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Local stability implies global stability for the planar

Ricker competition model
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Abstract

Under certain analytic and geometric assumptions we show that local sta-
bility of the coexistence (positive) fixed point of the planar Ricker competition
model implies global stability with respect to the interior of the positive quad-
rant. This result is a confluence of ideas from Dynamical Systems, Geometry,
and Topology that provides a framework to the study of global stability for
other planar competition models.

Keys Words: Competition models, Local stability, Global stability, Critical
curves, Compact invariant set, Principal preimage function, fold, cusp.

1 Introduction

The question of global asymptotic stability has been of great interest in both dif-
ferential and difference equations for over five decades. Markus and Yamabe [18]
conjectured that the origin is globally asymptotically stable in the differential equa-
tion X ′(t) = F (X(t)), where F is defined on Rn if the origin is the unique fixed
point of F and the Jacobian matrix of F has negative real parts at every point in
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Rn. Later, Fessler [8], Glutsyuk [10], and Gutierrez [11] independently showed that
the conjecture is true in the plane, that is, R2.

LaSalle stated the discrete analog of the Markus-Yamabe Conjecture, namely if the
spectral radius of the Jacobian Matrix JF (X) of a map F on Rn at every point in Rn is
less than 1, then the unique fixed point at the origin is globally asymptotically stable.
Chamberland [2] and Martelli [19] showed, independently, that LaSalle conjecture
is false even for planar maps. While this approach to global stability may be of
great interest in differential equations and continuous dynamical systems, it does not,
however, receive the same attention in difference equations and discrete dynamical
systems. This is due to the fact that the above conjectures assume severe conditions
on the spectral radius of the Jacobian of the maps that are not satisfied even for the
most studied one-dimensional unimodal maps.

In our view, the focus of research on global stability should lie on the question of
when does local stability implies global stability. This approach has been very fruitful
in the case of one-dimensional unimodal maps. It is well-known (see, Devaney [5],
Elaydi [6], and Liz [16]) that in many well-know unimodal maps, such as the logistic
and the Ricker maps, local asymptotic stability of the fixed point implies global
asymptotic stability. Moreover, in Cull [4] and Sharkovsky et al [23], conditions were
given under which local asymptotic stability would imply global asymptotic stability
of the unique fixed point of a unimodal map.

This approach has been adopted by Hal Smith [24] where he showed that local
asymptotic stability implies global asymptotic stability for two-dimensional mono-
tone maps. This is a complete departure from LaSalle conjecture and while the
latter assumption is much weaker than that of LaSalle conjecture, the assumption of
monotonicity is rather restrictive.

In this paper we will address the global stability question in the spirit of Smith’s
results but without the restriction of monotonicity. Our focus will be on the Ricker
competition map, however we do expect our results to be extended to other classes
of non-invertible planar maps, such as the logistic map and the Cournout duoploy
competition model.

Our approach utilizes a set of tools from several areas of mathematics. Our first
tool is the notion of critical curves (general folds), originally introduced by Whit-
ney [25] and later popularized by Mira and his collaborators [1, 9, 15, 20, 21, 22].
The second tool we use is the topological notion of exposed points. We will use this
notion to describe the geometry of the image of our maps and detect sets where the
map is injective. Finally, we will use the notion of slow and fast stable manifold and
the notion of global unstable manifold to complete the proof of our results.

The results in this paper are related to the work done in [12] and [17], where the
authors gave necessary and sufficient conditions for the local asymptotic stability of
the positive fixed point of both the logistic and Ricker competition models, respec-

2



tively. It was shown that if the significant parameters, namely the carrying capacities
of the two species, lie in a certain region, called the stability region, then the positive
equilibrium point is locally asymptotically stable. Since the map has four parameters,
the task of determining the stability region in the parameter space is a formidable
task, see Figure 1.

In Elaydi and Lúıs [7], it was conjectured that if the positive equilibrium of the
Ricker competition model and other competition models as well is locally asymptoti-
cally stable, then it must be globally asymptotically stable with respect to the interior
of the first quadrant. In this paper we prove this conjecture under some analytic and
geometric conditions for the Ricker competition model. Our novel approach reveals
a confluence of ideas from Dynamical Systems, Geometry, and Topology that can be
used to study global stability for other planar competition models. For now, we will
focus in developing and establishing this theory for the Ricker competition map.

2 Preliminaries

We believe that it is worthwhile to review what have been done in [17] in regards to
the question of the local stability of the positive fixed point of the Ricker competition
map. This previous work is the first complete determination of the stability region
in the parameter space that produced the bifurcation diagram of Figure 1. Note
that Figure 1 not only provide us with the stability regions of all the three fixed
points of the map, but more importantly it shows that there is a period-doubling
bifurcation scenario reminiscent of the dynamics of one-dimensional unimodal maps.
It also shows that the possible presence of bubbles in the bifurcation diagrams of each
species separately.

We begin by stating the following planar Ricker type model with population num-
bers as state variable

{
pn+1 = pn exp(r − c11pn − c12qn)
qn+1 = qn exp(s− c21pn − c22qn)

, (2.1)

where the parameters r and s are the inherent exponential growth rates at low densi-
ties and ci,j, i, j = 1, 2, are the competition intensity coefficients measuring the effects
of intra-specific competition and inter-specific competition, with units 1/(population
units). More precisely, c11 and c22 are the intra-specific competition parameters while
c12 and c21 are the inter-specific competition parameters. Notice that, these six pa-
rameters are assume to be positive.

Scaling the state variables against the inherent carrying capacities

u =
c11
r
p and v =

c22
s
q
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we obtain
{

un+1 = un exp(r − run −
c12
c22

svn)

vn+1 = vn exp(s−
c21
c11

run − svn)
.

Finally, setting
x = ru and y = sv

we get {
xn+1 = xn exp(r − xn − ayn)
yn+1 = yn exp(s− bxn − yn)

, (2.2)

where we denote a = c12
c22

and b = c21
c11

, for simplicity. We remark here that we call
System (2.2) by Ricker competition model.

Let us represent System (2.2) by the following map

F (x, y) = (f1(x, y), f2(x, y)) = (xer−x−ay, yes−y−bx). (2.3)

The map F may possess a coexistence (positive) equilibrium point X∗ = (x∗, y∗)
given by

(x∗, y∗) =

(
as− r

ab− 1
,
br − s

ab− 1

)
.

The coexistence equilibrium point exists if and only if

as < r and br < s (2.4)

or
as > r and br > s. (2.5)

Notice that (2.4) implies that ab < 1 while (2.5) implies ab > 1.
When ab > 1, the coexistence equilibrium point is a saddle and the asymptotic at-

tractor of an orbit of (2.2) depends on its initial conditions. If ab = 1, the system (2.2)
has no coexistence equilibrium point. Henceforth, we shall assume that ab < 1. We
shall comment that this condition means that the inter-specific competition is less
than the intra-specific competition since c12c21 < c11c22.

An important result in [17] establishes criteria for the local stability of the coex-
istence equilibrium point (x∗, y∗) of the Ricker competition model. Namely,

Theorem 2.1 ([17]). Let a, b > 0 such that ab < 1. The coexistence fixed point

(x∗, y∗) =

(
as− r

ab− 1
,
br − s

ab− 1

)

of the Ricker competition model (2.2) is locally asymptotically stable if and only if

4(ab− 1) + 2(1− a)s + 2(1− b)r ≤ (as− r)(br − s) < (1− a)s+ (1− b)r. (2.6)
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Figure 1: The stability regions and the bifurcation scenario of the Ricker competition
model (2.2), in the parameter space (r, s), when the competition parameters a and b
are fixed such that ab < 1. S1 is the stability region of the coexistence equilibrium
point (x∗, y∗), R1 is the stability region of the exclusion fixed point (r, 0), and Q1 is
the stability region of the exclusion fixed point (0, s). A period-doubling bifurcation
scenario occurs (in the coexistence case) as we cross from S1 to S2, to S3, etc. Simi-
larly, one has a period-doubling scenario (in the exclusion case) in the x−axis as we
cross from R1 to R2, to R3, etc. Similarly, for Qi, i = 1, 2, . . .

The stability region in the parameter space (r, s) is denoted by S1 and is shown
in Figure 1. More precisely, S1 is the region in the r − s plane bounded by the lines
s = r/a, s = br and the curve γ1, where γ1 is part of a branch of the hyperbola
defined by

br2 + 2(1− b)r − (1 + ab)rs+ 2(1− a)s+ as2 + 4(ab− 1) = 0.

Equivalently, in the region defined by (2.6) and under assumption (2.4), the coexis-
tence fixed point is locally asymptotically stable if and only if (r, s) ∈ int(S1) ∪ γ1,
where int(S1) denotes the interior of the region S1.

Our main result in this paper establishes that in the region S1 the coexistence
fixed point of the Ricker competition model is globally asymptotically stable with
respect to the interior of the positive quadrant. We are able to show this fact when

5



the parameters r and s are between 1 and 2 and under some geometric conditions
that will be explain in details in Section 6

Before end this section, we should mention that Smith [24] used monotonicity to
prove the global stability of the fixed point of the system

{
un+1 = un exp(r(1− un − Bvn))
vn+1 = vn exp(s(1− Cun − vn))

, (2.7)

when r, s ≤ 1, in which the invariant set is [0, 1
r
] × [0, 1

s
]. Notice that by the change

of variables x = ru and y = sv, System (2.7) is equivalent to

{
xn+1 = xn exp(r − xn −

Br
s
yn)

yn+1 = yn exp(s− yn −
Cs
r
xn)

. (2.8)

Rewriting the parameters a = Br
s
and b = Cs

r
, it follows that System (2.8) is equivalent

to System (2.2). Observe that condition ab < 1 is equivalent to BC < 1.
Under the assumptions that r and s are in the unit interval, System (2.7) is

monotone. So Smith’s result states that when both of the carrying capacities r and
s are in the unit interval, the local stability of the coexistence fixed point of (2.2)
implies global stability with respect to the interior of the first quadrant.

3 Critical curves and the singularities

In this section, we introduce concepts from singularity theory and topology that will
be used in our results. Let us first review some nomenclature present in the classical
work of Whitney [25].

Throughout this section, let F be a differentiable map defined on a open set
U ⊆ R2. For a point p ∈ U , we will denote the Jacobian matrix of the map F at
p by JF (p) and the determinant of the Jacobian matrix by det JF (p). In addition,
whenever it is clear that we are referring to det JF (p), we will use J(p).

The map F is said to be regular at a point p = (x, y) if J(p) 6= 0. Otherwise,
we say that F is singular at p. One of our approaches in studying the map F is to
understand its image by considering its regular and singular set.

Definition 3.1. Let F be a C2 map defined on an open subset U ⊆ R2. We say that
p ∈ U is a good point if either J(p) 6= 0 or ∇J(p) 6= 0, where ∇ denotes the gradient.
We say that the map F is good if every point of U is good.

Observe that ∇J(p) 6= 0 if either Jx(p) or Jy(p) is not zero. The following lemma
justifies the usage of the phrase critical curves.
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Lemma 3.2. Let F be a good map defined on U ⊆ R2. Then the singular points of
the map F form differentiable curves in U , called the critical curves of F .

The proof of this lemma can be found in [25, p. 378] and although it is simple, it
is worthwhile to repeat it here. Indeed, let p be a singular point of the good map F .
Then J(p) = 0 and ∇J(p) 6= 0. Hence by the implicit function theorem, the solutions
of J(p) = 0 lie on smooth curves.

We observe that Mira [1] defined the fundamental critical curve of a 2−dimensional
continuous good map F as the set of points for which the Jacobian determinant of F
vanishes, or for which the map F is not differentiable. In other words,

LC−1 = {p ∈ U : J(p) = 0, or F is not differentiable in p}.

Let φ(t) be a C2 parametrization of the critical curve LC−1 through p, with
φ(0) = p. We say p is a fold point of F if

d

dt
(F ◦ φ)(0) 6= 0, (3.1)

and p is a cusp point of F if

d

dt
(F ◦ φ)(0) = 0 and

d2

dt2
(F ◦ φ)(0) 6= 0. (3.2)

Note that p is a fold point of F if the curve LC0 = F (LC−1), that is, the image of
LC−1 is a smooth curve with nonzero tangent vector at F (p), and p is a cusp point if
the tangent vector is zero at F (p) but becomes nonzero at a positive rate as we move
away from p on LC−1. It should be noted that it follows from the definition that cusp
points are isolated.

Definition 3.3. A point p is an excellent point of a good map F if it is either a
regular, fold, or a cusp point. The map F is excellent if each point of its domain is
excellent.

We will later show in Section 4 that the planar Ricker competition model has ex-
actly one cusp point on the critical curve LC−1 and all other points are folds. In other
words, we will show that the Ricker map is excellent. This is very important because
the structure of the map near such points is known and has been characterized. In
the case of fold points we have the following result.

Theorem 3.4 (Theorem 15A, [25]). Let F : U → R2 be a differentiable map. If
p ∈ U is a fold point, then there are smooth coordinates (x1, y1) and (x2, y2) around
p and F (p) such that F takes the form x2 = x1 and y2 = y21.
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The next theorem deals with the structure at cusp points.

Theorem 3.5 (Theorem 16A, [25]). Let F : U → R2 be a smooth map. If p ∈ U is a
cusp point, then there are smooth coordinates (x1, y1) and (x2, y2) around p and F (p)
such that F takes the form x2 = x1 and y2 = y31 − x1y1.

The coordinate systems introduced in Theorem 3.4 and 3.5 are called the normal
forms for a fold and a cusp, respectively. The structure of F , in a normal form, at a
fold and at a cusp is depicted in Figure 2.

Figure 2: On the left, a depiction of the local structure near a fold point and on the
right near a cusp point under a normal coordinate form.

We conclude this section with some ideas and results from differential topology to
study global injectivity. In this paper, we use these ideas to develop our geometric
analysis of the Ricker map as well as to ensure global injectivity in closed regions of
the domain.

Definition 3.6. Let U ⊆ R2 be a compact region, p ∈ U , and v ∈ S1, that is, a point
in the unit circle. We say that p is exposed in the direction of v if there exists ε > 0
such that the ray rv(t) = p+ tv ∈ U for t ∈ (0, ε).

We remark that if p ∈ int(U), then p is exposed in every direction. In our
applications, the notion of exposed points will be used to find other points belonging
to the region U . Namely, if p ∈ U is exposed in the direction of v, then for some t > 0,
rv(t) ∈ ∂U . Geometrically, this is to say that the ray in the direction v eventually
will hit the boundary of U .

In order to use this concept to establish global injectivity of maps in certain
compact regions we will need the following very interesting result.
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Theorem 3.7 (Kestelman [13]). Let F : K → Rn be an open and locally injective
map. If K ⊆ Rn is a compact set, ∂K is connected, and F |∂K is injective, then F is
injective on K.

Simply said, Theorem 3.7 states that in order to show injectivity on a compact
region, it suffices to show injectivity in the boundary if the map is locally invertible.

4 The geometry of the Ricker Map

Our main focus will be on the Ricker competition map (2.2). Let us recall its defini-
tion, F : R2

+ → R2
+ given by

F (x, y) = (f1(x, y), f2(x, y)) = (xer−x−ay, yes−y−bx)

where r, s, a, b > 0. The Jacobian matrix of F is given by

JF (x, y) =

[
(1− x)er−x−ay −axer−x−ay

−byes−y−bx (1− y)es−y−bx

]
, (4.1)

and consequently the determinant is given by

J(x, y) = −er+s−x−bx−y−ay(−1 + x+ y − xy + abxy). (4.2)

Hence if follows that det JF (x, y) = 0 if and only if

y =
1− x

1− (1− ab)x
, x 6=

1

1− ab
.

From expression above we have that the critical curve LC−1 is given by

LC−1 =

{
(x, y) ∈ R2

+ : y =
1− x

1− (1− ab)x
, x 6=

1

1− ab

}
, (4.3)

and it is formed by two branches:

(i) LC1
−1, a curve connecting the points (0, 1) and (1, 0), for x < 1

1−ab
.

(ii) LC2
−1, an unbounded curve for x > 1

1−ab
.

These two connected components of LC−1 divide the domain R2
+ in the following

regions.
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R1 =

{
(x, y) ∈ R2

+ : y ≤
1− x

1− (1− ab)x
and x <

1

1− ab

}
,

R3 =

{
(x, y) ∈ R2

+ : y ≥
1− x

1− (1− ab)x
and x >

1

1− ab

}
, and

R2 = (R2
+\R1 ∪ R3)

Away from the critical curves, every point in R2
+ is a regular point and in each

region Ri, the determinant of the Jacobian does not change sign. In fact, we have the
following result.

Lemma 4.1. The following statements hold true for the determinant of the Jacobian
of the map F :

1. J(x, y) > 0 for all (x, y) ∈ R1\LC
1
−1,

2. J(x, y) < 0 for all (x, y) ∈ R2\LC−1,

3. J(x, y) > 0 for all (x, y) ∈ R3\LC
2
−1.

Proof. Let us consider the three regions separately.

1. Let (x, y) ∈ R1\LC
1
−1. Then 0 ≤ x < 1 and y < 1−x

1−(1−ab)x
. Since 0 < ab < 1, it

follows that 0 < 1 − (1 − ab)x < 1. Hence from the relation y < 1−x
1−(1−ab)x

we
have that

y(1− (1− ab)x) − 1 + x < 0.

Consequently the sign in (4.2) is positive.

2. Let us define the sets

R2,1 =

{
(x, y) ∈ R2

+ : y >
1− x

1− (1− ab)x
and x <

1

1− ab

}
,

R2,2 =

{
(x, y) ∈ R2

+ : x =
1

1− ab
and y ≥ 0

}

and

R2,3 =

{
(x, y) ∈ R2

+ : y <
1− x

1− (1− ab)x
and x >

1

1− ab

}
.

Then R2 = ∪3
i=1R2,i ∪ LC−1. We now subdivide this case in the following sub-

cases.

10



(a) Let (x, y) ∈ R2,1. Since (1− ab)x < 1, then from the relation y > 1−x
1−(1−ab)x

we have that y(1− (1− ab)x) − 1 + x > 0. Hence J(x, y) < 0.

(b) Let (x, y) ∈ R2,2. In this case it follows that

−1 + x+ y(1− (1− ab)x) =
ab

1− ab
> 0.

Hence J(x, y) < 0.

(c) Analogously we show that det(J(x, y)) < 0 if (x, y) ∈ R2,3.

3. The proof is similar to the above cases and will be omitted.

Remark 4.2. It follows from Lemma 4.1 that on R1\LC
1
−1 and R3\LC

2
−1 the map F

is orientation preserving, while it is orientation reversing on R2\LC−1.

We summarize our notation and results in Figure 3 where we depict the relative
position of these three regions and the sign of the determinant of the Jacobian map.

Since our interest is to understanding the Ricker Map and its dynamics, we will
be concerned with iterations of F . In particular, we will look at the dynamics of the
images of the critical curves. Let us now give the the definition of critical curves of
any rank.

Definition 4.3. The critical curves of rank k are the images of rank k of LC−1

denoted by

LCk−1 = F k(LC−1), k = 0, 1, 2, . . .

For the Ricker map F given in (2.3), the curve LC0 is formed by two branches:

(i) The curve LC1
0 = F (LC1

−1) in which the end points are (er−1, 0) and (0, es−1).

(ii) The curve LC2
0 = F (LC2

−1).

A prototype of the relative positions of the curves LC−1, LC0, and LC1 are de-
picted in Figure 4. We will show that for all r, s > 0, the prototypes in Figure 4
reveals the geometric information of the image of the Ricker map. More precisely,
LC2

0 is a curve lying below LC1
0 and that the curve LC1

0 bounds the image of F .
Hence the map F reaches its maximum value on LC1

0 .
In order to formally establish the geometry of the image of the Ricker map, we

will need tools from differential topology and some analytical analysis. Let us state
the preliminary results we will need.
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1

1

R1

R3

R2,3

R2,1
R2,2

det J > 0

det J > 0

det J < 0

det J < 0
LC1

−1

LC2
−1

x

y

1

1− ab

1

1− ab

Figure 3: The subdivision of the positive quadrant into three connected regions R1,
R2 and R3 which are bounded by the critical curves LC1

−1 and LC2
−1.

Lemma 4.4. Let F be the Ricker map F given in (2.3). The following statements
hold.

(i) The x-axis and y-axis are invariant sets.

(ii) lim
‖p‖→∞

F (p) = (0, 0).

In particular, F has a continuous extension to the one-point compactification of

R2
+, denoted by R̂2

+ = R2
+ ∪ {∞}. Moreover, F (R2

+) is compact.

Proof. Let us denote the x-axis and the y-axis by X = {(x, 0)| x ≥ 0} and Y =
{(0, y)| y ≥ 0}, respectively. Clearly, if p = (x, 0) ∈ X , then we have that F (p) =
(xer−x, 0) ∈ X . Also, if p = (x, y) and F (p) ∈ X , then it must be that y = 0.
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LC2
2

LC1
2

LC0
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ã
s-1

1

1

A

x

y

LC
-1
1

LC0
1

LC1
1

LC0
2

LC1
2

1

1

ã
r-1

ã
s-1

B

x

y

LC
-1
1

LC0
1

LC1
1

LC0
2

LC1
2

1

1

ã
r-1

ã
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x

y

LC
-1
1

LC0
1

LC1
1

LC1
2

LC0
2

ã
r-1

ã
s-1

1

1
D

x

y

Figure 4: The relative position of the first critical curves LC−1, LC0, LC1 and LC2

according to the values of the carrying capacities r and s when a = b = 0.5. In plot
A we have r > 1 and s > 1, in plot B one has r > 1 and s < 1, in plot C we have
r < 1 and s > 1 and in plot D one has r < 1 and s < 1.

Therefore, X is an invariant set. By a similar argument, one may show that Y is also
invariant.

Next, let p = (x, y). If ‖p‖ → ∞, then x → ∞ or y → ∞. Without loss of
generality, let us assume that x → ∞. Therefore,
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lim
‖p‖→∞

F (p) = lim
x→∞

F (x, y) = lim
x→∞

(xer−x−ay, yes−y−bx) = (0, 0) (4.4)

as we desired.
Now, let R̂2

+ = R2
+∪{∞} be the one-point compactification of R2

+, see [27] for the

precise topological definitions. Let F̂ : R̂2
+ → R̂2

+ be the map given by

F̂ (x, y) =

{
f(x, y), if (x, y) ∈ R2

+

(0, 0), if (x, y) = ∞.

From equation (4.4), F̂ is continuous and we conclude that F̂
(
R̂2

+

)
is compact.

Since F̂ (∞) = (0, 0) and (0, 0) ∈ F (R2
+) since it is a fixed point of F , it follows that

F̂
(
R̂2

+

)
= F

(
R2

+

)
and hence F (R2

+) is compact.

Lemma 4.5. For the Ricker F given in (2.3), we have

∂F
(
R2

+

)
⊆ F

(
∂R2

+

)
∪ LC0

Proof. Let q ∈ ∂F
(
R2

+

)
, then because F (R2

+) is compact, hence closed, there is
p ∈ R2

+ with F (p) = q. Then we have that p is either a regular or a singular value of
F .

First, let us assume that p is singular, then p ∈ LC−1 and q ∈ LC0. Next,
suppose p is regular. We have two cases. If p ∈ int(R2

+), then there is a δ > 0 such
that B(p, δ) ⊆ R2

+, where B(p, δ) is the ball with radius δ centered at p. Since p is
regular, there is ε > 0 such that B(F (p), ε) = B(q, ε) ⊆ F

(
R2

+

)
, a contradiction as

q ∈ ∂F
(
R2

+

)
. Else, p ∈ ∂R2

+ and hence q ∈ F
(
∂R2

+

)
.

Remark 4.6. This is a general result and its proof is also valid for maps of class C1

on general compact Euclidean domains. Heuristically, Lemma. 4.5 states that the
images of regular values cannot be on the boundary and any new boundary points
must be images of singular points.

Theorem 4.7. The Ricker map F , as given in (2.3), is excellent.

Proof. We will show that all the points in LC−1 are fold points except for one cusp
point P̂ in LC2

−1.
We will begin considering the first component of LC−1, namely LC1

−1. Using the
definition of a fold point as given in (3.1), we now consider a parametrization of LC1

−1

given by a curve ϕ1 defined as ϕ1 : [0, 1] → R2, where

14



ϕ1(t) =

(
t ,

1− t

1− t + abt

)

We know from [25] that it suffices to show that for the parametrization ϕ1 given
above, we have

d

dt
(F ◦ φ1)(0) 6= 0.

Let F ◦ ϕ1(t) = (α1(t), α2(t)) = α(t). Thus, α is a curve from α(0) = (0, s) to
α(1) = (r, 0). We will show that α′

1(t) and α′
2(t) do not vanish for t ∈ [0, 1].

Using the parametrization of LC1
−1 above, a direct computation yields:

α′(t) = (α′
1(t), α

′
2(t)) = (ρ1(t)h(t), ρ2(t)h(t)) ,

where

ρ1(t) = −
1

(1− t+ abt)2
· e

r−rt+rabt−t+t
2
−abt

2+ta−a

1−t+abt ,

ρ2(t) =
b

(1− t + abt)3
e

s−st+sabt−1+t−bt+bt
2
−b

2
t
2
a

1−t+abt , and

h(t) = (ab− 1)2 t3 +
(
−3− a2b2 + 4 ab

)
t2 +

(
−2 ab+ 3− a2b

)
t− 1 .

Therefore, since ρ1(t) and ρ2(t) do not vanish, in order for α′
1(t) or α′

2(t) to be
equal zero, we must have h(t) = 0. We will now show that the cubic polynomial h(t)
does not have roots on the interval [0, 1]. Indeed, we can expand h(t) and manipulate
it as follows,

h(t) = −1 + (−2ab+ 3− a2b)t+ (−3 − a2b2 + 4ab)t2 + (ab− 1)2t3

= −a2bt− (1− t)(1 + ((ab− 1)t)2)

Therefore, h(t) = −a2bt − (1 − t)(1 + ((ab− 1)t)2) < 0 for all 0 ≤ t < 1 and for
t = 1, h(1) = −a2b < 0. Hence h(t) does not vanish in [0, 1] and all points in LC1

−1

are fold points as we claimed.
Now, we will do a similar analysis for LC2

−1 and show that all points, except one,
are fold points and the exception is a cusp point.

Consider a parametrization of LC2
−1 given by a curve ϕ2 : (0, 1) → R2 with

15



ϕ2(t) =

(
1

(1− ab) t
,
(1− ab)t− 1

(1− ab)(1 − t)

)

Now let F ◦ ϕ2(t) = (β1(t), β2(t)) = β(t). From (ii) in Lemma 4.4, we have

lim
t→0

β(t) = lim
t→1

β(t) = (0, 0).

Also, for any t ∈ (0, 1), we have that β(t) ∈ int(R2
+). Thus β is a curve in the

first quadrant that begins and ends at the origin, hence it must change direction at
least once, that is, there is t0 such that β ′(t0) = 0.

A direct computation shows that

β ′(t) = (β ′
1(t), β

′
2(t)) = (ρ1(t)h(t), ρ2(t)h(t)) ,

ρ1(t) = −
1

(1− ab)2 t3 (t− 1)2
· e

−rt
2+rt+rt

2
ab−rtab+t−1+at

2
−a

2
t
2
b−at

(−1+ab)t(t−1) ,

ρ2(t) =
b

(1− ab)2 t2 (t− 1)3
· be

−st
2+st+st

2
ab−stab+t

2
−t

2
ab−t+tb−b

(−1+ab)t(t−1) , and

h(t) = (1− ab)t3 + (2ab+ a2b− 3)t2 + (3− ab)t− 1 .

It is clear that ρ1(t) and ρ2(t) do not vanish in (0, 1), thus if β ′
1(t) or β

′
2(t) is equal

to zero, then both are.
We now claim that the cubic polynomial h(t) has exactly one root of multiplicity

one in the interval (0, 1). Indeed, since β(t) is continuous, it follows by our observation
above that the curve β must change directions, we must have that h(t) has a root of
odd degree in t0 ∈ (0, 1). This can also be analytically verified as h(0) = −1 < 0 and
h(1) = a2b > 0.

Suppose towards a contradiction that either t0 has multiplicity greater than one
or there are other roots of h(t) in (0, 1). A simple analysis then shows that h has an
inflection point in (0, 1), that is, h′′(t) = 0 has a solution in (0, 1). A computation
yields the solution of h′′(t) = 0 to be

t =
3− 2ab− a2b

3(1− ab)
∈ (0, 1).

From the inequalities above, we obtain two conditions on a, b

(i) b <
3

a(2 + a)
and

16



(ii) a > 1.
Next, since h′(t) must have solutions in (0, 1), it must be that its discriminant is

nonnegative. In other words,

∆ = a4b2 − 6a2b+ 4a3b2 + a2b2 = a2b(a2b− 6 + 4ab+ b) ≥ 0

Using (i) above, we have that

a2b− 6 + 4ab+ b <
3a2

a(2 + a)
− 6 +

4a

a(2 + a)
+

3

a(2 + a)

<
−3(a− 1)(a+ 1)

a(a+ 2)

< 0

since by (ii) a > 1. This is a contradiction and therefore there is a unique point
t0 ∈ (0, 1) where h(t0) = 0 with h′(t0) 6= 0. Thus

d

dt
(F ◦ ϕ2)(t) 6= 0,

for all t 6= t0 and

d

dt
(F ◦ ϕ2)(t0) = 0 and

d2

dt2
(F ◦ ϕ)(t0) 6= 0.

This shows that every point of LC2
−1 is a fold except for P̂ = ϕ2(t0) which is a

cusp point. This shows that the Ricker map is an excellent map.

One interesting geometric consequence of the computation in Theorem 4.7 is the
following result.

Corollary 4.8. The location of the curve LC2
0 is completely determined by the cusp

point P̂ , in fact, we have that

LC2
0 ⊆ [0, f1(P̂ )]× [0, f2(P̂ )]

Proof. From the computation done in Theorem 4.7, we have that

(i) For 0 < t < t0 we have that β ′
1(t) and β ′

2(t) are negative, and

(ii) For t0 < t < 1 we have that β ′
1(t) and β ′

2(t) are positive.

17



Hence, β1(t0) ≤ β1(t) and β2(t0) ≤ β2(t) for all t ∈ (0, 1). From which we conclude
that

LC2
0 ⊆ [0, f1(P̂ )]× [0, f2(P̂ )] .

Theorem 4.9. In the regions R1 and R3, the restriction of the Ricker map F , as
given in (2.3), is injective.

Proof. We start with F1 = F |R1 and will will establish that it is injective by showing
that F1 satisfies the conditions of Theorem 3.7. In particular, we will show that F1

is injective when restricted to the boundary. Let us denote the boundary of R1 as
follows.

∂R1 = X ∪ Y ∪ LC1
−1

where X = [0, 1]× {0} and Y = {0} × [0, 1], that is, the x-axis and y-axis restricted
to R1. First, it is easy to see that F1|X and F1|Y are injective since F1|X and F1|Y
are increasing functions over [0, 1]. Next, from (i) in Lemma. 4.4, F1(X) ∩ F1(Y ) =
F1(X ∩ Y ) = {(0, 0)}. Similarly,

F1(X) ∩ F1(LC
1
−1) = F1(X ∩ LC1

−1) and F1(Y ) ∩ F1(LC
1
−1) = F1(Y ∩ LC1

−1)

Hence, it suffices to show that F1|LC1
−1

is injective. From the analytic work we

developed in the proof of Theorem 4.7 we see that the image of LC1
−1 is a graph over

the x-axis and y-axis. Indeed, we established that α′(t) 6= 0 and all the points in
LC1

−1 are fold points. From Theorem 3.4, we know the local structure at each fold
point and we conclude that F1 is locally injective on R1. The other points in R1 are
regular points of F1, hence the map is locally injective. Finally, we conclude that F1

is injective.
Now, let us consider F3 = F |R3. In a similar manner we will show that F3

is injective by showing that F3 satisfies the conditions of Theorem 3.7. However,
Theorem 3.7 is only valid for compact sets. Therefore, we must consider the one

point compactification of R2
+, denoted by R̂2

+. By Lemma 4.4, we have that F has

a continuous extension to F̂ : R̂2
+ → R̂2

+. Therefore, without loss of generality,
we may view that R3 as a compact set and after all we can apply Theorem 3.7 to
establish injectivity. Observe that ∂R3 = LC2

−1 ∪{∞} and we will show that F3|LC2
−1

is injective.
Once again from the work done in Theorem 4.7, we have that every point of LC2

−1

is a fold except for one cusp point at P̂ . Therefore, from the structure Theorems 3.4
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and 3.5 we see that F3 is locally injective. Thus an application of Theorem 3.7 shows
that F3 is injective.

Remark 4.10. It is not hard to show that the map F is injective in the interior of R1

and R3. Indeed, one can use Theorem 5.1 in the next section (see Smith [24]). The
novelty of our work is to show that injective persists on the boundary.

From our analysis so far, we can now finally show that the prototype of the image
of the Ricker map is indeed as shown in Figure 4. More precisely, we have the following
result.

Theorem 4.11. Let D be the region enclosed by the curve LC1
0 and the axes. Then

Im(F ) = D.

Proof. We know from Lemma 4.4 that the axes are invariant and Im(F ) is a com-
pact set. Then F

(
∂R2

+

)
= X ∪ Y where X = {(x, 0)| 0 ≤ x ≤ er−1} and Y =

{(0, y)| 0 ≤ y ≤ es−1}.

Now, we claim that F (P̂ ) ∈ intF
(
R2

+

)
. Indeed, by the local structure at the

cusp, given by Theorem 3.5, implies that F (P̂ ) is an exposed point in the image of

F . In fact, there is an open ball around P̂ that maps to an open ball at F (P̂ ), as

depicted in Figure 5, establishing that F (P̂ ) ∈ intF
(
R2

+

)
and hence exposed in every

direction.

P̂

F (P̂ )
FLC2

−1

LC2
0

xx

y y

Figure 5: The cusp point in an interior point of the image, hence exposed.

Next, by Lemma 4.5 we have that

∂F
(
R2

+

)
⊆ X ∪ Y ∪ F (LC−1) . (4.5)

From the definition of an exposed point, any ray starting at F (P̂ ) must intersect
∂F

(
R2

+

)
. Using (4.5), in the direction of the first quadrant, a ray must intersect ∂D,

as depicted in Figure 4.
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F (P̂ )

∂D = LC1
0

LC2
0

α(t1)

α(t2)

x

y

Figure 6: The rays emanating from the exposed cusp in the positive direction must
intersect ∂D.

Using the notation from Theorem 4.7, recall that the parametrization of LC1
0 is

a curve α. Then, let us denote the intersections of the ray starting at F (P̂ ) in the
direction v = (0, 1) and v = (1, 0) by α(t1) and α(t2), respectively. We have shown,
that α′(t) 6= 0 which implies the following:

(i) For 0 ≤ t ≤ t1 we have that α2(t) > f2

(
P̂
)
, and

(ii) For t2 ≤ t ≤ 1 we have that α1(t) > f1

(
P̂
)
.

Therefore LC2
0 will remain below LC1

0 and we will have

∂F
(
R2

+

)
= X ∪ Y ∪ LC1

0 .

5 Pre-image function

We start this section determining the cardinality of the pre-images of points in the
codomain of the Ricker map. First, let us recall that a map is proper if the inverse
image of a compact set is compact. The following result is well known in this field,
see [3, p.27]

Theorem 5.1 (Chow-Hale, page 27 [3]). Suppose X and Y are metric spaces, F :
X → Y is continuous and proper, and, for each y ∈ Y , let N(y) be the cardinal
number of F−1(y). Then N(y) is finite and constant on each connected component of
Y \LC0.
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In our applications, we will consider the continuous extension F̂ of the Ricker map
F which is clearly proper. Hence Theorem 5.1 applies to our model.

Observe that R2
+\LC0 consists of three connected components C1, C2, and C3, as

depicted in Figure 8, and by Theorem 5.1, F−1(y) has constant finite cardinality on
each component. Let us denote by Zn the zone in R2

+ where the cardinality of F−1(y)
is n.

P̂

FLC2
−1

F (P̂ )

LC2
0

x x

y y

Figure 7: Number of pre-images of a point near the cusp point. The three points
in the domain inside the gray neighborhood of the cusp in the left hand panel are
mapped to the same point inside the gray region in the right hand panel.

From Theorem 4.11, we have that C3 is in zone Z0. By Theorem 3.4 we know that
a point in C2 has exactly two pre-images, i.e, C2 is in zone Z2. Now, let q ∈ C1 be
a point close to the cusp point (see Figure 5). Then, q has exactly four pre-images:
one belongs to D with smaller x and smaller y than q and the other three are coming
from the local structure near the cusp point by Theorem 3.5. Hence, we have that
C1 is in zone Z4.

From the dynamics of the one dimensional Ricker map, we see that points in the
axes are in zone Z2, except for the critical points. In fact, the critical curve LC1

0 is
contained in zone Z1. Finally, by the local structure near the cusp point it follows
that on LC2

0 the map is contained in zone Z3. In Figure 8 is presented a prototype
of the number of pre-images of a point in each connected component.

The analysis of the Ricker map via its isoclines plays an important role and we
now recall its definition. The isoclines of a map F = (f, g) are defined as f(x, y) = x
and g(x, y) = y. In the Ricker competition map defined by (2.3) these are the lines
ay + x = r denoted by ℓ1 and y + bx = s denoted by ℓ2. Moreover, the map F
takes a point (x, y) ∈ R2

+ lying above (below) ℓ1 to a point with a smaller (larger)
x−coordinate. Similarly, the map F takes a point (x, y) ∈ R2

+ lying above (below)
s2 to a point with smaller (larger) y−coordinate. Note that on the isocline ℓ1, the
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C1

C2

C3

Z4

Z2

Z2

Z2

Z0

Z1

Z3

x

y

Figure 8: The set R2
+\LC0 consists of three connected components C1, C2, and C3.

In each component, the number of pre-images of a point is constant and we denoted
a zone by Zi if this number is i. In addition, the arrows indicate the number of
pre-images in the boundary.

population x has no growth, that is xn+1 = xn and on the isocline ℓ2 the population
y has no growth, that is yn+1 = yn.

When the two isoclines ℓ1 and ℓ2 intersect in the positive quadrant, then the map
has a coexistence fixed point. In the case of the Ricker competition model this point
is given by

(x∗, y∗) =

(
r − as

1− ab
,
s− br

1− ab

)
.

Remember that we are considering ab < 1 since when ab > 1 the asymptotic attractor
of an orbit depends on its initial condition. The case ab = 1 is discarded since in this
case the two isoclines are parallel and no coexistence fixed point is presented.

For convenience we divide the forward invariant region D into four regions Γ1, Γ2,
Γ3 and Γ4 (see Figure 9) be as follows

Γ1 = {(x, y) ∈ R2
+ : y < −bx+ s and y <

−x+ r

a
},

Γ2 = {(x, y) ∈ R2
+ :

−x+ a

a
≤ y ≤ −bx+ s and y ≤ LC1

0},

Γ3 = {(x, y) ∈ R2
+ : −bx+ s ≤ y ≤

−x+ a

a
and y ≤ LC1

0},

22



and

Γ4 = {(x, y) ∈ R2
+ : y > −bx + s and y >

−x+ a

a
and y ≤ LC1

0}.

The direction of the orbits in each one of these four sets is shown by the directions

r

Γ1

Γ2

Γ3

Γ4

er−1

es−1

s

ℓ11

ℓ21

ℓ12

ℓ22

x

y

Figure 9: The subdivision of the invariant region D into four regions (Γ1, Γ2, Γ3 and
Γ4). The intersection of the two isoclines indicates the existence of a positive fixed
point. The arrows indicates the direction of the orbits in each one of the sets Γi,
i = 1, 2, 3, 4.

of the arrows. For more details about this point see [17]. Let ℓ11, ℓ
2
1, ℓ

1
2 and ℓ22 be the

line segments on the isoclines as it is shown in Figure 9. Notice that we require that

(x∗, y∗) ∈ ℓji , i, j = 1, 2

and by geometrical construction we have that

ℓ1 = ℓ11 ∪ ℓ21 and ℓ2 = ℓ12 ∪ ℓ22.

We now state the following lemma

Lemma 5.2. The following are true.
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1. if (x, y) ∈ ℓ11 then either F (x, y) = (0, s) or F (x, y) ∈ Γ2 ∪ Γ4\ℓ1,

2. if (x, y) ∈ ℓ12 then F (x, y) ∈ Γ1 ∪ Γ2\ℓ2,

3. if (x, y) ∈ ℓ22 then either F (x, y) = (r, 0) or F (x, y) ∈ Γ3 ∪ Γ4\ℓ2,

4. if (x, y) ∈ ℓ21 then F (x, y) ∈ Γ1 ∪ Γ3\ℓ1.

Proof. We present the proof for the first case and the other cases can be investigated
in a similar way. On the line segment isocline ℓ11, if x = 0 then F (x, y) = (0, s), if
(x, y) = (x∗, y∗) then F (x, y) = (x∗, y∗). If not, since y is fixed and x is moving to
the right, it follows that F (x, y) ∈ Γ2 ∪ Γ4\ℓ1.

Since the image of R1 is the region D we will define the principal pre-image
function as

F−1
p : D → R1. (5.1)

Due the fact that C2 is zone Z2, a secondary pre-image may exists on D\R1. Hence,
we define the secondary pre-image function as

F−1
s : D → D\R1. (5.2)

Notice that both F−1
p and F−1

s are continuous.
Using the pre-image function we prove the lemma below.

Lemma 5.3. The following statements are true.

1. If (x, y) ∈ Γ3 then F (x, y) /∈ Γ2 with the exception of the fixed point (x∗, y∗).

2. If (x, y) ∈ Γ2 then F (x, y) /∈ Γ3 with the exception of the fixed point (x∗, y∗).

Proof. Since the boundary of Γ3, ∂Γ3, is a compact set and F is continuous, we have
that F (∂Γ3) is a compact set. Now

F (0, es−1) = exp(2s− 1− es−1)





> s if s < 1
= 1 if s = 1
< s if s > 1

.

Therefore, the image of the line segment Υ = {y : s ≤ y ≤ es−1} on the y− axis, is a
segment Υ′ on the y−axis connecting the points (0, s) and (0, exp(2s−1−es−1)) either
above or below (0, s). By Lemma 5.2, ℓ1

′

1 = F (ℓ11) is a curve connecting the points
(0, s) and (x∗, y∗) passing on the set Γ3∪Γ4 and ℓ1

′

2 = F (ℓ12) is a curve connecting the
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points (x∗, y∗) and (xp, yp) ∈ Γ1∪Γ3, lying on the set Γ1∪Γ3. Consequently, the image
of the curve lc0 = LC1

0∩Γ3 is the curve lc
′
0 connecting the points (0, exp(2s−1−es−1))

and (xp, yp) (since F (∂Γ3) is a compact set). Hence, F (∂Γ3) is the closed curve
Υ′ℓ1

′

1 ℓ
1′

1 lc
′
0. Moreover, if X ∈ F (∂Γ3), then X /∈ Γ2 with the exception of the positive

fixed point. Notice that, the image of the boundary of Γ3 is the boundary of F (Γ3).
Finally, we will show that F (Γ3) ∩ Γ2 = ∅. If not there exists (x0, y0) ∈ int (Γ3)

such that F (x0, y0) = (x̂0, ŷ0) ∈ Γ2 and F (x0, y0) 6= (x∗, y∗). Let B = F (Γ3)∩Γ2 6= ∅.
Then B is compact and ∂B 6= ∅. Let q 6= (x∗, y∗) ∈ ∂B, then F−1

s (q) ∈ int (Γ3).
Since the secondary pre-image function is continuous, for some δ > 0, F−1

s (B(q, δ)) ⊂
int(Γ3), a contradiction.

The second part of the Lemma can be similarly established.

6 Main result

In this section, we are focused on the global dynamics of the positive (coexistence)
equilibrium point of the Ricker competition model (2.2). In particular, we prove that
if ab < 1, and the coexistence equilibrium is locally asymptotic stable, then it is
globally asymptotic stable provided that certain conditions are satisfied. Below we
state our main result.

Theorem 6.1. Let F be the Ricker competition model (2.2) with 1 < r, s < 2. Sup-
pose that the coexistence fixed point X∗ =

(
aL−K
ab−1

, bK−L
ab−1

)
of F is locally asymptotically

stable. Assume the following conditions:

1. The region R1 is a contained in the region Γ1.

2. For all m 6= n, LC1
m ∩ LC1

n = ∅.

Then X∗ is globally asymptotically stable with respect to the interior of the first
quadrant.

The proof of Theorem 6.1 now proceeds in a series of Theorems and Lemmas. We
will utilize a mixture of tools and ideas from geometry, topology, and analysis. Before
we embark in the proof, we shall make a few remarks about our assumptions.

The hypotheses that the carrying capacities satisfy 1 ≤ r, s ≤ 2, ensures that
the dynamics on the positive axes is known. Indeed, for the one-dimensional Ricker
equation xn+1 = xne

r−xn, n ∈ Z+, we know that r is a globally asymptotically stable
fixed point whenever r ≤ 2.
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The assumption that R1 is a contained in the region Γ1, can be verified through
the competition parameters as we will show in Lemma 6.2. Lastly, the assumption
that images of critical curves do not intersect is motivated from the evidence in
simulations, as depicted in Figure 10.

LC1
−1

LC1
1

LC1
0

LC1
2

LC1
3

x

y

Figure 10: The relative position of the first critical curves LC1
−1, LC

1
0 , LC

1
1 , LC

1
2 ,

and LC1
3 in a generic simulation. The values of the parameters in this example are

a = b = 0.5, r = 1.4, and s = 1.5.

Let us now show how one can verify that R1 ⊂ Γ1. Recall that the boundary of R1

is given by the critical curve LC1
−1. Hence, R1 is a subset of Γ1 whenever the systems

{
y = 1−x

1−(1−ab)x

ay = r − x
and

{
y = 1−x

1−(1−ab)x

y = s− bx

do not have real solutions. This happens in the first system when

−4(−1 + ab)(a− r) + (1− a + r − abr)2 < 0 (6.1)

and in the second system when

−4b(−1 + ab)(1 − s) + (−1 + b+ s− abs)2 < 0. (6.2)
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A straightforward calculation shows that Inequality (6.1) is satisfied whenever we

have a+1−2a
√
b

1−ab
< r < a+1+2a

√
b

1−ab
. Similarly, Inequality (6.2) holds true whenever we

have 1+b−2b
√
a

1−ab
< s < 1+b+2b

√
a

1−ab
. In fact, this can be summarized in the following result.

Lemma 6.2. If the carrying capacities r and s satisfy r ∈
(

a+1−2a
√
b

1−ab
, a+1+2a

√
b

1−ab

)
and

s ∈
(

1+b−2b
√
a

1−ab
, 1+b+2b

√
a

1−ab

)
, then the region R1 is contained in Γ1.

We remark that, there are values for the parameters a and b, where R1 is not
contained in Γ1. For instance, this is the case in Figure 11.

ℓ11

ℓ22
LC1

−1

x

y

Figure 11: An example showing that R1 (region below LC1
−1) is not contained in Γ1

(region below the isoclines ℓ11 and ℓ22). In this case, the values of the parameters are
a = 0.5, b = 0.5, r = 1.2, and s = 1.02.

As aforementioned, the proof of our main result will utilize a mixture of several
ideas. One of the important concepts we will need is the notion of unstable manifolds.
The locally unstable manifolds guarantee (see for instance [6, 14, 26]) that there exists
a unique local unstable manifold W u

l (r) ⊂ Γ3 which is tangent to the eigenvector
orthogonal to x = (r, 0). Similarly, there exists a unique local unstable manifold
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W u
l (s) ⊂ Γ2 which is tangent to the eigenvector orthogonal to y = (0, s). In the

sequel, we compute these two invariant sets. For details about such computations,
see for instance [17].

After shifting the exclusion fixed point (r, 0) to the origin, the Ricker competition
model is now equivalent to

[
xn+1

yn+1

]
=

[
J11 J12

J21 J22

] [
xn

yn

]
+

[
f̃(xn, yn)
g̃(xn, yn)

]

where

f̃(x, y) = (x+ r)er−(x+r)−ay − r − (1− r)x+ ary

g̃(x, y) = yes−y−b(x+r) − es−bry,

and the Jacobian at (0, 0) is given by

J(0, 0) =

[
J11 J12

J21 J22

]
=

[
1− r −ar
0 es−br

]
.

The diagonal matrix can be given by

[
1− r −ar
0 es−br

]
=

[
1 S12

0 1

] [
1− r 0
0 es−br

] [
1 S̃12

0 1

]
,

where

S12 = −S̃12 =
−ar

r − 1 + es−br
.

Using a new change of variables x = u+ S12v and y = v, yields the following system

[
un+1

vn+1

]
=

[
1− r 0
0 es−br

] [
un

vn

]
+

[ ˜̃
f(un, vn)
˜̃g(un, vn)

]
,

where [ ˜̃
f(u, v)
˜̃g(u, v)

]
=

[
1 S̃12

0 1

] [
f̃(u+ S12v, v)
g̃(u+ S12v, v)

]
.

Let u = Φ1(v), where Φ1(v) = p0v + p1v
2 + p2v

3 + p3v
4. The function Φ1(v) must

satisfy the following equation

Φ1(e
s−brv +

˜̃
f(Φ1(v), v))− (1− r)Φ1(v)−

˜̃
f(Φ1(v), v) = 0. (6.3)

After simplify this equation, we write the Taylor expansion and then we find the
values of pi, i = 0, 1, 2, 3. (See Appendix 7).
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Rewriting in the original variables and back again to the original fixed point, the
local unstable manifold W u

l (r) of the exclusion fixed point (r, 0) is given by

W u
l (r) = {(x, y) ∈ D : x = −S12y + Φ1(y) + r}.

Following the same ideas on can show that the local unstable manifold W u
l (s) of

the exclusion fixed point (0, s) is given by

W u
l (s) = {(x, y) ∈ D : y =

x

Q11
+ Φ2

(
x

Q11

)
+ s}, (6.4)

where Q11 = 1−s−er−as

bs
and Φ2(x) = q0x

2 + q1x
3. The values of q0 and q1 are in

Appendix 7.
Since the coexistence equilibrium X∗ is locally asymptotically stable, then there

are two locally asymptotically stable manifolds tangent to the coexistence equilibrium:
the local “slow” asymptotically stable manifold associated to the big eigenvalue (in
absolute value) and the local “fast” asymptotically stable manifold associated to the
small eigenvalue (in absolute value). Since the slow manifold plays a central rule here,
we will focus our analysis in the local slow asymptotically stable manifold that we
represent by W s

l (X
∗).

The computations of the set W s
l (X

∗) are long and we are not able to write it ex-
plicitly for general parameters as we did for the sets W u

l (r) and W u
l (s). Nevertheless,

we are able to do it numerically. For instance, when r = 1.5, s = 1.2 and a = b = 0.5,
the set W s

l (X
∗) is given by

W s
l (X

∗) = {(x, y) ∈ D : G(x, y) = 0}. (6.5)

G(x, y) is given in the Appendix.
Let ax be an arc on W s

l (X
∗) lying in Γ2 such that X∗ /∈ ax. Then F−1

s (sr) is
an arc. Since the computations here are long, using computer assistance one can see
that F−N

s (ax) ⊂ W u
l (r), for some N > 0. Moreover, F−n

s (ax) → (r, 0) as n → ∞.
Furthermore, F−n

s (ax ∪ X∗), as n → ∞, is an arc on D connecting the coexistence
fixed point and the exclusion fixed point (r, 0). This arc, in fact, is an approximation
of the global unstable manifold of the exclusion fixed point (r, 0) which we represent
by W u

g (r)). Hence, we assume that

F−n
s (ax ∪X∗) ⊆ W u

g (r) as n → ∞.

Similarly, we will have

F−n
s (ay ∪X∗) ⊆ W u

g (s) as n → ∞,

29



(x∗, y∗)

W u
g (s)

W u
g (r)

x

y

s

r

Figure 12: The existence of a globally unstable manifold of the exclusion fixed points
(r, 0) and (0, s).

where ay is an arc on W s
l (X

∗) lying in Γ3 and W u
g (s) is the global unstable manifold

connecting the coexistence fixed point X∗ and the exclusion fixed point (0, s).
Notice that the sets W u

g (r) and W u
g (s) are invariant and W u

g (r) ∩ W u
g (s) = X∗.

For simplicity, let us write

W u
g (r; s) = W u

g (r) ∪W u
g (s). (6.6)

A point on the global unstable manifold W u
g (r; s) has two pre-images one of which

belongs to W u
g (r; s) as this set is an invariant set. From the fact that the pre-image

of an arc is an arc, it follows that W u
g (r; s) has two arcs as pre-images: W u

g (r; s) =

F−1
s (W u

g (r; s)) and W r;s
−1 = F−1

p

(
W u

g (r; s)
)
lying below than W u

g (r; s).
Let B1(X

∗) be the immediate basin of attraction of X∗ and define B2(X
∗) =

F−1
s (B1(X

∗)), B3(X
∗) = F−1

s (B2(X
∗)), and interactively defining it as

Bn(X
∗) = F−1

s (Bn−1(X
∗)).

Now, the union of all these sets is an open set lying around W u
g (r; s) which is part of

the basin of attraction of the coexistence fixed point. Namely, define
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B̂(X∗) =
∞⋃

n=1

Bn(X
∗)

In other words, if y ∈ B̂(X∗), then F n(y) → X∗ as n goes to ∞. Hence we have
the following result.

Proposition 6.3. There exits an open set B̂(X∗) containing the globally unstable
manifold which is in the basin of attraction of the coexistence fixed point of the Ricker
competition model.

Similar to the situation in one dimension, the convergence of the image of each
point will be an alternating convergence where we will show that eventually it will be
sufficiently close to the globally unstable manifold.

We are now ready to prove our main result.

Proof of Theorem 6.1. First, we observe that for any p ∈ R1, assumption (1) implies
that p ∈ Γ1. Since F is monotone in the region Γ1, there must be some n such that
F n(p) ∈ D\R1. We will now show that any point in D\R1 not in the axes, will be
globally attracted to X∗.

Let us introduce some notation that will help us in the presentation. From the
condition that 1 ≤ r, s ≤ 2, we know exactly how the dynamics of the one dimensional
Ricker map works. In fact, let r−1 = 1 and for m ≥ 0, denote rm = πx (F

m(k−1, 0)).
Thus we know that rm → r and {rm} is an alternating sequence converging to r, that
is, the even and odd sequences are monotone. Similarly, we denote {sm} converging
to s.

Let us define the region Ω0 = D\R1, that is the region bounded by the critical
curves LC1

−1 and LC−1
0 and the segments r−1r0 and s−1s0. In fact, let us define the

region Ωm, depicted in Figure 12, as

∂Ωm = LC1
m−1 ∪ LC1

m ∪ rm−1rm ∪ sm−1sm

For any point p ∈ Ω0, we have that Fm(p) ∈ Ωm. Therefore it will suffice to show
that for m sufficiently large, Ωm will be contained in a ε-band around the unstable
manifold W u

g (r; s). Then by Proposition 6.3 we will be done.
Indeed, from condition (2) we have that the sets {Ωm} for a properly nested

sequence of sets, that is,

Ωm+1 ( Ωm

where we denoted properly nested to mean that a set is properly contained in the
other. In fact, Ωm+1 is a proper subset of Ωm. Observe that the image of Ωm under F ,
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rm−1 rm+1 rm

sm−1

sm+1

sm

LC1
m−1

LC1
m+1

LC1
m

Ωm+1

Ωm

x

y

Figure 13: Regions bounded by the curves F n(LC1
−1)

which is Ωm+1, satisfies that on each of the axis, we know from the one-dimensional
analyses that rmrm+1 ( rm−1rm and smsm+1 ( sm−1sm. Therefore, LC

−1
m+1 must be a

smooth path entirely contained in Ωm and from (2) it cannot intersect the boundary
of Ωm. Thus,

Ωm+1 ( Ωm

as we had claimed.
Now let us define

Ω =
∞⋂

m=0

Ωm

We have that Ω is a nonempty and closed set. In fact, we will show that Ω =
W u

g (r; s). From its definition, we can say that the boundary of Ω is formed by two
curves (possibly the same) γ− and γ+ connecting the points r to s on the axes. In
addition, we see that the odd curves LC1

2i+1 are converging to γ− and the even curves
to γ+.

Indeed, we have that for any ε > 0, there is m0 such that for 2i ≥ m0,

LC1
2i+1 ⊆ Nε(γ

−)

LC1
2i ⊆ Nε(γ

+)

Suppose towards a contradiction that W u
g (r; s) 6= γ−. Thus, we have that
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δ = sup
p∈γ

{
inf
q∈γ−

{d(p, q)}

}
> 0

where d(p, q) is the distance between the two points p and q. Now, for ε =
δ

2
> 0,

consider the ε-bands Nε(γ) and Nε(γ
−). Since r, s ∈ Nε(γ) ∩ Nε(γ

−), there is some
m ∈ N such that qrm ∈ Bε(r) and qsm ∈ Bε(s). Thus we consider the paths αr and αs

contained in LC1
m joining r to qrm and s to qsm, respectively. For simplicity of notation,

let us consider just one of the paths above as denoted it by α.
Now let αn = F n(α). By the local stability near W u

g (r; s), we must have αn ⊂
Nε(W

u
g (r; s)) with its end point converging to X∗. On the other hand, αn ⊂ LC1

m+n ⊂

Nε(γ
−). However, by the choice of ε = δ

2
the set Nε(W

u
g (r; s)) is not contained in

Nε(γ
−) and the ε-band near W u

g (r; s) will have to leave the ε-band near γ− contra-
dicting αn ⊂ Nε(γ

−). This is depicted in Figure 13.

ℓm

ℓn

qm

qn

s

r

W u
g (r; s)

B̂(X∗)

α

αn

x

y

Figure 14: For n sufficiently large, path will approximate the unstable manifold, but
must remain in shaded area, a contradiction.

A similar argument holds if W u
g (r; s) 6= γ+ by considering the even sequence of

critical curves.
Therefore, we conclude that Ω = W u

g (r; s). Thus choose ε > 0 as described in
Proposition 6.3. Then for all p ∈ int(Ω0), we have that for m sufficiently large,
Fm(p) ∈ Nε(W

u
g (r; s)), thus for n sufficiently large, Fm+n(p) → X∗ establishing that

33



X∗ is globally asymptotically stable with respect to the interior of the first quadrant.
�

We finalize the paper by stating an immediate consequence of Theorem 6.1. Using
an analytic condition instead of a topological condition one can directly verify the
first assumption in case of concrete values of the competition parameters a and b.

Corollary 6.4. Let F be the Ricker competition model (2.2) with 1 < r, s < 2. Sup-
pose that the coexistence fixed point X∗ =

(
aL−K
ab−1

, bK−L
ab−1

)
of F is locally asymptotically

stable. Assume the following conditions:

1. The carrying capacities satisfy r ∈
(

a+1−2a
√
b

1−ab
, a+1+2a

√
b

1−ab

)
and s ∈

(
1+b−2b

√
a

1−ab
, 1+b+2b

√
a

1−ab

)
.

2. For all m 6= n, LC1
m ∩ LC1

n = ∅.

Then X∗ is globally asymptotically stable with respect to the interior of the first
quadrant.

Proof. Using Lemma 6.2, the proof follows directly from Theorem 6.1.
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7 Appendix

Values of pi in the center manifold equation (6.3).

p0 = 0,

p1 = −
ae2brr

(
2es

(
es + ebr(−1 + r)

)
+ a

(
e2br − e2s − 2bebr+sr

))

2 (es + ebr(−1 + r))2 (e2s + e2br(−1 + r))
,
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p2 = −




ae3brr




3es
(
es + ebr(−1 + r)

)2 (
3e2s − e2br(−1 + r)

)
−

6aes
(
es + ebr(−1 + r)

)
(

e3s + (−1 + b)e2br+sr + 3bebr+2sr+
e3br(−1− b(−1 + r)r)

)
+

a2




e5s + 6bebr+4sr + e5br(1 + 2r)−
3be4br+sr(3 + b(−1 + r)r)+
e3br+2s (−1 − 6br2 + 6b2r2)+

e2br+3s (−1 + (−2 + 3b)r + 9b2r2)










/

(
6
(
es + ebr(−1 + r)

)3 (
e2s + e2br(−1 + r)

) (
e3s + e3br(−1 + r)

))
.

We omit the coefficient p3 due the size of the expression.
Values of q0 and q1 for the center manifold function given by Φ2(x) in (6.4).

q0 =
(−2 + b)e2r − be2as + 2er+as(1 + (−1 + ab)s)

2b (e2r + e2as(−1 + s)) s

and

q1 =




(−3 + b)2e5r + b2e5as(1 + 2s) + 6(−3 + b)e4r+as(1 + (−1 + ab)s)−

3er+4as

(
(−1 + s)3 − 2b(−1 + s)(1 + a(−1 + s)s)+

ab2s(3 + a(−1 + s)s)

)
+

e2r+3as (−6(−1 + s)2 + 6b (1− s+ s2) + b2 (−1 − 6as2 + 6a2s2)) +

e3r+2as

(
6b(1 + a(2− 3s))s+ 3 (4− 7s+ 3s2) +

b2 (−1 + (−2 + 3a)s+ 9a2s2)

)




/

(
6b2

(
e2r + e2as(−1 + s)

) (
e3r + e3as(−1 + s)

)
s2
)
.
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Function G(x, y) defined in the set W s
l (X

∗) in (6.5)

G(x, y) = 3.88963× 10−7x10 + x9(−7.02174× 10−6 − 0.0000106267y) +

0.000130647x8(−0.0592973 + y)(1.38083 + y)− 0.000951822x7

(−0.0727274 + y)(−0.0457832 + y)(2.10081 + y)− 0.0149194x5

(−0.015067 + y)(0.283461 + y)(3.53756 + y)(0.147047− 0.502117y + y2) +

0.00455074x6(0.165492 + y)(2.81952 + y)(0.0628253− 0.341945y + y2) +

0.0339672x4(0.408308 + y)(4.25521 + y)

(0.261585− 0.668078y + y2)(0.0115897− 0.0308386y + y2) +

0.0543289x2(0.645219 + y)(5.68989 + y)(0.581562− 1.22942y + y2)

(0.46937− 0.520477y + y2)(0.21724 + 0.70092y + y2)− 0.0530287x3

(4.97262 + y)(0.380765− 0.859178y + y2)(0.148752− 0.305255y + y2)

(0.167076 + 0.817174y + y2)− 0.0329843x(−0.944928 + y)(1.08797 + y)

(6.40704 + y)(1.24989− 1.67028y + y2)(1.11048− 0.32936y + y2)

(0.996763 + 1.39645y + y2) + 0.00901147(−1.03568 + y)

(7.12413 + y)(1.69355− 2.1394y + y2)(1.72874− 0.827475y + y2)

(1.45171 + 1.05599y + y2)(1.66487 + 2.43009y + y2)
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