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Local Spin Resonance and Spin-Peierls-like Phase Transition
in a Geometrically Frustrated Antiferromagnet
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Inelastic magnetic neutron scattering reveals a localized spin resonance at 4.5 meV in the ordered
phase of the geometrically frustrated cubic antiferromagnet ZnCr2O4. The resonance develops abruptly
from quantum critical fluctuations upon cooling through a first order transition to a co-planar antifer-
romagnet at Tc � 12.5�5� K. We argue that this transition is a three dimensional analog of the spin-
Peierls transition.

PACS numbers: 76.50.+g, 75.40.Gb, 75.50.Ee
It appears that antiferromagnetically interacting
Heisenberg spins on the vertices of a lattice of corner-
sharing tetrahedra cannot order [1–4]. Characterized
by weak connectivity and frustrated interactions [5],
this so-called pyrochlore antiferromagnet has no phase
transition for spin S � ` [2,3] and forms a quantum spin
liquid with low lying singlet excitations for S � 1�2
[4]. Recent experimental [6,7] and theoretical [8,9] work,
however, indicates that small perturbations away from the
ideal model can induce low temperature phase transitions.
In the quantum critical spin-1�2 antiferromagnetic chain
sensitivity to small symmetry breaking perturbations
leads to the spin-Peierls transition: a lattice distortion
that lowers the energy of the spin system by inducing a
gap in the magnetic excitation spectrum. In this Letter
we report a similar phenomenon for spins on a lattice of
corner-sharing tetrahedra.

We examined the spinel antiferromagnet (AFM)
ZnCr2O4 using neutron scattering. Cubic and paramag-
netic at high temperatures, the material undergoes a first
order phase transition at T � 12.5 K into a tetragonal
phase with Néel order. Our measurements and analysis in-
dicate that lattice energy is expended at the phase transition
to break the symmetry of frustrated magnetic interactions
and thereby select an ordered magnetic phase from a
manifold of degenerate states. A local spin resonance
develops abruptly below the transition. This resonance
is a manifestation of Q-space degeneracy in the ordered
phase of a frustrated magnet. Just as the development
of a singlet-triplet gap drives the spin-Peierls transition,
the fact that ordering in a frustrated magnet can push low
energy spectral weight into a finite energy resonance plays
an important role at the transition in ZnCr2O4.

Cr31 is the source of magnetism in ZnCr2O4. Approxi-
mately octahedrally coordinated, the unfilled 3d3 shells of
these atoms form isotropic S � 3�2 degrees of freedom
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on a lattice of corner-sharing tetrahedra. Assuming that
only nearest neighbor interactions are appreciable yields
an estimate of J � �3kBQCW �zS�S 1 1�� � 24.5 meV
for the exchange constant. Here QCW � 2390 K is the
Curie-Weiss temperature derived from high temperature
susceptibility data [5] and z � 6 is the nearest neigh-
bor coordination number. Experiments on Cr31 pairs in
ZnGa2O4 [10,11] give values for J ranging from 22.8 to
24.0 meV and also provide evidence for biquadratic ex-
change H2 � j�S1 ? S2�2 with j � 20.21�4� meV.

A 25 g powder sample was prepared by solid state re-
action between stoichiometric amounts of Cr2O3 and ZnO
in air. Rietveld analysis of neutron powder diffraction data
from the National Institute of Standards and Technology
(NIST) BT1 diffractometer shows that ZnCr2O4 in the
spinel structure (space group Fd3̄m, a � 8.312 73 Å for
T � 15 K) is the majority phase with a minority phase
of 1% f.u. unreacted Cr2O3. Elastic and inelastic neu-
tron scattering measurements were performed at NIST on
the cold neutron triple-axis spectrometer SPINS. A ver-
tically focusing pyrolytic graphite (002) monochromator
[PG(002)] extracted a monochromatic beam with energy
2.5 meV , Ei , 14 meV from a 58Ni coated cold neu-
tron guide. The detection system consisted of a 20 cm
long polycrystalline BeO filter cooled to 77 K followed by
a 23 cm 3 15 cm flat PG(002) analyzer 92 cm from the
sample, then a 800 radial collimator, and an area sensitive
detector. The energy range detected was 2.6 meV , Ef ,

3.7 meV with full width at half maximum (FWHM) en-
ergy resolution 0.1 meV , DE , 0.15 meV and angular
resolution D2u � 500. The absolute efficiency of the in-
strument was measured using incoherent elastic scattering
from vanadium and nuclear Bragg peaks from ZnCr2O4.
The corresponding normalization factor was applied to
background subtracted data to obtain measurements of the
normalized magnetic neutron scattering intensity [12]
© 2000 The American Physical Society
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Here F�Q� is the magnetic form factor for Cr31 [13] and
Sab�Q, v� is the scattering function [12].

Figure 1 provides an overview of our data in the form
of color images of Ĩ�Q, v� at three temperatures. In
the paramagnetic phase, Figs. 1(a) and 1(b) provide
evidence for quantum critical fluctuations of small AFM
clusters most likely antiferromagnetically correlated
tetrahedra. The data closely resemble those obtained in
similar experiments on other frustrated AFM’s [7,14].
For T , Tc, however, the low energy spectral weight
concentrates into a sharp constant-energy mode centered
at h̄v � 4.5 meV � jJj ¿ kBTc. Above the resonance
there is an additional band of intensity centered at
h̄v � 9 meV [Fig. 2(a)]. Careful inspection of data
below the resonance also reveals weak dispersing streaks
emanating from AFM Bragg points.

Focusing first on the ordered phase, Fig. 2(a) shows
the Q-integrated magnetic scattering cross section at
T � 1.7 K. With a resolution corrected FWHM of
only 0.8 meV the h̄v � 4.5 meV peak is evidence

FIG. 1 (color). Color contour maps of the magnetic neutron
scattering intensity versus wave vector and energy trans-
fer at three temperatures spanning the phase transition at
Tc � 12.5�5� K.
for a near dispersionless excitation. The spectral
weight is h̄

R6-meV
3.5-meV

P
aa Saa�v� dv � 0.59�1��Cr

which is 22% of the total fluctuating moment
��S�S 1 1� 2 j�S	j2� � 2.65�5��Cr
 and corresponds
to 16% of the total magnetic scattering cross section.
Figure 2(b) shows the Q dependence of the energy
integrated intensity of this mode. The data exhibit a
broad peak centered at Q0 � 1.5 Å21 with a half width at
half maximum k � 0.48�5� Å21 � 0.64�6�a� indicating
that the excited state involves AFM correlated nearest
neighbor spins. For comparison the dashed line shows the
powder-averaged magnetic neutron scattering intensity for
an isolated spin dimer at the nearest neighbor separation
r0 � 2.939 Å [15]. The spin pair model produces a
broader peak than the experiment indicating that the
resonating spin cluster in ZnCr2O4 is more complex.
Figure 2(b) also shows the wave vector dependence of
inelastic scattering below the resonance integrated over
energy from 1 to 3 meV (open symbols). Weak, non-
resolution-limited peaks are visible and their locations
coincide with AFM Bragg peaks (shaded). Excitations
below the resonance are also apparent in the wave vector
integrated data of Fig. 2(a) where the intensity increases
in proportion to energy for h̄v , 3.5 meV (the low
energy upturn is incompletely resolved elastic scattering).
Both features are consistent with neutron scattering from
spin waves in a three dimensional AFM powder with a
spin gap D , 1.5 meV. In particular, the ratio of elastic
to inelastic scattering is consistent with estimates based
on spin wave theory in the long wavelength limit. From
the width of the peaks we estimate a spin wave velocity
y � 18�2� meV Å. This number is much less than the

FIG. 2. Integrated magnetic scattering intensities at T �
1.7 K derived from Fig. 1(c). (a) v dependence of the
Q-integrated intensity: Ĩ�v� �

R
Q2 dQ Ĩ�Q, v��

R
Q2 dQ.

The horizontal bar shows the instrumental energy resolution.
(b) Closed symbols show the Q dependence of the v-integrated
resonance intensity: Ĩ�Q� � h̄

R 6.0-meV
3.5-meV Ĩ�Q, v� dv. Open

circles show data integrated from 1 to 3 meV. The solid line
shows the elastic scattering cross section scaled by a factor of
10. Shaded peaks are magnetic Bragg peaks.
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spin wave velocity for a bipartite simple cubic AFM
with J � 22.8 meV, y � �2�

p
3 �zjJjSa � 239 meV Å

but only slightly larger than the spin wave velocity for
a cubic AFM with the critical temperature of ZnCr2O4:
y � 2

p
3 kBTca��S 1 1� � 12.4 meV Å.

Spin wave theory provides a useful starting point for un-
derstanding the resonance. Geometrical frustration leads to
constant energy surfaces or volumes for spin wave disper-
sion relations in reciprocal space. Such Q-space “degen-
eracy” in turn yields pronounced Van Hove singularities in
wave vector averaged spectra. Reimers et al. [16] showed
that the pyrochlore AFM has two degenerate modes for
any Q in the Brillouin zone. Wave vector independent ex-
citations also exist for the kagomé AFM [17] and these
have a real-space interpretation in terms of the so-called
weather-vane modes [18]. A real-space interpretation has
yet to be found for dispersionless excitations in the py-
rochlore lattice. The broad peak in Fig. 2(b) indicates that
they are highly localized in the ordered phase of ZnCr2O4.

Turning now to excitations in the paramagnetic phase,
Figs. 3(a)–3(c) show the imaginary part of the spin sus-
ceptibility, x 00�Q, v�, for several temperatures larger than
Tc. x 00�Q, v� was derived from inelastic neutron scattering
data at Q0 � 1.5 Å21 via the fluctuation dissipation theo-
rem: x 00�Q, v� � �gmB�2p�1 2 exp�2bv��S �Q, v�.
From the spectra we derived a temperature dependent spin
relaxation rate, GQ , and a static staggered susceptibility,
xQ , by fitting to the following phenomenological response
function: x 00�Q, v� � xQGQv��v2 1 G

2
Q�.

Figures 3(d) and 3(e) show the corresponding tempera-
ture dependent parameters. A power law in T describes the
temperature dependence of GQ0 �T � � C ? kBT �T�u�a21

for T , 150 K while xQ0�T � can be described by a
Curie-Weiss law: xQ0�T � � �m2

Q0
�3kBu�1��1 1 T�u� in

FIG. 3. (a)– (c) x 00�Q0, v� at Q0 � 1.5 Å21 derived from
magnetic neutron scattering data via the fluctuation dissipation
theorem. The solid lines are fits as described in the text. (d),(e)
Temperature dependence of the relaxation rate, GQ0 �T�, and the
inverse susceptibility, x

21
Q0 �T�, derived from the fits.
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the entire temperature range. The best fit solid lines cor-
respond to a � 0.81�4�, C � 0.6�1�, mQ0 � 4.0�1�mB,
and u � 8.8�4� K. Though we have plotted and analyzed
data for Q0 � 1.5 Å21 we found similar results for G�T �
in analysis of wave vector integrated data which probe the
local spin susceptibility. At a quantum critical point, kBT
is the only low energy scale for local response functions. If
the Lorentzian form for x 00�Q, v� describes the spectrum,
then a must equal 1 at the critical point. This was the
exponent found in Monte Carlo simulations of classical
spins on a pyrochlore lattice [3]. The deviation of a from
unity in ZnCr2O4 is perhaps not surprising given that the
material does exhibit a magnetic phase transition. How-
ever, the fact that GQ tends to zero as T ! 0 rather than at
Tc indicates that the system may actually be approaching
a quantum disordered phase with a gap kBu � 0.75 meV
before being interrupted by a first order transition to an
unrelated competing phase. This idea is consistent with
Fig. 4 which compares the temperature dependent lattice
strain and magnetic Bragg peak intensity [Fig. 4(b)] to the
inelastic neutron scattering spectrum at Q0 � 1.5 Å21

[Fig. 4(a)]. Magnetic Bragg peaks, a tetragonal lattice
distortion, and the spin resonance all appear abruptly, and
without conventional critical fluctuations at Tc.

Theoretical work has shown that magnetic order can
not develop in an isotropic spin pyrochlore AFM [3,4].
There are many possible deviations from the perfect
model that could cause ZnCr2O4 to order nonetheless.
These include further neighbor interactions and spin space
anisotropy [6,8,9]. Because the transition in ZnCr2O4
is of the first order and involves a lattice distortion, we

FIG. 4 (color). (a) Color image of inelastic neutron scat-
tering for Q � 1.5 Å21. (b) T dependence of mag-
netic Bragg scattering from a powder (blue squares),
sm �

ym

�2p�3

R
Ĩ�Q, v�4pQ2 dQ dh̄v, where ym is the volume

per Cr13 ion, and of lattice strain along a and c (red circles)
measured by single crystal neutron diffraction.
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suggest that finite lattice rigidity is an important factor
at the phase transition in this material. Consider the
effect of tetragonal strain on magnetism in ZnCr2O4.
It is well known that the exchange interaction between
Cr31 ions whose oxygen coordination octahedra share an
edge is strongly dependent on the Cr-Cr spacing, r [19].
Analysis of a series of chromium oxides indicates that
dJ�dr � 40 meV�Å [20]. This implies that tetragonal
strain ea . 0 and ec , 0 yields weaker AFM interactions
in the basal plane, DJ� � r0eadJ�dr � 0.06 meV, and
stronger AFM interactions between all other spin pairs
DJk � r0�ea 1 ec��2dJ�dr � 20.04 meV. This asym-
metry reduces the mean field energy of the ordered
phase in ZnCr2O4 by D�H s	 � �5DJk 2 DJ���2 �
20.07 meV�Cr relative to the mean field ground state
energy in the cubic phase [21]. The result should be
Néel order in tetragonal ZnCr2O4 below an ordering
temperature that we denote TNt . Because order appears
abruptly and simultaneously with the tetragonal strain
we infer that TNt . Tc. This may be possible despite
the modest value of D�H s	 because of the strong local
constraints present when jT�QCW j ø 1. In addition there
could be other hitherto undetected lattice modifications at
Tc that also favor Néel order (see below).

The magnitude of the lattice distortion is controlled by
the need to balance the increase in lattice energy and the
decrease in entropy against the decrease in the energy of
the spin system. Equating the free energy F � �Hl 1

Hs	 2 TS of the competing phases at Tc implies that

D�Hs	 1 D�Hl	 2 TcDS � 0 (1)

when cooling through Tc. We can derive D�Hs	 from
Figs. 1(b) and 1(c) using the first moment sum rule [22]:

D�Hs	 � 2
3
2

h̄2
R`

0 v�1 2 e2b h̄v�DS �Q, v� dv

1 2 sinQr0�Qr0
.

(2)

Limiting the integral to 0.2 to 12 meV and averag-
ing data for 1.3 Å21 , Q , 2 Å21 yields a value of
D�Hs	 � 20.40�7� meV�Cr. From specific heat mea-
surements [5] we find that DS � 20.107R ln4�Cr cor-
responding to 2TcDS � 0.16 meV�Cr. The difference
between these numbers yields an estimate for the increase
in lattice energy D�Hl	 � 0.24�7� meV�Cr. The energy
associated with simple tetragonal strain [23] accounts
for only y0�c11�e2

c 1 2e2
a��2 1 c12�e2

a 1 2eaec�� �
0.026 meV�Cr so there are likely additional modifications
to the structure of ZnCr2O4 below Tc that help to stabilize
Néel order.

There are interesting analogies between the phase tran-
sition in ZnCr2O4 and the spin-Peierls (SP) transition. In
both cases the high T phase is near quantum critical and
can lower its energy through a lattice distortion. In both
cases the transition occurs from a strongly correlated para-
magnet: Tc ø QCW , and in both cases low energy spectral
weight is moved into a finite energy peak. There are also
important differences that render the transition in ZnCr2O4
a distinct new phenomenon in magnetism. The lattice dis-
tortion in ZnCr2O4 drives the spin system into an ordered
phase, not a quantum disordered phase. The transition in
ZnCr2O4 is of the first order while the SP transition is of
the second order. And the change in entropy at Tc plays an
important role in ZnCr2O4, not in a SP transition. The cen-
tral idea that finite lattice rigidity can drive a spin system
away from quantum criticality, however, does carry over
and might be relevant for other frustrated magnets when
symmetry breaking terms in the spin Hamiltonian fail to
induce magnetic order.
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