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Local smoothing by polynomials in n dimensions

By A. J. Cole and A. J. T. Davie*

A method of local smoothing of noisy data by making a least squares fit to a suitably chosen
polynomial is described. Various n-dimensional formulae are derived and their effects compared
empirically.

(First received November 1967 and in revised form June 1968)

We consider the problem of smoothing data in n
dimensions by making a least squares fit of the data to
a polynomial. This will be a local rather than a global
fit in the sense that corrections will be made point by
point using at each stage only a few selected points about
the one currently under consideration. The one dimen-
sional case has been considered in detail by Lanczos
(1957) and Hildebrand (1956).

Impose a mesh of unit step length on the domain under
consideration. There is no loss of generality in choosing
co-ordinates so that the point currently under considera-
tion is the origin. It will be assumed at this stage that
the origin is interior to the domain. Boundary and near
boundary points will be considered later.

Let P be the approximating polynomial and let
X = {x0, x{ . . . xk} be a set of mesh points including x0,
the origin. The problem then is to minimise

(,f,) ( )
i = 0

where P, = P(xt) and / , is the given data at point x,.
If P is the polynomial minimising F then the corrected
value at xQ is P(x0). That is, the corrected value is the
constant in P.

We restrict ourselves to symmetric sets X such that
if x = (x,, x2, x3 . . . xn)eX then so also are all points
(+*,-, ±Xj, . . . ±xg) where any combination of signs is
taken and (i,j, . . . q) is any permutation of (1, 2, . . . n).
With this condition it follows that only polynomials with
all combinations of even powers of the Xj need be con-
sidered since, by symmetry, differentiation of (1) with
respect to the coefficients of P will lead to a set of
equations which contains an independent subset involving
only the coefficients of products of even powers of the Xj
and the constant term. Further, only polynomials of
even degree 2m need be considered since a polynomial of
degree 2m + 1 would lead to the same set of equations
to be solved for the constant term. In particular, a linear
fit may be accomplished by considering the constant
term of the linear polynomial only. The linear case can
therefore bs classed as trivial though some results are
given below for completeness.

Notation
Before continuing, we introduce notation and the basic

identities for differences in many dimensions.
We use

where there are a suffices xh b suffices Xj, and so on.

e, = (0,0,. . . , 1....0)

where the 1 appears in the «th position

ek, = (0,0,...,k,...,0)

where the k appears in the /th position

«±/.±v = ( 0 , 0 . . . , ± 1 , . . . , ±1, . . .O)

and so on.

f±i, ±j —f(e±i,
and so on.

22, = 2 [/*/ +/-*,]
i

2*, = 2 '2 Ui.j +f,.-j +/-,-,,• +/_,.-,!
i = 2 j = Ii = 2 j = I

and so on.

ki = Jki ~\~J- ki

2i,y =
 2~J f±i, ±j

/, 2j = 2 /+;, ±2j

j = 1

4Ji,j,k~ 1J J±i,±j,±k
j , k 4= i

where the + notation is used to imply that all possible
combinations of signs are taken on the suffices.

It follows that

2 Hki — 22/
i ~ 1
n

2J Zti.j — 221, j
i = 1

fnr
l o r

xiXi...xtx)...Xi...xq...xqj0

22/, y — 2 2/, 2j = 2i*2/ — 21/,

2 2;,;,* — 32,*/, k
1= 1

and so on.
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The following identities may bz verified.

S2 = 2? - 2/I/Q

S4 = S?i - 4S* + 6«/o

82,2 = 2?y - 2(/i - 1)2? + 2n(« -

§6 = £*,• - 6SJ, + 152? - 20n/0

§4,2 = §2,4 = E2*,,y - 2(« - 1)SJ, - 82?. y

82.2.2 = 2? ,y .*-2(n-2)2? ,y

+ 2(#i - l)(n - 2)2? - ^»(» - 2)/0

and conversely

Sr = 32 + 2n/0
25/ = §4 + 4S2 + 2II/O

2?j = §2,2 + 2f/i - 1)S2 + 2w(/r

S3*; = S6 + 684 + 982 + 2/i/o

2f/.y = §2,4 + 2(« - 1)S4

2?.y,* = §2,2,2

8S
2,2

« - 2)S2>2 + 2(n - l)(n - 2)S2

+ 4-«(« - l)(n - 2)/0.

The linear case
Although the general form is

P= S «/«/ + &
/ = 1

it suffices, as indicated above, to consider the special
case P = b. The function to be minimised is then
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Quadratic and cubic polynomials
As shown above, the corrections corresponding to

n = 2m and n — 2m + 1 are identical. Thus it suffices
to consider the quadratic form with even powers only.
Let

P = £ a-.x] + b.
i= 1

We first tabulate the contributions, C, made to F by
the various kinds of points defined above.

(i) the origin
C = {b —/o)2 (One term only)

(ii) points of type ke, (k = 1, 2 or 3)
C = {b + k2a; -fki)

2 (2n terms)

(iii) points of type elt j
C = (b+a,+ aj - /,, j)2 (2n{n - 1) terms)

(iv) points of type eu 2j

C = (b + at + AOj —fK2j)
2 (4«(n - 1) terms)

(v) points of type eh y_ k

C = (b+ai+aj+ak-fitJyk)
2

(±n(n - l)(n - 2) terms)

where all possible combinations of signs are taken.
Corresponding to the five cases listed above, we can

1 ~dF
now compute the contributions to -z ^-r made by all

points of the corresponding types.

(0 b-f0

(ii) 2nb + 2k2 2 a-, — 2*,-

- 1)S2

where there are m + 1 points in X. For a minimum

1 5F '
2 ~bb ji

Hence

;) = 0.

(m + l ) ( 6 - / o ) = - « / o +

The required correction is therefore
= 1

Using the central difference identities listed above, it
is now possible to derive corrections in terms of central
differences to correspond to different choices of the set X.
For example with A'consisting of the origin and all points
of type e,, we have

= 27TT1S 2-
Similar results follow for different sets X, but there is

little point in developing them since the correction as
expressed in (2) is simple to apply.

(iii) 2n(n - 1)6 + 4(« - 1) £ a, -

(iv) 4n(w - \)b +

(v) in(n - 1)(« - 2)b

* - 1) 2 a, -
1 = 1

1 IF1 IF
Similarly, the contributions to ^ ^— made by summing

the contributions made by all terms are

(i) 0

(ii) 2k2b + 2k% -

(iii) 4(n - 1)6 + 4(« - 2)a, + 4 2 «y - 2/,y

(iv) 20(n - 1)6 + (68n - 100)a; + 32 £ a,- - 22/. j
J = i

(v) 4(« — 1)(« - 2)6 + 4(/i — 3)(n — 2)a,
n

-\- Oy/l 2j ^j fl; ^j/ :
j = I
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DF
Summing over /, contributions made to + 2 —̂ are

;= 1 H
(i) 0

(ii) 2k2nb + 2k4 2 a; - &22*,
/ = l

n

(iii) 4n(n — 1)6 + 8(« — 1) 2 ai — 2 2 * j
i = i

(iv) 20n(n - 1)6 + 100(« - 1) 2 <*/ — 52*/ , ;

i = I ' ' ' '

W e give now an example of the derivation of a formula
taking the set X to consist of all points of type origin,
e,- a n d eUj.

~dF
Summing the terms appropriate to \ zrr = 0 we have

+ (2n(n - 1)6 + 4(« - 1) 2 at - 2*,) = 0.

Hence

(2«2 +

= - 2 « 2 / 0

- 2) S a, = -
i = I

2«/0 S2>2

+ 2«(« - l ) / 0

(3)

~bF

2,2 i i^** — 1/^2*

Similarly, corresponding to ^ S v " = 0 we have
i 0(2'

{2nb + 2 2 O; — 2*J

+ (4«(n - 1)6 + 8(/i - 1) 2 a, - 22*,) = 0

or

(4«2 - 2«)(6 - / 0 ) + (in - 6) 2 a,

= - ( 4 / J 2 - 2«)/0 + 2* + 22*j

= -(4«2 - 2n)/0 + S2 + 2n/0 + 2S2,2

= 2S 2 , 2 +(4«-3)S 2 . (4)

Eliminating 2 a,- from (3) and (4) we obtain
i = 1

[(2«2 + l)(4n — 3) — 2w(2/z — 1)2](6 —/0)

= t ( 4 « - 3 ) - 2 ( 2 « - l ) ] § 2 , 2 .

Hence the correction, 6 —f0, is

8,J2, 2

2n2 + In- k
in > 2).

The method of derivation for other groupings is
similar and we merely give results.

(a) The origin, e, and 2e,

h f - 3 *

(6) The origin, et and etJ (the case considered above)

b -fo = ~ 2tf + 2« - 3 §2-2

(c) The origin, e,-, e2/ and e7j ,-

13

The origin, e,-, e2 ; and

bf

(e) The origin, e,, e2l, eulj

- 33 ( 8

( / ) The origin, eit e2h eii2J, e3i

b ~fo = k

3(2« - 1)S4)

112S2i2 — (87« — 24)S4)

The origin, e,-, e,?y-, eitJtk

" JO = ^^4 _ /l»,2

+ ( 2 K 2 - 2 « - 3 ) S 2 J 2 ) .

These, of course, do not represent all of the combina-
tions of the seven types of points, but an exhaustive list
would be tedious.

X X X X X

x. x x

x x x x

x. y. y.

X X X X X X X

>c x x

X X X X X X X X X

X X X

Fig. 1. Groupings of basic points used in smoothing

A diagrammatic form of the above types for n = 2 is
given in Fig. 1 showing which points are used in the
evaluation. Case (g) is not included since it has no
meaning for n = 2.

Boundary points
The formulae deduced for interior points depended

heavily on symmetry for the simplicity of their derivation.
When considering boundary points this symmetry is lost
if only the basic set of points is considered and indeed
the equivalence of formulae of orders 2m and 2m + 1
no longer holds. Lanczos (1957) obtains the formula

correction = ^ S3 + ^ S4
(5)
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Fig. 2. Solar soft X-ray raw data Fig. 3. Solar soft X-ray map correction from double linear
smoothing

Fig. 4. Solar soft X-ray map correction from 9-point block

for the one dimensional quadratic case and Hildebrand
(1956) obtains

correction = — =^ 84
(6)

for the one dimensional cubic case, where 83 and S4 are
the nearest available central differences.

Because of the asymmetry the methods of the preceding
paragraphs become considerably more complex and do
not lead to such concise formulae. In particular it is no
longer sufficient to compute only the constant term in
the approximating polynomial.

Fig. 5. Solar soft X-ray correction from 9-point cross

In the applications discussed in the next paragraph we
see that the correction corresponding to case (b) above
gives generally satisfactory results for interior points.
Further, because of the compactness of the set of points
used it can be applied to all points excepting those
actually lying in the boundary planes of the rectangular
parallelepiped of points under consideration. One
method of smoothing in these planes is to drop down
one dimension and smooth with the corresponding lower
dimensional formula. In practice this method has given
satisfactory results and in cases where adjacent interior
points are significant a second smoothing can be carried
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76 Cole and Da vie

out by using a one dimensional formula applied normally
to the bounding plane.

If this approach is not satisfactory then individual
asymmetric formulae can be derived. For example, for
the case n = 2 and using a quadratic approximating
polynomial

ax2 + bxy + cy2 + dx + ey + k

through the points origin, e,, e,j, then the smoothed
values at (1, 0) and (1,1) will be

a + d + k
and

a+b+c+d+e+k
respectively. Applying a conventional least squares
method the coefficients

y\-l -1

are obtained as the linear sum multipliers of the corre-
sponding function values

/ ( - i , l) 7X0, l) / ( i , i)
/ ( - l , 0) 7X0, 0) 7X1, 0)
/ ( - i , - i ) 7*o,-i) 7*U-i)

to give the corrections at the points indicated by the
asterisks.

Some practical results
Two methods of comparing the efficiency of the above

formulae were used. In the first certain functions were
tabulated and then modified by adding a random error
of a given order at each point. The resulting functions
were then smoothed and the results compared by com-
puting the sum of squares of deviations of the smoothed
values from the known true values. Table 1 gives results
for the functions (i) sin (x + 2y) and (ii) log (x + y) +
sgrt((2x3 + y*)/(x + y)) both tabulated for x = 0-5
(0-05)0-7, y = 0-5(0-05)0-7 and subjected to random

errors of order 10~3. For comparative purposes the
second column contains the results for smoothing
linearly first in the x direction and then in the y direction
(the order of linear smoothing is immaterial as is easily
proved). The formula used are labelled as above. In
every case tried the nine point block of formula (b) gave
the best results.

Table 1

Sums of squares of deviations

AH results are multiplied by 104

FUNCTION

(i)

(ii)

U N -
SMOOTHED

2-8018

2-7058

DOUBLE
LINEAR

1-8001

1-7985

a

1-9880

1-9350

b

1-5779

1-5783

c

1-6761

1-6756

The second method used to test the results was to
smooth some data from photographs of soft x-rays
emitted from the sun and taken from a rocket fired from
the Woomera range. The data was subject to back-
ground noise of various types. Fig. 2(a) shows an
attempt to contour the unsmoothed data. There are
several places where the contouring program failed
resulting in breaks in the contours and also places,
particularly in the corners, where background noise has
obviously caused distortion. All of the methods applied
smoothed the data sufficiently to remove breaks in
contours. Fig. 2(b) shows the result of a double linear
correction which has resulted in over smoothing to some
extent. Fig. 2(c) corresponds to the nine-point block of
formula (b) and is probably the best in that it has
removed most of the noise without undue distortion.
Fig. 2(d) corresponds to the nine-point cross of formula
(a) and again oversmooths the data but removes the
background noise satisfactorily.

We are indebted to Dr. Peter Russell of Leicester
University for supplying us with this data (Russell,
1965a and b).
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