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LOCAL SOLUTIONS FOR STOCHASTIC NAVIER STOKES EQUATIONS ∗

Alain Bensoussan
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2

Abstract. In this article we consider local solutions for stochastic Navier Stokes equations, based on
the approach of Von Wahl, for the deterministic case. We present several approaches of the concept,
depending on the smoothness available. When smoothness is available, we can in someway reduce the
stochastic equation to a deterministic one with a random parameter. In the general case, we mimic
the concept of local solution for stochastic differential equations.
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1. Introduction

The usual approach to stochastic Navier Stokes equations is related to proving the existence of strong or weak
global solutions (namely in any compact interval of time), see references [1, 2, 4], and related papers. Strong
solutions are obtained in very limited situations. In general, one relies on a background deterministic theory
which is the variational theory, see references [7, 8]. As in the deterministic case, one considers a Galerkin
approximation method, and by a fundamental property of the nonlinear term, it drops out in writing the energy
equality. Therefore estimates can be obtained. Compactness is then necessary to proceed. In the stochastic case,
the compactness holds only in spaces of probability measures related to the trajectories and not in functional
spaces related to the trajectories themselves as in the deterministic case. Nevertheless, this is sufficient to prove
the existence of weak solutions. An other approach to Navier Stokes equations is that of Von Wahl [9]. It relies
on abstract parabolic equations and obtains more regular solutions, but only locally (on a small interval of
time). Such solutions are also unique. The objective of this paper is to use such a deterministic background to
construct solutions to stochastic Navier Stokes equations locally. In cases, which to some extent are reducible
to the deterministic case (namely stochastic integrals of Ito type can be removed) then we can proceed in a way
similar to that of Von Wahl. A slight improvement is however used in comparison to the deterministic theory,
where solutions which are differentiable in time are possible. Because of the stochastic context, only solutions
which are hölderian in time are possible here.
To treat equations of Ito type, we approach differently the concept of local solutions, in a way which is usual
in the stochastic context, for ordinary stochastic differential equations (see [5]). The method can also be used
to treat local solutions for deterministic equations, but it is not needed in the deterministic context. We show
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that it fits perfectly to Navier Stokes equations of Ito type, and provides a result of existence and uniqueness
of a strong local solution.

2. Functional background

2.1. Notation

Let O be an open domain of Rn with regular boundary ∂O. Let V be the space of infinitely differentiable
n-dimensional vector fields u(x) on O with compact support strictly contained in O, satisfying div u(x) = 0.
We call H the closure of V in (L2(O))n, and denote by P the projection from (L2(O))n into H. We also call

V = {u in (H1
0 (O))n, div u = 0}.

We consider the linear operator

Au = −P∆u

with

D(A) = (H2(O))n ∩ V.

Note that A is a positive self adjoint operator in H and one has

(Au, u) = ||u||2V .

Considering the fractional powers Aγ , with 0 ≤ γ ≤ 1, one has the properties

D(A
1
2 ) = V

D(Aγ) ⊂ (H2γ(O))n ∩H , 0 ≤ γ ≤ 1. (2.1)

with continuous injection. Moreover

D(Aγ) = (H2γ
0 (O))n ∩H , 0 ≤ γ ≤ 1

2
, γ 6= 1

4
(2.2)

and

(H2s
0 (O))n ∩H ⊂ D(Aγ),

1
2
< γ < s ≤ 1, s 6= 3

4
. (2.3)

Also

(H2γ(O))n ∩H = D(Aγ), 0 ≤ γ < 1
4
. (2.4)

For the proofs, we refer to [9]. The operator A is called the Stokes operator, and −A generates an analytic semi
group, denoted by e−At. More precisely one has the properties

||(λ+A)−1|| ≤ M

|λ|+ 1
, Re λ ≥ 0 (2.5)
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||A1−ρe−At|| ≤ c(δ,M)e−δt

t1−ρ
, 0 ≤ ρ ≤ 1, δ <

1
M
· (2.6)

Note that if f ∈ H and

Au = f

then there exists an element π ∈ H1(O) uniquely defined up to a constant such that

−∆u+Dπ = f.

The function π is called the pressure.

2.2. Auxiliary results

We first recall a useful result. We consider the integral

ψ(t) =
∫ t

0

e−A(t−s)g(s) ds. (2.7)

We note Cβ([0, T ];H) the space of functions of time with value in H, which are Hölder with exponent β , with
the norm

||g||Cβ([0,T ];H) = sup
{t∈[0,T ]}

|g(t)|+ sup
{t,t′∈[0,T ]}

|g(t)− g(t′)|
|t− t′|β

then we have the

Proposition 2.1. If g ∈ Cβ([0, T ];H), then one has

ψ ∈ C1([0, T ];H)∩ C0([0, T ];D(A))

with the estimate

||ψ||C1([0,T ];H)∩C0([0,T ];D(A)) ≤ c(||g||C0([0,T ];H) + ||g||Cβ([0,T ];H)

T β

β
) (2.8)

where the constant c does not depend on β.

Proof.
Note first the formula

Aψ(t) =
∫ t

0

Ae−A(t−s)(g(s)− g(t)) ds+ g(t)− e−Atg(t).

The function g(t)− e−Atg(t) is clearly in C0([0, T ];H). Moreover∣∣∣∣∫ t

0

Ae−A(t−s)(g(s)− g(t)) ds
∣∣∣∣ ≤ c ||g||Cβ([0,T ];H)

β
·

Thanks to this estimate it is thus sufficient to prove the continuity in time of the function∫ t

0

Ae−A(t−s)(g(s)− g(t)) ds.
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But for 0 ≤ t ≤ T − h, one has

∫ t+h

0

Ae−A(t+h−s)(g(s)− g(t+ h)) ds−
∫ t

0

Ae−A(t−s)(g(s)− g(t)) ds =
∫ t+h

t

Ae−A(t+h−s)(g(s)− g(t+ h)) ds

+
∫ t

0

(Ae−A(t+h−s)(g(s)− g(t+ h))−Ae−A(t−s)(g(s)− g(t))) ds.

The first integral is estimated by

c
hβ

β
||g||Cβ([0,T ];H).

In the second we write the integrand as

(e−Ah − I)Ae−A(t−s)(g(s)− g(t))−Ae−A(t+h−s)(g(t+ h)− g(t))

and for s < t , it is easy to see that it converges to 0 in H as h→ 0. Moreover, thanks to the Hölder continuity
of g, we can bound the norm of the integrand by a function of s not depending on h , which is integrable. One
may then apply Lebesgue’s Theorem to conclude that Aψ(t) belongs to C0([0, T ];H) and

||ψ||C0([0,T ];D(A)) ≤ c(||g||C0([0,T ];H) +
||g||Cβ([0,T ];H)

β
).

Next one writes

ψ(t+ h)− ψ(t)
h

=
∫ 1

0

e−hτ A dτ g(t) +
(e−Ah − I)

h
ψ(t) +

1
h

∫ t+h

t

e−A(t+h−s)(g(s)− g(t)) ds.

Since ψ(t) belongs to D(A), we can pass to the limit in the right hand side, as h→ 0 , to obtain

ψ′(t) = g(t)−Aψ(t).

Thanks to the previous estimate, we can conclude the proof of (2.8).

Corollary 2.1. We have also

ψ ∈ Cρ([0, T ];D(A1−ρ)) (2.9)

with the same estimate as (2.8).

Proof.
One can write for 0 ≤ t ≤ T − h

A1−ρ(ψ(t+ h)− ψ(t)) =
∫ t+h

t

A1−ρe−A(t+h−s)g(s)ds+A1−ρ(e−hA − I)ψ(t).

The norm of the integral in the right hand side is estimated by hρ||g||C0([0,T ];H). The norm of the second term
is estimated by hρ||Aψ||C0([0,T ];H) and the result follows.
Note also the result, whose proof is obtained by similar methods.
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Proposition 2.2. If g ∈ C0([0, T ];H), then one has

ψ ∈ Cδ([0, T ];D(A1−ρ)),∀δ < ρ

with the estimate, valid for 0 < δ < ρ

||ψ||Cδ([0,T ];D(A1−ρ)) ≤ c||g||C0([0,T ];H)T
ρ−δ

(
1
ρ

+
1

δ(ρ− δ)

)
(2.10)

where the constant c does not depend on ρ, or on δ. For δ = 0, one should use the estimate

||ψ||C0([0,T ];D(A1−ρ)) ≤ c||g||C0([0,T ];H)
T ρ

ρ
· (2.11)

We then proceed with properties of the vorticity operator. The vorticity operator is defined by the formula

B(u) = P (u.Du) (2.12)

which makes sense at least for vector fields u such that u. Du ∈ (L2(O))n. We want to prove the following
important result

Proposition 2.3. Assume n < 6. Let

0 < ρ < min
(

1
2
,

3
4
− n

8

)
(2.13)

then B(u) maps D(A1−ρ) into H and one has the estimate

|B(u)−B(v)| ≤ c(|A1−ρu|+ |A1−ρv|)|A1−ρ(u− v)| (2.14)

Proof.
Set γ = 1− ρ, then

1 > γ > max
(

1
2
,

1
4

+
n

8

)
.

We first check that if

φ, ψ ∈ (H2γ(O))n

then

φ.Dψ ∈ (L2(O))n

and

|φ.Dψ|(L2(O))n ≤ c|φ|(H2γ (O))n |ψ|(H2γ (O))n . (2.15)

Indeed, we can find q1 such that

(1− 4
n

)+ <
1
q1
< min

(
1,

4γ − 2
n

)
.
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Therefore

1
2q1

>
1
2
− 2γ

n

and

1
2q2

=
1
2
− 1

2q1
>

1
2
− 2γ − 1

n
·

By Sobolev embedding, we then have

H2γO) ⊂W 1,2q2(O)

H2γ(O) ⊂ L2q1(O)

but

|φ.Dψ|(L2(O))n ≤ c|φ|(L2q1 (O))n |ψ|(W1,2q2 (O))n

which implies (2.14).
Now we can assert that if

φ, ψ ∈ (H2γ(O))n ∩H

then

|P (φ.Dψ)| ≤ |φ.Dψ|(L2(O))n ≤ c|φ|(H2γ (O))n∩H |ψ|(H2γ (O))n∩ H

and from (2.1) it follows

|P (φ.Dψ)| ≤ c|Aγφ||Aγψ|.

Then (2.14) follows easily. �

Remark 2.1. In [9] it is proven that

|B(u)−B(v)| ≤ c(|Au|+ |Av|)|A1−ρ(u− v)| (2.16)

which is a less good estimate than (2.14). The improvement is minor in the deterministic context, although it
simplifies the proofs of [9]. More importantly, it is very useful for the type of equations we are going to consider
in the sequel.

3. Local solution of an abstract parabolic equation

3.1. Setting of the problem and statement of results

We consider a function φ(t) with values in D(A1−ρ) such that

φ ∈ Cβ([0, T0];D(A1−ρ)) (3.1)
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Note that the function

σ(t) =
tρ

ρ
sup

0≤s≤t
|A1−ρφ(s)|

is continuous in t on [0, T0] and increasing. Let T be defined by

T = T0, if cσ(T0) ≤ 1
T = min{0 < t < T0|cσ(t) ≥ 1}, if cσ(T0) > 1 (3.2)

where c is some constant related only to those appearing in (2.14) and in (2.6). We shall designate by the same
notation c such constants. We then state the following

Theorem 3.1. Assume (3.1), then there exists a unique z such that

z ∈ C1([0, T ];H)∩ C0([0, T ];D(A)) z′ +Az +B(z + φ) = 0, ∀t ∈ [0, T ] z(0) = 0. (3.3)

Remark 3.1. If cσ(T0) ≤ 1, then we can take T = T0. So we can solve (3.3) globally on [0, T0], provided the
data is sufficiently small.

Remark 3.2. In fact, if we cannot solve (3.1) on [0, T0] , it means that there exists T̂ ≤ T0 , which will be the
explosion time of |A1−ρz(t)| on [0, T0], namely

lim t ↑ T̂ |A1−ρz(t)| = +∞ (3.4)

and the equation can be solved on [0, T̃ ],∀T̃ < T̂ . Of course T̂ > T . This will be apparent from the proof.

Proof of Theorem 3.1
STEP 1:
By definition of T , we have

cσ(T ) ≤ 1. (3.5)

We define a map from C0([0, T ];D(A1−ρ)) into itself as follows

ζ(t) = T (η)(t) = −
∫ t

0

e−A(t−s)B(η(s) + φ(s)) ds. (3.6)

Majorizing the norm of the integral, and using the properties (2.6), (2.14) we obtain the estimate

sup
0≤t≤T

|A1−ρζ(t)| ≤ c

2
T ρ

ρ
sup

0≤t≤T
|A1−ρη(t)|2 +

c

2
T ρ

ρ
sup

0≤t≤T
|A1−ρφ(t)|2 (3.7)

with a convenient definition of the constant c.
Set

MT = {η ∈ C0([0, T ];D(A1−ρ)), η(0) = 0, sup
0≤t≤T

|A1−ρη(t)| ≤ cT
ρ

ρ
sup

0≤t≤T
|A1−ρφ(t)|2}.

Then, it is easy to check that T maps MT into itself. We can proceed with the iteration

zn+1(t) = −
∫ t

0

e−A(t−s)B(zn(s) + φ(s)) ds
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starting with z0(t) = 0. By construction

sup
0≤t≤T

|A1−ρzn(t)| ≤ cT
ρ

ρ
sup

0≤t≤T
|A1−ρφ(t)|2

≤ cρ

T ρ

and also

|A1−ρ(zn+2(t)− zn+1(t))| ≤ c ρ
T ρ

∫ t

0

|A1−ρ(zn+1(s)− zn(s))|
(t− s)1−ρ ds.

From these estimates, it follows, as well known, that

zn → z in C0([0, T ];D(A1−ρ)).

The function z is the unique solution of

z(t) = −
∫ t

0

e−A(t−s)B(z(s) + φ(s)) ds. (3.8)

STEP 2:
We prove here that

z(t) ∈ Cδ([0, T ];D(A1−ρ)), δ < ρ. (3.9)

Indeed, the function B(z(t) +φ(t)) belongs to C0([0, T ];D(A1−ρ)), so we can rely on Proposition 2.2, to obtain
the result.

STEP 3:
From Step 2 , and the properties of B, it follows, taking account of the assumption on φ, that

B(z + φ) ∈ Cλ([0, T ];H), λ = min(β, δ), ∀δ < ρ.

Using then Proposition 2.1, we deduce that

z ∈ C1([0, T ];H)∩ C0([0, T ];D(A))

and also

z ∈ Cρ([0, T ];D(A1−ρ)).

The proof has been completed.
Continuation Argument:

Suppose T < T0, then we can extend a little bit the interval in which one can solve (3.3). Indeed, recall first
that

sup
0≤t≤T

|A1−ρz(t)| ≤ c ρ
T ρ
·

We can write

z(T + τ) = e−Aτz(T ) + z1(τ)
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and z1 is the solution of

z′1 +Az1 +B(z1 + φ1) = 0, z1(0) = 0

with

φ1(τ) = e−Aτz(T ) + φ(T + τ).

So we get the same equation, with a new function φ. It follows that we can define z1(τ) on an interval [0, θ]
such that

c
θρ

ρ
[
ρ

T ρ
+ sup

0≤τ≤θ
|A1−ρφ(T + τ)|] ≤ 1.

We can proceed in the same way, defining successively smaller and smaller intervals, in which the equation can
be extended. The process can be continued as long as |A1−ρz(t)| can be bounded.

4. Local solution of a functional parabolic equation

4.1. Setting of the problem and statement of results

We introduce now a functional dependence in the equation (3.3): replace φ(t) by φ(t; y) as follows

φ(t; η) : C0([0, T ];D(A1−ρ))→ C0([0, T ];D(A1−ρ))
φ(t; η) : Cβ([0, T ];D(A1−ρ))→ Cβ([0, T ];D(A1−ρ)), β < ρ

(4.1)

with the assumptions

|A1−ρ(φ(t; η1)− φ(t; η2))| ≤ k(t) sup
0≤s≤t

|A1−ρ(η1(s)− η2(s))| (4.2)

||φ(.; η||Cβ([0,T ];D(A1−ρ)) ≤ K(T ) +K(T )||η||C0([0,T ];D(A1−ρ)) + k(T )||η||Cβ([0,T ];D(A1−ρ)) (4.3)

in which

k(t) increasing, k(0) = 0, k(t)→ 0, as t→ 0. (4.4)

We also assume

φ(0; η) = y0 ∈ D(A1−β),∀η (4.5)

Note that it follows from (4.2), (4.3), (4.4), that

||φ(.; η)||C0([0,T ];D(A1−ρ)) ≤ K(T ) + k(T )||η||C0([0,T ];D(A1−ρ)). (4.6)

The problem we are going to look at is formulated as follows

y(t) = z(t) + φ(t; y)
z′ +Az +B(y) = 0, z(0) = 0 (4.7)

and we look for solutions with the regularity

z ∈ C1([0, T ];H) ∩C0([0, T ];D(A)), y ∈ Cβ([0, T ];D(A1−ρ)). (4.8)

We shall prove the following
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Theorem 4.1. Assume (4.1–4.5), and that T satisfies

c
T ρ

ρ
(K(T ) + 1)2 + k(T )(K(T ) + 1) ≤ 1

c
T β

β
(K(T ) + 1)2 + k(T )(K(T ) + 1) ≤ 1

(4.9)

then there exists one and only one solution of (4.7).

Proof of Theorem 4.1

STEP 1:
We prove uniqueness. Note that from (4.9), one has

k(T ) < 1. (4.10)

Consider two solutions y1, z1 and y2, z2. Set

ỹ = y1 − y2, z̃ = z1 − z2.

We have

z̃(t) =
∫ t

0

e−A(t−s)(B(y1(s))−B(y2(s))) ds

ỹ(t) = z̃(t) + φ(t; y1)− φ(t; y2).

Setting
θ(t) = sup

0≤s≤t
|ỹ(s)|

we deduce easily the estimate

(1− k(T ))θ(t) ≤ C
∫ t

0

θ(s) ds

and thus the uniqueness follows.

STEP 2:
We define a map from Cβ([0, T ];D(A1−ρ)) into itself as follows. Pick η ∈ Cβ([0, T ];D(A1−ρ)) such that

sup
0≤t≤T

|A1−ρη(t)| ≤ K(T ) + 1

then it follows from (4.6) that

sup
0≤t≤T

|A1−ρφ(t; η)| ≤ K(T ) + k(T )(K(T ) + 1).

We next have from (4.9)

c
T ρ

ρ
(K(T ) + k(T )(K(T ) + 1)) ≤ cT

ρ

ρ
(K(T ) + 1)2 ≤ 1

and thus also

c
T ρ

ρ
sup

0≤t≤T
|A1−ρφ(t; η)| ≤ 1.
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Therefore we can apply Theorem (3.1) to assert that there exists a unique solution

χ ∈ C1([0, T ];H)∩ C0([0, T ];D(A)) ∩Cρ([0, T ];D(A1−ρ))

of
χ′ +Aχ+B(χ+ φ(t; η)) = 0 , χ(0) = 0.

We then set
ζ(t) = χ(t) + φ(t; η)

which belongs to Cβ([0, T ];D(A1−ρ)). The map is the following

T (η) = ζ.

From Theorem 3.1, we can assert the following estimate

sup
0≤t≤T

|A1−ρχ(t)| ≤ cT
ρ

ρ
sup

0≤t≤T
|A1−ρφ(t; η)|2.

Recalling previous estimates, it is easy to convince oneself, that thanks to the choice of T , one has

sup
0≤t≤T

|A1−ρζ(t)| ≤ K(T ) + 1.

Thus considering the set
MT = {η ∈ Cρ([0, T ];D(A1−ρ))| η(0) = y0,

sup
0≤t≤T

|A1−ρη(t)| ≤ K(T ) + 1}

we see that T maps MT into itself.

STEP 3:
Consider the iteration

yk+1(t) = T (yk)(t)

or more explicitly

yk+1(t) = zk+1(t) + φ(t; yk)
(zk+1)′ +Azk+1 +B(yk+1) = 0, zk+1(0) = 0

(4.11)

with

y0(t) = y0. (4.12)

We deduce

|A1−ρ(zk+2(t)− zk+1(t))| ≤ c(K(T ) + 1)
∫ t

0

|A1−ρ(zk+2(s)− zk+1(s))|
(t− s)1−ρ ds

+c(K(T ) + 1)
∫ t

0

|A1−ρ(φ(s; yk+1)− φ(s; yk))|
(t− s)1−ρ ds. (4.13)
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So one is led to an inequality of the form

θ(t) ≤ a
∫ t

0

θ(s)
(t− s)1−ρ ds+ a

∫ t

0

g(s)
(t− s)1−ρ ds (4.14)

which implies

θ(t) ≤ K ′(T )
∫ t

0

g(s)
(t− s)1−ρ ds. (4.15)

Therefore we can write

|A1−ρ(zk+2(t)− zk+1(t))| ≤ K ′(T )
∫ t

0

|A1−ρ(φ(s; yk+1)− φ(s; yk))|
(t− s)1−ρ ds (4.16)

and thus also

|A1−ρ(yk+2(t)− yk+1(t))| ≤ |A1−ρ(φ(t; yk+1)− φ(t; yk))|+K ′(T )
∫ t

0

|A1−ρ(φ(s; yk+1)− φ(s; yk))|
(t− s)1−ρ ds. (4.17)

Using the assumption (4.2), and setting

φk(t) = sup
0≤s≤t

|A1−ρ(yk+1(s)− yk(s))|

it easily follows from (4.17) the inequality

φk+1(t) ≤ k(T )[φk(t) +K ′(T )
∫ t

0

φk(s)
(t− s)1−ρ ds].

An iteration shows that

φk(t) ≤ (k(T ))kK ′′(T ).

Thus

sup
0≤s≤T

|A1−ρ(yk+1(s)− yk(s))| ≤ (k(T ))kK ′′(T ).

Since k(T ) < 1, the series converges and thus

yk → y in C0([0, T ];D(A1−ρ)). (4.18)

STEP 4:
We prove here an estimate with respect to the Hölder norm. Going back to the functions χ, ζ associated with
η, and recalling the estimate (2.8) in Proposition 2.1 and Corollary 2.1, we can assert that

||χ||Cρ([0,T ];D(A1−ρ)) ≤ c||B(ζ)||C0([0,T ];H) + c
T β

β
||B(ζ)||Cβ ([0,T ];H) (4.19)

therefore also

||χ||Cρ([0,T ];D(A1−ρ)) ≤ c||ζ||2C0([0,T ];D(A1−ρ)) + c
T β

β
||ζ||Cβ([0,T ];D(A1−ρ))||ζ||C0([0,T ];D(A1−ρ)). (4.20)
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We can replace in the left hand side ||χ||Cρ([0,T ];D(A1−ρ)) by ||χ||Cβ([0,T ];D(A1−ρ)).
Finally, using (4.3) we deduce

||ζ||Cβ([0,T ];D(A1−ρ)) ≤ K(T ) +K(T )||η||C0([0,T ];D(A1−ρ)) + k(T )||η||Cβ([0,T ];D(A1−ρ)) + c||ζ||2C0([0,T ];D(A1−ρ))

+ c
T β

β
||ζ||Cβ([0,T ];D(A1−ρ))||ζ||C0([0,T ];D(A1−ρ)). (4.21)

We know that
||η||C0([0,T ];D(A1−ρ)) ≤ K(T ) + 1⇒ ||ζ||C0([0,T ];D(A1−ρ)) ≤ K(T ) + 1

hence from (4.21), it follows

||ζ||Cβ([0,T ];D(A1−ρ)) ≤ K(T ) +K(T )(K(T ) + 1) + k(T )||η||Cβ([0,T ];D(A1−ρ))

+ c(K(T ) + 1)2 + c
T β

β
||ζ||Cβ([0,T ];D(A1−ρ))(K(T ) + 1). (4.22)

Therefore we arrive at

(1− cT
β

β
(K(T ) + 1))||ζ||Cβ([0,T ];D(A1−ρ)) ≤ K ′(T ) + k(T )||η||Cβ([0,T ];D(A1−ρ))

or
||ζ||Cβ([0,T ];D(A1−ρ)) ≤ K ′′(T ) + k′(T )||η||Cβ([0,T ];D(A1−ρ))

where in particular

k′(T ) =
k(T )

(1− cTββ (K(T ) + 1))
·

From (4.9), we have k′(T ) < 1. Applying this relation to the sequence yk, it follows

||yk+1||Cβ([0,T ];D(A1−ρ)) ≤ K ′′(T ) + k′(T )||yk||Cβ([0,T ];D(A1−ρ))

from which it follows that
||yk||Cβ([0,T ];D(A1−ρ)) ≤ C.

Therefore the limit y belongs also to Cβ([0, T ];D(A1−ρ)). The proof has been completed.

5. Stochastic equations

5.1. Model with external noise

We consider a probability space Ω,A, P , a filtration F t and an F t m−dimensional Wiener process w(t). Let
g(t) be an adapted stochastic process, with values in (D(Aρ

′
))∗ such that

A−ρ
′
g(.) ∈ Lq([0, T ];H), a.s. , 0 ≤ ρ′, ρ− ρ′ > 1

q
· (5.1)

Consider next a stochastic process G(t), with values in (D(Aε
′
))m, such that

Aε
′
G(.) ∈ L2r(Ω,A, P ;L∞(0, T ;H)), ρ+ ε′ >

1
2r

+
1
2
· (5.2)

Let finally

y0,F0 measurable with values in D(A1−ρ0), ρ0 < ρ. (5.3)
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We then define the stochastic process

φ(t) = e−Aty0 +
∫ t

0

e−A(t−s)g(s) ds+
∫ t

0

e−A(t−s)G(s)dw. (5.4)

We state the following

Proposition 5.1. With the assumptions (5.1–5.3), the process φ(t) has a.s. trajectories in Cβ([0, T ];D(A1−ρ)),
with

β ≤ ρ− ρ0, β < min(ρ− ρ′ − 1
q
, ρ+ ε′ − 1

2r
− 1

2
) · (5.5)

Proof.
STEP 1:
Writing

A1−ρ(e−A(t+h) − e−At)y0 = −hρ−ρ0(
∫ 1

0

h1−ρ+ρ0A1−ρ+ρ0e−Ahτ dτ)A1−ρ0e−tAy0

it follows
|A1−ρ(e−A(t+h) − e−At)y0| ≤ chρ−ρ0 |A1−ρ0y0|

hence
e−Aty0 ∈ Cρ−ρ0([0, T ];D(A1−ρ)).

STEP 2:
Set

X(t) =
∫ t

0

e−A(t−s)g(s) ds

then

A1−ρ(X(t+ h)−X(t)) = A1−ρ
∫ t+h

t

e−A(t+h−s)g(s) ds+A1−ρ(e−Ah − I)X(t).

Write

|A1−ρ
∫ t+h

t

e−A(t+h−s)g(s) ds| = |
∫ t+h

t

A1−ρ+ρ′e−A(t+h−s)A−ρ
′
g(s) ds|

≤ c
∫ t+h

t

|A−ρ′g(s)|
(t+ h− s)1−ρ+ρ′ ds

and from Hölder’s inequality we get
≤ chρ−ρ

′− 1
q ||g||Lq([0,T ];H).

Turning to the second integral, we pick any β < ρ− ρ′ − 1
q , and write

|A1−ρ(e−Ah − I)X(t)| = hβ|
∫ 1

0

h1−βA1−βe−Ahτ dτ
∫ t

0

A1−ρ+ρ′+βe−A(t−s)A−ρ
′
g(s) ds|

≤ chβ
∫ t

0

|A−ρ′g(s)|
(t− s)1−ρ+ρ′+β ds.

Using again Hölder’s inequality we get

|A1−ρ(e−Ah − I)X(t)| ≤ chβ||g||Lq([0,T ];H).
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So X(t) is a.s. Hölder with exponent β < ρ− ρ′ − 1
q .

STEP 3:
Set

Y (t) =
∫ t

0

A1−ρe−A(t−s)G(s)dw.

Then, we are in the framework of Appendix 1, with

Φ(s) = A1−ρG(s)

and

A−βΦ(s) = A1−ρ−βG(s) = Aε
′
G(s)

with β = 1− ρ − ε′. Applying Theorem 7.1 of Appendix 1, we get immediately that Y (t) is a.s. Hölder with
exponent strictly smaller than ρ+ ε′ − 1

2 −
1
2r .

The proof has been completed.

It is thus possible to take in equation (3.3), the stochastic process φ(t). Then

y(t) = z(t) + φ(t)

is the mild solution of the stochastic equation

dy + (Ay +B(y))dt = g(t)dt+G(t)dw, y(0) = y0 (5.6)

and is defined as an adapted process, with trajectories in Cβ([0, T ];D(A1−ρ)), with β as in (5.5). We can take
as minimal interval of definition the stopping time T such that

T = inf{t|c t
ρ

ρ
sup

0≤s≤t
|A1−ρφ(s)| ≥ 1} (5.7)

provided, of course, that the assumptions (5.1),(5.2)hold for any compact interval.

5.2. Model with smooth functional dependence

We introduce now a stochastic process φ(t) with functional dependence, namely

φ(t; η) = e−Aty0 +
∫ t

0

e−A(t−s)g(η)(s) ds +
∫ t

0

e−A(t−s)G(η)(s)dw. (5.8)

The functional dependence is assumed to be smooth, which means that we are able to perform an integration
by part in the stochastic integral, so that we have, in fact

φ(t; η) = e−Aty0 +
∫ t

0

e−A(t−s)Γ(η)(s).w(s) ds +G(η)(t).w(t) (5.9)

with the definition

Γ(η)(t) = g(η)(t)−AG(η)(t) −G(η)′(t) (5.10)
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with the assumptions

sup
0≤t≤T

|A1−εG(η)′(t)|+ |A1−εG(η)(0)| ≤ K +K sup
0≤t≤T

|A1−ρη(t)|, ε < ρ (5.11)

|A−ε(Γ(η1)(t)− Γ(η2)(t))| ≤ K sup
0≤s≤t

|A1−ρ(η1(s)− η2(s))| (5.12)

|A1−ρ(G(η1)(t) −G(η2)(t))| ≤ K sup
0≤s≤t

|A1−ρ(η1(s)− η2(s))| (5.13)

sup
0≤t≤T

|A−εg(0)(t)| ≤ K. (5.14)

The constants may depend on ε, β, but not on T . Set

β < ρ− ε (5.15)

and assume

y0 ∈ D(A1−ρ+β). (5.16)

We then state the

Lemma 5.1. We have the following consequences of assumptions (5.11–5.14)

sup
0≤t≤T

|A1−εG(η)(t)| ≤ K +K sup
0≤t≤T

|A1−ρη(t)| (5.17)

sup
0≤t≤T

|A−εΓ(η)(t)| ≤ K +K sup
0≤t≤T

|A1−ρη(t)| (5.18)

sup
0≤t≤T

|A−εg(η)(t)| ≤ K +K sup
0≤t≤T

|A1−ρη(t)|. (5.19)

Proof.
Since

G(η)(t) = G(η)(0) +
∫ t

0

G(η)′(s) ds

then (5.17) is an obvious consequence of (5.11). Since ρ > ε, we also have

sup
0≤t≤T

|A1−ρG(η)(t)| ≤ K +K sup
0≤t≤T

|A1−ρη(t)|. (5.20)

Now
A−εΓ(0)(t) = A−εg(0)(t)−A1−εG(0)(t)−A−εG(0)′(t)

and using (5.14), (5.17), (5.11), we have

sup
0≤t≤T

|A−εΓ(0)(t)| ≤ K

which together with assumption (5.12) implies (5.18). Using (5.17, 5.18) with (5.11), we obtain (5.19). The
proof has been completed.

Lemma 5.2. For the the process φ(t; η) defined by (5.9) the assumptions (4.2), (4.3) are satisfied with the
following values of k(t), K(T )

k(t) = K ′(1 + tρ−ε) sup
0≤s≤t

|w(s)| (5.21)
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K(T ) = c||y0||D(A1−ρ+β) +K ′||w||Cβ([0,T ];Rm) +K ′[T ρ−ε−β + T 1−β]||w||C0([0,T ];Rm) (5.22)

where c,K ′ are constants, with K ′ depending on β, ρ, ε, but not on T .

Proof. Let

ψ(t) =
∫ t

0

e−A(t−s)Γ(η)(s).w(s) ds

then from the definition (5.9) we can write

||φ(.; η)||Cβ([0,T ];D(A1−ρ)) ≤ ||e−A.y0||Cβ([0,T ];D(A1−ρ)) + ||ψ||Cβ([0,T ];D(A1−ρ)) + ||G(η)(.)w(.)||Cβ ([0,T ];D(A1−ρ)).

The first term is estimated by c||y0||D(A1−ρ+β). To estimate the second one, we rely on Proposition 2.2, see
(2.10), applied with

g = A−εΓ(η).w, δ = β

and ρ changed into ρ− ε. We can then assert that

||ψ||Cβ([0,T ];D(A1−ρ)) ≤ c||A−εΓ(η).w||C0([0,T ];H)T
ρ−ε−β

where c depends here on β, ρ, ε. Hence

||ψ||Cβ([0,T ];D(A1−ρ)) ≤ c||A−εΓ(η)||C0([0,T ];Hm)||w||C0([0,T ];Rm)T
ρ−ε−β .

Next

||G(η)(.)w(.)||Cβ ([0,T ];D(A1−ρ)) ≤ ||G(η)||C0([0,T ];D(A1−ρ))||w||Cβ([0,T ];Rm)

+ ||G(η)||Cβ([0,T ];D(A1−ρ))||w||C0([0,T ];Rm).

But, as easily seen
||G(η)||Cβ([0,T ];D(A1−ρ)) ≤ cT 1−β||G′(η)||C0([0,T ];D(A1−ρ)).

Collecting results, and recalling (5.11) and Lemma 5.1, we obtain the value of the constant K(T ), to verify the
assumption (4.3). In fact, there is no term involving explicitly ||η||Cβ([0,T ];D(A1−ρ)).
Let us now check (4.2). It is an easy consequence of the assumptions (5.12), (5.13). We obtain the value (5.21)
for k(t). The properties of the Wiener process imply that a.s. k(t) is increasing, vanishes at 0 and tends to 0
as t→ 0.
The proof has been completed. So we can state the following: �

Theorem 5.1. We assume (5.11–5.14). Then there exists one and only one mild solution of the stochastic
Navier Stokes equation

dy + (Ay +B(y))dt = g(y)(t)dt+G(y)(t)dw(t), y(0) = y0 (5.23)

on the interval [0, T ], where T is the random time defined by the first condition (4.9), where k(T ),K(T ) are
defined by formulas (5.21), (5.22). The trajectories of the process y belong a.s. to Cβ([0, T ];D(A1−ρ)) with
β < ρ− ε.

Proof.
It is a direct application of Theorem 4.1. A mild solution is a solution of the integral equation

y(t) = e−Aty0 −
∫ t

0

e−A(t−s)B(y(s))ds+
∫ t

0

e−A(t−s)(g(y)(s)ds+G(y)(s)dw(s)). (5.24)
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Setting

φ(t; y) = e−Aty0 +
∫ t

0

e−A(t−s)(g(y)(s)ds+G(y)(s)dw(s)) (5.25)

and considering

z(t) = y(t)− φ(t; y) (5.26)

we are in the framework of Theorem 4.1. Thanks to Lemma 5.2, all assumptions are satisfied. We do not need
to use the second condition (4.9), because there is no dependence in ||η||Cβ([0,T ];D(A1−ρ)), in the condition (4.3).
The proof has been completed. �

Example
Suppose we take

g(η)(t) = g(η(t)) (5.27)

G(η)(t) =
1
α

∫ t

0

e−
A
α (t−s)σ(η(s)) ds (5.28)

and we assume the following properties

|A−ε(g(η1)− g(η2))| ≤ K|A1−ρ(η1 − η2)| (5.29)

|A1−ε′(σ(η1)− σ(η2))| ≤ K|A1−ρ(η1 − η2)|, ε′ < ε (5.30)

then the assumptions (5.11–5.14) are all satisfied. In fact, (5.30) is more than necessary. It was made in order
to verify (5.11). That is to say, to estimate A1−εG(η)′(t). This last assumption was a compromise in order
to estimate at the same time A1−εG(η)(t), needed to estimate A−εΓ(η)(t), and A1−ρG(η)′(t), used to check
that that G(η) belongs to Cβ([0, T ];D(A1−ρ)). Here, because of the form of G(η), in particular thanks to the
presence of the operator the semi group e−At in the integral, we can verify more directly the conditions of
applicability of Theorem 4.1. It is enough to replace (5.30) by

|A−ε′(σ(η1)− σ(η2))| ≤ K|A1−ρ(η1 − η2)|, ε′ < ε (5.31)

and we state the following

Theorem 5.2. We assume (5.27, 5.28, 5.29, 5.31). Then there exists one and only one mild solution of the
stochastic Navier Stokes equation

dy + (Ay +B(y))dt = g(y(t))dt+ (
1
α

∫ t

0

e−
A
α (t−s)σ(y(s)) ds)dw(t), y(0) = y0 (5.32)

on the interval [0, T ], where T is the random time defined by the first condition (4.9), where k(T ),K(T ) are
defined by formulas (5.21, 5.22). The trajectories of the process y belong a.s. to Cβ([0, T ];D(A1−ρ)), with
β < ρ− ε.
Remark 5.1. The model (5.32) can be seen as taking account of the memory of the state y(s), s < t, with
a discount factor. It is convenient to use as a discount factor, the semi group related to the operator A. As
α→ 0, we recover A−1σ(y(t)).
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6. Formulation of a local solution

We formulate in this section the problem of finding a local solution for a stochastic Navier-stokes equation.
We consider a process y(t) with values in D(A1−ρ), such that

y(t ∧ σM ) = e−At∧σ
M

y0 −
∫ t∧σM

0

e−A(t∧σM−s)B(y(s))ds

+
∫ t∧σM

0

e−A(t∧σM−s)g(y(s))ds+
∫ t∧σM

0

e−A(t∧σM−s)G(y(s))dw(s), ∀M (6.1)

where

σM = inf{0 ≤ t ≤ T : |A1−ρy(t)| ≥ N0 +M} · (6.2)

We make the following assumptions. There is given an underlying probability system Ω,A, P , with an m
dimensional Wiener process w(t) , and let

F t = σ − algebra generated by w(s), 0 ≤ s ≤ t.

The operators A,B are of course those of Section 2.1 and (2.12). We assume in addition that

|A−ρ′(g(u)− g(v))| ≤ K|A1−ρ(u− v)|, 0 ≤ ρ′ < ρ (6.3)

|Aε′(G(u)−G(v))| ≤ K|A1−ρ(u− v)|, 1 ≥ ε′ + ρ >
1
2

(6.4)

and

y0 is deterministic |A1−ρy0| = N0 <∞. (6.5)

Our objective is to prove the following

Theorem 6.1. We assume (6.3, 6.4, 6.5), then for each T we can construct an increasing sequence of stopping
times σM ≤ T , and a process y(t) defined on [0, σ̃), where

σ̃ =↑ σM .

The process y(t) is adapted, is a solution of (6.1,6.2), has a continuous modification with values in D(A1−ρ),
which is Hölder with exponent strictly smaller than min(ρ− ρ′, ε′ + ρ− 1

2 ). The solution is unique in the sense
that two solutions y(t), y∗(t) verify

a.s. y(t) = y∗(t), ∀t < σ̃.

Moreover, if σ̃ < T , then
|A1−ρy(t)| ↑ ∞, as t ↑ σ̃.

Proof.
We begin by constructing the process y1(t) which is the solution on any finite time interval [0, T ] of the equation

y1(t) = e−Aty0 −
∫ t

0

e−A(t−s)BN0+1(y1(s))ds +
∫ t

0

e−A(t−s)g(y1(s))ds+
∫ t

0

e−A(t−s)G(y1(s))dw(s). (6.6)



260 A. BENSOUSSAN AND J. FREHSE

We use Appendix 2 to solve this equation, see Theorem 8.1, and (8.1) for the definition of BN0+1. Note that
condition (8.7) holds for r = +∞. So we know that there exists a unique process y1(t), defined on any interval
[0, T ], which has a continuous modification with values in D(A1−ρ), which is Hölder with exponent strictly
smaller than min(ρ− ρ′, ε′ + ρ− 1

2 ), and satisfies (6.5). We then define the stopping time

σ1 = inf{0 ≤ t ≤ T | |A1−ρy1| ≥ N0 + 1}. (6.7)

One has

|A1−ρy1(σ1)| ≤ N0 + 1 (6.8)

and we set

yσ1 = y1(σ1). (6.9)

Using again Appendix 2, we look for y2 to be the solution of

y2(t) = E[e−A(t−σ1)+
yσ1 |F t]−

∫ t

0

1Is≥σ1e−A(t−s)BN0+2(y2(s))ds

+
∫ t

0

1Is≥σ1e−A(t−s)g(y2(s))ds +
∫ t

0

1Is≥σ1e−A(t−s)G(y2(s))dw(s). (6.10)

The process y2 is well defined on any finite interval of time [0, T ], and enjoys all the properties stated for y1

except that the continuity and Hölder continuity hold for

y2(t)−E[e−A(t−σ1)+
yσ1 |F t].

We define the stopping time

σ2 = inf{0 ≤ t ≤ T | |A1−ρy2| ≥ N0 + 2} · (6.11)

and set

yσ2 = y2(σ2). (6.12)

In general, suppose we have defined yk, σk, yσk , then we define yk+1 by solving the equation

yk+1(t) = E[e−A(t−σk)+
yσk |F t]−

∫ t

0

1Is≥σke
−A(t−s)BN0+k+1(yk+1(s))ds

+
∫ t

0

1Is≥σke
−A(t−s)g(yk+1(s))ds+

∫ t

0

1Is≥σke
−A(t−s)G(yk+1(s))dw(s) (6.13)

and we set

σk+1 = inf{0 ≤ t ≤ T | |A1−ρyk+1(t)| ≥ N0 + k + 1} (6.14)

yσk+1 = yk+1(σk+1). (6.15)

We have constructed the sequence of stopping times σk. We then construct the process y(t) as follows

y(t) = yk+1(t), ∀t ∈ [σk, σk+1] · (6.16)
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Let
σ̃ =↑ σk.

The process y(t) is defined on [0, σ̃). It is a continuous process, since on a switching point σk, whenever σk < T ,
one has

y(σk) = yk(σk) = yσk = yk+1(σk).

It is also Hölder continuous, with the same exponent as the processes yk. Clearly, by construction,

σk = inf{0 ≤ t ≤ T | |A1−ρy(t)| ≥ N0 + k} · (6.17)

Let us check that the equation (6.1) is satisfied, with M = N0 + k. Note that, for 0 ≤ s ≤ σ1, one has

BN0+1(y1(s)) = B(y1(s)) = B(y(s))

and thus one has

y(t ∧ σ1) = e−At∧σ
1
y0 −

∫ t∧σ1

0

e−A(t∧σ1−s)B(y(s))ds

+
∫ t∧σ1

0

e−A(t∧σ1−s)g(y(s))ds+
∫ t∧σ1

0

e−A(t∧σ1−s)G(y(s))dw(s).

In particular,

y(σ1) = yσ1 = e−Aσ
1
y0 −

∫ σ1

0

e−A(σ1−s)B(y(s))ds+
∫ σ1

0

e−A(σ1−s)g(y(s))ds+
∫ σ1

0

e−A(σ1−s)G(y(s))dw(s).

Similarly, one has, for t ∧ σ2 ≥ σ1,

y(t ∧ σ2) = e−A(t∧σ2−σ1)yσ1 −
∫ t∧σ2

σ1
e−A(t∧σ2−s)B(y(s))ds

+
∫ t∧σ2

σ1
e−A(t∧σ2−s)g(y(s))ds+

∫ t∧σ2

σ1
e−A(t∧σ2−s)G(y(s))dw(s).

Combining the above two relations, and using Proposition 7.1, we obtain

y(t ∧ σ2) = e−At∧σ
2
y0 −

∫ t∧σ2

0

e−A(t∧σ2−s)B(y(s))ds

+
∫ t∧σ2

0

e−A(t∧σ2−s)g(y(s))ds+
∫ t∧σ2

0

e−A(t∧σ2−s)G(y(s))dw(s).

This can be carried over to obtain (6.1).
Let us show the uniqueness. Indeed, consider two solutions y(t), y∗(t), and let σk, σ∗,k, be the corresponding
exit times

σk = inf{0 ≤ t ≤ T | |A1−ρy(t)| ≥ N0 + k}

σ∗,k = inf{0 ≤ t ≤ T | |A1−ρy∗(t)| ≥ N0 + k}.
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We can write

y(t ∧ σk ∧ σ∗,k)− y∗(t ∧ σk ∧ σ∗,k) = −
∫ t∧σk∧σ∗,k

0

e−A(t∧σk∧σ∗,k−s)(BN0+k(y(s))−BN0+k(y∗(s)))ds

+
∫ t∧σk∧σ∗,k

0

e−A(t∧σk∧σ∗,k−s)(g(y(s))− g(y∗(s)))ds+
∫ t∧σk∧σ∗,k

0

e−A(t∧σk∧σ∗,k−s)(G(y(s))−G(y∗(s)))dw(s).

For t ≤ T1, sufficiently small, we can proceed with a contraction argument, as in Theorem 8.1 of Appendix 2.
This will prove that

y(t ∧ σk ∧ σ∗,k) = y∗(t ∧ σk ∧ σ∗,k), t ∈ [0, T1].
The argument can be reproduced on [T1, 2T1], and so on . So we obtain

y(t ∧ σk ∧ σ∗,k) = y∗(t ∧ σk ∧ σ∗,k), t ∈ [0, T ].

Necessarily
σk = σ∗,k

and
σ̃ = σ̃∗.

From
y(t ∧ σk) = y∗(t ∧ σk)

and t < σ̃, we can let k→∞, and obtain, from the continuity of trajectories

y(t) = y∗(t), a.s.

Finally, assume σ̃ < T , then σk < T , which implies

|A1−ρy(σk)| = N0 + k.

Therefore
|A1−ρy(t)| ↑ ∞, as t ↑ σ̃.

The proof has been completed.

7. Appendix 1

We are concerned here with the study of the stochastic convolution

Y (t) =
∫ t

0

e−A(t−s)Φ(s)dw(s) (7.1)

where Φ(t) is an adapted process such that A−βΦ(t) belongs to H for 0 ≤ β < 1
2 , so with values in (D(Aβ))∗.

We shall make the following assumption

E sup
0≤s≤T

|A−βΦ(s)|2r < +∞, β +
1
2r

<
1
2
, β ≥ 0, r > 0 (7.2)

so in particular
r > 1.
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We follow here Da Prato, Zabczyk [3], with some complements. One of the difficulties in studying the process
Y (t) is the dependence in t inside the integral. For any fixed t, it is an ordinary stochastic integral , but moving
t forbids to apply the standard properties of stochastic integrals. For example Y (t) is not a martingale. We
begin by checking the following estimate

Theorem 7.1. With the assumption (7.1), then one has

E|Y (t)− Y (s)|2r ≤ Cr(E sup
0≤σ≤t

|A−βΦ(σ)|2r)((t − s)ε
ε

)2r tr(1−2(ε+β))

(1− 2(ε+ β))r
, 0 ≤ s ≤ t (7.3)

for any ε such that

1
2r

< ε <
1
2
− β (7.4)

and the constant Cr depends only on r. The process Y (t) has a continuous modification which is Hölder with
any exponent strictly smaller than 1

2 − β −
1
2r . Moreover, for any ε as above, one has also

(
E sup

0≤t≤T
|Y (t)|2r

) 1
2r

≤ Cr
(
E sup

0≤σ≤T
|A−βΦ(σ)|2r

) 1
2r T

1
2−β sinπε

π

(1− 2(ε+ β))
1
2 (2εr− 1)1− 1

2r
· (7.5)

Proof.
Proof of estimate (7.3):

Take 0 ≤ s ≤ t. We can write

Y (t) − Y (s) =
∫ t

s

e−A(t−σ)Φ(σ)dw(σ) + (e−A(t−s) − I)Y (s).

By the norm inequality

(E|Y (t)− Y (s)|2r) 1
2r ≤ (E|

∫ t

s

e−A(t−σ)Φ(σ)dw(σ)|2r)
1
2r + (E|(e−A(t−s) − I)Y (s)|2r) 1

2r

and by the Burkholder-Davis-Gundy inequality, see I. Karatzas, Shreve [6] one has

≤ Cr
(
E(
∫ t

s

|e−A(t−σ)Φ(σ)|2 dσ)r
) 1

2r

+ Cr

(
E(
∫ s

0

|(e−A(t−s) − I)e−A(s−σ)Φ(σ)|2 dσ)r
) 1

2r

= I1 + I2.

In I1, we write
e−A(t−σ)Φ(σ) = Aβe−A(t−σ)A−βΦ(σ)

and thus, by using the estimates on the semi group,

I1 ≤ Cr
(
E(
∫ t

s

|A−βΦ(σ)|2
(t− σ)2β

dσ)r
) 1

2r

≤ Cr
(
E sup
s≤σ≤t

|A−βΦ(σ)|2r
) 1

2r (t− s) 1
2−β

(1− 2β)
1
2
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which we may also majorize by

I1 ≤ Cr
(
E sup

0≤σ≤t
|A−βΦ(σ)|2r

) 1
2r (t− s)εt 1

2−(ε+β)

(1− 2β)
1
2

with any ε satisfying (7.4).
We turn now to I2. We first write

(e−A(t−s) − I)e−A(s−σ)Φ(σ) = (t− s)
∫ 1

0

dθe−Aθ(t−s)Ae−A(s−σ)Φ(σ)

= (t− s)ε
∫ 1

0

dθ(t − s)1−εe−Aθ(t−s)A1−εAεe−A(s−σ)Φ(σ)

and thus

|(e−A(t−s) − I)e−A(s−σ)Φ(σ)| ≤ c (t− s)ε
ε
|Aεe−A(s−σ)Φ(σ)|.

Thus

I2 ≤ Cr
(t− s)ε

ε

(
E(
∫ s

0

|Aεe−A(s−σ)Φ(σ)|2 dσ)r
) 1

2r

.

Introducing the term A−β as above, we obtain

I2 ≤ Cr
(t− s)ε

ε

(
E(
∫ s

0

|A−βΦ(σ)|2
(s− σ)2(ε+β)

dσ)r
) 1

2r

and finally

I2 ≤ Cr
(
E sup

0≤σ≤t
|A−βΦ(σ)|2r

) 1
2r (t− s)ε

ε

t
1
2−(ε+β)

(1− 2(ε+ β))
1
2
·

Adjusting the constants we get

I1 + I2 ≤ Cr
(
E sup

0≤σ≤t
|A−βΦ(σ)|2r

) 1
2r (t− s)ε

ε

t
1
2−(ε+β)

(1− 2(ε+ β))
1
2
·

The estimate (7.3) follows immediately.
We then use the Kolmogorov-C̆entsov Theorem, see [6], to conclude that Y (t) has a continuous version which is
Hölder with exponent strictly smaller than ε− 1

2r , and therefore any exponent strictly smaller than 1
2 − β −

1
2r

is fine.
We turn now to estimate (7.5). Again the difficulty is that we cannot use the usual martingale estimates. One
way to proceed, following Da Prato, Zabczyk [3] is to make use of the identity

π

sinπε
=
∫ t

σ

(t− s)ε−1(s− σ)−ε ds, ∀σ ≤ t, 0 < ε < 1. (7.6)

Then we can write obviously

Y (t) =
sinπε
π

∫ t

0

e−A(t−σ)[
∫ t

σ

(t− s)ε−1(s− σ)−ε ds]Φ(σ)dw(σ)
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and from Fubini’s Theorem we derive the formula

Y (t) =
sinπε
π

∫ t

0

(t− s)ε−1e−A(t−s)Ψ(s) ds (7.7)

with

Ψ(s) =
∫ s

0

(s− σ)−εe−A(s−σ)Φ(σ)dw(σ). (7.8)

We can then derive from (7.7), making use of Hölder’s inequality

(
E sup

0≤t≤T
|Y (t)|2r

) 1
2r

≤ Cr
sinπε
π

(
E

∫ T

0

|Ψ(t)|2r dt

) 1
2r

T ε−
1
2r

(2rε− 1)1− 1
2r

recalling the condition 2rε > 1. Next, we have

E|Ψ(t)|2r = E|
∫ t

0

(t− σ)−εe−A(t−σ)Φ(σ)dw(σ)|2r

≤ CrE
(∫ t

0

(t− σ)−2ε|e−A(t−σ)Φ(σ)|2 dσ
)r

≤ CrE(
∫ t

0

|A−βΦ(σ)|2
(t− σ)2(ε+β)

dσ)r

≤ CrE sup
0≤σ≤T

|A−βΦ(σ)|2r tr(1−2(ε+β))

(1− 2(ε+ β))r

and then

E

∫ T

0

|Ψ(t)|2r dt ≤ CrE sup
0≤σ≤T

|A−βΦ(σ)|2r T
r(1−2(ε+β))+1

(1− 2(ε+ β))r
·

Collecting results, we obtain easily (7.5). The proof has been completed.
It is important for the following to introduce random times, with respect to the filtration F t generated by the
Wiener process in relation with the process Y (t). More precisely, let τ, τ̃ be two random times such that

0 ≤ τ̃ ≤ τ ≤ T0

where T0 is deterministic. We want to consider the quantity

Yτ̃ ,τ =
∫ τ

τ̃

e−A(τ−s)Φ(s)dw(s) (7.9)

where the difficulty stems from the presence of τ inside the integral, and not just as an end point of the
integration interval. Setting

Φτ̃ ,τ (s) = 1Iτ̃≤s<τΦ(s) (7.10)

we know that Φτ̃ ,τ (s) is still an adapted process, and we may try to mimic the usual stochastic integral by
setting

Yτ̃ ,τ =
∫ τ

0

e−A(τ−s)Φτ̃ ,τ (s)dw(s) (7.11)
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but the process e−A(τ−s)Φτ̃ ,τ (s) is not adapted. So (7.11) cannot be defined as a stochastic integral. Of course,
since the process Y (t) is well defined, we can still consider

Ỹ (t) =
∫ t

0

e−A(t−s)Φτ̃ ,τ (s)dw(s) (7.12)

which is perfectly well defined, and then set, as a definition

Yτ̃ ,τ (ω) = Ỹ (τ)(ω). (7.13)

But, this definition is not sufficiently convenient, as it cannot be expressed as a stochastic integral. In this
context, formulas (7.7), (7.8) are very useful. In particular, we have

Yτ̃ ,τ =
sinπε
π

∫ τ

0

(τ − s)ε−1e−A(τ−s)Ψτ̃ ,τ (s) ds (7.14)

with

Ψτ̃ ,τ (s) =
∫ s

0

(s− σ)−εe−A(s−σ)Φτ̃ ,τ (σ)dw(σ) (7.15)

and (7.14, 7.15) make perfect sense. Note that, among other things,

Ψτ̃ ,τ (s) =
∫ s∧τ

s∧τ̃
(s− σ)−εe−A(s−σ)Φ(σ)dw(σ) (7.16)

and the random times appear only as end points of the integration interval. The formulas (7.14, 7.15) will
provide the convenient definition of Yτ̃ ,τ , although we shall keep the writing of the right handside of (7.9), since
it is not only mnemonic, but also compatible with the manipulations that we expect from such a writing, as we
shall see now. In particular, we want to check the

Proposition 7.1. The following formula holds∫ τ+τ0

τ̃

e−A(τ+τ0−s)Φ(s)dw(s) = e−Aτ0
∫ τ

τ̃

e−A(τ−s)Φ(s)dw(s)+
∫ τ+τ0

τ

e−A(τ+τ0−s)Φ(s)dw(s). (7.17)

Proof. We first notice that, by using standard properties of stochastic integrals, if we define for deterministic
numbers 0 ≤ t̃ ≤ t

Ψ(t̃, t, s;ω) =
∫ s∧t

s∧t̃
(s− σ)−εe−A(s−σ)Φ(σ)dw(σ) (7.18)

then we have a.s.

Ψτ̃ ,τ (s)(ω) = Ψ(τ̃(ω), τ(ω), s;ω). (7.19)

We next take note of the relation, valid for any 0 ≤ t̃ ≤ t, and t0 ≥ 0∫ t+t0

0

(t+ t0 − s)ε−1e−A(t+t0−s)Ψ(t̃, t, s;ω) ds = e−At0
∫ t

0

(t− s)ε−1e−A(t−s)Ψ(t̃, t, s;ω) ds. (7.20)
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Indeed, expressing the left hand side of (7.20) with (7.18), we have

∫ t+t0

0

(t+ t0 − s)ε−1e−A(t+t0−s)Ψ(t̃, t, s;ω) ds =∫ t+t0

0

(t+ t0 − s)ε−1e−A(t+t0−s)[
∫ s

0

(s− σ)−εe−A(s−σ)Φ(σ)1It̃≤σ<tdw(σ)] ds

and using Fubini

=
∫ t+t0

0

e−A(t+t0−σ)[
∫ t+t0

σ

(t+ t0 − s)ε−1(s− σ)−ε ds]Φ(σ)1It̃≤σ<tdw(σ)

= e−At0
∫ t

0

e−A(t−σ)[
∫ t

σ

(t− s)ε−1(s− σ)−ε ds]Φ(σ)1It̃≤σ<tdw(σ)

where we have used the fact that the integrand vanishes, for σ ≥ t, and of the identity (7.6). So (7.20) is
obtained.
In replacing, for any ω, t̃ by τ̃ , t by τ , and t0 by τ0, where τ0 is another random time, and recalling (7.19), we
can write ∫ τ+τ0

0

(τ + τ0 − s)ε−1e−A(τ+τ0−s)Ψτ̃ ,τ (s) ds = e−Aτ0
∫ τ

0

(τ − s)ε−1e−A(τ−s)Ψτ̃,τ (s) ds. (7.21)

Now, to check (7.17) means

Yτ̃ ,τ+τ0 = e−Aτ0Yτ̃ ,τ + Yτ,τ+τ0 (7.22)

or from (7.14)∫ τ+τ0

0

(τ + τ0 − s)ε−1e−A(τ+τ0−s)Ψτ̃ ,τ+τ0(s) ds = e−Aτ0
∫ τ

0

(τ − s)ε−1e−A(τ−s)Ψτ̃ ,τ (s) ds

+
∫ τ+τ0

0

(τ + τ0 − s)ε−1e−A(τ+τ0−s)Ψτ,τ+τ0(s) ds. (7.23)

But it is easy to check that
Ψτ̃ ,τ+τ0 −Ψτ,τ+τ0 = Ψτ̃ ,τ

and thus (7.23) amounts to (7.21) and thus is proven. The proof has been completed.
We can state also the somewhat natural

Proposition 7.2. The variable Yτ̃ ,τ is Fτ measurable

Proof.
Let B be any Borel set of H. We must check that

{Yτ̃ ,τ ∈ B} ∩ {τ ≤ t} ⊂ F t. (7.24)

However considering formula (7.14), if τ ≤ t, we can also write

Yτ̃ ,τ =
sinπε
π

∫ t

0

(τ − s)ε−1e−A(τ−s)Ψτ̃ ,τ (s)1Is<τ ds
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and the integrand is, for each s, Fs measurable, hence also F t measurable. Therefore the integral on the right
handside is F t measurable. Hence (7.24) is obtained. The proof has been completed.
Now from (7.13), we can write

E|Yτ̃ ,τ |2r ≤ E sup
0≤t≤T0

|Ỹ (t)|2r

and making use of (7.5), we obtain

(
E|Yτ̃ ,τ |2r

) 1
2r ≤ Cr

(
E sup
τ̃≤σ≤τ

|A−βΦ(σ)|2r
) 1

2r T
1
2−β

0

(1− 2(ε+ β))
1
2 (2εr − 1)1− 1

2r

sinπε
π
· (7.25)

Consider finally the process

Y (t ∧ τ) =
∫ t∧τ

0

e−A(t∧τ−s)Φ(s)dw(s) (7.26)

where τ is a random time. Then we have the

Proposition 7.3. The process Y (t ∧ τ) has a continuous modification which is Hölder with exponent strictly
smaller than 1

2 − β −
1
r .

Proof. Let 0 < s < t, we know from Proposition 7.1 that

Y (t ∧ τ)− Y (s ∧ τ) =
∫ t∧τ

s∧τ
e−A(t∧τ−σ)Φ(σ)dw(σ) + (e−A(t∧τ−s∧τ) − I)Y (s ∧ τ).

By the norm inequality, we can write

(E|Y (t ∧ τ) − Y (s ∧ τ)|2r) 1
2r ≤ (E|

∫ t∧τ

s∧τ
e−A(t∧τ−σ)Φ(σ)dw(σ)|2r) 1

2r

+ (E|(e−A(t∧τ−s∧τ) − I)Y (s ∧ τ)|2r) 1
2r = I1 + I2.

We can write, using (7.6)∫ t∧τ

s∧τ
e−A(t∧τ−σ)Φ(σ)dw(σ) =

sinπε
π

∫ t∧τ

s∧τ
(t ∧ τ − θ)ε−1e−A(t∧τ−θ)Ψs∧τ (θ) dθ

with

Ψs∧τ (θ) =
∫ θ

0

(θ − σ)−ε1Is∧τ≤σe−A(θ−σ)Φ(σ)dw(σ).

From Hölder’s inequality, we derive

I1 ≤ Cr
sinπε
π

(t− s)ε− 1
2r

(2rε− 1)1− 1
2r

(
E

∫ t

s

|Ψs∧τ (θ)|2r dθ
) 1

2r

.

Next

E|Ψs∧τ (θ)|2r ≤ CrE
(∫ θ

0

(θ − σ)−2ε|e−A(θ−σ)Φ(σ)|2 dσ
)r

≤ CrE(
∫ θ

0

|A−βΦ(σ)|2
(θ − σ)2(ε+β)

dσ)r
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≤ CrE sup
0≤σ≤t

|A−βΦ(σ)|2r θr(1−2(ε+β))

(1− 2(ε+ β))r

and then

E

∫ t

s

|Ψs∧τ (θ)|2r dθ ≤ CrE sup
0≤σ≤t

|A−βΦ(σ)|2r(t− s) tr(1−2(ε+β))

(1− 2(ε+ β))r
·

Collecting results, we get

I1 ≤ Cr
sinπε
π

(t− s)ε

(2rε− 1)1− 1
2r

(
E sup

0≤σ≤t
|A−βΦ(σ)|2r

) 1
2r t(

1
2−(ε+β))

(1− 2(ε+ β))
1
2
·

We turn to I2, which we express using

(e−A(t∧τ−s∧τ) − I)Y (s ∧ τ) =
sinπε
π

∫ s∧τ

0

(s ∧ τ − θ)ε−1(e−A(t∧τ−s∧τ) − I)e−A(s∧τ−θ)Ψ(θ) dθ

with

Ψ(θ) =
∫ θ

0

(θ − σ)−εe−A(θ−σ)Φ(σ)dw(σ).

Then

|(e−A(t∧τ−s∧τ) − I)Y (s ∧ τ)| ≤ sinπε
π

(t− s)ε′

ε′

∫ s∧τ

0

(s ∧ τ − θ)ε−ε′−1|Ψ(θ)| dθ.

Using Hölder’s inequality we obtain

|(e−A(t∧τ−s∧τ) − I)Y (s ∧ τ)| ≤ sinπε
π

(t− s)ε′

ε′

(∫ s

0

|Ψ(θ)|2r dθ
) 1

2r sε−ε
′− 1

2r

(2r(ε− ε′)− 1)1− 1
2r
·

It follows that

I2 ≤
sinπε
π

(t− s)ε′

ε′

(
E

∫ s

0

|Ψ(θ)|2r dθ
) 1

2r sε−ε
′− 1

2r

(2r(ε− ε′)− 1)1− 1
2r
·

Also

E|Ψ(θ)|2r ≤ CrE
(∫ θ

0

|A−βΦ(σ)|2
(θ − σ)2(ε+β)

dσ

)r

which, combined with the previous estimate, yields

I2 ≤ Cr
sinπε
π

(t− s)ε′

ε′

(
E sup

0≤σ≤s
|A−βΦ(σ)|2r

) 1
2r s

1
2−β−ε

′

(2r(ε− ε′)− 1)1− 1
2r (1− 2(ε+ β))

1
2
·

Adjusting the estimates for I1 and I2, we obtain easily

E|Y (t ∧ τ) − Y (s ∧ τ)|2r ≤ Cr(
sinπε
π

)2r (t− s)2rε′

ε′2r
(E sup

0≤σ≤t
|A−βΦ(σ)|2r) tr(1−2β−2ε′

(2r(ε− ε′)− 1)2r−1(1− 2(ε+ β))r
·
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Let then pick

δ <
1
2
− β − 1

r
and choose ε, ε′ such that

1
2
− β > ε > ε′ +

1
2r

> δ +
1
r

then from the Kolmogorov-C̆entsov Theorem again, we obtain the desired property. The proof has been com-
pleted.

�

8. Appendix 2

8.1. Statement of the problem and results

We consider a Lipschitz bounded approximation of the vorticity operator B, as follows

BM (u) = B(u)[1I{|A1−ρu|≤M} + (M + 1− |A1−ρu|)1I{M<|A1−ρu|≤M+1}] (8.1)

then as easily seen

|BM (u)| ≤ c(M + 1)2 (8.2)

|BM (u)−BM (v)| ≤ c(M + 1)2|A1−ρ(u− v)|. (8.3)

We next consider functions g(u), G(u) defined also on D(A1−ρu), satisfying

|A−ρ′(g(u)− g(v))| ≤ K|A1−ρ(u− v)|, 0 ≤ ρ′ < ρ (8.4)

|Aε′(G(u)−G(v))| ≤ K|A1−ρ(u− v)|, 1 ≥ ε′ + ρ >
1
2
· (8.5)

Let us consider a probability system Ω,A, P , with an m dimensional Wiener process, and let

F t = σ − algebra generated by w(s), 0 ≤ s ≤ t.

Let τ be a random time, with

τ ≤ T0 deterministic. (8.6)

We consider a random variable

yτ is Fτ measurable , (E|A1−ρyτ |2r)
1
2r <∞ (8.7)

with

ε′ + ρ >
1
2

+
1
2r
· (8.8)

We are interested in the following equation

y(t) = E[e−A(t−τ)+
yτ |F t]−

∫ t

0

1Is≥τe−A(t−s)BM(y(s))ds

+
∫ t

0

1Is≥τe−A(t−s)g(y(s))ds+
∫ t

0

1Is≥τe−A(t−s)G(y(s))dw(s) (8.9)
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We want to prove the following:

Theorem 8.1. We make the assumptions (8.1, 8.4, 8.5, 8.6, 8.7, 8.8), then there exists a unique solution of
(8.9), such that

(
E sup

0≤t≤T0

|A1−ρy(t)|2r
) 1

2r

≤ C[(1 +M)2 +
(
E|A1−ρyτ |2r

) 1
2r ] (8.10)

and
y(t) is an adapted process, y(t)−E[e−A(t−τ)+

yτ |F t]
has a continuous modification with values in D(A1−ρ), which is Hölder with exponent strictly smaller than
min(ρ− ρ′, ε′ + ρ− 1

2 −
1
2r ).

Proof. Let for T ≤ T0, HT be the Banach space of processes z such that

|||z|||T =
(
E sup

0≤t≤T
|A1−ρz(t)|2r

) 1
2r

<∞.

Consider for ζ ∈ HT , the map

z = T (ζ) = E[e−A(t−τ)+
yτ |F t]−

∫ t

0

1Is≥τe−A(t−s)BM (ζ(s))ds

+
∫ t

0

1Is≥τe−A(t−s)g(ζ(s))ds +
∫ t

0

1Is≥τe−A(t−s)G(ζ(s))dw(s).

We first check that z ∈ HT . Indeed, from martingale properties

E sup
0≤t≤T

|A1−ρE[e−A(t−τ)+
yτ |F t]|2r ≤ CrE|E[A1−ρe−A(T−τ)+

yτ |FT ]|2r

≤ CrE|A1−ρe−A(T−τ)+
yτ |2r.

Therefore (
E sup

0≤t≤T
|A1−ρE[e−A(t−τ)+

yτ |F t]|2r
) 1

2r

≤ Cr
(
E|A1−ρyτ |2r

) 1
2r .

We note that

sup
0≤t≤T

|A1−ρ
∫ t

0

1Is≥τe−A(t−s)BM(ζ(s))ds| ≤ c(M + 1)2T
ρ

ρ
.

We next have

E sup
0≤t≤T

|
∫ t

0

1Is≥τA1−ρe−A(t−s)g(ζ(s))ds|2r = E sup
0≤t≤T

|
∫ t

0

1Is≥τA1−ρ+ρ′e−A(t−s)A−ρ
′
g(ζ(s))ds|2r

≤ KE sup
0≤t≤T

(
∫ t

0

1 + |A1−ρζ(s)|
(t− s)1−ρ+ρ′ ds)2r

≤ KE[
T ρ−ρ

′

ρ− ρ′ (1 + sup
0≤t≤T

|A1−ρζ(t)|)]2r .
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Therefore, from the norm inequality, we get(
E sup

0≤t≤T
|
∫ t

0

1Is≥τA1−ρe−A(t−s)g(ζ(s))ds|2r
) 1

2r

≤ KT ρ−ρ
′

ρ− ρ′

(
1 +

(
E sup

0≤t≤T
|A1−ρζ(t)|2r

) 1
2r
)
.

Finally, setting

Y (t) =
∫ t

0

1Is≥τA1−ρe−A(t−s)G(ζ(s))dw(s)

and
Φ(s) = 1Is≥τA1−ρG(ζ(s))

we are in the situation of (7.1, 7.2) of Appendix 1, with

β = 1− ρ− ε′.

Hence, applying estimate (7.5), we obtain(
E sup

0≤t≤T
|Y (t)|2r

) 1
2r

≤ Cr,ρ,ε′T ρ+ε
′− 1

2

(
E sup

0≤t≤T
|Aε′G(ζ(t))|2r

) 1
2r

≤ Cr,ρ,ε′KT ρ+ε
′− 1

2

(
1 +

(
E sup

0≤t≤T
|A1−ρζ(t)|2r

) 1
2r
)
.

Hence z ∈ HT .
Let us show that T is a contraction. Indeed, pick ζ1, ζ2, and

z1 = T (ζ1), z2 = T (ζ2).

Then we have

z1(t)− z2(t) = −
∫ t

0

1Is≥τe−A(t−s)(BM (ζ1(s))−BM(ζ2(s)))ds

+
∫ t

0

1Is≥τe−A(t−s)(g(ζ1(s))− g(ζ2(s)))ds+
∫ t

0

1Is≥τe−A(t−s)(G(ζ1(s))−G(ζ2(s)))dw(s).

Hence, it follows(
E sup

0≤t≤T
|A1−ρ(z1(t)− z2(t))|2r

) 1
2r

≤
(
E sup

0≤t≤T
|
∫ t

0

1Is≥τA1−ρe−A(t−s)(BM (ζ1(s))−BM (ζ2(s)))ds|2r
) 1

2r

+
(
E sup

0≤t≤T
|
∫ t

0

1Is≥τA1−ρe−A(t−s)(g(ζ1(s))− g(ζ2(s)))ds|2r
) 1

2r

+
(
E sup

0≤t≤T
|
∫ t

0

1Is≥τA1−ρe−A(t−s)(G(ζ1(s)) −G(ζ2(s)))dw(s)|2r
) 1

2r

= I + II + III.

Then from the assumptions

I ≤ c(M + 1)2T
ρ

ρ

(
E sup

0≤t≤T
|A1−ρ(ζ1(t)− ζ2(t))|2r

) 1
2r

.
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Similarly

II ≤ cK T ρ−ρ
′

ρ− ρ′
(
E sup

0≤t≤T
|A1−ρ(ζ1(t)− ζ2(t))|2r

) 1
2r

.

Then, using again Appendix 1, with

Φ(s) = 1Is≥τA1−ρ(G(ζ1(s)) −G(ζ2(s)))

and the same value of β as above, we obtain

III ≤ Cr,ρ,ε′KT ρ+ε
′− 1

2

(
E sup

0≤t≤T
|A1−ρ(ζ1(t)− ζ2(t))|2r

) 1
2r

.

So we have obtained
|||z1 − z2|||T ≤ CT δ|||ζ1 − ζ2|||T

where
δ = min ρ− ρ′, ρ+ ε′ − 1

2
and C depends on all constants ρ, ρ′, ε′,M,K, T0. Taking T such that

CT δ < 1

we obtain that T is a contraction in the space HT . Hence, we obtain a unique solution of (8.9) in HT . We can
extend such a solution a finite number of times to get a solution y in HT0 , which is necessarily unique.
Applying the first part of the argument with ζ = y, we obtain easily

|||y|||T ≤ C[(1 +M)2 +
(
E|A1−ρyτ |2r

) 1
2r ]

where the constant C depends on ρ, ρ′, ε′,K, T0. We can proceed in the same way, to evaluate a bound on
intervals of time of length T , and derive the estimate (8.10). The last part of the statement follows immediately
from the formula (8.9), applying Theorem 7.1, with the adequate value of β, and estimating conveniently the
integral with g. The proof has been completed.
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