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Local Spatiotemporal Modelling of House Prices: 

A Mixed Model Approach 

 

Abstract: 

The real estate market has long provided an active application area for spatial-temporal 

modelling and analysis and it is well known that house prices tend to be not only spatially 

but also temporally correlated. In the spatial dimension, nearby properties tend to have 

similar values because they tend to share similar characteristics but house prices tend to 

vary over space due to differences in these characteristics. In the temporal dimension, 

current house prices tend to be based on property values from previous years and in the 

spatial-temporal dimension, the properties on which current prices are based tend to be in 

close spatial proximity. To date, however, most research work on house prices has adopted 

either a spatial perspective or a temporal one. Relative few efforts have been devoted to 

the situation where both spatial and temporal effects coexist. Even fewer analyses have 

allowed for both spatial and temporal variations in the determinants of house prices. Using 

10-years of house price data in Fife, Scotland (2003-2012), this research applies a mixed 

model approach, semi-parametric geographically weighted regression (GWR), to explore, 

model and analyse the spatiotemporal variations in the relationships between house prices 

and associated determinants. The study demonstrates the mixed modelling technique 

provides better results than standard approaches to predicting house prices by accounting 

for spatiotemporal relationships at both global and local scales.                

Keywords: House price; Semi-parametric GWR; Spatiotemporal modelling; GIS 
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The real estate market has provided an active application area for both spatial and spatial-

temporal modelling and analysis (Meen 2001; Goodman and Thibodeau 2003; Bitter, 

Mulligan, and Dall'erba 2007; Huang, Wu, and Barry 2010; Helbich, Vaz, and Nijkamp 2014; 

Wu, Li, and Huang 2014). Unlike traditional hedonic price analysis, which usually attempts to 

explain house prices in terms of property attributes, neighbourhood characteristics and 

geographic locations through global models, spatial models in general explicitly account for 

two major spatial effects in housing prices typically ignored in global models: spatial 

dependency and spatial heterogeneity (Anselin 1988). The former refers to the similarity 

commonly observed in the values of nearby properties whilst the latter indicates that the 

processes generating house prices might vary over space, usually reflecting housing 

submarkets or variations in household preferences (Bitter, Mulligan, and Dall'erba 2007). 

Parameter estimates from traditional hedonic price models, which represent the 

relationships between property prices and associated characteristics, can be biased in the 

presence of spatial effects. As a result, extensive efforts have been devoted to incorporating 

such spatial effects into hedonic house price analysis and many spatial statistical techniques 

have been developed in the last a few decades (Anselin, Florax, and Rey 2004).  

Several models applied in the spatial analysis of real estate data have been constructed to 

address spatial dependence and/or spatial heterogeneity. Examples include spatial lag and 

spatial error models (Anselin 1988; Can 1992; Dubin 1992), and geographically weighted 

regression (GWR) (Fotheringham, Brunsdon, and Charlton 2002). Recently, spatiotemporal 

models have been developed in order to incorporate the temporal dimension into hedonic 

house price analysis as housing price processes evolve not only over space but also over 

time (Case et al. 2004; Smith and Wu 2009; Huang, Wu, and Barry 2010; Wu, Li, and Huang 

2014). 

However, it is worth noting that both spatial effects (spatial dependence and spatial 

heterogeneity) frequently coexist in many spatial processes (Anselin 1999) and there is 

strong evidence indicating the presence of both spatial effects in the housing market 

(Goodman and Thibodeau 2003). In this case, accurate parameter estimates cannot be 

obtained from either global or local models which consider one effect in isolation from the 

other. Instead, models capable of addressing both spatial effects become a desirable option. 

To this end, of primary interest here is to understand both spatial effects in housing price 

processes through the application of a mixed model method, semi-parametric GWR 

(Fotheringham, Brunsdon, and Charlton 2002; Nakaya et al. 2005). Using a 10-year (2003 - 

2012) house price dataset in Fife, Scotland, this research seeks to explore, model and 

analyse spatiotemporal variations in house prices and their relationships with associated 

determinants. Important in this study is the identification of which relationships tend to be 

globally stable and which tend to vary over space, and whether spatial variations in house 

price determinants are temporally stable.   
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The remainder of the paper is organized as follows. The subsequent section provides a 

review of spatial statistical approaches for housing price research. This is followed by a 

description of a 10-year house price dataset in Fife, Scotland. Then, the application of semi-

parametric GWR to examine both temporal and spatial variations in the determinants of 

house prices is described. The paper concludes with the major findings and the significance 

of this research.  

Spatial Hedonic Models for House Price Analysis 

Hedonic price analysis has long been widely applied in property assessment (Can 1992; 

Meen 2001; Fotheringham, Brunsdon, and Charlton 2002). In general, hedonic price 

modelling relates the value of goods to a set of their characteristics (Goodman 1998). In real 

estate studies, hedonic house price models aim to estimate the market value of properties 

based upon a set of associated characteristics which generally include structural attributes 

(e.g. number of rooms, floor area and dwelling age), neighbourhood attributes (e.g. quality 

of public education, unemployed rate and racial diversity) and locational attributes (e.g. 

proximity to workplaces, accessibility to pleasant landscapes and public facilities) (Basu and 

Thibodeau 1998). Then property prices can be defined as a function of the above three basic 

categories of characteristics, which can be expressed as: 

p = f(S, N, L)                                                                                     (1) 

Where p represents property price; S represents a set of variables describing structural 

attributes of the property; N represents a set of neighbourhood characteristics; and L 

represents a set of location attributes The function f is usually expressed in a traditional 

linear regression form and calibrated using ordinary least squares (OLS) technique.  

However, as mentioned, the hedonic price model in (1) typically ignores the spatial effects 

commonly existing in housing prices. The awareness of limitations of traditional hedonic 

price analysis has led to a wide range of models accounting for spatial effects in residential 

datasets (Tse 2002; Farber and Yates 2006; Bitter, Mulligan, and Dall'erba 2007; Helbich, Vaz, 

and Nijkamp 2014). In general, such models can be considered global or local according to 

whether they deal with spatial dependency or spatial heterogeneity. The remainder of this 

section provides a brief review of two types of models as well as their applications in 

housing price analysis. 

Global spatial models address spatial dependence or spatial autocorrelation in spatial 

processes. A comprehensive discussion of well-known such models can be found in Anselin 

(1988), Haining (1990), Anselin, Florax, and Rey (2004) and LeSage and Pace (2009). For 

example, the widely utilized specification provided by Anselin (1988) assumes spatial 

autocorrelation is in either the response variable or the error terms, and the corresponding 

models are usually calibrated by maximum likelihood (ML) rather than OLS technique as 

some OLS assumptions (e.g. independently and identically distributed residuals) are violated. 
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Unlike the spatial lag or error model, Tse (2002) specified spatial autocorrelation through 

the constant term using a stochastic approach.  

In addition to the spatial dimension, dependence in time has also received much research 

interest. For instance, Pace et al. (2000) formulated a spatiotemporal autoregression model 

and applied it in a study of housing prices in Baton Rouge, Louisiana, by modelling both 

spatial and temporal dependence in the errors. Gelfand et al. (2004) proposed a class of 

spatiotemporal hedonic models under a Bayesian statistical framework and examined the 

spatiotemporal differences related to single versus multiple residential sales. Smith and Wu 

(2009) developed a spatiotemporal model allowing for both spatial and temporal lag effects, 

which was applied to study housing price trends in the Philadelphia area, USA.  

Although these global spatial models represent a substantial improvement over traditional 

hedonic models, a major issue is that the housing price processes are assumed to be 

constant or stationary over space, which is not necessarily the case in reality. In order to 

capture spatial variations in housing price processes, numerous local spatial models have 

been proposed. Common local models include the spatial expansion method (Casetti 1972), 

moving window regression (MWR) (Farber and Yeats 2006), multilevel models (Duncan and 

Jones 2000) and geographically weighted regression (GWR) (Fotheringham, Brunsdon, and 

Charlton 2002). These can be considered to be generalizations of standard linear models, 

where parameter estimates are allowed to vary over space in order to better represent the 

processes generating house prices (Fotheringham, Brunsdon, and Charlton 2002). For 

example, Farber and Yeats (2006) found GWR outperformed other local modelling 

approaches with regard to explaining spatial variations in housing prices in a study of the 

real estate market in Toronto, Canada. Similarly, Bitter, Mulligan, and Dall'erba (2007) 

compared two local models, the spatial expansion method and GWR, in a research of 

housing market in Tucson, Arizona, USA, concluding that GWR is superior in terms of the 

capability of identifying spatial heterogeneity in several housing attributes. Páez, Long, and 

Farber (2008) compared MWR, GWR, and the moving windows Kriging (MWK) approaches 

in relation to different spatial effects, highlighting the importance of market segmentation 

in housing price processes.  

Beyond space, time has also been incorporated into local models to account for temporal 

effects on housing processes. For example, Crespo (2009) and Huang, Wu, and Barry (2010) 

extend traditional GWR to a spatiotemporal GWR (GTWR) by developing a spatiotemporal 

kernel function in local model calibration. Wu, Li, and Huang (2014) further extended GTWR 

by accounting for auto-correlated effects.  

It can be seen, from the discussion above, that existing global and local spatial models are 

both extensive and diverse. Empirical applications in real estate markets in various spatial 

settings have shown their effectiveness in explaining spatial dependence or spatial 

heterogeneity. In contrast, mixed models dealing with both spatial effects have received less 

attention, particularly for hedonic house price analysis. This research will contribute to the 
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literature by utilizing a mixed model, semi-parametric GWR, to investigate both global and 

local relationships between house prices and associated influencing factors, as well as their 

variations over time. 

Data and Study Area 

The data used in this research are provided by Registers of Scotland (ROS) and consist of 

sales prices for houses during 2003-2012 in Fife, Scotland.  Fife is located in southeast 

Scotland as shown in Figure 1 and it covers an area about 1,325 km
2
 with a population 

around 276/km
2
 (estimated in 2012). St Andrews, a historic town renowned as the “home of 

golf”, is on the northeast coast. It is also home to the University of St Andrews which 

generates a high demand for accommodations and creates a distinctive local housing 

market.  

Figure 1 about here 

The geographical data are geo-referenced points defined by (x, y) coordinates representing 

the spatial location of houses. Each house has an associated attribute – property value – at 

the time of transaction. Figure 2 depicts the spatial distribution of house prices for 2012, 

where the points in Figure 2A represent the location of houses with the heights indicating 

the relative property values. Shown in Figure 2B is a continuous surface generated from 

those points, from which the general spatial pattern of house prices can be observed. 

Residences in the north east coast, mainly clustered around St Andrews, tend to be more 

expensive than those in rests of Fife. Another area having higher house prices is around 

Dunfermline, the 2
nd

 largest town by population in Fife. All the other areas, in contrast, have 

relatively lower house prices.          

Figure 2 about here 

Table 1 summarizes the number of houses sold in each year, the mean house price and the 

inflation-adjusted mean house price. The number of houses sold peaked in 2006 and then 

declined rapidly, leading to and following from the economic crash in 2008. Inflation-

adjusted house prices peaked in 2008 and declined each year thereafter. As after 2007 the 

average number of sales per zone drops to about 10, one concern here is about the 

potential impact of houses per zone on the validity of the zonal average. However, over the 

study time period (2003-2012), more than 90% of data zones contain <40 properties. Also, 

the average house prices on each data zone largely have similar distribution over time for 

the zones containing <40 properties. Thus, the number of houses per zone should not have 

great impacts in terms of model calibration. 

Table 1 about here 
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Since the structural characteristics for each property are not available, relevant socio-

economic data were obtained from the Scottish Neighbourhood Statistics (SNS)
1
 in order to 

help understand the underlying housing price processes. These data are summarized 

statistics on small-area statistical geographies – data zones –which are nested within local 

authority boundaries and have a population of 500 – 1,000 household residents. In total 

there are 453 data zones in Fife. Accordingly, house prices are also aggregated to derive the 

average house prices for each data zone. 

In the subsequent regression analysis, the dependent variable is the average house price 

within each of the 453 data zones and the definition of the covariates, X, are presented in 

Table 2. In addition to neighbourhood characteristics such as population density and crime 

rates, and property mix variables, two spatial variables, “distance to St Andrews” and 
“distance to coast”, are considered given the spatial context in the study area. The former 

accounts for the potential effects from the historic town St Andrews and the latter 

recognizes buyers’ preference for sea view properties. Also, given the spatial and temporal 
dependences commonly existing in house prices, a spatiotemporal lag variable is added to 

the model. A spatial lag can be calculated as the average house price of the neighbours 

(Anselin 1988). A spatiotemporal lag is therefore defined as the average house price of the 

neighbours in the previous year. In this case, the spatiotemporal lag is first calculated on 

neighboring houses and then aggregated at the data zone level. 

Table 2 about here 

Methods 

This research investigates spatiotemporal variations in housing prices using a mixed spatial 

model, semi-parametric GWR (Fotheringham, Brunsdon, and Charlton 2002; Nakaya et al. 

2005), which is an extension of a local spatial modelling technique, traditional GWR 

(Fotheringham, Brunsdon, and Charlton 2002). In this case, semi-parametric GWR is utilized 

to examine both global and local spatial relationships between house prices and a set of 

associated attributes for each year and the temporal variations in the coefficients are 

obtained through a series of independent cross-sectional estimations. In addition, the 

performance of three models, the traditional global model, GWR and semi-parametric GWR 

is compared.   

Before defining semi-parametric GWR, it is helpful to first describe a traditional global 

hedonic model and traditional GWR in the context of housing market studies. A global 

hedonic house price model can be formulated as in (2):    ∑                                                                            (2) 

                                                            
1
 http://www.sns.gov.uk/  

http://www.sns.gov.uk/
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where i and j are index of observations and covariates, respectively; P represents house 

prices; X represents covariates; and   represents parameters associated with the various 

covariates. According to (2), the parameter    is constant across all observations. That is, the 

relationship between the jth covariate and house prices is considered invariant over space. 

In contrast, such relationships are allowed to vary across space in GWR which can be 

expressed in (3):     ∑                                                                     (3) 

where       ) represents the geographic location of the ith observation. Thus, the 

parameter     is a function of       ), denoted as           . The local parameters     are 

estimated with the aid of data in the neighbourhood, which is usually realized by a weight 

matrix. Commonly, the weights are defined by Gaussian or bi-square kernel functions where 

the size of neighbourhood is determined by an optimised bandwidth (e.g. distance or 

number of nearest neighbours) (Fotheringham, Brunsdon, and Charlton 2002). As a result, 

smaller bandwidths indicate more local processes whereas larger bandwidths indicate more 

regional processes with a bandwidth tending to infinity replicating a global model.        

Built upon the above formulations, the semi-parametric GWR model can be defined as in (4):    ∑        ∑                                                                    (4) 

where k is an index of covariates that have a global relationship with house prices and  j is 

an index of covariates whose relationship to house prices varies spatially. Thus, semi-

parametric GWR allows some parameters to be fixed over space and the other parameters 

to vary across space, representing stationary and non-stationary spatial 

relationships/processes simultaneously. The model in (4) is usually calibrated using an 

iterative procedure by estimating global and local parameters in turn repeatedly until some 

convergence condition is satisfied (Fotheringham, Brunsdon, and Charlton 2002; Nakaya et 

al. 2005). 

In this research, the semi-parametric GWR model in (4) is used to study the 10-year house 

price dataset in Fife, Scotland. The aggregated house prices and all the values of covariates 

are transformed using the natural logarithm function to ensure the parameter estimation is 

free from scale effects. In other words, the particular mixed hedonic house price model in 

this research is defined as in (5):      ∑          ∑                                                             (5) 

There are two important issues involved in the calibration of model (5). First, a bandwidth 

needs to be determined for the weight matrix construction. Also, variables need to be 

selected as global or local. In this research, a bi-square kernel function is used to define the 

weight matrix with the bandwidth specified by the number of nearest neighbours. The 

optimal bandwidth size is chosen such that the corresponding model has the smallest value 
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for the corrected Akaike information criterion (AICc) (Akaike 1974). AICc is widely applied in 

model selection with smaller values indicating better models. This procedure is repeated for 

annual house price data to ensure the best model is found for each year. The second issue is 

addressed by a local to global variable selection routine which can be summarized as follows: 

Step 1. Define two sets of variables, G and L, and initialize G = , and L contains all 

the variables. That is, L = {x1, x2, …, x13}. Construct a GWR model defined in (3) 

using variable sets G and L. Denote this model as model_old; 

Step 2. Solve model_old and get the corresponding AICc, recorded as AICc_old;  

Step 3. Take a variable, e.g. xi, out of set L and put it into set G. Construct a semi-

parametric GWR using the variables defined by L and G. Denote this model as 

model_new; 

Step 4. Solve model_new and get the corresponding AICc, recorded as AICc_new;  

Step 5. If AICc_new < AICc_old, keep xi in G and let AICc_old = AICc_new; otherwise, 

put xi back to L; 

Step 6. Repeat Step 3 – Step 5, until every variable in L is examined; 

Step 7. If there is at least one variable moved from L to G during Step 3 – Step 6, 

repeat Step 3 – Step 6; otherwise, stop. 

It is worth noting that an optimal bandwidth search is implicitly contained in each model 

calibration procedure, which further complicates the above variable selection because more 

computation processing is required. The bandwidth search, variable selection and 

parameter estimation involved in model (5) are all carried out in GWR 4
2
, a package for local 

spatial modelling and analysis.  

Once the parameter estimates are derived, it is critical to assess whether the measured 

relationships between house prices and associated determinants are intrinsically differences 

across space or simply caused by random sampling variations. This is carried out through 

stationarity tests of each local parameter in the semi-parametric GWR models. Specifically, 

two approaches are employed here: variability tests of local parameter estimates and 

Monte-Carlo (MC) tests (Fotheringham, Brunsdon, and Charlton 2002). The former is based 

on the inter-quartile range (IQR) of local estimates and the standard errors (SE) of global 

estimates. Empirically we can consider the 2*SE as the expected variations in the values as it 

contains about 60% of all the estimates. Thus, it indicates a possible non-stationary process 

if IQR (which includes 50% of values) is larger than 2*SE. The latter measures the variance of 

the local parameters, which can be defined as in (6): 

                                                            
2
 http://www.st-andrews.ac.uk/geoinformatics/gwr/gwr-software/  

http://www.st-andrews.ac.uk/geoinformatics/gwr/gwr-software/
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     ∑ ( ̂     ∑  ̂   )                                                     (6) 

where    is the variance of the jth parameter; n is the total number of observations;   ̂   is 

the local estimate for observation i and parameter j. The MC tests are implemented in the 

following steps: 

Step 1. Obtain local parameter estimates and calculate    for each local parameter; 

Step 2. Rearrange data randomly across the zones (keeping Yi and Xi) together; 

Step 3. Compute a new set of local parameter estimates based on the rearranged 

data and calculate   ; 

Step 4. Repeat steps 2 and 3 for N times, each time computing the variance of the 

local estimates; 

Step 5. Compare the variance of local parameter estimates in step 1 with those from 

steps 2 and 3; 

Step 6. The p value associated with step 1 is then the proportion of variances that lie 

above that for step 1 in a list of variances sorted high to low. 

If there is no significant pattern in the parameters, there should be no significant changes in 

the variations in the local estimates regardless of the permutation of the observations 

against their locations. As it is difficult to obtain the null distribution of the variance 

analytically, the MC method is commonly considered an effective option. Thus, N values of 

the variance of a parameter obtained from the MC test represent an experimental 

distribution, and a p value (experimental significance level) can be derived by comparing the 

actual value of the variance against that list of N values. Generally, IQR test is quite easy and 

straightforward but is more informal. In contrast, MC test is more rigorous but limited in 

repetitions due to computational time. 

Finally, the coefficient of variation (CV) is employed to investigate the spatiotemporal 

variations of local parameter estimates. Specifically, a CV is calculated using the local 

estimates for each year, from which a set of CVs can be derived to demonstrate the spatial 

variations in the relationships between house prices and the covariates over time. Also, a CV 

is calculated for each data zone based on the local estimates across the study period (2003-

2012), from which the temporal variations in the relationships between house prices and 

the covariates over space can be generated.  

Results 

For the purpose of model comparison, global models, GWR models as well as semi-

parametric GWR models are fitted in this research. First, a global model is calibrated to 
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explore the general relationships between house prices and the associated attributes. Then, 

results from the semi-parametric GWR model are presented, including estimates for fixed 

and local parameters with spatiotemporal variations in local parameter estimates 

highlighted. Finally, the performances of different models are compared using a common 

model selection criterion AICc.   

Parameter estimates for the global model are given by Table 3. In total, nine models are 

calibrated using OLS for the years 2004 – 2012 because the spatiotemporal lag is not 

available for year 2003. It should be noted that the spatial lag in this case is temporal and 

excludes the properties from the current year on the RHS in (5). Thus, it is appropriate to 

use OLS for estimating the spatiotemporal lag parameter. According to the R
2 

(around 0.7), 

the overall model fit is quite satisfactory for every year except 2007 (R
2
 = 0.38). Seven 

variables have reasonably consistent significant effects on house prices: x1 (population 

density), x7 (% of dwellings with 1-3 rooms, i.e. small houses), x8 (% of dwellings with 7-9 

rooms, i.e. big houses), x9 (% of household ownership), x11 (distance to St Andrews), x12 

(distance to coast) and x13 (spatiotemporal lag). For example, the value of  ̂  varies from -

0.074 (2007) to -0.040 (2004), which indicates that house prices tend to be lower, ceteris 

paribus, in areas of higher population density. This effect strengthened up to 2007 and 

thereafter has weakened. Similarly, according to the values of  ̂   (-0.088 ~ -0.157), the 

properties tend to have higher values the closer they are to St Andrews, ceteris paribus. In 

contrast, some variables almost have no significant effects on house prices at all except for a 

particular year, such as x2 (% of pensionable age population), x3 (% of working age 

population) and x4 (% of semi-detached properties). The impacts of the other variables are 

inconsistent.       

Table 3 about here 

Figure 3 describes the temporal variations in the seven consistently significant parameter 

estimates. It can be seen that the estimates are reassuringly consistent over time with the 

exception of the estimates associated with the variables x9 (% of household ownership) and 

x13 (spatiotemporal lag) which both show a pronounced spike in value in 2007 as the 

economic crisis loomed. 

Figure 3 about here 

The best semi-parametric GWR model is chosen for each year based on the variable 

selection procedure described in the previous section. This produces for each year a set of 

spatially varying parameter estimates for those variables whose effect on house prices 

varies over space and a set of spatially invariant estimates for those variables whose effect 

on house prices is constant over space.  In each year only one or two variables appear to 

have a constant impact on house prices with the exception of 2006 and 2007 with 4 and 5 

parameters being fixed over space.  There was no consistency in which variables exhibited a 

fixed effect over time. 



12 

 

With regard to the local parameters, two tests were undertaken to identify if the spatial 

variation in their values was significant. For each year, tests based on IQR of local estimates 

and MC simulation (with repetition N=1000
3
) are implemented. The results are shown in 

Table 4. As can be seen, different sets of significant local parameters are found for each year. 

In general, the local parameters specified by the local to global variable selection routine 

described in Section 4 do not all have significant local variability. For example, for year 2004, 

the variable selection routine suggests that only x1 (population density) is fixed while the 

IQR test indicates the estimates for another three parameters do not significantly vary 

across space: x5 (% of terraced properties), x6 (% of flats) and x8 (% of dwellings with 7-9 

rooms) and the MC test suggests only four sets of parameter estimates exhibit significant 

spatial variation –   ,    ,     and    .  

Generally, the results of the IQR and the MC tests are reassuringly similar and where 

discrepancies exist, the MC test appears to be more rigorous. Three variables exhibit 

significant spatial variation in their impact on house prices throughout the 9 time periods. 

These are distance to St Andrews, distance to the coast and the spatial-temporal lag variable. 

Interestingly, crime rates appear to have a spatially varying impact on house prices up to 

2008 but thereafter do not exhibit any significant spatial variation.  The remaining variables 

exhibit no consistency in the significance of the spatial variation of their effects.   

Table 4 about here 

Accordingly, two variables x11 (distance to St Andrews) and x13 (spatiotemporal lag) are 

selected for further discussion here because they generally exhibit significant variation in 

the local estimates. For each variable and for each year, there are 453 local parameter 

estimates describing the impact of that variable on house prices in the vicinity of location i 

in time t. In Figure 4 the values of each of the 453 estimates across the 9 time periods is 

connected by a straight line across the 9 time periods. This is done separately for the 

parameter estimate associated with the variable “Distance to St Andrews” and the 

parameter estimate associated with the spatiotemporal lag variable. The local parameter 

estimates show remarkable consistency through time but the most noticeable feature is 

that for the year 2007, the local parameter estimates exhibit a vastly increased spatial 

variation. This is the year leading to the housing-led economic crisis when presumably the 

housing market was in the throes of impending turmoil.  It is very interesting that this is 

exhibited in advance of the full-blown crisis being recognised and the turmoil in the 

determination of house prices is only for this one time period and not for the full period of 

the crisis. 

Figure 4 about here 

                                                            
3
 We use N=1000 because of the computational complexity. We also run the MC test with N=100 which gave 

similar results as those from N=1000, which indicates the MC test is rigorous.  
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To examine this effect further, the local parameter estimates for these two variables are 

mapped for each of the nine periods as shown in Figure 5. However, to aid clarity, only 

those local parameter estimates which were significant are depicted. In this case, 

significance is defined using the adjusted critical t value (Byrne, Charlton, and Fotheringham 

2009) equated with an original significance level of 0.05, which addresses the issue of 

multiple hypothesis testing in GWR.  

Figure 5 about here 

Figure 5A depicts the significant local parameter estimates for the variable “Distance to St 

Andrews”. These are all negative indicating the region around St Andrews where house 

prices fall as distance to St Andrews increases, cateris paribus. In effect, these maps indicate 

the spatial extent of the local St Andrews housing market in each time period. In general 

there is remarkable consistency over time in this housing market with the exception of 2007 

when it disappears altogether and in 2012 when the southern portion disappears. In 2007, 

the location of St Andrews had no effect on house prices anywhere in Fife.  In 2012 it had an 

impact only on those houses in an area to the north and west of the city.  In other years the 

area of impact is consistently the whole of north-east Fife with a radius of approximately 

20kms from St Andrews. This technique this usefully quantifies the spatial extent of the 

housing market around an urban area and could easily be extended to other features 

deemed to have an impact on house prices such as airports or pollution sites. 

Figure 5B depicts the spatial extent of neighbourhood effects in housing prices which are 

consistently significant only in the north-east half of Fife. The only exception to this again is 

the year 2007 when very little spatial lag effect is present anywhere in the county. The 

interpretation of this is that house prices are strongly related to neighbouring house prices 

only in the north-east of Fife – in the rest of the county, there is no spatial lag affect present 

in house prices. This may indicate again two very different housing regimes in the county 

and indeed, north-east Fife is quite different economically and socially from south-west Fife. 

In addition, the extent to which the local estimates vary over space and time is also explored 

using the CV mentioned previously. Take the variable “spatiotemporal lag” as an example, 

Figure 6 shows the spatial variation of the CVs over time, where a CV is calculated for the 

453 local estimates for every year. It can be seen that the value in 2007 is much higher than 

those in all the other years, indicating unusual spatial variation in the neighbourhood effects 

on house prices as observed in Figure 4B. Interestingly, in 2008 when the financial crisis 

occurred, the CV has the lowest value compared those in the other years. Further, the 

temporal variation of the CVs for the same variable is shown in Figure 7. In general, the 

values gradually decline towards southwest Fife, indicating decreasing temporal variations 

in neighbourhood effects. Also noteworthy is that north Fife has the relatively fewer 

temporal variations in the local estimates which, as shown in Figure 5B, are consistently 

significant across the study time period (except 2007).     
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Figure 6 about here 

Figure 7 about here  

Finally, a model comparison is undertaken out based on the AICc values as shown in Table 5. 

The AICc values cannot be compared across years but for each year, the lower the AICc, the 

better the model fit with differences of 3 or more generally deemed to indicate a significant 

difference. For all 9 time periods semi-parametric GWR consistently outperforms GWR 

which in turn is superior to the global model, implying improvements in modelling both 

global and local relationships underlying housing price processes. 

Table 5 about here 

Discussion and Conclusions 

It is well known that housing markets are characterized by both spatial dependence and 

spatial heterogeneity. The literature on spatial hedonic house price analysis so far has 

largely focused on either global models or local models and has either ignored both effects 

or treated them independently. This research accounts for both spatial effects in housing 

markets using a mixed model method, semi-parametric GWR. Particularly, spatiotemporal 

variations in neighbourhood effects (i.e. spatial dependence) on housing prices are 

investigated. The results demonstrate that semi-parametric GWR is capable of dealing with 

both global and local spatial relationships and therefore can produce more accurate 

estimates for parameters in hedonic house price models.  

The most important contribution of this research is the specification of both global and local 

relationships between housing prices and the associated covariates, as well as their 

variations over both space and time. For example, the spatial/temporal lag is widely used in 

the global models and the extent of neighbourhood effects are traditionally considered 

invariant over space. This is reflected in Table 3 where the coefficients of spatiotemporal lag 

are all positive across the study time period. In fact, such neighbourhood effects can vary 

over space and time, which is revealed by Figure 5B. That is, only the prices of the 

residences in north eastern Fife are significantly affected by their neighbours’ prices and 
such effects tend to increase from the northwest to the northeast. Meanwhile, the global 

parameters also have changed over time. For example, population density is found 

negatively related to housing prices in the global models (Table 3) but the mixed models 

suggest that this only holds for years 2004, 2007, 2008 and 2011, and the regression 

coefficients are only significant for year 2008.         

Also worth noting is that this technique has quantified a local housing market effect – in this 

case on the basis the effect of distance to St Andrews has on house prices.  St Andrews is 

the location of the University of St Andrews and has the unique features such as being the 

home of the Royal and Ancient Golf Club. Given the consistent high accommodation 
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demand, St Andrews has formed a distinct housing market and the housing prices are 

usually higher than those in other areas. Figure 5A describes the spatial extent of this effect. 

That is, generally only the houses up to 20km away from St Andrews are subject to such an 

effect in terms of housing prices.  This technique could easily be expanded to other urban 

centres to compare their impact on house prices and to other features such as airports and 

landfill sites which are suspected to cause decreases in house prices but to what distance is 

largely unknown. 

Another interesting finding is the distinction of spatiotemporal patterns before and after the 

financial crisis. As is well known, the residential real estate markets suffered greatly from 

the financial and economic crisis in 2008. This is reflected in Table 1 where the housing 

prices have an increasing trend before 2008 and a declining trend afterwards. Particularly, 

based on the unusual parameter estimates from both the global model (Table 3 and Figure 3) 

and the mixed model (Figures 4, 5 and 6), it would appear that the housing market in 2007 

had detected some signs of the coming crisis and house prices in that year suddenly became 

much less predictable. Furthermore, Figures 5B suggest quite different spatial distributions 

of significant local estimates before and after the financial crisis. One concern here is that 

the “breakdown” of parameter estimates in 2007 might be caused by the covariates as 

different sets of coefficients are held constant in different years in the semi-parametric 

GWR models. This is further investigated by the variations in local estimates obtained from 

GWR, particularly for the two variables “Distance to St Andrews” and “Spatiotemporal lag”. 

The results from GWR are very similar to those shown in Figures 4 and 5, which suggest the 

covariates in semi-parametric GWR, particularly the fixed variables, have little impacts on 

the variations in local estimates.  

One limitation of this research is that both housing prices and associated influencing 

characteristics are aggregated data based on data zones. It is well recognized that analyses 

using aggregated data are subject to the choice of geographic units, and the resulting 

conclusions might conceal the detailed information for underlying individual objects, which 

is known in geography as the modifiable area unit problem (MAUP) (Openshaw, 1984). 

Nevertheless, given that data zones are the only available geographic districts containing 

local statistics and they have reasonable sizes (covering 500 – 1,000 household residents), 

conclusions from this research still can provide useful insights regarding the general 

spatiotemporal patterns in housing prices and social-economic factors.  

In summary, housing market remains a great concern of government, real estate developers 

and general population as it is a main component of macro-economy and also closely 

related to social equity. GIS based spatial analysis, particularly spatial statistics, offers a set 

of powerful tools to study housing price processes by explicitly accounting for spatial 

dependency and spatial heterogeneity. This research demonstrates the advantages of a 

mixed model method, semi-parametric GWR, in modelling both spatial effects as well as 

both global and local relationships in housing price processes. 
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Though semi-parametric GWR in this research has been used to study the spatiotemporal 

variations in the local housing market in Fife, Scotland, it can be employed in a wider field of 

hedonic price modelling wherever both global and local spatial relationships are of concern. 

Undoubtedly, semi-parametric GWR offers an effective way for spatial analysis and 

modelling by its capability of capturing both spatial stationary and non-stationary processes. 
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Figure 1 Study area: Fife, Scotland 
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Figure 2 Spatial distributions of house prices in 2012. (A) Discrete point; (B) Continuous 

surface. 

(A)  

 

(B) 
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Figure 3 Temporal variations in global parameter estimates  
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Figure 4 Temporal variations in local parameter estimates. (A) Distance to St Andrews; (B) 

Spatiotemporal lag.  

(A) 

 

(B) 
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Figure 5 Spatial variations in significant local parameter estimates. (A) Distance to St Andrews; (B) Spatiotemporal lag.  
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Figure 6 Spatial variations in local estimates of “Spatiotemporal lag” over time 
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Figure 7 Temporal variations in local estimates of “Spatiotemporal lag” over space 
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Table 1 Descriptive statistics of house prices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Year Sample Size 

House price (£) 

Mean Adj. Mean 

2003 8,398 82,841 110,897 

2004 9,579 98,211 127,668 

2005 10,081 108,355 136,968 

2006 10,901 121,667 149,059 

2007 10,731 136,697 160,583 

2008 6,422 143,039 161,618 

2009 4,757 136,990 155,580 

2010 5,006 137,466 149,237 

2011 4,846 136,304 140,660 

2012 4,939 133,494 133,494 
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Table 2 Definition of covariates 

Covariates Description 

x1 Population density 

x2 Percentage of pensionable age population 

x3 Percentage of working age population 

x4 Percentage of dwellings which are semi-detached 

x5 Percentage of dwellings which are terraced 

x6 Percentage of dwellings which are flats 

x7 Percentage of dwellings with 1 to 3 rooms 

x8 Percentage of dwellings with 7 to 9 rooms 

x9 Percentage of household ownership 

x10 Number of SIMD crimes per 10,000 of the population 

x11 Distance to St Andrews 

x12 Distance to coast 

x13 Spatial-temporal lag  

Note: SIMD = Scottish Index of Multiple Deprivation.
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Table 3 Parameter estimates for the global model 

 

2004 2005 2006 2007 2008 2009 2010 2011 2012 

constant 6.736* 8.488* 8.481* 7.560* 7.765* 8.919* 8.230* 7.791* 7.490*  ̂  -0.040* -0.044* -0.047* -0.074* -0.072* -0.058* -0.056* -0.060* -0.058*  ̂  -0.087 -0.032 -0.019 0.098 -0.023 -0.095 0.006 -0.042 -0.223*  ̂  -0.018 0.076 0.090 0.910 0.156 -0.207 0.247 0.209 -0.392  ̂  -0.001 -0.001 -0.001 -0.003 0.000 0.011* 0.005 -0.002 0.004  ̂  -0.004 -0.006 -0.007* -0.006 -0.005 -0.001 -0.005 -0.005 -0.001  ̂  0.004 0.004 0.005 0.008 0.005 0.005 0.009* 0.006* 0.007*  ̂  -0.165* -0.158* -0.129* -0.112 -0.121* -0.111* -0.129* -0.160* -0.151*  ̂  0.013* 0.014* 0.013* -0.001 0.007* 0.011* 0.010* 0.010* 0.013*  ̂  0.447* 0.407* 0.361* 0.597* 0.432* 0.384* 0.397* 0.299* 0.403*  ̂   0.002 -0.001 -0.001 -0.002 -0.002 -0.003 -0.005* -0.002 -0.004  ̂   -0.121* -0.127* -0.126* -0.088* -0.117* -0.154* -0.136* -0.114* -0.157*  ̂   -0.017 -0.028* -0.018* -0.053* -0.020* -0.025* -0.015 -0.039* -0.021*  ̂   0.453* 0.320* 0.330* 0.468* 0.401* 0.284* 0.369* 0.385* 0.379*    0.75 0.76 0.76 0.38 0.73 0.71 0.71 0.71 0.71 

*: p<0.05  
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Table 4 Stationarity test results for local parameters in semi-GWR models 

Parameter 2004 2005 2006 2007 2008 2009 2010 2011 2012 

 
IQR MC IQR MC IQR MC IQR MC IQR MC IQR MC IQR MC IQR MC IQR MC 

Constant √ √ √ √ √ √ √ 
 

√ 
 

√ √ √ √ √ √ √ √  ̂  F F 
  

√ √ F F F F √ 
   

F F 
   ̂  √ 

   
√ √ √ 

 
√ 

 
√ 

 
√ 

 
√ 

    ̂  √ 
   

√ √ √ 
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√ √ √ 
   

√ 
  ̂  √ √ 

  
F F F F √ 

   
√ 

 
√ 

    ̂  
    

√ 
 

F F √ 
 

√ 
 

F F √ 
 

√ 
  ̂  

  
F F F F F F 

  
√ 

        ̂  √ 
   

√ 
  

√ 
  

F F 
  

√ 
 

F F  ̂  
    

F F 
             ̂  √ 

 
√ √ F F 

  
√ 

 
√ √ √ 

 
√ 

 
√ 

  ̂   √ √ √ √ √ √ 
 

√ √ √ F F F F 
     ̂   √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √  ̂   √ 

 
√ √ √ √ F F 

  
√ 

 
√ √ √ √ √ √  ̂   √ √ √ √ √ √ √ 

 
√ √ √ √ √ √ √ √ √ √ 

Note: IQR D interquartile range; MC D Monte Carlo; F D fixed variable. 
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Table 5 AICc values for different models 

 

 

 

 

 

 

 

 

Note: GWR =  geographically weighted regression 

Year Global model GWR 
Semi-parametric 

GWR 

2004 86.454 55.704 45.166 

2005 -6.959 -48.246 -50.566 

2006 -81.502 -90.672 -115.836 

2007 757.513 660.499 644.008 

2008 6.544 -19.860 -33.796 

2009 15.175 -1.883 -5.416 

2010 88.658 35.989 31.993 

2011 58.043 44.235 37.442 

2012 122.913 108.591 107.477 


