVD, �b� f-x deconvolution, �c� median filtering, �d� global SVD, �e� f-x
deconvolution + SVD, and �f� median + SVD. Little signal is found in the residual
sections after local SVD �a�. On the other hand, application of local SVD after f-x decon-
volution �e� or median filtering �f� reduces the amount of background noise but also re-
moves more signal.

V62 Bekara and Van der Baan



• In most seismic applications, retaining only one or two eigenim-

ages leads to satisfactory results. All our results were obtained

using the first eigenimage only �p = 1�. Increasing the number of

eigenimages used can help reduce the amount of removed signal,

in particular if SVD is applied after median filtering or f-x decon-

volution, but it results in less noise reduction.

• Increasing the width m of the analysis window produces more

noise suppression, but at the expense of slightly flattening events

and missing some weak dips. The window length n is less crucial.

It should be large enough to ensure an efficient computation of

the eigenvalue decomposition, but not too large; otherwise, the

analysis window becomes a global one, and it can deal no longer

with rapidly changing events and waveforms.

• A zero percent overlap between sliding windows produces arti-

facts that look like discontinuities in the output section. Increas-

ing the overlap provides more noise suppression and increases

lateral continuity of events, but at the expense of increasing the

computational load somewhat. A 50% overlap gave a satisfacto-

ry compromise between computation cost and creation of poten-

tial artifact, but sometimes a larger percentage overlap may be

needed, depending on the data set.

• Median filtering can lead to a better suppression of background

noise by increasing the window length �Arce, 2005�. However,

this may produce signal distortion. The same is true for f-x de-

convolution if the AR order is reduced �Sacchi, 1999�.

Advantage and disadvantage of each technique

• The SVD method is effective in removing the background noise.

It is less capable of interpolating discontinuous events than f-x

deconvolution. It can only handle confecting dips to a limited ex-

tent. On the other hand, it did seem to respect amplitude varia-

tions along reflectors better in synthetic data than the two other

techniques.

• In the implementation of the local SVD method, not all the singu-

lar values are to be computed because we are only interested in

the largest one. Algorithms exist that extract the largest singular

value only. These are computationally very effective �Golub and

Loan, 1996�.

• Median filtering is an attractive alternative to f-x deconvolution

as its implementation is much simpler and it requires less compu-

tational effort. However, it cannot deal with conflicting dips.

• F-x deconvolution can handle conflicting dips and interpolate

discontinuous events. On the other hand, it reduces the back-

ground noise less well and may map energy to areas where none

existed before �e.g., muted areas�, indicating that it is more prone

to boosting aliased energy.

• Like local SVD, median filtering requires dip steering. However,

the performance of the median filter is less sensitive to a mis-

alignment than local SVD.

• 3D versions of median filtering �Astola et al., 1990� and f-x de-

convolution �Spitz and Deschizeaux, 1994� already exist. Simi-

larly, global 3D-SVD has been investigated �Vrabie et al., 2006�;

therefore, a generalization to local 3D-SVD is straightforward.
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Figure 4. Signal enhancement of unstacked data. �a� Original NMO-
corrected CMP gather, and results using different techniques: �b�
local SVD, �c� f-x deconvolution, and �d� median filtering. All tech-
niques boost the S/N. F-x deconvolution �c� interpolates discontinu-
ous events and retrieves weak dips better, but suppresses the back-
ground noise less well than local SVD �b�. Median filtering �d� yields
a very similar performance to f-x deconvolution �c�.
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Figure 7. Signal enhancement of stacked section.
�a� A stacked section. Results using different tech-
niques: �b� local SVD, �c� f-x deconvolution, and
�d� median filtering. All techniques boost the S/N.
F-x deconvolution interpolates discontinuous
events and retrieves weak dips better, but removes
the background noise less well, than local SVD.
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CONCLUSIONS

Local SVD is a powerful technique that can simultaneously boost

coherent signals and suppress background noise in seismic sections.

It is easy to implement and convenient to use because its perfor-

mance depends on few parameters. The local SVD method is better

than f-x deconvolution and median filtering in removing back-

ground noise, but it performs less well in boosting weak events or

events with conflicting dips. F-x deconvolution and median filtering

perform quite similarly, but f-x deconvolution is better in interpolat-

ing discontinuous events, and it can handle conflicting dips. Com-

bining f-x deconvolution or median filtering with local SVD sup-

presses the background noise best, but may lead to overly smoothed

seismic images with some signal recognized in the difference plots.
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Figure 8. Signal enhancement of stacked section using a combina-
tion of classical techniques with local SVD. �a� F-x deconvolution �

SVD. �b� Median filter + SVD. Most of the background noise left in
Figure 7c and d is removed.
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